JPH07132472A - Approach method by plural distance sensors - Google Patents

Approach method by plural distance sensors

Info

Publication number
JPH07132472A
JPH07132472A JP27971893A JP27971893A JPH07132472A JP H07132472 A JPH07132472 A JP H07132472A JP 27971893 A JP27971893 A JP 27971893A JP 27971893 A JP27971893 A JP 27971893A JP H07132472 A JPH07132472 A JP H07132472A
Authority
JP
Japan
Prior art keywords
distance
approach
ground
sensors
approaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27971893A
Other languages
Japanese (ja)
Inventor
Takeo Omichi
武生 大道
Yasutaka Fukuya
康隆 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27971893A priority Critical patent/JPH07132472A/en
Publication of JPH07132472A publication Critical patent/JPH07132472A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To enable a controlled body to approach the other face such as the ground surface while being controlled appropriately even if the other face is uneven or wavy, or part of distance sensors is in failure. CONSTITUTION:A controlled body 1 is provided with plural distance sensors 2 for measuring the distance to the approaching other face 3. The relative specific measured value (the minimum value, for instance) is selected from the measured value of these distance sensors 2, and this relative specific measured value is used as control information for the approach of the controlled body 1 to the approaching other face 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば脚型ロボット
の脚の制御等に適用される複数距離センサによる被制御
体を相手面に接近させる接近手法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of approaching an object to be controlled by a plurality of distance sensors which is applied to leg control of a legged robot.

【0002】[0002]

【従来の技術】例えば、図6に示すようなトロット動歩
行(対角2脚をペアにして次々に切換えていく歩容)す
る脚型ロボット61には脚62を前後に2脚づつ4脚設
けている。そして、これらの脚62(被制御体)を地面
63(相手面)へ接近させる従来の手法は、脚62のそ
れぞれに脚62と地面63との距離を計測するための特
開昭61−193973号に開示にされているような一
個の図示しない非接触距離センサを設けて、その距離セ
ンサ情報により脚62の対地接近速度を決定して脚62
の運動を制御していた。
2. Description of the Related Art For example, a legged robot 61 which walks trot as shown in FIG. 6 (a gait in which two diagonally paired legs are switched one after another) is provided with four legs 62, two legs forward and backward. It is provided. The conventional method of bringing the legs 62 (controlled body) closer to the ground 63 (opposite surface) is disclosed in Japanese Patent Laid-Open No. 61-193973 for measuring the distance between the legs 62 and the ground 63 on each of the legs 62. One non-contact distance sensor (not shown) such as that disclosed in Japanese Patent No. 6-32242 is provided, and the ground approaching speed of the leg 62 is determined by the distance sensor information to determine the leg 62.
Was controlling his movements.

【0003】[0003]

【発明が解決しようとする課題】歩行する地面が平面ま
たは平面に近い場合は、各脚62について1個の距離セ
ンサを設ければ、ほぼ満足な対地接近速度を制御でき
る。しかしながら、屋外に見られるような通常の地面に
は凹凸やうねりがあり、一個の距離センサでは測距誤差
を生じる。また、距離センサの出力は地面表面の性質
(岩、泥、水)や外来光等により変動し、そのための測
距誤差を生じることがある。さらに、距離センサが故障
したようなときに測距不能になり、例えば制御部に対し
て常に最大距離を指示したりする不都合を生じても、距
離センサが一個の場合では対応が不可能になる問題があ
った。
If the ground to be walked is flat or close to a flat surface, one distance sensor for each leg 62 can be provided to control a substantially satisfactory approach speed to the ground. However, the normal ground as seen outdoors has unevenness and undulations, and a single distance sensor causes a distance measurement error. In addition, the output of the distance sensor may fluctuate due to the nature of the ground surface (rock, mud, water), extraneous light, etc., which may cause a distance measurement error. Further, even if the distance sensor fails, the distance measurement becomes impossible, and for example, even if a problem such as always instructing the maximum distance to the control unit occurs, it is impossible to cope with the case where there is only one distance sensor. There was a problem.

