JP2006252128A - System for predicting slope collapse and for transmitting evacuation information to peripheral area - Google Patents
System for predicting slope collapse and for transmitting evacuation information to peripheral area Download PDFInfo
- Publication number
- JP2006252128A JP2006252128A JP2005067152A JP2005067152A JP2006252128A JP 2006252128 A JP2006252128 A JP 2006252128A JP 2005067152 A JP2005067152 A JP 2005067152A JP 2005067152 A JP2005067152 A JP 2005067152A JP 2006252128 A JP2006252128 A JP 2006252128A
- Authority
- JP
- Japan
- Prior art keywords
- slope
- rainfall
- collapse
- curved surface
- monitored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002093 peripheral effect Effects 0.000 title abstract 4
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 14
- 230000008859 change Effects 0.000 claims abstract description 14
- 238000011156 evaluation Methods 0.000 claims abstract description 13
- 238000005206 flow analysis Methods 0.000 claims abstract description 5
- 238000001556 precipitation Methods 0.000 claims abstract description 4
- 230000003204 osmotic effect Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 abstract description 21
- 230000009471 action Effects 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 239000002689 soil Substances 0.000 abstract description 4
- 239000003673 groundwater Substances 0.000 abstract description 3
- 230000035515 penetration Effects 0.000 abstract 1
- 230000002265 prevention Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Alarm Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は斜面崩壊予測および周辺地域への避難情報伝達システムに係り、降雨時における急傾斜地等の斜面崩壊の危険度を定量的に評価し、斜面崩壊による住民被害を防止するために、斜面崩壊に対する周辺地域における注意、警戒、避難等の情報を的確に提供できるようにした斜面崩壊予測および周辺地域への避難情報伝達システムに関する。 The present invention relates to a slope failure prediction and an evacuation information transmission system to surrounding areas. In order to quantitatively evaluate the risk of slope failure such as steep slopes during rainfall, and to prevent damage to residents due to slope failure, slope failure The present invention relates to a slope failure prediction and an evacuation information transmission system to the surrounding area, which can accurately provide information such as caution, warning and evacuation in the surrounding area.
我が国には急峻な地形が多く、過去、降雨災害として低地部の浸水被害とともに、急傾斜地の崩壊被害が多く発生している。現在、各地方自治体では急傾斜崩壊危険区域を指定し、建築規制を行うとともに、このような区域の住民の安全を考慮し、あらかじめ対象地域の現地調査を行っておき、たとえば一定の時間降雨量や、降り始めからの総雨量と、斜面の変状の進行状況をもとに斜面崩壊(被害発生)に対する可能性の判定を行い、周辺地域の住民に対しての注意、警戒あるいは避難勧告、避難命令等(以下、これらを避難情報と呼ぶ。)の予想される被害規模、レベルに対応した避難情報の伝達を行うような方策がとられている。しかし、こららの避難情報の判定は、過去の発生データとの比較や経験則に基づくものが多く、急激な天候の変化や予測雨量以上の豪雨等に対して、測定データの処理、検討が間に合わなかったり、また判定基準も明確でないため、的確な判断ができないという問題がある。 In Japan, there are many steep landforms, and in the past, there has been a lot of damage caused by collapse of steep slopes along with inundation damage in lowland areas as a rain disaster. At present, each local government designates a steeply sloped danger area, regulates the building, and considers the safety of residents in such an area. And the possibility of slope failure (damage) based on the total amount of rainfall from the beginning of the fall and the progress of slope deformation, and attention, warning or evacuation recommendations for residents in the surrounding area, Measures are taken to transmit evacuation information corresponding to the expected damage scale and level of evacuation orders (hereinafter referred to as evacuation information). However, the judgment of these evacuation information is often based on comparison with past occurrence data and empirical rules, and measurement data can be processed and examined for sudden changes in weather or heavy rains exceeding the predicted rainfall. There is a problem that accurate judgment cannot be made because it is not in time or the criteria for determination are not clear.
