WO2017126285A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2017126285A1
WO2017126285A1 PCT/JP2016/088268 JP2016088268W WO2017126285A1 WO 2017126285 A1 WO2017126285 A1 WO 2017126285A1 JP 2016088268 W JP2016088268 W JP 2016088268W WO 2017126285 A1 WO2017126285 A1 WO 2017126285A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
secondary battery
power storage
pressing member
Prior art date
Application number
PCT/JP2016/088268
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 克利
佐々木 孝
明徳 多田
飯塚 佳士
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017562485A priority Critical patent/JP6506419B2/en
Publication of WO2017126285A1 publication Critical patent/WO2017126285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device.
  • the battery module is configured by arranging a plurality of secondary battery cells in a case and electrically connecting the positive and negative terminals of each secondary battery cell to each other by a bus bar or the like.
  • the secondary battery device includes one or a plurality of such battery modules, and is connected to a vehicle-side controller via a power supply terminal and a signal connector.
  • the secondary battery cell may generate heat due to some abnormal operation and the internal pressure of the secondary battery cell may increase.
  • a structure in which a gas discharge valve is provided in the battery case has been proposed.
  • the gas discharge valve is formed by making a part of the battery case thin, and when the internal pressure rises due to an internal short circuit or the like, the gas discharge valve is cleaved by the internal pressure and releases the gas in the secondary battery cell (see, for example, Patent Document 1).
  • Patent Document 1 prevents an abnormality caused by an increase in internal pressure of the secondary battery cell.
  • the gas discharge valve has a certain effect against external forces such as a collision, further measures are desired depending on the cell mounting location.
  • a power storage device including a plurality of stacked power storage cells is provided in the power storage cells, and is deformed by an external force input from the outside, and is deformed by the deformation of the deformation unit, A to-be-destructed portion that releases the pressure of the air to the atmosphere, and a pressing member that deforms the external force by transmitting it to the deformation portion.
  • the to-be-destructed part when an external force is applied, the to-be-destructed part is destroyed and the inside of the storage cell is released to the atmosphere before the thermal runaway of the internal power generation element starts.
  • FIG. 3 is an exploded perspective view of the secondary battery device shown in FIG. 2.
  • the typical sectional view of the secondary battery cell shown by Drawing 3 is shown, (A) is a typical front sectional view, and (B) is the typical side sectional view.
  • the perspective view of the cell holder of the secondary battery apparatus shown by FIG. 6 shows the cell holder shown in FIG.
  • FIG. 6 (A) is a front view, (B) is a sectional view taken along line VII B -VII B in (A), and (C) is a line VII C -VII C in (A).
  • Sectional drawing and (D) are figures explaining a baseplate.
  • FIG. 2 is a schematic cross-sectional view taken along line IX-IX of the secondary battery device shown in FIG. 1.
  • 9 is an enlarged view of a part of the schematic cross-sectional view shown in FIG.
  • FIG. 11 is an enlarged view of a region XI in FIG. 10.
  • FIG. 2 is an enlarged view of a part of the secondary battery device shown in FIG.
  • FIG. 12 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 12, (A) is a front view, and (B) is a line XIII B -XIII B of (A).
  • FIG. Shows a second embodiment of the present invention, (A) is a front view of a normal state, (B) is a schematic sectional view of a XIV B XIV B line (A), of (C) is (B) Some enlarged views.
  • FIG. 14 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 14, where (A) is a front view, and (B) is an XV B -XV B line in (A).
  • FIG. 4A and 4B show a third embodiment of the present invention, in which FIG. 5A is a front view in a normal state, and FIG. 5B is a schematic cross-sectional view taken along line XVI B -XVI B in FIG.
  • FIG. 16 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 16, (A) is a front view, and (B) is an XVII B -XVII B line in (A).
  • FIG. 5A is a front view
  • FIG. 5B is a schematic cross-sectional view taken along line XVI B -XVI B in FIG.
  • FIG. 16 shows a state in which an external force in the stack
  • FIG. 4A and 4B show a fourth embodiment of the present invention, in which FIG. 5A is a front view in a normal state, and FIG. 5B is a schematic cross-sectional view taken along line XVIII B -XVIIII B of FIG.
  • the secondary battery device shown in FIG. 18 shows a state in which external force is applied in the stacking direction of the secondary battery cells, (A) is a front view, (B) is a XIX B -XIX B line (A)
  • FIG. 6A is a front view of a normal state according to a fifth embodiment of the present invention, and FIG. 5B is a schematic cross-sectional view taken along line XX B -XX B of FIG. FIG.
  • FIG. 20 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 20, where (A) is a front view and (B) is an XXI B -XXI B line in (A).
  • FIG. The 6th Embodiment of this invention is shown, (A) is a front view of a normal state, (B) is the state which the external force of the stacking direction of the secondary battery cell acted on the secondary battery apparatus shown to (A).
  • Front view. FIG. 7 shows a seventh embodiment of the present invention, where (A) is a front view in a normal state, and (B) is a state in which an external force in the stacking direction of secondary battery cells is applied to the secondary battery device shown in (A).
  • Front view. (A) is an external perspective view showing an example of a partition member as a modification of the cell holder shown in FIG. 6, and (B) is an example in which a pressing member and a resin are provided on the partition member shown
  • FIG. 1 is an external perspective view of a first embodiment of a lithium secondary battery device according to the present invention.
  • 2 is a top view of the secondary battery device shown in FIG. 1
  • FIG. 3 is an exploded perspective view of the secondary battery device shown in FIG.
  • the secondary battery device 100 includes a plurality of secondary battery cells 10, a cell holder 20, a pair of end cell holders 20E, and a restraining member 30.
  • the secondary battery cell 10 is a rectangular secondary battery cell including a flat rectangular battery container 15 as shown in FIG.
  • the battery container 15 includes a battery can 14 (see FIG. 4) having an opening in the upper portion, and a battery lid 13 (see FIG. 4) joined to the battery can 14 by closing the opening of the battery can 14.
  • a wound body 40 (see FIG. 4) that is a power storage element is accommodated, and an electrolyte solution (not shown) is injected.
  • the battery lid 13 is provided with a positive external terminal 11 and a negative external terminal 12.
  • the positive external terminal 11 is connected to the positive electrode 41 (see FIG. 5) of the wound body 40 housed in the battery can 14, and the negative external terminal 12 is connected to the negative electrode 42 (see FIG. 5) of the wound body 40. Connected with.
  • a gas discharge valve 50 and a liquid injection port 16a for injecting an electrolytic solution are formed between the positive electrode external terminal 11 and the negative electrode external terminal 12 of the battery lid 13.
  • the liquid injection port 16 a is sealed with a sealing plug 16.
  • Adjacent secondary battery cells 10 are arranged alternately so that the positive external terminal 11 and the negative external terminal 12 face each other.
  • bus bars are welded and electrically connected to the positive external terminal 11 and the negative external terminal 12 of the adjacent secondary battery cells 10. That is, the secondary battery device 100 has a configuration in which a plurality of rectangular secondary battery cells 10 are connected in series.
  • the bus bar is made of a conductive material such as aluminum, an aluminum alloy, or a copper alloy.
  • a cell holder 20 is disposed between the adjacent secondary battery cells 10. End cell holders 20 ⁇ / b> E are disposed at the foremost part and the rearmost part in the stacking direction of the stacked secondary battery cells 10 (hereinafter simply referred to as the cell stacking direction).
  • the cell holder 20 is a frame-like member and will be described in detail later, the cell holder 20 has a plurality of spacers 21 (see FIG. 6) extending in the cell width direction at the center in the stacking direction of the secondary battery cells 10. Openings for receiving cells are formed on the front side and the rear side. Each secondary battery cell 10 is accommodated in the opening of the cell holder 20 on the front side and the rear side of each cell.
  • a pressing member 151 is provided on the cell holder 20 and the end cell holder 20E.
  • the pressing member 151 is disposed at a position facing the gas discharge valve 50.
  • the pressing member 151 is formed of a metal material having higher rigidity than the battery lid 13 such as stainless steel, iron, aluminum, or a nium alloy.
  • the pressing member 151 can be integrally formed with the cell holder 20 and the end cell holder 20E by insert molding. Alternatively, the pressing member 151 can be fixed to the cell holder 20 and the end cell holder 20E by adhesion or the like.
  • the restraining member 30 has a pair of end plates 31, a pair of side plates 32, a plurality of bolts 33 and screws 34.
  • the end plate 31 and the side plate 32 are made of, for example, a metal material.
  • the pair of end plates 31 includes end surfaces of an end cell holder 20E disposed in front of the foremost secondary battery cell 10 in the cell stacking direction and an end cell holder 20E disposed in the rear of the rearmost secondary battery cell 10. It is arranged to cover.
  • Each side plate 32 is a frame-like member having a pair of long sides extending along the cell stacking direction and a pair of short sides connecting the long sides. Each side plate 32 is formed with a pair of bent portions 32 a that are bent from each short side and come into contact with the front surface of the front end plate 31 and the rear surface of the rear end plate 31.
  • each secondary battery cell 10 is housed and stacked in the opening of the cell holder 20 or the end cell holder 20E.
  • End plates 31 are stacked on the front and rear ends of the end cell holder 20E, respectively.
  • an assembly in which the plurality of secondary battery cells 10 and the cell holder 20, the pair of end cell holders 20E, and the pair of end plates 31 are stacked is referred to as an assembled battery.
  • the assembled battery is disposed inside the pair of bent portions 32 a of each side plate 32.
  • the left and right side surfaces extending in the cell stacking direction of the assembled battery are supported by the side plates 32.
  • Bolts 33 and screws 34 are inserted into through holes provided in the bent portions 32 a of the pair of side plates 32, and the bolts 33 and screws 34 are inserted into screw holes provided in the pair of end plates 31, respectively. It is concluded.
  • the secondary battery device 100 illustrated in FIG. 1 has such a structure.
  • FIG. 4 is a schematic cross-sectional view of the secondary battery cell shown in FIG. 3, FIG. 4 (A) is a schematic front cross-sectional view, and FIG. 4 (B) is a schematic bottom cross-sectional view.
  • the secondary battery cell 10 includes the flat rectangular battery container 15 in which the nonaqueous electrolyte is injected, the wound body 40 accommodated in the battery container 15, and the outside of the battery container 15. It has positive and negative external terminals 11 and 12 arranged.
  • the wound body 40 is a power generation element.
  • Both the battery can 14 and the battery lid 13 constituting the battery container 15 are formed of a metal material such as aluminum or an aluminum alloy, for example.
  • the battery case 15 is a flat rectangular box having a wide side 15a having a large area on both side surfaces in the thickness direction (upper and lower side surfaces in FIG. 4B), a bottom surface 15b, and narrow side surfaces 15d on both sides in the width direction. It is a shaped container.
  • the battery can 14 can be produced, for example, by deep drawing.
  • FIG. 5 is an exploded perspective view of the wound body 40 accommodated in the secondary battery cell shown in FIG. 4.
  • the wound body 40 is laminated between the long band-like positive and negative electrodes 41 and 42 with the long band-like separators 43 and 44 interposed therebetween, and wound around the winding axis D which is the winding center axis.
  • a wound electrode group having a laminated structure molded into a flat shape.
  • the wound body 40 includes a pair of flat portions 40a that are flat on both sides in the thickness direction, and a pair of upper and lower curved portions 40b that are curved in a semicircular shape.
  • the wound body 40 is accommodated in the battery case 15 in parallel so that the winding axis D direction is the longitudinal direction of the battery cover 13 shown in FIG. 4, that is, the width direction of the battery case 15. Accordingly, the flat portions 40a on both sides in the thickness direction of the wound body 40 face the wide side surfaces 15a on both sides in the thickness direction of the battery case 15, and the lower curved portion 40b faces the bottom surface 15b of the battery case 15.
  • the upper curved portion 40 b is disposed to face the battery lid 13 of the battery container 15.
  • the upper and lower sides in this embodiment are for demonstrating the structure of the illustrated secondary battery cell 10, and do not necessarily mean the upper and lower sides of a perpendicular direction.
  • the separators 43 and 44 insulate the positive electrode 41 and the negative electrode 42, and the separator 44 is wound outside the negative electrode 42 wound around the outermost periphery.
  • the separators 43 and 44 are, for example, microporous polyethylene resin sheets having insulating properties through which lithium ions can pass.
  • the positive electrode 41 has a positive electrode foil 41a that is a positive electrode current collector and a positive electrode mixture layer 41b made of a positive electrode active material mixture applied to both surfaces of the positive electrode foil 41a.
  • One side in the width direction of the positive electrode 41 is a foil exposed portion 41c where the positive electrode mixture layer 41b is not formed and the positive foil 41a is exposed.
  • the foil exposed portion 41c is wound around the winding axis D with the foil exposed portion 42c of the negative electrode 42 disposed on the opposite side of the winding axis D direction.