【0004】この発明はこれらの問題を解決するために
なされたもので、例えばロボットの脚等の制御におい
て、地面等の相手面に凹凸やうねりがあっても、また、
距離センサの一部が故障しても、被制御体である脚を適
切に制御して相手面に接近させることがができる複数距
離センサによる接近手法を提供することを目的としてい
る。
The present invention has been made to solve these problems. For example, in controlling the legs of a robot, even if there is unevenness or undulations on the mating surface such as the ground,
It is an object of the present invention to provide an approach method using a plurality of distance sensors that can appropriately control a leg that is a controlled object and can approach a partner surface even if a part of the distance sensor fails.

【0005】[0005]

【課題を解決するための手段】この発明の複数距離セン
サによる接近手法は、被制御体に接近相手面との距離を
計測する複数の距離センサを設け、これら距離センサよ
る計測値の中から相対的特定計測値(例えば最小値)を
選択し、この相対的特定計測値を被制御体の接近相手面
に接近するための制御情報とすることを特徴としてい
る。また、距離センサの計測値は非連続値(例えば大、
中、小)であることも特徴としている。
According to the approach method using a plurality of distance sensors of the present invention, a plurality of distance sensors for measuring the distance to an approaching partner surface are provided on a controlled object, and relative distances are selected from the measured values by the distance sensors. It is characterized in that a target specific measurement value (for example, a minimum value) is selected and this relative specific measurement value is used as control information for approaching the approaching partner surface of the controlled object. Further, the measurement value of the distance sensor is a non-continuous value (for example, large,
It is also characterized by being medium and small).

【0006】[0006]

【作用】このように構成することで、相手面にうねりや
凹凸が有っても複数の計測値から相対的に最も適切な計
測値(例えば最も相手面に近い距離)を選択して被制御
体を制御する。また、例えば距離センサの一つが故障し
ても他の距離センサで対応できる。また、計測値が非連
続値な距離センサを使用しても同様な効果が得られ、距
離センサを簡易化できる。
With this configuration, even if there is undulation or unevenness on the mating surface, a relatively most appropriate measurement value (for example, a distance closest to the mating surface) is selected from a plurality of measurement values to be controlled. Control the body. Further, for example, even if one of the distance sensors fails, another distance sensor can handle it. Further, even if a distance sensor whose measured value is a discontinuous value is used, the same effect can be obtained, and the distance sensor can be simplified.

【0007】[0007]

【実施例】以下、図面を参照しながらこの発明の実施例
を説明する。第1の実施例は被制御体として脚型ロボッ
トの脚を例にとり、このロボットの脚を距離センサの計
測値に基づいてこの実施例の接近手法により制御するた
め、脚に複数の距離センサを図1(a)(b)に示すように配
置している。
Embodiments of the present invention will be described below with reference to the drawings. In the first embodiment, the leg of a legged robot is taken as an example of the controlled object, and the leg of this robot is controlled by the approaching method of this embodiment based on the measurement value of the distance sensor. They are arranged as shown in FIGS. 1 (a) and 1 (b).

【0008】図1(a) において、1は被制御体である脚
型ロボットの脚で、2は脚1の円盤状の脚裏1aの面に
垂直下方に向けて設けられ、脚裏1aと地面3との間の
距離の計測値が連続したアナログ値で得られる複数の距
離センサである。この距離センサ2は超音波あるいは赤
外線等の距離測定用信号を地面3方向に送出す図示しな
い送信器と、地面から反射して戻ってきた測定用信号を
受ける図示しない受信器とで構成されている。この実施
例では図1(b) に示すように、上記した距離センサ2を
脚裏1aの中央部に1個と、それ以外の距離センサ2は
脚1の構造として底部ねじれ方向に発生する外乱モーメ
ントの影響を抑えるため滑り自由度をもたせた機構を想
定し、さらに、センサ信号処理をスリップリングを用い
ない簡易なものとするため、脚裏1aの円周部に等間隔
に8個、計9個の距離センサ2を配設している。
In FIG. 1 (a), reference numeral 1 is a leg of a legged robot which is a controlled object, and 2 is provided vertically downward on the surface of a disc-shaped sole 1a of the leg 1, It is a plurality of distance sensors whose measured values of the distance to the ground 3 are obtained as continuous analog values. The distance sensor 2 is composed of a transmitter (not shown) that sends a distance measurement signal such as ultrasonic waves or infrared rays to the ground 3 direction, and a receiver (not shown) that receives the measurement signal reflected and returned from the ground. There is. In this embodiment, as shown in FIG. 1 (b), one distance sensor 2 is provided at the center of the back of the leg 1a, and the other distance sensors 2 have the structure of the leg 1 and generate disturbances in the direction of the bottom twist. Assuming a mechanism with a degree of freedom of sliding to suppress the influence of moment, and further, in order to simplify the sensor signal processing without using a slip ring, a total of eight equidistant parts are arranged on the circumference of the sole 1a. Nine distance sensors 2 are arranged.