このような問題を解決した先行技術として特許文献1に開示された発明がある。この発明は、監視(計測)対象となる斜面の位置情報を高精度のGPSデータとして処理し、その領域の斜面状態データ(たとえば変位量)を求め、さらに、降雨量を示す実測雨量データ及び予測雨量データを気象データとし、気象データ及び斜面状態データと斜面崩壊の危険度を定量化し、データベース化するとともに、対象となる地域での斜面崩壊の発生を予測して、必要に応じた避難情報等を発するようになっている。また、各データは、逐次更新され、最新の状況にもとづいた避難情報の提供がなされるようになっている。
There is an invention disclosed in
この発明のコンピュータシステムでは、基準点位置情報と他の位置情報とを用いて、予め定められた時間間隔毎に斜面変位データを求め、この斜面変位データは横軸を時間、縦軸を変位として示されるとともに、データベースに斜面毎に格納される。また、斜面変位データは、各種外的要因を含んでいるため、このような斜面変位データから斜面の状態を正確に把握・評価することは難しい。そこで、この発明では、斜面変位データに対してフィルタ処理及び平滑化処理を行って、その処理済み変位データを生成し、状態把握データとして用いられ、処理済変位データから斜面の変位量、変位速度及び変位加速度を求め、斜面の変位量を予測するようになっている。 In the computer system of the present invention, slope displacement data is obtained at predetermined time intervals using the reference point position information and other position information, and the slope displacement data is obtained by setting the horizontal axis as time and the vertical axis as displacement. And is stored in the database for each slope. In addition, since the slope displacement data includes various external factors, it is difficult to accurately grasp and evaluate the state of the slope from such slope displacement data. Therefore, in the present invention, the slope displacement data is filtered and smoothed to generate processed displacement data, which is used as state grasping data. From the processed displacement data, the displacement amount and displacement speed of the slope Then, the displacement acceleration is obtained and the displacement amount of the slope is predicted.
そして、雨量計で斜面毎に雨量計測を行うか又は雨量データの配信を受け、気象データとしてデータベースに格納されるとともに、予測雨量データもデータベース格納され、データベースには、斜面毎に基本情報、処理済変位データ(計測結果)、リモートセンシングデータ、及び気象データが蓄積され、これらの複数のデータを変数とする多変量解析を行って、崩壊危険度スコア値を得て、避難情報発令基準( 警戒・避難・道路規制基準) を設定・更新するようになっている。 The rain gauge measures the rainfall for each slope or receives the rainfall data and stores it in the database as meteorological data, and also stores the predicted rainfall data in the database. The database stores basic information and processing for each slope. Displacement data (measurement results), remote sensing data, and meteorological data are accumulated, and multivariate analysis using these multiple data as variables is performed to obtain a collapse risk score value.・ Evacuation / road regulation standards) are set and updated.
上述した特許文献1の発明は、斜面変位等のデータを、高精度のGPSデータとして取得し、当該個所の雨量データとともに定量的に統計処理して、その斜面の危険度を定量的に把握し、警告、避難命令等の発令レベルを的確に設定、更新できるようにしたものである。しかし、そのデータ種類は、従来、取り扱っていた斜面等に降った雨量と、降雨時の、対象となっている斜面の変位状態と同等のものである。それらのデータの処理において、データの関係を高精度化させ、定量的な判断基準を適用した点に特徴があるが、基本的には従来技術と同様に、各斜面の変位状態の継続的な計測が必要となる。このため、広域的な斜面崩壊予測を行うためには、監視対象となる斜面すべてにGPS基準局等の設備を設定する必要がある。このため、システム設備のコストが莫大なものとなる。
The invention of
ところで、近年、自治体等で、地理情報システム(以下、GISと記す。)を用いて、地域の防災計画のデータベース化を推進する計画が多く進められている。具体的には、急傾斜崩壊危険区域等に指定された地域等の災害に対する脆弱性をあらかじめ把握したハザードマップ等が作成されている。しかし、現状においては統計上の地図データベース等の閲覧用の固定情報データとしてしか使用されていないのが実情である。したがって、これらのデータベースをもとの基本地理情報データとして、自治体の管理するサーバ側において基本地理情報データに、降雨時の斜面崩壊の危険度の情報伝達を加工してマッピングし、インターネット等を介して住民からの状況の問い合わせに対して、ビジュアルな情報として対応できるようにすれば、傾斜崩壊危険区域等の周辺地域の住民に対しての有効な避難情報伝達手段として機能させることができる。 By the way, in recent years, many plans are being promoted by local governments and the like to promote the creation of a local disaster prevention plan database using a geographic information system (hereinafter referred to as GIS). Specifically, a hazard map or the like has been prepared in advance to understand vulnerability to disasters in areas designated as steep slope collapse risk areas. However, at present, the actual situation is that it is only used as fixed information data for browsing a statistical map database or the like. Therefore, the basic geographic information data based on these databases is mapped to the basic geographic information data on the server managed by the local government by processing and mapping information on the risk of slope failure during rainfall, via the Internet, etc. If it is possible to respond to inquiries about the situation from residents as visual information, it can function as an effective evacuation information transmission means for residents in the surrounding area such as the slope collapse risk area.