  • the positive electrode 41 for example, a positive electrode active material mixture kneaded by adding a conductive material, a binder and a dispersion solvent to the positive electrode active material is applied to both surfaces of the positive electrode foil 41a except for one side in the width direction, It can be produced by drying, pressing, and cutting.
  • the positive electrode foil 41a for example, an aluminum foil having a thickness of about 20 ⁇ m to about 30 ⁇ m can be used.
  • the thickness of the positive electrode mixture layer 41b not including the thickness of the positive electrode foil 41a is, for example, about 90 ⁇ m.
  • the positive electrode active material mixture for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of flaky graphite as the conductive material, and 10% by weight as the binder.
  • Part of polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as a dispersion solvent.
  • the positive electrode active material is not limited to the above-described lithium manganate.
  • another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used.
  • lithium cobalt oxide or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.
  • the negative electrode 42 has a negative electrode foil 42a that is a negative electrode current collector, and a negative electrode mixture layer 42b made of a negative electrode active material mixture applied to both surfaces of the negative electrode foil 42a.
  • One side in the width direction of the negative electrode 42 is a foil exposed portion 42c where the negative electrode mixture layer 42b is not formed and the negative foil 42a is exposed.
  • the negative electrode 42 is wound around the winding axis D such that the foil exposed portion 42c thereof is disposed on the opposite side of the foil exposing portion 41c of the positive electrode 41 in the winding axis D direction.
  • the negative electrode 42 is, for example, applied to the negative electrode active material mixture kneaded by adding a binder and a dispersion solvent to the negative electrode active material on both sides of the negative electrode foil 42a except one side in the width direction, dried, pressed, It can be produced by cutting.
  • a copper foil having a thickness of about 10 ⁇ m to 20 ⁇ m can be used.
  • the thickness of the negative electrode mixture layer 42b not including the thickness of the negative electrode foil 42a is, for example, about 70 ⁇ m.
  • the negative electrode active material mixture for example, 100 parts by weight of amorphous carbon powder as the negative electrode active material, 10 parts by weight of PVDF as the binder, and NMP as the dispersion solvent can be used.
  • the negative electrode active material is not limited to the above-mentioned amorphous carbon, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, , SiO, TiSi 2 or the like), or a composite material thereof.
  • the particle shape of the negative electrode active material is not particularly limited, and a particle shape such as a scale shape, a spherical shape, a fiber shape, or a lump shape can be appropriately selected.
  • the width of the negative electrode mixture layer 42 b of the negative electrode 42 is wider than the width of the positive electrode mixture layer 41 b of the positive electrode 41.
  • a negative electrode 42 is wound around the innermost and outermost circumferences of the wound body 40. Accordingly, the positive electrode mixture layer 41b is sandwiched between the negative electrode mixture layer 42b from the innermost periphery to the outermost periphery of the wound body 40.
  • the foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are laminated at one end and the other end in the winding axis D direction of the wound body 40, respectively.
  • the foil exposed portions 41c and 42c are bundled by the flat portion 40a of the wound body 40, respectively, and are connected to the positive and negative external terminals 11 and 12 by, for example, ultrasonic welding (see FIG. (Not shown).
  • the positive and negative external terminals 11 and 12 are electrically connected to the positive and negative electrodes 41 and 42 constituting the wound body 40 through the current collector plates, respectively.
  • the width of the separators 43 and 44 is wider than the width of the negative electrode mixture layer 42b, but the foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are It extends outward in the winding axis D direction from one side edge of the separator 43 or the other side edge of the separator 44. For this reason, it does not become a trouble at the time of bundling the foil exposure parts 41c and 42c, and welding.
  • the wound body 40 is accommodated in the battery case 15 with the winding axis D parallel to the width direction of the battery case 15, that is, the longitudinal direction of the battery lid 13.
  • foil exposed portions 41c and 42c of the positive and negative electrodes 41 and 42 are laminated on one end 45 and the other end 45 in the winding axis D direction of the wound body 40, respectively.
  • the intermediate portion 46 is a portion where the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are laminated.
  • the secondary battery cell 10 is provided between the wide side surface 15a and the narrow side surface 15d of the battery container 15 and both end portions 45 and 45 in the winding axis D direction of the wound body 40 in which the foil exposed portions 41c and 42c are stacked. It has a space G. Based on the above configuration, the secondary battery cell 10 accumulates the power supplied from the outside via the positive and negative external terminals 11 and 12 in the wound body 40, and stores the power accumulated in the wound body 40, Supplied outside through positive and negative external terminals 11 and 12.
  • FIG. 6 is a perspective view of a cell holder of the secondary battery device shown in FIG. 7 shows the cell holder shown in FIG. 6,
  • FIG. 7 (A) is a front view
  • FIG. 7 (B) is a sectional view taken along line VII B- VII B of FIG. 7 (A)
  • FIG. 7 (C) is a cross-sectional view taken along line VII C -VII C in FIG.
  • the cell holder 20 includes a plurality of spacers 21 facing the wide side surface 15 a of the battery container 15, a frame portion 22 arranged above and below the spacer 21, a bottom plate 23 facing the bottom surface 15 b of the battery container 15, And a side plate 24 along the narrow side surface 15d.
  • the cell holder 20 is made of an insulating member such as engineering plastic, for example.
  • the plurality of spacers 21 extend between the left and right side plates 24 along the width direction of the secondary battery cell 10, that is, the winding axis D direction of the wound body 40.
  • the spacer 21 includes a compression portion 26 provided at both ends in the extending direction, and a connection portion 27 provided between the compression portions 26.
  • the thickness of the compression part 26 in the cell stacking direction is larger than the thickness of the connection part 27 in the same direction. That is, the compression part 26 protrudes to the secondary battery cell 10 side in the cell stacking direction.
  • the plurality of spacers 24 are provided in a bar shape with a predetermined interval in the height direction. Therefore, the compression part 26 and the connection part 27 are also provided at predetermined intervals in the height direction.
  • An opening S is provided between the spacers 21.
  • the compression unit 26 is arranged to face each other at a distance narrower than the thickness of the battery container 15.
  • the end 15e of the battery case 15 shown in FIG. 4B are compressed in the stacking direction.
  • the thickness of the battery container 15 is an initial thickness of the secondary battery cell 10 before assembly.
  • the end 15 e of the battery case 15 is a region corresponding to the outer side in the winding axis D direction than the intermediate part 46 of the wound body 40 in the battery case 15.
  • both end portions 15e of the battery case 15 correspond to the portions where the foil exposed portions 41c and 42c of the positive and negative electrodes 41 and 42 are laminated and welded, and the outer region thereof.
  • the area corresponding to the intermediate portion 46 is not included.
  • the wide side surface 15a of the battery container 15 is flat as shown in FIG. 4B in a state before use for use in assembling the secondary battery device 100. .
  • the compression part 26 when the compression part 26 is arrange
  • the compression part 26 extends along the wide side surface 15 a at the end 15 e of the battery container 15 of the wound body 40.
  • the pair of cell holders 20 are arranged to face each other with a predetermined interval in the cell stacking direction, and the compression unit 26 compresses the battery container 15 in the thickness direction to elastically deform or plastically deform the battery container 15 to a predetermined thickness. It is an interval.
  • the compression part 26 is provided so that the battery container 15 may be compressed in the thickness direction and plastically deformed to a predetermined thickness.
  • the connecting portion 27 is arranged to face the wide side surface 15 a of the battery container 15.
  • the spacer 21 has a slight gap between the connecting portion 27 and the wide side surface 15 a of the battery container 15 in a state where the compression section 26 compresses the battery container 15.
  • the connecting portion 27 may be in close contact with or in contact with the wide side surface 15a of the battery container 15 to the extent that the battery container 15 is not elastically deformed or plastically deformed.
  • the connecting portion 27 has an abutting surface 21 b that faces the wide side surface 15 a of the battery case 15, and the compression portion 26 has a pressing surface 21 a that presses the wide side surface 15 a of the battery case 15.
  • the compression part 26 has the inclined surface 21c in a part of press surface 21a.
  • the inclined surface 21 c is an inclined surface having a downward slope from the pressing surface 21 a of the compression portion 26 toward the contact surface 27 a of the connecting portion 27. Therefore, the wide side surface 15a of the battery case 15 receives a larger compressive force as it approaches the narrow side surface 15d within the range of the end portion 15e.
  • the frame portion 22 is connected to the uppermost spacer 21 and the lowermost spacer 21 in the height direction of the secondary battery cell 10, extends along the extending direction of the spacer 21, and is thinner than the thickness of the spacer 21. It is formed in a shape. Engagement claws 22a and 22b for engaging and holding electronic circuit boards, duct members, and the like are provided at the upper end of the upper frame portion 22, for example. Further, the metal pressing member 151 described above is provided between the engaging claws 22a and 22b.
  • FIG. 8 is an enlarged view of region VIII of the secondary battery device shown in FIG.
  • the engaging portions 24a of the side plates 24 of the pair of cell holders 20 facing each other in the cell stacking direction overlap each other in the width direction of the battery container 15 of the secondary battery cell 10 and are spaced from each other in the cell stacking direction. It is formed in a step shape having f.
  • the side plate 24 has a central portion in the cell stacking direction as a thick portion 24e and both end portions in the cell stacking direction as thin portions 24d, and a step in the width direction of the battery container 15 is formed. .
  • the side plate 24 is a plate-like member along the narrow side surfaces 15d on both sides in the width direction of the battery case 15, and is connected to both ends in the extending direction of the spacer 21, the frame portion 22, and the bottom plate 23, and cell stacking from the connection portion. Extends on both sides of the direction.
  • one part and the other part extending in the stacking direction cover the narrow side surface 15 d of the adjacent battery container 15 with a width about half the thickness of the battery container 15, and the narrow side surface of the battery container 15. It faces 15d.
  • the side plate 24 of the end cell holder 20E disposed at the front end in the cell stacking direction extends to the rear side in the cell stacking direction, and a thin portion 24d is similarly provided at the tip.
  • the thin wall portion 24d extending to the rear side of the side plate 24 of the end cell holder 24d and the thin wall portion 24d extending to the front side of the side plate 24 of the cell holder 20 disposed to face the end cell holder 24d are engaged.
  • the engaging portion 24a is configured.
  • the side plate 24 of the end cell holder 20E disposed at the rear end portion in the cell stacking direction extends to the front side in the cell stacking direction, and a thin portion 24d is similarly provided at the tip thereof.
  • a thin portion 24d extending to the front side of the side plate 24 of the end cell holder 24d and a thin portion 24d extending to the rear side of the side plate 24 of the cell holder 20 disposed to face the end cell holder 24d are engaged.
  • the engaging portion 24a is configured.
  • the thin portion 24d formed at one end of the side plate 24 in the cell stacking direction is outside in the width direction of the battery container 15 in relation to the thin portion 24d of the side plate 24 of another cell holder 20 adjacent to the end portion. Is arranged.
  • the thin portion 24d formed at the other end portion of the side plate 24 in the cell stacking direction is inward in the width direction of the battery container 15 in relation to the thin portion 24d of the side plate 24 of the other cell holder 20 adjacent to the end portion. Is arranged.
  • the engaging part 24a of the side plate 24 of the cell holder 20 is engaged with the engaging part 24a of the side plate 24 of another cell holder 20 adjacent in the stacking direction.
  • a protrusion 24 b is provided on the outer surface of the side plate 24.
  • the protrusions 24b are provided above and below the battery container 15 in the height direction, and engage the inside of the opening of the side plate 32 of the restraining member 30, as shown in FIG.
  • a plurality of openings 24c communicating with both ends in the extending direction of the plurality of openings S between the spacers 21 are provided.
  • the bottom plate 23 is configured similarly to the side plate 24.
  • the bottom plate 23 is a plate-like member that connects the lower ends of a pair of side plates 24 extended to both sides in the cell stacking direction.
  • one portion 23b and the other portion 23c extending on both sides in the cell stacking direction cover the bottom surface 15b of the adjacent battery container 15 with a width about half the thickness of the battery container 15, respectively. 15 is opposed to the bottom surface 15b.
  • the end of the bottom plate 23 in the cell stacking direction, that is, the tip of the one portion 23b and the tip of the other portion 23c are thin portions 23d.
  • the thin portion 23d on the front side in the cell stacking direction of the bottom plate 23 is located on the upper side, and the thin portion 23d on the rear side is located on the lower side.
  • the thin portion 23d on the front side of one cell holder 20 of the pair of adjacent cell holders 20 and the thin portion 23d on the rear side of the other cell holder 20 are engaged with each other in the height direction.
  • the bottom 23 is engaged with each other at the thin portion 23d.
  • An engaging portion with which the thin portion 23d is engaged is indicated by reference numeral 23a.
  • FIG. 9 is a schematic cross-sectional view taken along line IX-IX of the secondary battery device shown in FIG. 1, and FIG. 10 is an enlarged view of a part of the schematic cross-sectional view shown in FIG.
  • FIG. 11 is an enlarged view of a region XI in FIG.