【0009】このような構成になる脚1をこの実施例の
接近手法においては、9個の距離センサ2で計測して得
られる対地面距離値Lg に比例した接近速度Vで制御す
るようにしている。
In the approaching method of this embodiment, the leg 1 having such a structure is controlled by the approaching speed V proportional to the ground distance value Lg obtained by measuring with the nine distance sensors 2. There is.

【0010】 V=K・Lg K:定数 ……1 脚1が接地しょうとしている地面3との対地面距離Lg
の算出方法には平均法と最接近データ法とがある。平均
法とは、2式に示すように全距離センサ2の計測距離値
を算術平均して、この脚1の対地面距離値Lg とするも
ので、この発明が採用する最接近データ法とは、3式に
示すように構成距離センサ2のうちの最も小さい計測値
を計測した距離センサ2の計測値をもって、この脚1の
対地面距離値Lg とするものである。
V = K · Lg K: constant …… 1 Distance from the ground 3 to the ground 3 where the leg 1 is about to touch the ground
There are an average method and a closest data method as a calculation method of. The averaging method arithmetically averages the measured distance values of the total distance sensor 2 as shown in Equation 2 to obtain the ground distance value Lg of the leg 1. The closest data method adopted by the present invention is As shown in Expression 3, the smallest measured value of the constituent distance sensors 2 is used as the distance value Lg of the leg 1 to the ground with the measured value of the distance sensor 2.

【0011】平均法 Lg =Lave =ΣLi /n ……2 Li :i番目の距離センサ2の計測値 (i=1〜9) n :距離センサ2の数 最接近データ法 Lg =Lmin =Lx ……3 Lx:最も小さい計測値を計測した距離センサ2の計測
値 したがって、両手法による場合の脚1の接近速度Vは1
式からそれぞれ4,5式で表現される。
Average method Lg = Lave = ΣLi / n 2 Li: Measurement value of i-th distance sensor 2 (i = 1 to 9) n: Number of distance sensors 2 Closest data method Lg = Lmin = Lx. 3 Lx: Measured value of the distance sensor 2 that measured the smallest measured value Therefore, the approaching speed V of the leg 1 in the case of both methods is 1
It is expressed by the equations 4 and 5, respectively.

【0012】 平均法の場合 V=K・Lave ……4 最接近データ法の場合 V=K・Lmin ……5 図2は平均法と最接近データ法の二つの手法を比較評価
するため、種々の形状(a) 〜(d) の地面に対して二つの
手法を用いて実験し、脚1の地面3に接触したときの接
近速度Vの平均と分散を距離センサ2の数を横軸にとり
平均法のデータを実線で、最接近データ法のデータを破
線で示したグラフである。
In the case of the averaging method V = K · Lave ...... 4 In the case of the closest data method V = K · Lmin …… 5 FIG. 2 shows various methods for comparing and evaluating the two methods of the averaging method and the closest data method. Experiments were carried out on the grounds of shapes (a) to (d) using the two methods, and the average and variance of the approach speed V when the leg 1 touches the ground 3 are plotted with the number of distance sensors 2 on the horizontal axis. It is a graph in which the data of the average method is shown by a solid line and the data of the closest data method is shown by a broken line.

【0013】(a) の条件は、地面3に同図に示すような
正弦波状の2次元のうねりがあり、そのうねり面が次式
で表される場合である。 Z=h COS(2π・x/D) この実施例ではD=480mm(脚1の直径の4倍)と
し、h=9.4mmの場合を示している。
The condition (a) is that the ground 3 has a sinusoidal two-dimensional undulation as shown in the same figure, and the undulation surface is expressed by the following equation. Z = h COS (2π · x / D) In this embodiment, D = 480 mm (four times the diameter of the leg 1) and h = 9.4 mm is shown.