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、監視対象となる斜面の変位状態を変位データの測定としてとらえるのではなく、対象となる斜面での崩壊安全率を水位の変化に応じて設定しておき、その斜面の土質的性状と降雨に伴う地下水位の変化とから斜面の崩壊予測を簡易的に行い、その解析結果を、保有するGISの地図データベースを利用し、インターネット等の伝達手段を介して周辺地域へ迅速かつ効率よく伝達できるようにした斜面崩壊予測および周辺地域への避難情報伝達システムを提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and not to detect the displacement state of the slope to be monitored as measurement of displacement data, but to calculate the safety factor of collapse on the slope to be measured as the water level. It is set according to the change of the slope, the slope collapse is easily predicted from the soil soil properties and the change of the groundwater level due to rainfall, and the analysis result is obtained using the map database of GIS. Another object of the present invention is to provide a slope failure prediction system and an evacuation information transmission system to the surrounding area which can be quickly and efficiently transmitted to the surrounding area through a transmission means such as the Internet.
上記目的を達成するために、本発明は、崩壊安全率曲面データベース部と、降雨時に得られた前記監視対象の各斜面の降水量をもとに浸透流解析を行って降雨時の水頭変化を求める解析部と、前記崩壊安全率曲面データベース部に格納された安全率曲面と降雨時の水頭とを比較して前記監視対象斜面の崩壊安全率評価を行う評価部と、その評価結果から予測される前記監視対象斜面の状況予測に基づく周辺地域の住民の安全行動情報を表示伝達する表示伝達手段とを備えたことを特徴とする。 In order to achieve the above-mentioned object, the present invention performs the osmotic flow analysis based on the precipitation safety factor curved surface database section and the precipitation of each slope to be monitored obtained at the time of rainfall to determine the head change at the time of the rain. The analysis unit to be calculated, the safety factor curved surface stored in the collapse safety factor curved surface database unit, and the evaluation unit that evaluates the collapse safety factor of the monitored slope by comparing the rainfall head with the rainfall head, and predicted from the evaluation result And a display transmission means for displaying and transmitting the safety behavior information of residents in the surrounding area based on the predicted situation of the slope to be monitored.
前記崩壊安全率曲面は、監視対象の各斜面の傾斜角と、該監視対象斜面の常時水位と、崩壊安全率との関係から作成された曲面データ群からなり、監視対象斜面ごとにデータベース化しておくことが好ましい。 The collapse safety factor curved surface is composed of a curved surface data group created from the relationship between the inclination angle of each slope to be monitored, the constant water level of the slope to be monitored, and the collapse safety factor. It is preferable to keep it.
前記評価結果は、前記表示伝達手段に備えられたデジタル数値地図上にプロットされ、該評価結果は降雨の経時変化に応じて前記デジタル数値地図上で更新して表示させることが好ましい。 It is preferable that the evaluation result is plotted on a digital numerical map provided in the display transmission means, and the evaluation result is updated and displayed on the digital numerical map in accordance with a change with time of rainfall.
前記表示伝達手段は、インターネット上のウェブサイト、ケーブルテレビあるいは無線送信装備であり、前記周辺地域の住民が降雨の経時変化に伴って常時アクセス可能とすることが好ましい。 It is preferable that the display transmission means is a website on the Internet, a cable TV, or a wireless transmission device, and that residents in the surrounding area can always access as the rainfall changes with time.
本発明によれば、降雨時における急傾斜地等の斜面崩壊の危険度を定量的に評価し、斜面崩壊による住民被害を防止するために、インターネットやその他の情報伝達手段を用いて斜面崩壊に対する周辺地域における注意、警戒、避難等の情報を的確に提供できるという効果を奏する。 According to the present invention, in order to quantitatively evaluate the risk of slope failure such as steep slopes during rainfall, and to prevent damage to residents due to slope failure, the surroundings against slope failure using the Internet and other information transmission means There is an effect that it is possible to accurately provide information such as caution, warning and evacuation in the area.
以下、本発明の斜面崩壊予測および周辺地域への避難情報伝達システムの実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。 Hereinafter, as the best mode for implementing the slope failure prediction and evacuation information transmission system to the surrounding area of the present invention, the following embodiments will be described with reference to the accompanying drawings.
図1は、本発明の斜面崩壊予測および周辺地域への避難情報伝達システムにおいて、降雨時における斜面の水位変化の解析を行って得られた安全率をもとに、監視対象の斜面の安全性評価を行い、その結果を周辺地域の住民に安全行動情報等として伝達するまでの一連の作業手順の一例を示したフローチャートである。 FIG. 1 shows the safety of a slope to be monitored based on the safety factor obtained by analyzing the change in the water level of a slope during rainfall in the slope failure prediction and evacuation information transmission system of the present invention. It is the flowchart which showed an example of a series of work procedures until it evaluates and transmits the result as safety action information etc. to the residents of the surrounding area.