  • the spacer member arranged between the secondary battery cells has a structure that partially presses the pressed surface that is the side surface of the maximum area among the outer surfaces of the secondary battery cells, the following problem occurs. appear.
  • the secondary battery cell and the spacer member have a dimensional tolerance. Therefore, when a plurality of secondary battery cells are stacked through the spacer member, the pressed surface of the secondary battery cell is pressed by the spacer member, and due to the dimensional tolerance of each member, the pressed surface of the individual secondary battery cell is pressed. There is a possibility that the compression force becomes uneven.
  • the spacer 21 of the pair of cell holders 20 includes the compression part 26 and the connection part 27 in the cell stacking direction. As shown in FIG. 11, the compression portions 26 are arranged to face each other at a distance narrower than the thickness T of the battery container 15, and compress the end 15 e of the battery container 15 in the cell stacking direction.
  • the connecting portions 27 are arranged to face each other at a wider interval than the compression portions 26 and are arranged to face the wide side surfaces 15 a on both sides in the thickness direction of the battery container 15.
  • a plurality of secondary battery cells 10 and a plurality of cell holders 20 are alternately stacked, and the end cell holders 20E and the end plates 31 of the restraining members 30 are disposed at both ends in the stacking direction.
  • the battery container 15 is not compressed by the compression part 26 of the spacer 21, and the compression part 26 abuts on the wide side surface 15 a of the battery container 15 and is opposed at an interval substantially equal to the thickness T of the battery container 15.
  • compression is performed on the end plate 31 by a compression device (not shown) so as to reduce the distance between the end plates 31 of the restraining members 30 at both ends in the stacking direction.
  • the compression portion 26 of the spacer 21 compresses the end portion 15e of the battery container 15 in the cell stacking direction, and is opposed to the battery container 15 at an interval narrower than the thickness T of the battery container 15, as shown in FIG.
  • the connecting portion 27 of the spacer 21 comes into contact with the wide side surface 15 a of the battery container 15, and is disposed opposite to the compression portion 26 at a larger interval.
  • a compressive force is applied until the connecting portion 27 of the spacer 21 contacts the wide side surface 15 a of the battery container 15.
  • the compression force is stopped by removing the compression, and the wide side surface 15a of the battery container 15 and the connecting portion are removed.
  • the contact surface pressure with 27 is made substantially zero.
  • the connecting portion 27 is brought into close contact with or against the wide side surface 15a of the battery container 15 with a low surface pressure that does not cause the battery container 15 to be elastically deformed or plastically deformed, or to affect the wound body 40 in the battery container 15. You may make it maintain the state made to contact.
  • the secondary battery apparatus 100 of this embodiment is comprised by fastening the side plate 32 of the restraint member 30 to the end plate 31 with the volt
  • the distance between the pressing parts of the device to be compressed is set so that the distance between the end plates 31 arranged at the foremost end and the rearmost end of the assembled battery is appropriate, and the assembled battery is compressed to this set value. If it does, the operation
  • the connection part 27 of the spacer 21 and the secondary battery cell 10 The wide side surface 15a of the battery case 15 does not necessarily need to be in close contact with or contacted.
  • the connecting portions 27 of all the spacers 21 may be disposed to face each other with a uniform gap between the wide side surfaces 15a of the battery containers 15 of all the secondary battery cells 10.
  • the connecting portions 27 of all the spacers 21 are brought into contact with the wide side surface 15a of the battery containers 15 of all the secondary battery cells 10 with a uniform surface pressure, or faced with a uniform gap therebetween. It can arrange
  • the secondary battery device 100 of the present embodiment regardless of the dimensional tolerances of the secondary battery cell 10 and its peripheral members, for example, when the individual secondary battery cell 10 expands, the battery is connected by the connecting portion 27.
  • a uniform pressing force can be applied to the wide side surface 15 a of the container 15.
  • the end 15e of the battery container 15 can be firmly held by the compression unit 26, and the vibration and displacement of the secondary battery cell 10 can be reliably prevented.
  • the compression portion 26 of the spacer 21 compresses the end portion 15 e of the battery container 15 on the outer side in the winding axis D direction than the intermediate portion 46 of the winding body 40. ing. This prevents excessive pressure from being applied to the intermediate portion 46 of the wound body 40 in which the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are stacked when the secondary battery device 100 is assembled. The performance deterioration of the secondary battery cell 10 can be prevented.
  • the battery container 15 expands due to charging / discharging of the secondary battery cell 10, it faces the intermediate portion 46 of the wound body 40 in which the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are laminated.
  • the connecting portion 27 disposed at the position can contact the wide side surface 15 a of the battery container 15 and suppress the expansion of the wound body 40. Thereby, the twist and wrinkle of the winding body 40 can be suppressed, and the lifetime of the secondary battery cell 10 can be extended.
  • the secondary battery cell 10 is between the wide side surface 15a of the battery case 15 and both end portions 45 in the winding axis D direction of the wound body 40 in which the foil exposed portions 41c and 42c of the electrodes 41 and 42 are laminated. Has a space G. Therefore, when the compression part 26 compresses the end part 15e of the battery container 15 on the outer side in the winding axis D direction than the intermediate part 46 of the wound body 40, the battery container 15 is pushed into the internal space G. Can be deformed. Therefore, the battery container 15 can be deformed without affecting the wound body 40 inside the battery container 15.
  • the compression unit 26 compresses and plastically deforms the battery container 15 in the thickness direction, the compressed secondary battery cell 10, the cell holder 20, and the end cell holder 20E are compressed in the stacking direction and then compressed. Even after the force is removed, the compressed state is maintained. Therefore, the restraint by the restraining member 30 is facilitated, the secondary battery device 100 can be easily manufactured, and the productivity can be improved.
  • the compression portion 26 extends to the narrow side surface 15d within the range of the both end portions 15e of the battery case 15. Therefore, the compression unit 26 compresses the vicinity of the corner 15c between the wide side surface 15a and the narrow side surface 15d of the battery case 15 in the thickness direction of the battery case 15.
  • the corner portion 15c of the battery case 15 and a portion in the vicinity of the corner portion 15b are, for example, portions that are easy to be formed faithfully to the design dimensions as compared with other portions by manufacturing the battery can 14 by deep drawing. Therefore, the amount of compression of the battery container 15 for absorbing the dimensional tolerance of the battery container 15 can be minimized.
  • the spacer 21 includes a plurality of openings S extending in the winding axis D direction. Thereby, a refrigerant
  • coolant can be introduce
  • the spacer 21 is divided into a plurality in the height direction of the secondary battery cell 10 by the opening S, and is arranged at intervals in the height direction. Thereby, if the width
  • the thickness of the compression part 26 provided in the both ends of the spacer 21 is thicker than the thickness of the connecting part 27 provided in the intermediate part of the spacer 20 in the winding axis D direction in the cell stacking direction.
  • the connecting portion 27 has a contact surface 21 b that faces the wide side surface 15 a of the battery case 15, and the compression portion 26 has a pressing surface 21 a that presses the wide side surface 15 a of the battery case 15.
  • the pressing surface 21a has an inclined surface 21c having a downward slope toward the contact surface 21b.
  • the cell holder 20 includes a spacer 21, a side plate 24 along the narrow side surface 15 d of the battery container 15, and an engagement portion 24 a provided at an end of the side plate 24 in the cell stacking direction.
  • the engaging part 24a of a pair of cell holder 20 which opposes a lamination direction is formed in the level
  • the cell holders 20 can be integrated with each other and can be made difficult to come off during assembly, and the sealing performance can be improved.
  • a uniform pressing force can be applied to each secondary battery cell 10 regardless of the dimensional tolerances of the secondary battery cell 10 and its peripheral members. It becomes possible.
  • FIG. 12 is an enlarged view of a part of the secondary battery device shown in FIG. 1.
  • FIG. 12 (A) is a front view of a normal use state in which an external force in the cell stacking direction does not act
  • FIG. B) is a schematic cross-sectional view taken along line XII B -XII B of FIG. 13 shows a state where an external force in the cell stacking direction is applied to the secondary battery device shown in FIG. 12
  • FIG. 13 (A) is a front view
  • FIG. 13 (B) is a diagram of FIG. 13 (A).
  • 3 is a schematic cross-sectional view taken along line XIII B -XIII B.
  • FIG. 12B and FIG. 13B the detailed structure such as the internal structure of the secondary battery cell 10 and the slit portion of the cell holder 20 is omitted.
  • a cell holder 20 as a housing is interposed between the secondary battery cells 10 adjacent to each other to hold the secondary battery cell 10.
  • the cell holder 20 is provided with a pressing member 151 by insert molding, for example.
  • the pressing member 151 is disposed at a position facing the gas discharge valve 50 of each secondary battery cell 10 at the center in the width direction (vertical direction in FIG. 12) of the secondary battery cell 10.
  • the pressing member 151 has a rectangular parallelepiped shape, and the length in the width direction of the pressing member 151 is slightly longer than the gas discharge valve 50 and shorter than the length in the width direction of the battery lid 13.
  • the length of the pressing member 151 in the cell stacking direction is smaller than the distance between the battery lids 13, and a gap is provided between the pressing member 151 and the battery lid 13.
  • the thickness of the pressing member 151 that is, the vertical length in FIG. 12B is larger than the thickness of the battery lid 13.
  • the spacer 21 and the frame portion 22 of the cell holder 20 are deformed, and the cell The distance in the stacking direction is compressed, and adjacent secondary battery cells 10 approach each other. That is, the pressing member 151 contacts the secondary battery cell 10 adjacent to the pressing member 151.
  • the battery cover 13 of the secondary battery cell 10 facing the pressing member 151 is pinched by the pressing members 151 on both sides in the cell stacking direction.
  • the pressing member 151 is configured to transmit an external force in a local region on one surface of the battery lid 13.
  • the thickness of the pressing member 151 is thicker than the thickness of the battery lid 13.
  • the pressing member 151 can continuously transmit the external force in the entire region in the thickness direction of the battery lid 13. Further, since the pressing member 151 is in contact with a part of the battery lid 13, stress concentrates on the battery lid 13, and the battery lid 13 is deformed and the gas discharge valve 50 is easily cleaved. When the gas discharge valve 50 is cleaved, the pressure inside the battery container 15 is released. Note that the pressure member 151 has a higher rigidity in the direction in which the battery lid 13 is clamped than the battery lid 13 in order to ensure that the gas discharge valve 50 is cleaved by the clamping pressure of the pressing member 151.
  • the gas discharge valve 50 is cleaved by an external force, i.e., mechanical stress, so that it starts before the pressure inside the battery container 15 reaches a predetermined value due to abnormal heat generation of the power generation element. For this reason, the inside of the battery can can be reliably opened when the secondary battery cell 10 is compressed by an external force and deformed. Moreover, by opening the sealed secondary battery cell 10, evaporation of the electrolytic solution can be promoted, and as a result, the battery function can be lowered.
  • action which the secondary battery cell 10 accommodated in the cell holder 20 cleaves was illustrated, the gas exhaust valve 50 in the secondary battery cell 10 accommodated in the cell holder 20 and the end cell holder 20E is also cleaved similarly. To do.
  • the secondary battery device 100 a plurality of two secondary batteries 100 are provided in which a gas discharge valve 50 is provided in the battery lid 13 of the battery container 15 in which the wound body 40 is accommodated, and are stacked facing the wide side surface 15a.
  • the secondary battery cell 10 includes at least a pair of pressing members 151 provided so that the battery lid 13 provided with the gas discharge valve 50 of each secondary battery cell 10 can be clamped in the cell stacking direction. Therefore, when an external force in the cell stacking direction acts on the secondary battery device 100, the gas discharge valve 50 is clamped by the pressing member 151, and the gas discharge valve 50 is cleaved by mechanical stress. Therefore, the internal pressure is released before the internal pressure of the battery container 15 reaches a predetermined value, and safety can be ensured.
  • the battery lids 13 of the plurality of storage cells 10 are arranged at a predetermined interval from each other.
  • the pressing member 151 is disposed between the battery lids 13 of the plurality of storage cells so that the pressing member 151 is not in contact with the battery lid 13 when no external force is applied, and is in contact with the battery lid 13 when an external force is applied. When is applied, a part of the battery lid 13 is clamped. For this reason, no stress acts on the gas discharge valve 50 during normal use where no external force acts.
  • a cell holder 20 is disposed as an inclusion between the plurality of stacked storage cells 10, and an end cell holder 20E is disposed on one end side and the other end side of the storage cell 20 in the stacking direction. 151 is provided in each of the cell holder 20 and the end cell holder 20E. For this reason, the deformation
  • the pressing member 151 has a rigidity in a direction in which the pressing member 151 is clamped larger than that of the gas discharge valve 50.
  • the pressing member 151 is formed using a material having high rigidity, or when the material itself has a lower hardness than the material of the battery lid or the gas discharge valve, the pressing member 151 A structure that increases the rigidity in the compression direction may be employed. For this reason, the certainty of tearing of the gas discharge valve 50 can be made high by the clamping pressure of the pressing member 151.