【0014】(b) の条件は地面が凸面で、その凸面が次
式で表される場合である。 Z=h COS(2π・x/D) COS(2π・y/D) この実施例ではD=960mm,h=152mmの場合を示
している。
The condition (b) is that the ground is a convex surface, and the convex surface is expressed by the following equation. Z = h COS (2π · x / D) COS (2π · y / D) In this embodiment, the case of D = 960 mm and h = 152 mm is shown.

【0015】(c) の条件は地面が凹面で、その凹面が次
式で表される場合である。 Z=−h COS(2π・x/D) COS(2π・y/D) この実施例ではD=960mm,h=152mmの場合を示
している。
The condition (c) is that the ground surface is a concave surface and the concave surface is expressed by the following equation. Z = −h COS (2π · x / D) COS (2π · y / D) In this embodiment, the case of D = 960 mm and h = 152 mm is shown.

【0016】なお、これらの式でZは地面高さ、hはう
ねりや凹凸の振幅、Dはうねりや凹凸の波長、x,yは
水平面の座標である。(d) の条件は地面に幅24mmの突
起面が存在し、その高さが6mm,12mm,24mmの三通
りの突起面がランダムに分布している場合である。
In these equations, Z is the ground height, h is the amplitude of the undulations and irregularities, D is the wavelength of the undulations and irregularities, and x and y are the coordinates of the horizontal plane. The condition of (d) is a case where there are projecting surfaces with a width of 24 mm on the ground, and three projecting surfaces with heights of 6 mm, 12 mm, and 24 mm are randomly distributed.

【0017】図2の各グラフを見て判るように、接近速
度Vの平均は最接近データ法の場合の方がセンサ数3〜
5以上で大きく減速しており、また、脚1の地面3に接
触したときの接近速度Vの分散は接近速度Vの減速がで
きている要件(センサ数3〜5以上)の場合では、最接
近データ法の方が平均法に比べて小さいか同程度であ
り、接近特性が優れていることが判る。また、距離セン
サ2の数を増やしても平均法では接近速度Vは許容速度
(V/Vmax が0.1以下)まで減速できないが最接近
データ法ではセンサ数が9個程度で、ほぼ許容速度付近
まで接近させることができる。
As can be seen from the graphs of FIG. 2, the average of the approaching speeds V is 3 to 3 in the case of the closest approach data method.
In the case of the requirement that the approach speed V is decelerated (the number of sensors is 3 to 5 or more), the maximum deceleration is 5 or more, and the dispersion of the approach speed V when the leg 1 comes into contact with the ground 3 is the maximum. It can be seen that the approach data method is smaller than or similar to the average method, and the approach characteristics are superior. Further, even if the number of the distance sensors 2 is increased, the approach speed V cannot be reduced to the permissible speed (V / Vmax is 0.1 or less) by the averaging method, but the number of sensors is about 9 by the closest approach data method, and the permissible speed is almost Can be brought close to the neighborhood.

【0018】図3は、脚1の距離センサ2の数や配置お
よび地面3の条件は図2の場合と同じであるが、距離セ
ンサ2にある程度の測距誤差がある場合の脚1の接近速
度Vの平均と分散のデータである。図3の各グラフを見
て判るように、接近速度Vの平均は図2のデータと大き
な違いは無く、また、分散の場合は条件(b)(c)(d) にお
いて平均法と最接近データ法の両データが接近している
が、条件(a) の場合は図2の場合と同様に接近速度Vの
減速ができている要件(センサ数3〜5以上)では、最
接近データ法の方が平均法に比べて小さく、最接近デー
タ法の接近特性が優れていること示している。
3, the number and arrangement of the distance sensors 2 on the leg 1 and the condition of the ground 3 are the same as those in FIG. 2, but the approach of the leg 1 when the distance sensor 2 has a certain distance measurement error. It is data of the average and variance of the velocity V. As can be seen from the graphs in Fig. 3, the average of the approach velocity V is not much different from the data in Fig. 2, and in the case of dispersion, it is closest to the averaging method under conditions (b) (c) (d). Although both data of the data method are close to each other, in the case of the condition (a), the closest approach data method is required under the condition that the approach speed V can be decelerated as in the case of FIG. 2 (the number of sensors is 3 to 5 or more). Is smaller than the averaging method, indicating that the closest data method has better approach characteristics.