本発明では、たとえばある自治体において、その行政区画内に存在し、急傾斜崩壊危険区域等に指定されている、斜面崩壊の可能性がある斜面を選定し、その選定されたすべての斜面を監視対象とする。そしてそれら各斜面の状況に応じた独自の安全率Fsを設定した崩壊安全率曲面データを作成する。 In the present invention, for example, in a certain local government, a slope that has a possibility of slope failure and that is designated as a steep slope failure danger area is selected and all the selected slopes are monitored. set to target. Then, the collapse safety factor curved surface data in which a unique safety factor F s is set according to the state of each slope is created.
この崩壊安全率曲面データは、図2に示したように、その斜面の地盤特性としての斜面傾斜角α、降雨特性としての所定範囲の水位hに対しての安全率Fsの変化を3変数からなる関係曲面として算定される。このときの安全率Fsは、(式1)で示したような、従来、円弧すべり解析等で用いられていた対象土塊自重とその円弧すべり面でのすべり抵抗との比として算出される。(式1)の特性として、 As shown in FIG. 2, the collapse safety factor curved surface data includes three variables representing changes in the safety factor F s with respect to the slope inclination angle α as the ground characteristic of the slope and the water level h within a predetermined range as the rainfall characteristic. It is calculated as a relational curved surface consisting of The safety factor F s at this time is calculated as a ratio between the target soil mass self-weight that has been conventionally used in the arc slip analysis and the slip resistance at the arc slip surface as shown in (Equation 1). As a characteristic of (Formula 1),
…(式1)
ここで、τf:破壊面のせん断強度、
τ :破壊面のせん断応力
σf:破壊面上の破壊時直応力
c’:粘着力
φ’:内部摩擦角
u:水圧
... (Formula 1)
Where τ f is the shear strength of the fracture surface,
τ: Shear stress of fracture surface
σ f : direct stress at failure on the fracture surface
c ': Adhesive strength
φ ': Internal friction angle
u: Water pressure
各斜面に対しての常時水位における安全率Fsをデータベース化するとともに(財)日本地図センターが発行しているディジタル地図情報としての数値地図25000等のラスター地図画像上に等安全率領域としてプロットし、斜面崩壊安全率分布マップを作成することができる。これを、自治体等が推進している地理情報システム(GIS)のハザードマップの基本情報マップ(図3)とすることができる。図3には、一例として対象となる斜面における崩壊安全率の等安全率線域が閉曲線で、さらにその範囲内の安全率が数値表示されたハザードマップが例示されている。 The safety factor F s at the constant water level for each slope is made into a database and plotted as a constant safety factor region on a raster map image such as a numerical map 25000 as digital map information issued by the Japan Map Center. The slope failure safety factor distribution map can be created. This can be a basic information map (FIG. 3) of the hazard map of the geographic information system (GIS) promoted by local governments. FIG. 3 illustrates, as an example, a hazard map in which the equal safety factor line area of the collapse safety factor on the target slope is a closed curve and the safety factor within that range is numerically displayed.
この基本情報マップは、定期的に行われる地下水位調査等により安全率Fsの評価の更新を行うことが好ましい。これにより、GISのハザードマップをサーバ上で最新情報の状態にしておくことで、監視対象の斜面の降雨時における的確な安全性の判断を行うことができる。 This basic information map is preferably updated with the evaluation of the safety factor F s by a periodic groundwater level survey or the like. Thus, by setting the hazard map of GIS to the state of the latest information on the server, it is possible to accurately determine the safety when the monitored slope is raining.
次に、監視対象斜面を含む地域で斜面崩壊を引き起こすような降雨があった場合に、その降雨量をもとに、監視対象斜面における水位変化を、(式2)を支配方程式とした有限要素法解析を行って算出する。このときの降雨量は、現地に設置された自記降雨量計による自動計測データを無線手段あるいは有線により収集し、そのまま用いることが好ましい。その他、たとえば(財)日本気象協会の提供するアメダス情報の特定地域情報が得られる地域であれば、そのアメダスによる降雨データを逐次ダウンロードして使用することもできる。 Next, if there is rainfall that would cause slope failure in the area including the monitored slope, the finite element with the water level change on the monitored slope as the governing equation based on the amount of rainfall. Calculate by performing legal analysis. As for the rainfall at this time, it is preferable that automatic measurement data collected by a self-recording rainfall meter installed in the field is collected by wireless means or wired and used as it is. In addition, for example, if it is an area where specific area information of AMeDAS information provided by the Japan Meteorological Association can be obtained, it is possible to download and use rain data by that AMEDAS sequentially.