  • the pressing member 151 is shaped to transmit an external force in a local region on one surface of the battery lid 13, and the thickness of the pressing member 151 is thicker than the thickness of the battery lid 13, and when the external force is applied, the battery The entire region in the thickness direction of the lid 13 is in contact with the pressing member 151. For this reason, even when the battery container 15 is deformed, the pressing member 151 can reliably contact the side portion of the battery lid 13 and clamp the battery lid 13.
  • FIG. 14 shows a second embodiment of the present invention
  • FIG. 14 (A) is a front view of a normal use state where no external force is applied to the battery can
  • FIG. 14 (B) is a diagram of FIG. 14 (A).
  • FIG. 14C is a schematic sectional view taken along line XIV B -XIV B
  • FIG. 14C is an enlarged view for explaining the pressing member whose surface is covered with resin.
  • 15 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 14,
  • FIG. 15 (A) is a front view
  • FIG. 15 (B) is FIG.
  • FIG. 6 is a schematic cross-sectional view taken along line XV B -XV B of A).
  • the second embodiment has a structure in which a resin 61 is provided between the pressing member 151 and the battery lid 13.
  • the resin 61 can be formed by integral molding with the cell holder 20 or the end cell holder 20E. That is, the cell holder 20 or the end cell holder 20E can be produced by molding so that the resin 61 is formed using the pressing member 151 as an insert. Alternatively, the resin 61 may be attached to the pressing member 151 by adhesion or the like.
  • the resin 61 is only compressed by the adjacent secondary battery cells 10, and the action of clamping the battery lid 13 by the pressing member 151 and cleaving the gas discharge valve 50 is the first implementation. It is the same as the form. Therefore, the rigidity of the resin 61 does not need to be greater than that of the battery lid 13. It is desirable that the resin 61 be provided to such an extent that there is a gap between the resin lid 13 and the resin lid 13 so that no stress acts on the gas discharge valve 50 during normal use when no external force acts on the battery can.
  • the resin 61 is provided between the pressing member 151 and the battery lid 13, thereby increasing the vertical length of the cell holder 20 or the end cell holder 20 ⁇ / b> E. Since the area in contact with the secondary battery cell 10 increases, the holding power of the secondary battery cell 10 can be increased.
  • FIG. 16 shows a third embodiment of the present invention
  • FIG. 16 (A) is a front view of a normal use state where no external force is applied to the battery can
  • FIG. 16 (B) is a view of FIG. 16 (A).
  • FIG. 6 is a schematic sectional view taken along line XVI B -XVI B. 17 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 16,
  • FIG. 17 (A) is a front view, and FIG. 17 (B) is FIG.
  • FIG. 6 is a schematic cross-sectional view taken along line XVII B -XVII B of A).
  • the third embodiment has a structure in which the pressing member 152 is arranged as an independent member separated from the cell holder 20 or the end cell holder 20E.
  • the pressing member 152 includes a pressing portion 152a and support portions 152b formed at both ends of the pressing portion 152a.
  • the pressing part 152a is arranged at a position facing the gas discharge valve 50 of each secondary battery cell 10 in the center of the secondary battery cell 10 in the width direction (vertical direction in FIG. 16A).
  • the pressing part 152a has a rectangular parallelepiped shape, and the length in the width direction of the pressing part 152a is slightly longer than that of the gas discharge valve 50 and is shorter than the length of the battery cover 13 in the width direction. Further, the length of the pressing portion 152a in the cell stacking direction is shorter than the distance between the adjacent battery lids 13. That is, a gap is provided between the pressing portion 152 a and the battery lid 13.
  • the thickness of the pressing portion 152 a (the length in the vertical direction in FIG. 16B) is thicker than the thickness of the battery lid 13.
  • the support portions 152b are provided at both ends of the pressing portion 152a in the width direction.
  • the length of the support portion 152b in the cell stacking direction is longer than that of the pressing portion 152a. In other words, the length of the support portion 152 b in the cell stacking direction is larger than the distance between the secondary battery cells 10.
  • the pressing member 152 is disposed with the lower surface of the support portion 152b disposed on the battery lid 13 of the adjacent secondary battery cell 10. That is, the pressing portion 152a of the pressing member 152 is an insertion portion that is inserted between the secondary battery cells 10, and the support portion 152b is disposed above the insertion portion.
  • the support 152b may be fixed to the battery lid 13 by adhesion or the like.
  • the third embodiment is the same as those in the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.
  • the battery lids 13 of the respective secondary battery cells 10 are arranged in the front-rear direction.
  • the gas discharge valve 50 is cleaved by being pressed by the pressing portion 152a of the pressing member 152.
  • the pressing member 152 may be bonded to the battery lid 13.
  • the pressing member 152 may be peeled off from the battery lid 13 when an external force is applied to the secondary battery cell 10, but even in that case, the battery lid is interposed between the secondary battery cells 10. 13 is clamped. Therefore, also in the third embodiment, the effects (1), (2), (4), and (5) of the first embodiment are achieved.
  • the pressing member 152 since the pressing member 152 is not integrally formed with the cell holder 20 or the end cell holder 20E, the number of parts increases. However, if the length of the pressing member 151 or the cell holder 20 and the end cell holder 20E in the cell stacking direction differs depending on the size of the secondary battery cell 10, the types of the cell holder 20 and the end cell holder 20E integrally formed with the pressing member 151 increase. , Problems arise in serviceability. In the third embodiment, such a problem can be solved, and the pressing member 152 can be attached by a simple operation of simply inserting the pressing portion 152a between the secondary battery cells 10. Therefore, there is an advantage that the degree of freedom is large.
  • FIG. 18 shows a fourth embodiment of the present invention
  • FIG. 18 (A) is a front view of a normal use state where no external force is applied to the battery can
  • FIG. 18 (B) is a view of FIG. 18 (A).
  • FIG. 7 is a schematic cross-sectional view taken along line XVIII B -XVIIII B.
  • 19 shows a state where an external force in the cell stacking direction is applied to the secondary battery device shown in FIG. 18,
  • FIG. 19A is a front view, and
  • FIG. 19B is a XIX in FIG. 19A.
  • FIG. 6 is a schematic cross-sectional view taken along line B- XIX B.
  • the secondary battery device 100 according to the fourth embodiment includes an exhaust duct 70.
  • the exhaust duct 70 is a member for discharging the gas inside the pipe that is discharged when the gas discharge valve of the secondary battery cell 10 is opened.
  • the pressing member 151 can be integrally formed with the exhaust duct 70 by insert molding. Alternatively, the pressing member 151 may be fixed to the exhaust duct 70 by fastening with bolts, binding with tape, adhesion, or the like.
  • the pressing member 151 of the fourth embodiment has the same shape as that of the first embodiment and is arranged at the same position. Note that not all of the pressing members 151 are provided in the exhaust duct 70, but some of them may be provided in the end cell holder 20 ⁇ / b> E and the end plate 31.
  • FIG. 20 shows a fifth embodiment of the present invention
  • FIG. 20 (A) is a front view of a normal use state where no external force is applied to the battery can
  • FIG. 20 (B) is a diagram of FIG. 20 (A).
  • 3 is a schematic cross-sectional view taken along line XX B -XX B.
  • FIG. 21 shows a state in which an external force in the cell stacking direction shown in FIG. 20 is applied
  • FIG. 20A is a front view
  • FIG. 20B is a line XXI B -XXI B in FIG.
  • the fifth embodiment has a structure in which the pressing member 151 is provided only on the pair of end plates 31 arranged at the end in the cell stacking direction.
  • the secondary battery device 100 of the fifth embodiment does not include the cell holder 20 disposed between the secondary battery cells 10 and the end cell holder 20E disposed at the front and rear ends.
  • Each secondary battery cell 10 is laminated in a state where the wide side surface 15 a of the battery container 15 is in contact.
  • the contact between the wide side surfaces 15a of the battery case 15 is illustrated as a structure in which the entire surface is in contact in FIGS.
  • the present invention can also be applied to the case where the wide side surface 15a of the battery container 15 has a curved shape, or a fin for heat dissipation is formed on the wide side surface 15a. A part of the wide side surface 15a of the container 15 contacts.
  • the end plate 31 is provided with a resin 61 disposed between the pressing member 151 and the battery lid 13.
  • the resin 61 can be formed on the end plate 31 by integral molding. That is, the end plate 31 can be manufactured by molding so that the resin 61 is formed using the pressing member 151 as an insert.
  • the pressing member 151 is larger in rigidity in the direction in which the battery lid 13 is clamped than the battery lid 13.
  • the battery lids 13 of the adjacent secondary battery cells 10 are in contact with each other.
  • the battery lid 13 of each secondary battery cell 10 is pinched by the pressing member 151.
  • the press member 151 is not arrange
  • the pressing member 151 integrally clamps the gas, and thereby the gas discharge valve 50 of each secondary battery cell 10 is cleaved.
  • Sheet-like inclusions may be disposed between the battery lids 13 of the adjacent secondary battery cells 10.
  • the battery lids 13 of the adjacent secondary battery cells 10 are pressed against each other via inclusions.
  • the inclusion need not be a member whose rigidity is larger than that of the battery lid 13.
  • the effects (1), (4), and (5) of the first embodiment are achieved.
  • the press member 151 is provided only in the end plate 31 arrange
  • the present invention can be applied to the secondary battery device 100 that does not include the cell holder 20 and the end cell holder 20E, and has a very wide application range.
  • FIG. 22 shows a sixth embodiment of the present invention
  • FIG. 22 (A) is a front view of a normal use state in which no external force is applied to the battery can
  • FIG. 22 (B) is FIG. 22 (A). It is a front view in the state where the external force of the lamination direction of a secondary battery cell acted on the secondary battery device shown.
  • the sixth embodiment has a structure in which a pair of pressing members 151 a and 151 b are arranged at positions facing the liquid injection port 16 a of each secondary battery cell 10. As described above, the adjacent secondary battery cells 10 are arranged alternately so that the positive external terminal 11 and the negative external terminal 12 face each other.
  • the position of the injection port 16a of the adjacent secondary battery cell 10 in the direction orthogonal to the cell stacking direction is at the center of the gas discharge valve 50 in the illustrated example with respect to the center of the secondary battery cell 10. They are alternately arranged at symmetrical positions.
  • Each pressing member 151a, 151b is arranged at a position facing the liquid injection port 16a arranged at an alternately symmetrical position with respect to the gas discharge valve 50 in this way.
  • the portion of the battery lid 13 where the liquid injection port 16a is formed is less rigid than the other portions. For this reason, when the battery lid 13 is clamped, the vicinity of the battery lid 13 where the liquid injection port 16a is formed is cleaved. That is, the sixth embodiment is an example in which the liquid injection port 16a is cleaved in place of the gas discharge valve 50 of the battery lid 13. Other structures in the sixth embodiment are the same as those in the first embodiment. Therefore, the sixth embodiment also provides the same effects as the effects (1) to (5) of the first embodiment. However, in the sixth embodiment, the gas discharge valve 50 in the effects (1) to (5) of the first embodiment is replaced with the vicinity of the liquid injection port 16a.
  • FIG. 23 shows a seventh embodiment of the present invention
  • FIG. 23 (A) is a front view of a normal use state where no external force is applied to the battery can
  • FIG. 23 (B) is FIG. 23 (A).
  • the pressing member 151c of the seventh embodiment is formed to have a length that extends over both the gas discharge valve and the liquid injection port. In other words, it has a structure in which the pressing members 151a and 151b of the sixth embodiment are connected continuously.
  • Other structures in the seventh embodiment are the same as those in the sixth embodiment.
  • the seventh embodiment when an external force in the X direction shown in FIG. 2 acts on the secondary battery device 100, both or one of the gas discharge valve 50 or the vicinity of the liquid injection port 16a of the battery lid 13 is cleaved. In the seventh embodiment, the same effect as that of the sixth embodiment is obtained.
  • the cell holder 20 has been described as shown in FIG.
  • the cell holder 20 of FIG. 6 includes a spacer 21, a frame portion 22, a bottom plate 23, and a side plate 24, and the spacer 21 is provided with a compression portion 26 and a connecting portion 27.
  • a partition member 5 as shown in FIG. 24A can be used instead of the cell holder 20, a partition member 5 as shown in FIG. 24A can be used.
  • the compression part 26 and the connection part 27 are provided in the spacer 21, illustration is abbreviate
  • the partition member 5 is a member in which a rectangular frame portion 51 and a plurality of intermediate portions 54 are integrally formed by molding or the like.
  • the frame portion 51 includes a pair of vertical portions 52 extending in the vertical direction and a pair of horizontal portions 53 extending in the front-rear direction.
  • intermediate portions 54 extending in the front-rear direction are provided at a predetermined pitch in the vertical direction.
  • the partition member 5 has a gap portion S f formed between the lateral portion 53 and the intermediate portion 54 and between the intermediate portions 54.