【0019】図2,図3に示した実験結果を考察する
と、平均法は地面の凹凸が小さい場合には、接近速度V
のバラツキが小さくなり有効であるが、凹凸が大きい場
合は平均化のメリットがなくなってしまう。凹凸が大き
い場合は、一番近い距離の計測値で接近速度Vを決定で
きる最接近データ法の方が、ソフトランデングを行うた
めには有効である。また、距離センサ2の数は多い方が
望ましいが、実用的には9個程度で満足できることが判
る。
Considering the experimental results shown in FIGS. 2 and 3, the averaging method shows that the approach speed V is obtained when the unevenness of the ground is small.
However, if the irregularities are large, the merit of averaging is lost. When the unevenness is large, the closest approach data method, which can determine the approaching speed V by the measurement value of the closest distance, is more effective for performing soft landing. Further, it is desirable that the number of the distance sensors 2 is large, but it can be understood that practically about 9 is sufficient.

【0020】第2の実施例は、距離センサとしてon/OFF
センサを使用し、このon/OFFセンサの情報を用いた接近
手法の実施例である。この実施例では、図4(a)(b)に示
すように脚1にon/OFFセンサ4を第1の実施例と同様に
9個実装したものを示している。
The second embodiment is on / off as a distance sensor.
This is an example of an approach method using a sensor and using information of this on / off sensor. In this embodiment, as shown in FIGS. 4 (a) and 4 (b), nine on / off sensors 4 are mounted on the leg 1 as in the first embodiment.

【0021】on/OFFセンサ4はON/OFF式の近接セ
ンサ2個を1組で構成され、基準距離をLmax とした場
合、副基準距離を0.5 Lmax とし、近接センサ2個の内
一方の計測しきい値をLmax に設定し、他方の計測しき
い値をを0.5 Lmax に設定する。つまり、一方の近接セ
ンサは計測値がLmax 未満のときONと、Lmax 以上の
ときOFFを出力し、他方の近接センサは計測値が0.5
Lmax 未満のときONと、0.5 Lmax 以上のときOFF
を出力するように設定されており、したがってon/OFFセ
ンサ4からは近接センサ2個のON,OFF情報が組合
わされて離散的な出力を制御部に出力する。
The on / off sensor 4 is composed of a pair of ON / OFF type proximity sensors. When the reference distance is Lmax, the sub-reference distance is 0.5 Lmax, and one of the two proximity sensors is measured. The threshold is set to Lmax and the other measurement threshold is set to 0.5 Lmax. That is, one proximity sensor outputs ON when the measured value is less than Lmax and OFF when the measured value is more than Lmax, and the other proximity sensor outputs 0.5 measured value.
ON when less than Lmax, OFF when more than 0.5 Lmax
Is set so that the ON / OFF sensor 4 combines the ON / OFF information of the two proximity sensors to output a discrete output to the control unit.

【0022】この実施例の個々のon/OFFセンサ4は図4
(c) に示すように、構成する両近接センサが2個ともに
OFFの場合は第1出力を出し、脚1の対地面接近速度
VをVmax に、1個のみONの場合は第2出力を出し、
接近速度Vを0.5 Vmax に、さらに、2個ともにONの
場合は第3出力を出し、接近速度Vを0.1 Vmax に指示
する。
The individual on / off sensors 4 of this embodiment are shown in FIG.
As shown in (c), when both of the two proximity sensors that are configured are both OFF, the first output is output, and when the approach speed V of the leg 1 to the ground is Vmax, the second output is output when only one is ON. broth,
The approach speed V is set to 0.5 Vmax, and when both are ON, the third output is output and the approach speed V is set to 0.1 Vmax.