…(式2)
ここで、Kx,Ky,Kh:監視対象斜面の地盤のx,y,z方向透水係数
Ss:比貯留係数
h:水頭(水位)(m)
R*:一般的吸い込み項、あるいは沸き出し項
... (Formula 2)
Where K x , K y , K h : Permeability coefficient in the x, y, z direction of the ground on the slope to be monitored S s : Specific storage coefficient h: Water head (water level) (m)
R * : General suction term or boiling term
降雨時の監視対象斜面の雨量を入力値として、(式2)の浸透流状態方程式を支配方程式とし、監視対象斜面を3次元有限要素モデルとしたFEM非定常浸透流解析を行う。具体的には、監視対象斜面でのリアルタイムの降雨量を(式2)の沸き出し項R*に代入し、対象となる監視対象斜面における自由水面等の変化を考慮した境界条件のもとで(式2)を解く。この結果、そのときの降雨量に応じた監視対象斜面での変化後の水頭hを求めることができる。なお、監視対象斜面の有限要素モデルにおいて、不飽和領域も考慮した領域を解析対象とした飽和・不飽和浸透流解析を行うようにしてもよい。これらの有限要素モデルの選定において要素数、解析範囲、境界条件の設定は、解析時間(コスト)と得られる解析結果との対費用効果を考慮して決定すればよい。 FEM unsteady seepage flow analysis is performed using the rainfall on the monitored slope at the time of rainfall as an input value, the osmotic flow equation of equation (2) as the governing equation, and the monitored slope as a three-dimensional finite element model. Specifically, substituting real-time rainfall on the monitored slope into the boiling term R * in (Equation 2), under boundary conditions that take into account changes in the free water surface, etc. on the monitored slope Solve (Equation 2). As a result, the water head h after the change on the slope to be monitored according to the rainfall at that time can be obtained. Note that in the finite element model of the slope to be monitored, the saturated / unsaturated seepage flow analysis may be performed with the analysis target region taken into consideration. In the selection of these finite element models, the number of elements, the analysis range, and the boundary conditions may be determined in consideration of the cost effectiveness of the analysis time (cost) and the obtained analysis results.
市町村などの防災対策組織は、たとえば降雨の経時変化に伴って得られた連続的な解析結果(水位面変化後の水頭h)に基づいて変化する対象斜面の崩壊安全率を、ハザードマップをサーバ上で逐次、更新する(図4参照)。また、この最新情報をもとに、防災対策組織は表示された崩壊安全率に応じて、その対象斜面の周辺領域の住民のとるべき安全行動レベルを、ハザードマップ上の数値情報の提供と共に、住民に伝達する。たとえば降雨量が急激に増加し、ハザードマップ上で監視対象斜面の崩壊安全率の低下が急激に進行するような場合、周辺住民に対しては、サーバ上で更新された最新情報を常時接続インターネットによるウェブサイト(WebGIS方式)上で表示させたり、地域ケーブルテレビに設けられた防災チャンネルによって連続放送したりして、時々刻々に変化する監視対象斜面の安全状況を住民に伝えていく。 Disaster prevention organizations such as municipalities, for example, have a hazard map as a server for the slope failure safety factor of the target slope that changes based on the continuous analysis results (water head h after water level change) obtained with changes over time in rainfall. The above is sequentially updated (see FIG. 4). Also, based on this latest information, the disaster prevention organization, in accordance with the displayed collapse safety rate, provides the level of safety action to be taken by residents in the area surrounding the target slope, along with providing numerical information on the hazard map, Communicate to the residents. For example, if the amount of rainfall increases rapidly and the safety factor of the slope to be monitored declines rapidly on the hazard map, the latest information updated on the server is constantly connected to the surrounding residents. It is displayed on the website (WebGIS system) by, or continuously broadcast by the disaster prevention channel provided in the local cable TV, and the safety status of the monitored slope that changes from moment to moment is communicated to the residents.
なお、あらかじめ設定し、住民に伝えるべき安全行動基準としては、この安全行動の基準レベルの例としては、気象予報に準じて、たとえば注意報、警戒警報、避難準備勧告、避難勧告、強制避難命令等、監視対象斜面の崩壊安全率の低下にあわせた情報が想定できる。これらの安全行動情報は、ハザードマップと同様に、たとえば図5に示したように、安全行動情報の画面表示例2を、インターネットあるいはケーブルテレビの防災チャンネルで具体的に住民がとるべき情報として伝達することができる。 In addition, as a safety action standard that should be set in advance and communicated to the residents, examples of the standard level of this safety action include, for example, warnings, warning warnings, evacuation preparation recommendations, evacuation recommendations, forced evacuation orders according to the weather forecast. For example, information that matches the decline in the safety factor of the slope to be monitored can be assumed. Similar to the hazard map, these safety behavior information is transmitted, as shown in FIG. 5, for example, as an example of the screen display example 2 of the safety behavior information as information that should be taken by residents through the Internet or cable TV disaster prevention channels. can do.