  • the frame portion 51 and the intermediate portion 54 have substantially the same thickness, that is, the length in the cell stacking direction.
  • the partition member 5 does not include a housing portion that houses the secondary battery cell 10, and the partition member 5 is assembled in a state of being in contact with the wide side surface 15 a of the battery container 15 of the adjacent secondary battery cell 10. A battery is produced.
  • the pressing members 151, 151 a, 151 b and the resin 61 can be integrally formed on the partition member 5.
  • FIG. 24B shows an example in which the partition member 5 is provided with the pressing member 151 and the resin 61.
  • the pressing members 151 and 152 are made of metal.
  • the pressing member may be formed of resin. In short, it is only necessary that the pressing members 151 and 152 are larger than the battery lid 13 with respect to the rigidity in the direction in which the battery lid 13 is clamped.
  • the gas discharge valve 50 and the liquid injection port 16a are exemplified as the structure provided in the battery lid 13 of the secondary battery cell 10.
  • both or one of the gas discharge valve 50 and the liquid injection port 16a may be provided on one side surface other than the battery lid 13, such as the narrow side surface 15d and the bottom surface 15b of the secondary battery cell 10.
  • the pressing members 151 and 152 may be disposed to face the gas discharge valve 50 or the liquid injection port 16a to be cleaved, that is, the cleavage site.
  • the secondary battery cell 10 is exemplified as a lithium ion secondary battery.
  • the present invention can also be applied to a secondary battery using a water-soluble electrolyte such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery. It can also be applied to a lithium ion capacitor.
  • a deformation portion for example, a battery lid 13
  • Various power storages including a part to be destroyed (for example, the gas discharge valve 50 or the liquid injection port 16) that is broken by deformation and releases the pressure inside the power storage cell to the atmosphere, and a pressing member 151 that transmits the external force to the deformation part and deforms it.
  • a part to be destroyed for example, the gas discharge valve 50 or the liquid injection port 16
  • a pressing member 151 that transmits the external force to the deformation part and deforms it.
  • the to-be-destructed part is destroyed and the inside of the storage cell 10 is opened to the atmosphere before the thermal runaway of the internal power generation element (for example, the wound body 40) starts. Can do.
  • the internal power generation element for example, the wound body 40

Abstract

Provided is a power storage device such that safety can be ensured by cleavage of a cleavage site upon the action of an impact such as from a collision. The power storage device 100 comprises: a plurality of power storage cells 10 which have been layered; a deforming portion (battery lid) 13 provided on each of the power storage cells 10, and deforming under an external force incoming from the exterior; a breaking portion (gas evacuation valve 50) broken by the deformation of the deforming portion and releasing into the atmosphere the internal pressure of the power storage cell; and a pressing member 151 transmitting the external force to the deforming portion, and deforming the deforming portion.

Description

蓄電装置Power storage device
 本発明は、蓄電装置に関する。 The present invention relates to a power storage device.
 近年、リチウムイオン二次電池セルなどの二次電池セルは電気自動車、ハイブリッド電気自動車、あるいは電気機器の電源として利用されている。
 電池モジュールは、複数の二次電池セルをケース内に配列し、各二次電池セルの正・負極端子を、バスバー等により相互に電気的に接続して構成される。二次電池装置は、このような電池モジュールを1個あるいは複数個備え、電源用端子および信号用コネクタを介して車両側のコントローラと接続されている。
In recent years, secondary battery cells such as lithium ion secondary battery cells have been used as power sources for electric vehicles, hybrid electric vehicles, or electric devices.
The battery module is configured by arranging a plurality of secondary battery cells in a case and electrically connecting the positive and negative terminals of each secondary battery cell to each other by a bus bar or the like. The secondary battery device includes one or a plurality of such battery modules, and is connected to a vehicle-side controller via a power supply terminal and a signal connector.
 二次電池セルは何らかの異常動作により発熱し、二次電池セルの内圧が高くなる可能性があり、その安全対策として、電池ケースにガス排出弁を設けた構造が提案されている。ガス排出弁は、電池ケースの一部を薄肉にして形成され、内部短絡等により内圧が上昇するとその内圧により開裂し、二次電池セル内のガスを解放する(例えば、特許文献1参照)。 The secondary battery cell may generate heat due to some abnormal operation and the internal pressure of the secondary battery cell may increase. As a safety measure, a structure in which a gas discharge valve is provided in the battery case has been proposed. The gas discharge valve is formed by making a part of the battery case thin, and when the internal pressure rises due to an internal short circuit or the like, the gas discharge valve is cleaved by the internal pressure and releases the gas in the secondary battery cell (see, for example, Patent Document 1).
特許第3222418号Japanese Patent No. 3322418
 特許文献1に記載された二次電池セルは、二次電池セルの内圧の上昇に起因する異常を防止する。しかし、ガス排出弁は、衝突などの外力に対して一定の効果はあるものの、セルの搭載箇所などによってはさらなる対策が望まれている。 The secondary battery cell described in Patent Document 1 prevents an abnormality caused by an increase in internal pressure of the secondary battery cell. However, although the gas discharge valve has a certain effect against external forces such as a collision, further measures are desired depending on the cell mounting location.
 積層された複数の蓄電セルを備える本発明の一態様による蓄電装置は、それら蓄電セルに設けられ、外部から入力された外力により変形する変形部と、変形部の変形で破壊され、蓄電セル内部の圧力を大気開放する被破壊部と、外力を変形部に伝達して変形させる押圧部材とを備える。 A power storage device according to one embodiment of the present invention including a plurality of stacked power storage cells is provided in the power storage cells, and is deformed by an external force input from the outside, and is deformed by the deformation of the deformation unit, A to-be-destructed portion that releases the pressure of the air to the atmosphere, and a pressing member that deforms the external force by transmitting it to the deformation portion.
 本発明によれば、外力が作用したとき、内部の発電素子の熱暴走が開始する前に被破壊部が破壊され、蓄電セルの内部が大気解放される。 According to the present invention, when an external force is applied, the to-be-destructed part is destroyed and the inside of the storage cell is released to the atmosphere before the thermal runaway of the internal power generation element starts.
本発明の蓄電装置を二次電池装置として示す、第1の実施形態の外観斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The external appearance perspective view of 1st Embodiment which shows the electrical storage apparatus of this invention as a secondary battery apparatus. 図1に示された二次電池装置の上面図。The top view of the secondary battery apparatus shown by FIG. 図2に示された二次電池装置の分解斜視図。FIG. 3 is an exploded perspective view of the secondary battery device shown in FIG. 2. 図3に示された二次電池セルの模式的断面図を示し、(A)は模式的正面断面図、(B)は模式的側面断面図。The typical sectional view of the secondary battery cell shown by Drawing 3 is shown, (A) is a typical front sectional view, and (B) is the typical side sectional view. 図4に示された二次電池セルの内部に収容された捲回体の分解斜視図。The disassembled perspective view of the winding body accommodated in the inside of the secondary battery cell shown by FIG. 図3に示された二次電池装置のセルホルダの斜視図。The perspective view of the cell holder of the secondary battery apparatus shown by FIG. 図6に示されたセルホルダを示し、(A)は正面図、(B)は、(A)のVII-VII線断面図、(C)は、(A)のVII-VII線断面図、(D)は、底板を説明する図。6 shows the cell holder shown in FIG. 6, (A) is a front view, (B) is a sectional view taken along line VII B -VII B in (A), and (C) is a line VII C -VII C in (A). Sectional drawing and (D) are figures explaining a baseplate. 図2に示された二次電池装置の領域VIIIの拡大図。The enlarged view of the area | region VIII of the secondary battery apparatus shown by FIG. 図1に示された二次電池装置のIX―IX線の模式的断面図。FIG. 2 is a schematic cross-sectional view taken along line IX-IX of the secondary battery device shown in FIG. 1. 図9示された模式的断面図の一部を拡大した図。9 is an enlarged view of a part of the schematic cross-sectional view shown in FIG. 図10の領域XIの拡大図。FIG. 11 is an enlarged view of a region XI in FIG. 10. 図1に示された二次電池装置の一部を拡大した図であり、(A)は、通常状態の正面図、(B)は、(A)のXII-XII線の模式的断面図。FIG. 2 is an enlarged view of a part of the secondary battery device shown in FIG. 1, wherein (A) is a front view in a normal state, and (B) is a schematic cross section taken along line XII B -XII B in (A). Figure. 図12に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、(A)は正面図、(B)は、(A)のXIII-XIII線の模式的断面図。FIG. 12 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 12, (A) is a front view, and (B) is a line XIII B -XIII B of (A). FIG. 本発明の第2の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)のXIV-XIV線の模式的断面図、(C)は(B)の一部の拡大図。Shows a second embodiment of the present invention, (A) is a front view of a normal state, (B) is a schematic sectional view of a XIV B XIV B line (A), of (C) is (B) Some enlarged views. 図14に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、(A)は正面図、(B)は、(A)のXV-XV線の模式的断面図。14 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 14, where (A) is a front view, and (B) is an XV B -XV B line in (A). FIG. 本発明の第3の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)のXVI-XVI線の模式的断面図。4A and 4B show a third embodiment of the present invention, in which FIG. 5A is a front view in a normal state, and FIG. 5B is a schematic cross-sectional view taken along line XVI B -XVI B in FIG. 図16に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、(A)は正面図、(B)は、(A)のXVII-XVII線の模式的断面図。FIG. 16 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 16, (A) is a front view, and (B) is an XVII B -XVII B line in (A). FIG. 本発明の第4の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)のXVIII-XVIIII線の模式的断面図。4A and 4B show a fourth embodiment of the present invention, in which FIG. 5A is a front view in a normal state, and FIG. 5B is a schematic cross-sectional view taken along line XVIII B -XVIIII B of FIG. 図18に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、(A)は正面図、(B)は、(A)のXIX-XIX線の模式的断面図。The secondary battery device shown in FIG. 18 shows a state in which external force is applied in the stacking direction of the secondary battery cells, (A) is a front view, (B) is a XIX B -XIX B line (A) FIG. 本発明の第5の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)のXX-XX線の模式的断面図。FIG. 6A is a front view of a normal state according to a fifth embodiment of the present invention, and FIG. 5B is a schematic cross-sectional view taken along line XX B -XX B of FIG. 図20に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、(A)は正面図、(B)は、(A)のXXI-XXI線の模式的断面図。FIG. 20 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 20, where (A) is a front view and (B) is an XXI B -XXI B line in (A). FIG. 本発明の第6の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)に示す二次電池装置に二次電池セルの積層方向の外力が作用した状態の正面図。The 6th Embodiment of this invention is shown, (A) is a front view of a normal state, (B) is the state which the external force of the stacking direction of the secondary battery cell acted on the secondary battery apparatus shown to (A). Front view. 本発明の第7の実施形態を示し、(A)は通常状態の正面図、(B)は、(A)に示す二次電池装置に二次電池セルの積層方向の外力が作用した状態の正面図。FIG. 7 shows a seventh embodiment of the present invention, where (A) is a front view in a normal state, and (B) is a state in which an external force in the stacking direction of secondary battery cells is applied to the secondary battery device shown in (A). Front view. (A)は、図6に示されたセルホルダの変形例としての仕切り部材の一例を示す外観斜視図、(B)は、(A)に示された仕切り部材に押圧部材および樹脂を設けた一例を示す図。(A) is an external perspective view showing an example of a partition member as a modification of the cell holder shown in FIG. 6, and (B) is an example in which a pressing member and a resin are provided on the partition member shown in (A). FIG.
-第1の実施形態-
 以下、本発明の蓄電装置をリチウムイオン二次電池装置に適用した第1の実施形態を、図1~図13を参照して説明する。
 図1は、本発明によるリチウム二次電池装置の第1の実施形態の外観斜視図である。図2は、図1に示された二次電池装置の上面図であり、図3は、図2に示された二次電池装置の分解斜視図である。
 二次電池装置100は、複数の二次電池セル10と、セルホルダ20と、一対のエンドセルホルダ20Eと、拘束部材30とを備えている。
-First embodiment-
Hereinafter, a first embodiment in which a power storage device of the present invention is applied to a lithium ion secondary battery device will be described with reference to FIGS.
FIG. 1 is an external perspective view of a first embodiment of a lithium secondary battery device according to the present invention. 2 is a top view of the secondary battery device shown in FIG. 1, and FIG. 3 is an exploded perspective view of the secondary battery device shown in FIG.
The secondary battery device 100 includes a plurality of secondary battery cells 10, a cell holder 20, a pair of end cell holders 20E, and a restraining member 30.