【0023】以上は、on/OFFセンサ4が1個の場合であ
るが、この実施例では9個のon/OFFセンサ4が設けられ
ており、第1の実施例と同様に脚1の対地接近手法とし
て最接近データ法を採用している。つまり、9個のon/O
FFセンサ4の近接センサのすべてがOFFのとき、した
がって第1出力だけのときは脚1の接近速度VをVmax
に、ONとOFFが混在する場合で第3出力がなく、第
1,第2出力が混在する場合は第2出力を優先して接近
速度Vを0.5 Vmax に、第3出力が混在する場合は第3
出力を優先して接近速度Vを0.1 Vmax に設定する。こ
のように、この実施例の接近速度Vは離散的に設定され
る。なお、この第2の実施例の手法を第1の実施例の最
接近データ法と区別するため、最接近データ+ファジィ
法と呼んでいる。
The above is the case where there is only one on / off sensor 4, but in this embodiment nine on / off sensors 4 are provided, and the ground of the leg 1 is the same as in the first embodiment. The closest approach data method is adopted as the approach method. In other words, 9 on / O
When all the proximity sensors of the FF sensor 4 are OFF, that is, when only the first output is provided, the approach speed V of the leg 1 is set to Vmax.
In the case where ON and OFF are mixed, there is no third output, and when the first and second outputs are mixed, the second output is prioritized and the approach speed V is set to 0.5 Vmax, and when the third output is mixed. Third
Set the approach speed V to 0.1 Vmax, giving priority to the output. Thus, the approach speed V in this embodiment is set discretely. The method of the second embodiment is called the closest data + fuzzy method in order to distinguish it from the closest data method of the first embodiment.

【0024】このようなon/OFFセンサ4が配置された脚
1を用い、種々の地面形状のうち突起面形状に対して、
この実施例の手法と第1の実施例であるアナログ出力の
距離センサを用いた場合との手法の比較するため行った
実験結果を図5に示す。図5は脚1の地面3との接触時
に接近速度Vの平均と分散のデータを、第1の実施例の
アナログ距離センサによる平均法を実線で、最接近デー
タ法のものを破線で示し、第2の実施例の最接近データ
+ファジィ法のものを二点鎖線で表している。なお、5
図(a) は全てのセンサが正常に動作している状態で、同
図(b) は中央のセンサが断線等のため最大出力を出力し
ている場合を示している。また、実験地面形状は突起間
ピッチが60mmで突起の高さhは、0≦h≧60mmであ
る。
Using the leg 1 on which such an on / off sensor 4 is arranged, with respect to the protruding surface shape among various ground shapes,
FIG. 5 shows the result of an experiment conducted to compare the method of this embodiment and the method using the analog output distance sensor according to the first embodiment. FIG. 5 shows the average and variance data of the approach velocity V when the leg 1 comes into contact with the ground 3, the average method by the analog distance sensor of the first embodiment is shown by a solid line, and the closest approach data method is shown by a broken line. The closest data + fuzzy method of the second embodiment is indicated by a chain double-dashed line. 5
Figure (a) shows the state where all the sensors are operating normally, and Figure (b) shows the case where the central sensor outputs the maximum output due to disconnection. Further, in the experimental ground shape, the pitch between the projections is 60 mm, and the height h of the projections is 0 ≦ h ≧ 60 mm.

【0025】図5の各グラフを見て判るように、接近速
度Vの平均は突起面の形状が厳しいので、最接近データ
や最接近データ+ファジィ法でも接近速度Vを減速でき
る要件を満たすにはセンサ数が9個程度必要であが、こ
の要件を満たした場合の最接近データ+ファジィ法の接
近速度Vの分散は、アナログ距離センサによる最接近デ
ータ法の分散と同程度の結果が得られた。このことは、
図5(b) を見て分かるように中央のセンサが断線等のた
め最大出力を出力している場合も同じ傾向が見られる。
As can be seen from the graphs in FIG. 5, the average of the approaching speeds V has a strict projection surface shape. Therefore, even the closest approaching data or the closest approaching data + fuzzy method can meet the requirement that the approaching speed V can be reduced. Requires about nine sensors, but when this requirement is satisfied, the variance of the closest approach data + the approach speed V of the fuzzy method is similar to the variance of the closest approach data method by the analog distance sensor. Was given. This is
As can be seen from Fig. 5 (b), the same tendency can be seen when the central sensor outputs the maximum output due to the disconnection or the like.