なお、上述の降雨時等のデータの解析、ハザードマップや住民の安全行動情報の伝達は、一般に行政責任を負う自治体の専門家をチームとして行うことが好ましいが、自治体の委託を受けて、防災情報を提供する民間企業が特定地域の防災情報を伝達することもできる。 In addition, it is preferable that the above-mentioned analysis of data such as rain, hazard maps, and safety behavior information of residents is generally conducted as a team by local government specialists who are responsible for administrative purposes. Private companies that provide information can also communicate disaster prevention information for specific areas.
1 崩壊安全率曲面
2 安全行動情報の画面表示例
1 Collapse safety factor curved
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005067152A JP2006252128A (en) | 2005-03-10 | 2005-03-10 | System for predicting slope collapse and for transmitting evacuation information to peripheral area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005067152A JP2006252128A (en) | 2005-03-10 | 2005-03-10 | System for predicting slope collapse and for transmitting evacuation information to peripheral area |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006252128A true JP2006252128A (en) | 2006-09-21 |
Family
ID=37092563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005067152A Pending JP2006252128A (en) | 2005-03-10 | 2005-03-10 | System for predicting slope collapse and for transmitting evacuation information to peripheral area |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006252128A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008298586A (en) * | 2007-05-31 | 2008-12-11 | Central Res Inst Of Electric Power Ind | Ground maintenance supporting system |
CN103489288A (en) * | 2013-10-11 | 2014-01-01 | 中国地质调查局水文地质环境地质调查中心 | Debris flow automatic motoring and early warning device and arrangement method thereof |
CN103485353A (en) * | 2013-09-24 | 2014-01-01 | 昆明理工大学 | Slope stability analysis slice method based on global optimization |
JP2015108888A (en) * | 2013-12-03 | 2015-06-11 | 有限会社 ジオテック | Local collapse risk notifying service providing apparatus, providing method for the same, and medium for use in apparatus operating computer |
WO2016027291A1 (en) * | 2014-08-21 | 2016-02-25 | 日本電気株式会社 | Slope monitoring system, device for slope safety analysis, method, and program |
KR20160104948A (en) * | 2015-02-27 | 2016-09-06 | 금오공과대학교 산학협력단 | Portable guerrilla sensor and real-time slope monitoring system using the same |
CN106599560A (en) * | 2016-12-06 | 2017-04-26 | 广州地理研究所 | GIS-based slope collapse distribution statistical method |
JP6379272B1 (en) * | 2017-12-21 | 2018-08-22 | アジア航測株式会社 | Information providing apparatus and information providing program |
JPWO2017126481A1 (en) * | 2016-01-18 | 2018-10-11 | 日本電気株式会社 | Display control device, safety factor display method, and computer program |
JP2019003641A (en) * | 2015-07-23 | 2019-01-10 | 日本電気株式会社 | Prediction apparatus, prediction system, prediction method, and program |
JP2020060078A (en) * | 2018-10-12 | 2020-04-16 | 日本信号株式会社 | System for estimating time landslide occurs |
WO2020093863A1 (en) * | 2018-11-08 | 2020-05-14 | 青岛理工大学 | Side slope safety evaluation method based on degree of damage of downstream structures |
CN112411634A (en) * | 2020-10-23 | 2021-02-26 | 中信国安建工集团有限公司 | Intelligent construction site construction security system and security method |
CN113112146A (en) * | 2021-04-09 | 2021-07-13 | 浙江易智信息技术有限公司 | Urban disaster prevention and risk avoidance green land site selection method based on combination of remote sensing and GIS technology |
US11300681B2 (en) | 2018-03-05 | 2022-04-12 | Kabushiki Kaisha Toshiba | Weather radar apparatus and severe rain prediction method |
CN114791273A (en) * | 2022-06-24 | 2022-07-26 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | InSAR deformation monitoring result interpretation method for landslide |
JP7117423B1 (en) | 2021-06-24 | 2022-08-12 | 九州電力送配電株式会社 | Surface collapse risk evaluation device, surface collapse risk evaluation method and program |
CN115077479A (en) * | 2022-07-19 | 2022-09-20 | 航天智讯新能源(山东)有限公司 | Hydraulic engineering side slope settlement monitoring facilities |
CN116906837A (en) * | 2023-09-15 | 2023-10-20 | 上海同济工程咨询有限公司 | State monitoring system and monitoring method for underground pipeline |
JP7541395B2 (en) | 2023-02-01 | 2024-08-28 | 日本消防・防災デザイン株式会社 | Planning device, planning method, and planning program |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004060311A (en) * | 2002-07-30 | 2004-02-26 | Pasuko:Kk | Landslide monitoring method and system |