 二次電池セル10は、図3に示すように、扁平な角形の電池容器15を備える角形二次電池セルである。電池容器15は、上部に開口を有する電池缶14(図4参照)と、電池缶14の開口を塞いで電池缶14に接合された電池蓋13(図4参照)とを有する。電池缶14の内部には、蓄電素子である捲回体40(図4参照)が収容され、不図示の電解液が注入されている。電池蓋13には、正極外部端子11と負極外部端子12とが設けられている。正極外部端子11は、電池缶14の内部に収容された捲回体40の正電極41(図5参照)と接続され、負極外部端子12は捲回体40の負電極42(図5参照)と接続されている。 The secondary battery cell 10 is a rectangular secondary battery cell including a flat rectangular battery container 15 as shown in FIG. The battery container 15 includes a battery can 14 (see FIG. 4) having an opening in the upper portion, and a battery lid 13 (see FIG. 4) joined to the battery can 14 by closing the opening of the battery can 14. Inside the battery can 14, a wound body 40 (see FIG. 4) that is a power storage element is accommodated, and an electrolyte solution (not shown) is injected. The battery lid 13 is provided with a positive external terminal 11 and a negative external terminal 12. The positive external terminal 11 is connected to the positive electrode 41 (see FIG. 5) of the wound body 40 housed in the battery can 14, and the negative external terminal 12 is connected to the negative electrode 42 (see FIG. 5) of the wound body 40. Connected with.
 また、電池蓋13の正極外部端子11と負極外部端子12との間には、ガス排出弁50と電解液を注入するための注液口16aとが形成されている。注液口16aは封止栓16により封口されている。ガス排出弁50は、内部短絡等により内圧が上昇すると、その内圧により開裂し、二次電池セルの内圧を解放する。 Further, between the positive electrode external terminal 11 and the negative electrode external terminal 12 of the battery lid 13, a gas discharge valve 50 and a liquid injection port 16a for injecting an electrolytic solution are formed. The liquid injection port 16 a is sealed with a sealing plug 16. When the internal pressure rises due to an internal short circuit or the like, the gas discharge valve 50 is cleaved by the internal pressure and releases the internal pressure of the secondary battery cell.
 隣り合う二次電池セル10は、正極外部端子11と負極外部端子12が対向するよう、互い違いに配列されている。図中では省略されているが、隣り合う二次電池セル10の正極外部端子11及び負極外部端子12にはバスバーが溶接され、電気的に接続されている。つまり、二次電池装置100は、複数の角形の二次電池セル10が直列に接続された構成となっている。バスバーは、例えばアルミニウムやアルミニウム合金、銅合金などの導電性の材料によって作製されている。 Adjacent secondary battery cells 10 are arranged alternately so that the positive external terminal 11 and the negative external terminal 12 face each other. Although omitted in the figure, bus bars are welded and electrically connected to the positive external terminal 11 and the negative external terminal 12 of the adjacent secondary battery cells 10. That is, the secondary battery device 100 has a configuration in which a plurality of rectangular secondary battery cells 10 are connected in series. The bus bar is made of a conductive material such as aluminum, an aluminum alloy, or a copper alloy.
 隣り合う二次電池セル10の間にはセルホルダ20が配置されている。積層された二次電池セル10の積層方向(以下、単にセル積層方向と呼ぶ)の最前部および最後部には、エンドセルホルダ20Eが配置されている。セルホルダ20は枠状部材であり、詳細は後述するが、二次電池セル10の積層方向の中央部にセル幅方向に延在する複数本のスペーサ21(図6参照)を有し、スペーサ21の前方側および後方側にはセルを収容する開口部が形成されている。各二次電池セル10は、各セル前方側および後方側のセルホルダ20の開口部内に収容される。また、セル前方側のエンドセルホルダ20Eとセル後方側のセルホルダ20との間の開口部内、およびセル後方側のセルホルダ20とセル後方側のエンドセルホルダ20Eとの間の開口部内にも収容される。 A cell holder 20 is disposed between the adjacent secondary battery cells 10. End cell holders 20 </ b> E are disposed at the foremost part and the rearmost part in the stacking direction of the stacked secondary battery cells 10 (hereinafter simply referred to as the cell stacking direction). Although the cell holder 20 is a frame-like member and will be described in detail later, the cell holder 20 has a plurality of spacers 21 (see FIG. 6) extending in the cell width direction at the center in the stacking direction of the secondary battery cells 10. Openings for receiving cells are formed on the front side and the rear side. Each secondary battery cell 10 is accommodated in the opening of the cell holder 20 on the front side and the rear side of each cell. Further, it is also accommodated in the opening between the end cell holder 20E on the cell front side and the cell holder 20 on the cell rear side, and in the opening between the cell holder 20 on the cell rear side and the end cell holder 20E on the cell rear side.
 セルホルダ20およびエンドセルホルダ20Eには押圧部材151が設けられている。押圧部材151は、ガス排出弁50に対向する位置に配置されている。押圧部材151は、ステンレス、鉄、アルミにニウム合金等の電池蓋13よりも剛性が大きい金属材料により形成されている。押圧部材151は、セルホルダ20およびエンドセルホルダ20Eにインサート成型により一体に成型することができる。あるいは、押圧部材151は、セルホルダ20およびエンドセルホルダ20Eに接着等により固定することもできる。 A pressing member 151 is provided on the cell holder 20 and the end cell holder 20E. The pressing member 151 is disposed at a position facing the gas discharge valve 50. The pressing member 151 is formed of a metal material having higher rigidity than the battery lid 13 such as stainless steel, iron, aluminum, or a nium alloy. The pressing member 151 can be integrally formed with the cell holder 20 and the end cell holder 20E by insert molding. Alternatively, the pressing member 151 can be fixed to the cell holder 20 and the end cell holder 20E by adhesion or the like.
 拘束部材30は、一対のエンドプレート31と、一対のサイドプレート32と、複数のボルト33およびねじ34を有している。エンドプレート31とサイドプレート32とは、例えば金属材料によって形成される。一対のエンドプレート31は、セル積層方向の最前部の二次電池セル10の前方に配置されたエンドセルホルダ20Eおよび最後端の二次電池セル10の後方に配置されたエンドセルホルダ20Eの各端面を覆うように配置されている。 The restraining member 30 has a pair of end plates 31, a pair of side plates 32, a plurality of bolts 33 and screws 34. The end plate 31 and the side plate 32 are made of, for example, a metal material. The pair of end plates 31 includes end surfaces of an end cell holder 20E disposed in front of the foremost secondary battery cell 10 in the cell stacking direction and an end cell holder 20E disposed in the rear of the rearmost secondary battery cell 10. It is arranged to cover.
 各サイドプレート32は、セル積層方向に沿って延在された一対の長辺と該長辺を接続する一対の短辺とを有する枠状部材である。各サイドプレート32には、それぞれ、各短辺から屈曲され、前方側のエンドプレート31の前面および後方側のエンドプレート31の後面に接触する一対の折曲部32aが形成されている。
 上述したように、各二次電池セル10は、セルホルダ20またはエンドセルホルダ20Eの開口部内に収容されて積層されている。エンドセルホルダ20Eの前・後端には、それぞれエンドプレート31が積層されている。以下では、複数の二次電池セル10およびセルホルダ20、一対のエンドセルホルダ20E、および一対のエンドプレート31が積層された集合体を組電池という。組電池は、各サイドプレート32の一対の折曲部32aの内側に配置されている。組電池のセル積層方向に延在する左右の側面は、各サイドプレート32により支持されている。一対のサイドプレート32の折曲部32aのそれぞれに設けられた貫通孔にボルト33およびねじ34が挿通され、該ボルト33およびねじ34は、一対のエンドプレート31のそれぞれに設けられたねじ孔に締結されている。図1に図示された二次電池装置100は、このような構造を有している。
Each side plate 32 is a frame-like member having a pair of long sides extending along the cell stacking direction and a pair of short sides connecting the long sides. Each side plate 32 is formed with a pair of bent portions 32 a that are bent from each short side and come into contact with the front surface of the front end plate 31 and the rear surface of the rear end plate 31.
As described above, each secondary battery cell 10 is housed and stacked in the opening of the cell holder 20 or the end cell holder 20E. End plates 31 are stacked on the front and rear ends of the end cell holder 20E, respectively. Hereinafter, an assembly in which the plurality of secondary battery cells 10 and the cell holder 20, the pair of end cell holders 20E, and the pair of end plates 31 are stacked is referred to as an assembled battery. The assembled battery is disposed inside the pair of bent portions 32 a of each side plate 32. The left and right side surfaces extending in the cell stacking direction of the assembled battery are supported by the side plates 32. Bolts 33 and screws 34 are inserted into through holes provided in the bent portions 32 a of the pair of side plates 32, and the bolts 33 and screws 34 are inserted into screw holes provided in the pair of end plates 31, respectively. It is concluded. The secondary battery device 100 illustrated in FIG. 1 has such a structure.
 図4は、図3に示された二次電池セルの模式的断面図を示し、図4(A)は模式的正面断面図であり、図4(B)は模式的底面断面図である。
 上述したとおり、二次電池セル10は、内部に非水電解液が注入されている扁平角形の電池容器15と、電池容器15内に収容される捲回体40と、電池容器15の外部に配置された正負極の外部端子11、12とを備えている。捲回体40は発電素子である。電池容器15を構成する電池缶14および電池蓋13は、共に、例えば、アルミニウムまたはアルミニウム合金等の金属材料により形成されている。電池容器15は、厚さ方向の両側面(図4(B)の上下両側面)の大面積の広側面15aと、底面15bと、幅方向両側の狭側面15dとを有する扁平な矩形の箱形の容器である。電池缶14は、例えば、深絞り加工により作製することができる。
4 is a schematic cross-sectional view of the secondary battery cell shown in FIG. 3, FIG. 4 (A) is a schematic front cross-sectional view, and FIG. 4 (B) is a schematic bottom cross-sectional view.
As described above, the secondary battery cell 10 includes the flat rectangular battery container 15 in which the nonaqueous electrolyte is injected, the wound body 40 accommodated in the battery container 15, and the outside of the battery container 15. It has positive and negative external terminals 11 and 12 arranged. The wound body 40 is a power generation element. Both the battery can 14 and the battery lid 13 constituting the battery container 15 are formed of a metal material such as aluminum or an aluminum alloy, for example. The battery case 15 is a flat rectangular box having a wide side 15a having a large area on both side surfaces in the thickness direction (upper and lower side surfaces in FIG. 4B), a bottom surface 15b, and narrow side surfaces 15d on both sides in the width direction. It is a shaped container. The battery can 14 can be produced, for example, by deep drawing.
 図5は、図4に示された二次電池セルの内部に収容された捲回体40の分解斜視図である。
 捲回体40は、長尺帯状の正負の電極41、42の間に、長尺帯状のセパレータ43、44を介在させて積層させ、捲回中心軸である捲回軸Dの周りに捲回し、扁平形状に成型した積層構造の捲回電極群である。捲回体40は、厚さ方向両側の平坦な一対の平坦部40aと、半円状に湾曲した上下一対の湾曲部40bを有している。
FIG. 5 is an exploded perspective view of the wound body 40 accommodated in the secondary battery cell shown in FIG. 4.
The wound body 40 is laminated between the long band-like positive and negative electrodes 41 and 42 with the long band- like separators 43 and 44 interposed therebetween, and wound around the winding axis D which is the winding center axis. A wound electrode group having a laminated structure molded into a flat shape. The wound body 40 includes a pair of flat portions 40a that are flat on both sides in the thickness direction, and a pair of upper and lower curved portions 40b that are curved in a semicircular shape.
 捲回体40は、捲回軸D方向が図4に示す電池蓋13の長手方向、すなわち電池容器15の幅方向となるように平行に電池容器15に収容されている。これにより、捲回体40の厚さ方向両側面の平坦部40aが電池容器15の厚さ方向両側の広側面15aに対向し、下側の湾曲部40bが電池容器15の底面15bに対向し、上側の湾曲部40bが電池容器15の電池蓋13に対向して配置される。なお、本実施形態における上下は、図示された二次電池セル10の構成を説明するためのものであり、必ずしも鉛直方向の上下を意味するものではない。 The wound body 40 is accommodated in the battery case 15 in parallel so that the winding axis D direction is the longitudinal direction of the battery cover 13 shown in FIG. 4, that is, the width direction of the battery case 15. Accordingly, the flat portions 40a on both sides in the thickness direction of the wound body 40 face the wide side surfaces 15a on both sides in the thickness direction of the battery case 15, and the lower curved portion 40b faces the bottom surface 15b of the battery case 15. The upper curved portion 40 b is disposed to face the battery lid 13 of the battery container 15. In addition, the upper and lower sides in this embodiment are for demonstrating the structure of the illustrated secondary battery cell 10, and do not necessarily mean the upper and lower sides of a perpendicular direction.
 セパレータ43、44は、正電極41と負電極42との間を絶縁すると共に、最外周に捲回された負電極42の外側にもセパレータ44が捲回されている。セパレータ43、44は、例えば、リチウムイオンが通過可能な絶縁性を有する微多孔質のポリエチレン樹脂製のシートである。 The separators 43 and 44 insulate the positive electrode 41 and the negative electrode 42, and the separator 44 is wound outside the negative electrode 42 wound around the outermost periphery. The separators 43 and 44 are, for example, microporous polyethylene resin sheets having insulating properties through which lithium ions can pass.