【0026】図5に示した実験結果を考察すると、第2
の実施例の離散的な出力情報による最接近データ+ファ
ジィ法の接近手法は、第1の実施例のアナログ出力情報
の最接近データ法の接近手法と同程度の性能が得られる
ことが判る。また、第1の実施例の精度の良いアナログ
センサを少数使用した場合よりも、精度は劣るが必要数
用意した第2の実施例の離散出力センサの方が接近速度
の分散が小さく、例えば、脚型ロボットに適用した場合
等においてソフトランディングを行う手法として優れて
いることが判った。なお、この発明は上記実施例に限定
されるものではなく、要旨を変更しない範囲で変形して
実施できる。
Considering the experimental results shown in FIG.
It can be seen that the closest approach data + fuzzy approach method based on the discrete output information of the embodiment of the second embodiment achieves the same level of performance as the closest approach data method of the analog output information of the first embodiment. Further, the precision is inferior to the case where a small number of high-accuracy analog sensors of the first embodiment are used, but the required number of discrete output sensors of the second embodiment provided a smaller dispersion of the approach speed. It was found to be an excellent method for performing soft landing when applied to a legged robot. The present invention is not limited to the above-mentioned embodiments, and can be modified and carried out without changing the gist.

【0027】[0027]

【発明の効果】この発明によれば、複数の距離計測値か
ら相手面に接近するために最も適当な相対的特定計測値
を選択して被制御体を制御するので、被制御体を適切な
接近速度で相手面に接触させることができる。また、こ
り発明の接近手法によれば、複数の距離センサに計測値
が非連続値である簡易センサを使用しても被制御体を適
切に制御できる。
According to the present invention, the controlled object is controlled by selecting the most appropriate relative specific measured value for approaching the opponent surface from the plurality of distance measured values, so that the controlled object can be controlled appropriately. It can be brought into contact with the opponent's surface at an approaching speed. Further, according to the approach method of the present invention, the controlled object can be appropriately controlled even if a simple sensor whose measured value is a discontinuous value is used for the plurality of distance sensors.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例の手法を説明するため
の被制御体における距離センサの配置分布の説明図。
FIG. 1 is an explanatory diagram of an arrangement distribution of distance sensors in a controlled body for explaining a method according to a first embodiment of the present invention.

【図2】図1に示した被制御体をこの発明の最接近デー
タ法と比較のため平均法で制御した場合の接近速度の平
均と分散のデータ。
FIG. 2 is data of average and dispersion of approach speeds when the controlled object shown in FIG. 1 is controlled by the average method for comparison with the closest approach data method of the present invention.

【図3】図1に示した被制御体に誤差のある距離センサ
を実装し、図2の地面条件で行った最接近データ法と平
均法による場合の接近速度の平均と分散のデータ。
FIG. 3 is data of average and variance of approach speeds when the distance sensor having an error is mounted on the controlled object shown in FIG. 1 and the closest approach data method and the average method performed under the ground condition of FIG. 2 are used.

【図4】第2の実施例の手法を説明するため距離センサ
としてon/OFFセンサを使用し被制御体に配置した説明
図。
FIG. 4 is an explanatory diagram in which an on / OFF sensor is used as a distance sensor and is arranged on a controlled object in order to explain the method of the second embodiment.

【図5】この実施例と第1の実施例の手法を突起面状地
面において比較した接近速度の平均と分散のデータ。
FIG. 5 is data of average and dispersion of approach speeds when the method of this example and the method of the first example are compared on a projecting surface.

【図6】脚型ロボットの歩行の様子を示す説明図。FIG. 6 is an explanatory diagram showing a walking state of a legged robot.