JP2004062367A (en) * | 2002-07-26 | 2004-02-26 | Sabo Jisuberi Gijutsu Center | Mutual report system of sediment disaster information |
JP2004183340A (en) * | 2002-12-04 | 2004-07-02 | Japan Highway Public Corp | Cut earth slope management support system, cut earth slope disruption risk degree determination system used in the system and earth moisture status measuring method |
JP2004192206A (en) * | 2002-12-10 | 2004-07-08 | Toshiba Corp | Flood prevention support system |
JP2004280204A (en) * | 2003-03-12 | 2004-10-07 | Kokusai Kogyo Co Ltd | Slope collapse prediction system |
-
2005
- 2005-03-10 JP JP2005067152A patent/JP2006252128A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004062367A (en) * | 2002-07-26 | 2004-02-26 | Sabo Jisuberi Gijutsu Center | Mutual report system of sediment disaster information |
JP2004060311A (en) * | 2002-07-30 | 2004-02-26 | Pasuko:Kk | Landslide monitoring method and system |
JP2004183340A (en) * | 2002-12-04 | 2004-07-02 | Japan Highway Public Corp | Cut earth slope management support system, cut earth slope disruption risk degree determination system used in the system and earth moisture status measuring method |
JP2004192206A (en) * | 2002-12-10 | 2004-07-08 | Toshiba Corp | Flood prevention support system |
JP2004280204A (en) * | 2003-03-12 | 2004-10-07 | Kokusai Kogyo Co Ltd | Slope collapse prediction system |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008298586A (en) * | 2007-05-31 | 2008-12-11 | Central Res Inst Of Electric Power Ind | Ground maintenance supporting system |
CN103485353A (en) * | 2013-09-24 | 2014-01-01 | 昆明理工大学 | Slope stability analysis slice method based on global optimization |
CN103485353B (en) * | 2013-09-24 | 2015-08-12 | 昆明理工大学 | Based on the Analysis of Slope Stability slice method of global optimization |
CN103489288A (en) * | 2013-10-11 | 2014-01-01 | 中国地质调查局水文地质环境地质调查中心 | Debris flow automatic motoring and early warning device and arrangement method thereof |
JP2015108888A (en) * | 2013-12-03 | 2015-06-11 | 有限会社 ジオテック | Local collapse risk notifying service providing apparatus, providing method for the same, and medium for use in apparatus operating computer |
JPWO2016027390A1 (en) * | 2014-08-21 | 2017-06-08 | 日本電気株式会社 | Slope monitoring system, slope safety analysis device, method and program |
WO2016027291A1 (en) * | 2014-08-21 | 2016-02-25 | 日本電気株式会社 | Slope monitoring system, device for slope safety analysis, method, and program |
WO2016027390A1 (en) * | 2014-08-21 | 2016-02-25 | 日本電気株式会社 | Slope monitoring system, device for slope safety analysis, method, and program |
US10584964B2 (en) | 2014-08-21 | 2020-03-10 | Nec Corporation | Slope monitoring system, device for slope stability analysis, method, and program |
KR101686664B1 (en) * | 2015-02-27 | 2016-12-14 | 금오공과대학교 산학협력단 | guerrilla sensor and real-time monitoring system using the same |
KR20160104948A (en) * | 2015-02-27 | 2016-09-06 | 금오공과대학교 산학협력단 | Portable guerrilla sensor and real-time slope monitoring system using the same |
JP2019003641A (en) * | 2015-07-23 | 2019-01-10 | 日本電気株式会社 | Prediction apparatus, prediction system, prediction method, and program |
JPWO2017126481A1 (en) * | 2016-01-18 | 2018-10-11 | 日本電気株式会社 | Display control device, safety factor display method, and computer program |
CN106599560B (en) * | 2016-12-06 | 2019-04-09 | 广州地理研究所 | Each slope aspect slope collapse distribution statistical method based on GIS |
CN106599560A (en) * | 2016-12-06 | 2017-04-26 | 广州地理研究所 | GIS-based slope collapse distribution statistical method |
JP6379272B1 (en) * | 2017-12-21 | 2018-08-22 | アジア航測株式会社 | Information providing apparatus and information providing program |
JP2019113913A (en) * | 2017-12-21 | 2019-07-11 | アジア航測株式会社 | Information provision device and information provision program |
US11300681B2 (en) | 2018-03-05 | 2022-04-12 | Kabushiki Kaisha Toshiba | Weather radar apparatus and severe rain prediction method |
JP2023026680A (en) * | 2018-10-12 | 2023-02-24 | 日本信号株式会社 | System for estimating time of occurrence of landslide |
JP2020060078A (en) * | 2018-10-12 | 2020-04-16 | 日本信号株式会社 | System for estimating time landslide occurs |
WO2020093863A1 (en) * | 2018-11-08 | 2020-05-14 | 青岛理工大学 | Side slope safety evaluation method based on degree of damage of downstream structures |