 正電極41は、正極集電体である正極箔41aと、正極箔41aの両面に塗布された正極活物質合剤からなる正極合剤層41bとを有している。正電極41の幅方向の一側は、正極合剤層41bが形成されず、正極箔41aが露出した箔露出部41cとされている。正電極41は、箔露出部41cが負電極42の箔露出部42cと捲回軸D方向の反対側に配置されて捲回軸D周りに捲回されている。 The positive electrode 41 has a positive electrode foil 41a that is a positive electrode current collector and a positive electrode mixture layer 41b made of a positive electrode active material mixture applied to both surfaces of the positive electrode foil 41a. One side in the width direction of the positive electrode 41 is a foil exposed portion 41c where the positive electrode mixture layer 41b is not formed and the positive foil 41a is exposed. In the positive electrode 41, the foil exposed portion 41c is wound around the winding axis D with the foil exposed portion 42c of the negative electrode 42 disposed on the opposite side of the winding axis D direction.
 正電極41は、例えば、正極活物質に導電材、結着剤及び分散溶媒を添加して混練した正極活物質合剤を、幅方向の一側を除いて正極箔41aの両面に塗布し、乾燥、プレス、裁断することによって作製することができる。正極箔41aとしては、例えば、厚さ約20μmから約30μm程度のアルミニウム箔を用いることができる。正極箔41aの厚みを含まない正極合剤層41bの厚さは、例えば、約90μmである。 The positive electrode 41, for example, a positive electrode active material mixture kneaded by adding a conductive material, a binder and a dispersion solvent to the positive electrode active material is applied to both surfaces of the positive electrode foil 41a except for one side in the width direction, It can be produced by drying, pressing, and cutting. As the positive electrode foil 41a, for example, an aluminum foil having a thickness of about 20 μm to about 30 μm can be used. The thickness of the positive electrode mixture layer 41b not including the thickness of the positive electrode foil 41a is, for example, about 90 μm.
 正極活物質合剤の材料としては、例えば、正極活物質として100重量部のマンガン酸リチウム(化学式LiMn)を、導電材として10重量部の鱗片状黒鉛を、結着剤
として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を、分散溶媒としてN-メチルピロリドン(以下、NMPという。)を、それぞれ用いることができる。正極活物質は、前記したマンガン酸リチウムに限定されず、例えば、スピネル結晶構造を有する他のマンガン酸リチウム、一部を金属元素で置換またはドープしたリチウムマンガン複合酸化物を用いてもよい。また、正極活物質として、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、及びこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いてもよい。
As a material of the positive electrode active material mixture, for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of flaky graphite as the conductive material, and 10% by weight as the binder. Part of polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as a dispersion solvent. The positive electrode active material is not limited to the above-described lithium manganate. For example, another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used. Further, as the positive electrode active material, lithium cobalt oxide or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.
 負電極42は、負極集電体である負極箔42aと、負極箔42aの両面に塗布された負極活物質合剤からなる負極合剤層42bとを有している。負電極42の幅方向の一側は、負極合剤層42bが形成されず、負極箔42aが露出した箔露出部42cとされている。負電極42は、その箔露出部42cが正電極41の箔露出部41cと捲回軸D方向の反対側に配置されて捲回軸D周りに捲回されている。 The negative electrode 42 has a negative electrode foil 42a that is a negative electrode current collector, and a negative electrode mixture layer 42b made of a negative electrode active material mixture applied to both surfaces of the negative electrode foil 42a. One side in the width direction of the negative electrode 42 is a foil exposed portion 42c where the negative electrode mixture layer 42b is not formed and the negative foil 42a is exposed. The negative electrode 42 is wound around the winding axis D such that the foil exposed portion 42c thereof is disposed on the opposite side of the foil exposing portion 41c of the positive electrode 41 in the winding axis D direction.
 負電極42は、例えば、負極活物質に結着剤及び分散溶媒を添加して混練した負極活物質合剤を、幅方向の一側を除く負極箔42aの両面に塗布し、乾燥、プレス、裁断することによって作製することができる。負極箔42aとしては、例えば、厚さ約10μmから20μm程度の銅箔を用いることができる。負極箔42aの厚みを含まない負極合剤層42bの厚さは、例えば、約70μmである。 The negative electrode 42 is, for example, applied to the negative electrode active material mixture kneaded by adding a binder and a dispersion solvent to the negative electrode active material on both sides of the negative electrode foil 42a except one side in the width direction, dried, pressed, It can be produced by cutting. As the negative electrode foil 42a, for example, a copper foil having a thickness of about 10 μm to 20 μm can be used. The thickness of the negative electrode mixture layer 42b not including the thickness of the negative electrode foil 42a is, for example, about 70 μm.
 負極活物質合剤の材料としては、例えば、負極活物質として100重量部の非晶質炭素粉末を、結着剤として10重量部のPVDFを、分散溶媒としてNMPをそれぞれ用いることができる。負極活物質は、前記した非晶質炭素に限定されず、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、またはそれらの複合材料を用いてもよい。負極活物質の粒子形状についても特に限定されず、鱗片状、球状、繊維状または塊状等の粒子形状を適宜選択することができる。 As a material for the negative electrode active material mixture, for example, 100 parts by weight of amorphous carbon powder as the negative electrode active material, 10 parts by weight of PVDF as the binder, and NMP as the dispersion solvent can be used. The negative electrode active material is not limited to the above-mentioned amorphous carbon, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, , SiO, TiSi 2 or the like), or a composite material thereof. The particle shape of the negative electrode active material is not particularly limited, and a particle shape such as a scale shape, a spherical shape, a fiber shape, or a lump shape can be appropriately selected.
 捲回体40の捲回軸D方向において、負電極42の負極合剤層42bの幅は、正電極41の正極合剤層41bの幅よりも広くなっている。また、捲回体40の最内周と最外周には負電極42が捲回されている。これにより、正極合剤層41bは、捲回体40の最内周から最外周まで負極合剤層42bの間に挟まれている。 In the winding axis D direction of the wound body 40, the width of the negative electrode mixture layer 42 b of the negative electrode 42 is wider than the width of the positive electrode mixture layer 41 b of the positive electrode 41. A negative electrode 42 is wound around the innermost and outermost circumferences of the wound body 40. Accordingly, the positive electrode mixture layer 41b is sandwiched between the negative electrode mixture layer 42b from the innermost periphery to the outermost periphery of the wound body 40.
 正電極41及び負電極42の箔露出部41c、42cは、それぞれ捲回体40の捲回軸D方向の一端と他端で積層されている。図示は省略するが、箔露出部41c、42cは、それぞれ捲回体40の平坦部40aで束ねられ、例えば超音波溶接等によって正負極の外部端子11、12に接続された集電板(図示せず)に接合される。これにより、正負極の外部端子11、12が、それぞれ集電板を介して、捲回体40を構成する正負の電極41、42と電気的に接続される。
 なお、捲回体40の捲回軸D方向において、セパレータ43、44の幅は負極合剤層42bの幅よりも広いが、正電極41及び負電極42それぞれの箔露出部41c、42cは、セパレータ43の一側縁またはセパレータ44の他側縁よりも捲回軸D方向の外方に延在されている。このため、箔露出部41c、42cを束ねて溶接する際の支障にはならない。
The foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are laminated at one end and the other end in the winding axis D direction of the wound body 40, respectively. Although not shown, the foil exposed portions 41c and 42c are bundled by the flat portion 40a of the wound body 40, respectively, and are connected to the positive and negative external terminals 11 and 12 by, for example, ultrasonic welding (see FIG. (Not shown). Thus, the positive and negative external terminals 11 and 12 are electrically connected to the positive and negative electrodes 41 and 42 constituting the wound body 40 through the current collector plates, respectively.
In addition, in the winding axis D direction of the wound body 40, the width of the separators 43 and 44 is wider than the width of the negative electrode mixture layer 42b, but the foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are It extends outward in the winding axis D direction from one side edge of the separator 43 or the other side edge of the separator 44. For this reason, it does not become a trouble at the time of bundling the foil exposure parts 41c and 42c, and welding.
 図4に示すように、捲回体40は、捲回軸Dが電池容器15の幅方向すなわち電池蓋13の長手方向と平行に電池容器15に収容されている。この状態で、捲回体40の捲回軸D方向の一方の端部45と他方の端部45には、それぞれ正負の電極41、42の箔露出部41c、42cが積層されている。中間部46は、正負の電極41、42の正・負極合剤層合剤層41b、42bが積層された部分である。二次電池セル10は、電池容器15の広側面15aおよび狭側面15dと、箔露出部41c、42cが積層された捲回体40の捲回軸D方向の両端部45、45との間に空間Gを有している。
 以上の構成に基づき、二次電池セル10は、外部から正・負極外部端子11、12を介して供給された電力を捲回体40に蓄積し、捲回体40に蓄積された電力を、正・負極外部端子11、12を介して外部へ供給する。
As shown in FIG. 4, the wound body 40 is accommodated in the battery case 15 with the winding axis D parallel to the width direction of the battery case 15, that is, the longitudinal direction of the battery lid 13. In this state, foil exposed portions 41c and 42c of the positive and negative electrodes 41 and 42 are laminated on one end 45 and the other end 45 in the winding axis D direction of the wound body 40, respectively. The intermediate portion 46 is a portion where the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are laminated. The secondary battery cell 10 is provided between the wide side surface 15a and the narrow side surface 15d of the battery container 15 and both end portions 45 and 45 in the winding axis D direction of the wound body 40 in which the foil exposed portions 41c and 42c are stacked. It has a space G.
Based on the above configuration, the secondary battery cell 10 accumulates the power supplied from the outside via the positive and negative external terminals 11 and 12 in the wound body 40, and stores the power accumulated in the wound body 40, Supplied outside through positive and negative external terminals 11 and 12.
 図6は、図3に示された二次電池装置のセルホルダの斜視図である。図7は、図6に示されたセルホルダを示し、図7(A)は正面図、図7(B)は、図7(A)のVII-VII線断面図、図7(C)は、図7(A)のVII-VII線断面図である。
 セルホルダ20は、電池容器15の広側面15aに対向する複数のスペーサ21と、スペーサ21の上下に配置されたフレーム部22と、電池容器15の底面15bに対向する底板23と、電池容器15の狭側面15dに沿う側板24とを備えている。セルホルダ20は、例えば、エンジニアリングプラスチック等の絶縁部材によって作製されている。
6 is a perspective view of a cell holder of the secondary battery device shown in FIG. 7 shows the cell holder shown in FIG. 6, FIG. 7 (A) is a front view, FIG. 7 (B) is a sectional view taken along line VII B- VII B of FIG. 7 (A), and FIG. 7 (C). FIG. 8 is a cross-sectional view taken along line VII C -VII C in FIG.
The cell holder 20 includes a plurality of spacers 21 facing the wide side surface 15 a of the battery container 15, a frame portion 22 arranged above and below the spacer 21, a bottom plate 23 facing the bottom surface 15 b of the battery container 15, And a side plate 24 along the narrow side surface 15d. The cell holder 20 is made of an insulating member such as engineering plastic, for example.
 複数のスペーサ21は、左右の側板24の間で二次電池セル10の幅方向すなわち捲回体40の捲回軸D方向に沿って延在する。スペーサ21は、その延在方向の両端部に設けられた圧縮部26と、圧縮部26の間に設けられた連結部27とを備えている。セル積層方向における圧縮部26の厚さは、同方向における連結部27の厚さよりも厚い。すなわち、圧縮部26は、セル積層方向において、二次電池セル10側に突出している。
 複数のスペーサ24は高さ方向に所定の間隔をあけて桟状に設けられている。したがって、圧縮部26と連結部27も高さ方向に所定の間隔をあけて設けられることになる。スペーサ21の間には、開口Sが設けられる。
The plurality of spacers 21 extend between the left and right side plates 24 along the width direction of the secondary battery cell 10, that is, the winding axis D direction of the wound body 40. The spacer 21 includes a compression portion 26 provided at both ends in the extending direction, and a connection portion 27 provided between the compression portions 26. The thickness of the compression part 26 in the cell stacking direction is larger than the thickness of the connection part 27 in the same direction. That is, the compression part 26 protrudes to the secondary battery cell 10 side in the cell stacking direction.
The plurality of spacers 24 are provided in a bar shape with a predetermined interval in the height direction. Therefore, the compression part 26 and the connection part 27 are also provided at predetermined intervals in the height direction. An opening S is provided between the spacers 21.