【符号の説明】[Explanation of symbols]

1…脚 1a…脚裏 2…距離センサ 3…地面 4…on/OFFセンサ 1 ... leg 1a ... sole of foot 2 ... distance sensor 3 ... ground 4 ... on / OFF sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被制御体に接近相手面との距離を計測す
る複数の距離センサを設け、これら距離センサよる計測
値の中から相対的特定計測値を選択し、この相対的特定
計測値を被制御体の接近相手面に接近するための制御情
報とすることを特徴とした複数距離センサによる接近手
法。
1. A controlled object is provided with a plurality of distance sensors for measuring a distance from an approaching partner surface, a relative specific measured value is selected from the measured values by the distance sensors, and the relative specific measured value is calculated. An approach method using multiple distance sensors, which is characterized by using control information for approaching the approaching partner surface of the controlled object.
【請求項2】 距離センサの計測値は非連続値であるこ
とを特徴とした請求項1記載の複数距離センサによる接
近手法。
2. The approaching method using a plurality of distance sensors according to claim 1, wherein the measured value of the distance sensor is a discontinuous value.
JP27971893A 1993-11-09 1993-11-09 Approach method by plural distance sensors Withdrawn JPH07132472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27971893A JPH07132472A (en) 1993-11-09 1993-11-09 Approach method by plural distance sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27971893A JPH07132472A (en) 1993-11-09 1993-11-09 Approach method by plural distance sensors

Publications (1)

Publication Number Publication Date
JPH07132472A true JPH07132472A (en) 1995-05-23

Family

ID=17614917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27971893A Withdrawn JPH07132472A (en) 1993-11-09 1993-11-09 Approach method by plural distance sensors

Country Status (1)

Country Link
JP (1) JPH07132472A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307340A (en) * 2001-04-19 2002-10-23 Sony Corp Leg type mobile robot and control method thereof
WO2005051611A1 (en) * 2003-11-27 2005-06-09 Honda Motor Co., Ltd. Control device for mobile body
JP2013094944A (en) * 2011-11-04 2013-05-20 Honda Motor Co Ltd Mobile body operation device
WO2019176835A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Slope monitoring system, slope monitoring method, and recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307340A (en) * 2001-04-19 2002-10-23 Sony Corp Leg type mobile robot and control method thereof
WO2005051611A1 (en) * 2003-11-27 2005-06-09 Honda Motor Co., Ltd. Control device for mobile body
WO2005051608A3 (en) * 2003-11-27 2005-07-21 Honda Motor Co Ltd Control device for mobile body
US7603199B2 (en) 2003-11-27 2009-10-13 Honda Motor Co., Ltd. Control device for mobile body
US7606634B2 (en) 2003-11-27 2009-10-20 Honda Motor Co., Ltd. Control device for mobile body
JP2013094944A (en) * 2011-11-04 2013-05-20 Honda Motor Co Ltd Mobile body operation device
WO2019176835A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Slope monitoring system, slope monitoring method, and recording medium

Similar Documents

Publication Publication Date Title
US4858132A (en) Optical navigation system for an automatic guided vehicle, and method
EP2672356B1 (en) Robot cleaner system including robot cleaner and docking station, and method of controlling the robot with length modulated guiding signals
WO2003032129A8 (en) Method and system for visualizing surface errors
CN111267107B (en) Control method, robot, electronic device, and readable storage medium
JP2009008648A (en) Three-dimensional distance measuring device and caster-type robot
JPH07132472A (en) Approach method by plural distance sensors
US20170010620A1 (en) Operating environment information generating device for mobile robot
ES2173526T3 (en) SENSOR INSTALLATION BASED ON THE RETRORREFLEXION OF A LASER RAY.
US5331770A (en) Method for scraping off excessive portion of workpiece
WO2021120998A1 (en) Autonomous robot and control method therefor
JP2009050936A (en) Interference determination device and leg wheel type robot
EP0599807B1 (en) Position detector
Haddeler et al. Explore bravely: Wheeled-legged robots traverse in unknown rough environment
CN110262532B (en) Robot terrain processing and multi-terrain gait control method and system
JPH01175507A (en) Pneumatic tire
CN115587603A (en) Robot and method and system for identifying workstation thereof, storage medium and workstation
EP0364142A3 (en) Tyre tread pattern
JPH04110261A (en) Road surface state estimating device
JPS5865801A (en) Construction machine for railroad
JPS62105206A (en) Guiding device for unmanned guided vehicle
JPH038684B2 (en)
JP3228075B2 (en) Shield segment positioning method
JPS6247483B2 (en)
CN111631640A (en) Application method of detection device capable of judging condition of robot walking surface
CN115183676B (en) Posture adjusting sensor for moving object linear navigation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130