CN112411634A (en) * | 2020-10-23 | 2021-02-26 | 中信国安建工集团有限公司 | Intelligent construction site construction security system and security method |
CN113112146A (en) * | 2021-04-09 | 2021-07-13 | 浙江易智信息技术有限公司 | Urban disaster prevention and risk avoidance green land site selection method based on combination of remote sensing and GIS technology |
JP7117423B1 (en) | 2021-06-24 | 2022-08-12 | 九州電力送配電株式会社 | Surface collapse risk evaluation device, surface collapse risk evaluation method and program |
JP2023003518A (en) * | 2021-06-24 | 2023-01-17 | 九州電力送配電株式会社 | Surface collapse risk assessment device, surface collapse risk assessment method and program |
CN114791273B (en) * | 2022-06-24 | 2022-09-13 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | InSAR deformation monitoring result interpretation method for landslide |
CN114791273A (en) * | 2022-06-24 | 2022-07-26 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | InSAR deformation monitoring result interpretation method for landslide |
CN115077479A (en) * | 2022-07-19 | 2022-09-20 | 航天智讯新能源(山东)有限公司 | Hydraulic engineering side slope settlement monitoring facilities |
CN115077479B (en) * | 2022-07-19 | 2023-10-27 | 航天智讯新能源(山东)有限公司 | Hydraulic engineering side slope subsides monitoring facilities |
JP7541395B2 (en) | 2023-02-01 | 2024-08-28 | 日本消防・防災デザイン株式会社 | Planning device, planning method, and planning program |
CN116906837A (en) * | 2023-09-15 | 2023-10-20 | 上海同济工程咨询有限公司 | State monitoring system and monitoring method for underground pipeline |
CN116906837B (en) * | 2023-09-15 | 2023-11-28 | 上海同济工程咨询有限公司 | State monitoring system and monitoring method for underground pipeline |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006252128A (en) | System for predicting slope collapse and for transmitting evacuation information to peripheral area | |
US12033221B2 (en) | Insurance underwriting and re-underwriting implementing unmanned aerial vehicles (UAVs) | |
JP6763393B2 (en) | Disaster prediction system, water content prediction device, disaster prediction method and program recording medium | |
KR102242977B1 (en) | Early warning method and system for landslide integrated with weather forecasting information | |
CN114118677A (en) | Tailing pond risk monitoring and early warning system based on Internet of things | |
JP2003168179A (en) | Real time hazard map system | |
CN115169974A (en) | Construction risk early warning system and method based on dynamic simulation | |
JP2016122239A (en) | Sediment disaster prediction system | |
JP6949644B2 (en) | Wind environment learning device, wind environment evaluation system, wind environment learning method and wind environment evaluation method | |
KR101691790B1 (en) | Decision system of collapse hazard levels of the steep slope-land | |
TW201928400A (en) | Risk evaluation system | |
JP6918413B2 (en) | Wind environment prediction method and wind environment prediction system at construction sites | |
CN117058845A (en) | Highway high slope landslide hazard early warning method based on evaluation function training | |
Elseifi et al. | Assessment of the traffic speed deflectometer in Louisiana for pavement structural evaluation | |
EP3104314A1 (en) | System and method of warning about local floods events | |
Borzi et al. | Vulnerability study on a large industrial area using satellite remotely sensed images | |
Gilany et al. | Simulation of glacial avalanche hazards in Shyok Basin of upper Indus | |
JP7141309B2 (en) | Quantitative evaluation system for disaster occurrence risk caused by ground displacement, its method, and its program | |
KR20160053652A (en) | Electronic field apparatus for an on-the-spot survey of the steep slope-land | |
JP4152423B2 (en) | Soundness evaluation system based on a score type data sheet that can be used for inspection work | |
CN116106987A (en) | Meteorological prediction method, electronic device, and readable storage medium | |
Hirashima et al. | Development of a snow load alert system,“YukioroSignal” for aiding roof snow removal decisions in snowy areas in Japan | |
Swanger et al. | Using Google Earth and Google Street View to Rate Rock Slope Hazards | |
Floyer | Layer detection and snowpack stratigraphy characterisation from digital penetrometer signals | |
JP2005050236A (en) | Sediment disaster information processing device and method for providing sediment disaster information using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101005 |