 圧縮部26は、一対のセルホルダ20の各スペーサ21をセル積層方向の両側で所定の位置に対向させて配置したときに、電池容器15の厚さよりも狭い間隔で対向配置され、図4(A)及び図4(B)に示す電池容器15の端部15eを積層方向に圧縮する。ここで、電池容器15の厚さとは、組立前の二次電池セル10単体の初期厚さである。また、電池容器15の端部15eは、電池容器15内の捲回体40の中間部46よりも捲回軸D方向の外側に対応する領域である。つまり、電池容器15の両端部15eは、正・負の電極41、42の箔露出部41c、42cが積層されて溶接された部分およびその外側の領域に対応しており、捲回体40の中間部46に対応する領域を含んでいない。
 なお、本実施形態の二次電池セル10は、二次電池装置100の組立に用いる使用前の状態では、図4(B)に示されるように、電池容器15の広側面15aは平坦である。
When the spacers 21 of the pair of cell holders 20 are arranged to face each other at a predetermined position on both sides in the cell stacking direction, the compression unit 26 is arranged to face each other at a distance narrower than the thickness of the battery container 15. ) And the end 15e of the battery case 15 shown in FIG. 4B are compressed in the stacking direction. Here, the thickness of the battery container 15 is an initial thickness of the secondary battery cell 10 before assembly. Further, the end 15 e of the battery case 15 is a region corresponding to the outer side in the winding axis D direction than the intermediate part 46 of the wound body 40 in the battery case 15. That is, both end portions 15e of the battery case 15 correspond to the portions where the foil exposed portions 41c and 42c of the positive and negative electrodes 41 and 42 are laminated and welded, and the outer region thereof. The area corresponding to the intermediate portion 46 is not included.
In the secondary battery cell 10 of the present embodiment, the wide side surface 15a of the battery container 15 is flat as shown in FIG. 4B in a state before use for use in assembling the secondary battery device 100. .
 本実施形態において、圧縮部26は、図4(A)及び図4(B)に示す二次電池セル10の電池容器15の広側面15aに対向して配置されたときに、電池容器15の端部15eを積層方向に圧縮する。圧縮部26は、捲回体40の電池容器15の端部15eにおいて、広側面15aに沿って延在している。
 一対のセルホルダ20は、セル積層方向に所定間隔をあけて対向配置されるが、その間隔は、圧縮部26が電池容器15を厚さ方向に圧縮して所定の厚さまで弾性変形または塑性変形させる間隔である。本実施形態では、圧縮部26は、電池容器15を厚さ方向に圧縮して所定の厚さまで塑性変形させるように設けられている。
In this embodiment, when the compression part 26 is arrange | positioned facing the wide side surface 15a of the battery container 15 of the secondary battery cell 10 shown to FIG. 4 (A) and FIG. 4 (B), the battery container 15 of FIG. The end 15e is compressed in the stacking direction. The compression part 26 extends along the wide side surface 15 a at the end 15 e of the battery container 15 of the wound body 40.
The pair of cell holders 20 are arranged to face each other with a predetermined interval in the cell stacking direction, and the compression unit 26 compresses the battery container 15 in the thickness direction to elastically deform or plastically deform the battery container 15 to a predetermined thickness. It is an interval. In this embodiment, the compression part 26 is provided so that the battery container 15 may be compressed in the thickness direction and plastically deformed to a predetermined thickness.
 一対のセルホルダ20を上記の間隔で配置したとき、連結部27は、電池容器15の広側面15aに対向して配置される。後述するように積層したセルホルダ20を圧縮したとき、スペーサ21は、圧縮部26が電池容器15を圧縮した状態で、連結部27が電池容器15の広側面15aとの間に僅かに隙間をあけて対向配置される。連結部27は、電池容器15の広側面15aに、電池容器15が弾性変形若しくは塑性変形しない程度に密着または当接するようにしてもよい。 When the pair of cell holders 20 are arranged at the above intervals, the connecting portion 27 is arranged to face the wide side surface 15 a of the battery container 15. When the stacked cell holders 20 are compressed as will be described later, the spacer 21 has a slight gap between the connecting portion 27 and the wide side surface 15 a of the battery container 15 in a state where the compression section 26 compresses the battery container 15. Are arranged opposite each other. The connecting portion 27 may be in close contact with or in contact with the wide side surface 15a of the battery container 15 to the extent that the battery container 15 is not elastically deformed or plastically deformed.
 スペーサ21についてさらに詳細に説明する。
 連結部27は、電池容器15の広側面15aに対向する当接面21bを有し、圧縮部26は、電池容器15の広側面15aを押圧する押圧面21aを有している。また、圧縮部26は、押圧面21aの一部に傾斜面21cを有している。傾斜面21cは、圧縮部26の押圧面21aから連結部27の当接面27aに向かって下り勾配の斜面である。したがって、電池容器15の広側面15aは、その端部15eの範囲内において狭側面15dに近づくほど大きな圧縮力を受けることになる。
The spacer 21 will be described in more detail.
The connecting portion 27 has an abutting surface 21 b that faces the wide side surface 15 a of the battery case 15, and the compression portion 26 has a pressing surface 21 a that presses the wide side surface 15 a of the battery case 15. Moreover, the compression part 26 has the inclined surface 21c in a part of press surface 21a. The inclined surface 21 c is an inclined surface having a downward slope from the pressing surface 21 a of the compression portion 26 toward the contact surface 27 a of the connecting portion 27. Therefore, the wide side surface 15a of the battery case 15 receives a larger compressive force as it approaches the narrow side surface 15d within the range of the end portion 15e.
 フレーム部22は、二次電池セル10の高さ方向の最上側スペーサ21と最下側スペーサ21に接続され、スペーサ21の延在方向に沿って延在し、スペーサ21の厚さよりも薄い板状に形成されている。上方側のフレーム部22の上端には、例えば、電子回路基板、ダクトの部材等を係合して保持するための係合爪22a、22bが設けられている。さらに、係合爪22a、22bの間に上述した金属製の押圧部材151が設けられている。 The frame portion 22 is connected to the uppermost spacer 21 and the lowermost spacer 21 in the height direction of the secondary battery cell 10, extends along the extending direction of the spacer 21, and is thinner than the thickness of the spacer 21. It is formed in a shape. Engagement claws 22a and 22b for engaging and holding electronic circuit boards, duct members, and the like are provided at the upper end of the upper frame portion 22, for example. Further, the metal pressing member 151 described above is provided between the engaging claws 22a and 22b.
 図8は、図2に示された二次電池装置の領域VIIIの拡大図である。
 図8に示すように、セル積層方向に対向する一対のセルホルダ20の側板24の係合部24aは、二次電池セル10の電池容器15の幅方向に互いに重なると共に、セル積層方向に互いに間隙fを有する段差状に形成されている。具体的には、側板24は、セル積層方向における中央部が厚肉部24eとされ、セル積層方向における両端部が薄肉部24dとされて、電池容器15の幅方向の段差が形成されている。
FIG. 8 is an enlarged view of region VIII of the secondary battery device shown in FIG.
As shown in FIG. 8, the engaging portions 24a of the side plates 24 of the pair of cell holders 20 facing each other in the cell stacking direction overlap each other in the width direction of the battery container 15 of the secondary battery cell 10 and are spaced from each other in the cell stacking direction. It is formed in a step shape having f. Specifically, the side plate 24 has a central portion in the cell stacking direction as a thick portion 24e and both end portions in the cell stacking direction as thin portions 24d, and a step in the width direction of the battery container 15 is formed. .
 側板24は、電池容器15の幅方向の両側の狭側面15dに沿う板状の部材であり、スペーサ21、フレーム部22及び底板23の延在方向の両端に接続され、その接続部からセル積層方向の両側に延出している。側板24は、積層方向に延出した一方の部分と他方の部分が、それぞれ隣接する電池容器15の狭側面15dを電池容器15の厚さの約半分の幅で覆い、電池容器15の狭側面15dに対向する。
 セル積層方向の前端部に配設されたエンドセルホルダ20Eの側板24は、セル積層方向の後方側に延在し、その先端に薄肉部24dが同様に設けられている。このエンドセルホルダ24dの側板24の後方側に延在する薄肉部24dと、このエンドセルホルダ24dと対向して配置されるセルホルダ20の側板24の前方側に延在する薄肉部24dとが係合して係合部24aを構成する。セル積層方向の後端部に配設されたエンドセルホルダ20Eの側板24は、セル積層方向の前方側に延在し、その先端に薄肉部24dが同様に設けられている。このエンドセルホルダ24dの側板24の前方側に延在する薄肉部24dと、このエンドセルホルダ24dと対向して配置されるセルホルダ20の側板24の後方側に延在する薄肉部24dとが係合して係合部24aを構成する。
The side plate 24 is a plate-like member along the narrow side surfaces 15d on both sides in the width direction of the battery case 15, and is connected to both ends in the extending direction of the spacer 21, the frame portion 22, and the bottom plate 23, and cell stacking from the connection portion. Extends on both sides of the direction. In the side plate 24, one part and the other part extending in the stacking direction cover the narrow side surface 15 d of the adjacent battery container 15 with a width about half the thickness of the battery container 15, and the narrow side surface of the battery container 15. It faces 15d.
The side plate 24 of the end cell holder 20E disposed at the front end in the cell stacking direction extends to the rear side in the cell stacking direction, and a thin portion 24d is similarly provided at the tip. The thin wall portion 24d extending to the rear side of the side plate 24 of the end cell holder 24d and the thin wall portion 24d extending to the front side of the side plate 24 of the cell holder 20 disposed to face the end cell holder 24d are engaged. Thus, the engaging portion 24a is configured. The side plate 24 of the end cell holder 20E disposed at the rear end portion in the cell stacking direction extends to the front side in the cell stacking direction, and a thin portion 24d is similarly provided at the tip thereof. A thin portion 24d extending to the front side of the side plate 24 of the end cell holder 24d and a thin portion 24d extending to the rear side of the side plate 24 of the cell holder 20 disposed to face the end cell holder 24d are engaged. Thus, the engaging portion 24a is configured.
 セル積層方向における側板24の一方の端部に形成された薄肉部24dは、その端部に隣接する他のセルホルダ20の側板24の薄肉部24dとの関係で、電池容器15の幅方向において外側に配置されている。セル積層方向における側板24の他方の端部に形成された薄肉部24dは、その端部に隣接する他のセルホルダ20の側板24の薄肉部24dとの関係で、電池容器15の幅方向において内側に配置されている。このように、セルホルダ20の側板24の係合部24aは、積層方向に隣接する他のセルホルダ20の側板24の係合部24aと係合している。 The thin portion 24d formed at one end of the side plate 24 in the cell stacking direction is outside in the width direction of the battery container 15 in relation to the thin portion 24d of the side plate 24 of another cell holder 20 adjacent to the end portion. Is arranged. The thin portion 24d formed at the other end portion of the side plate 24 in the cell stacking direction is inward in the width direction of the battery container 15 in relation to the thin portion 24d of the side plate 24 of the other cell holder 20 adjacent to the end portion. Is arranged. Thus, the engaging part 24a of the side plate 24 of the cell holder 20 is engaged with the engaging part 24a of the side plate 24 of another cell holder 20 adjacent in the stacking direction.
 側板24の外表面には、図6に示すように突起部24bが設けられている。突起部24bは、電池容器15の高さ方向の上下に設けられ、図1に示すように、拘束部材30のサイドプレート32の開口の内側に係合する。上下の突起部24bの間には、スペーサ21間の複数の開口Sの延在方向の両端に連通する複数の開口部24cが設けられている。 As shown in FIG. 6, a protrusion 24 b is provided on the outer surface of the side plate 24. The protrusions 24b are provided above and below the battery container 15 in the height direction, and engage the inside of the opening of the side plate 32 of the restraining member 30, as shown in FIG. Between the upper and lower protrusions 24b, a plurality of openings 24c communicating with both ends in the extending direction of the plurality of openings S between the spacers 21 are provided.
 底板23も側板24と同様に構成されている。底板23は、セル積層方向の両側に延出された一対の側板24の下端を接続する板状の部材である。底板23は、セル積層方向の両側に延出した一方の部分23bと他方の部分23cが、それぞれ隣接する電池容器15の底面15bを電池容器15の厚さの約半分の幅で覆い、電池容器15の底面15bに対向する。底板23のセル積層方向の端部、すなわち上記一方の部分23bの先端と、上記他方の部分23cの先端はそれぞれ薄肉部23dとされている。底板23のセル積層方向の前方側の薄肉部23dは上側に、後方側の薄肉部23dは下側に位置する。隣接する一対のセルホルダ20の一方のセルホルダ20の前方側の薄肉部23dと、他方のセルホルダ20の後方側の薄肉部23dとは互いに高さ方向に係合する。最前方のセルホルダ20とセルエンドホルダ20Eとの間、および、最後方のセルホルダ20とセルエンドホルダ20Eとの間においても同様に、底部23は薄肉部23dで互いに係合する。薄肉部23dが係合する係合部を符号23aで示す。 The bottom plate 23 is configured similarly to the side plate 24. The bottom plate 23 is a plate-like member that connects the lower ends of a pair of side plates 24 extended to both sides in the cell stacking direction. In the bottom plate 23, one portion 23b and the other portion 23c extending on both sides in the cell stacking direction cover the bottom surface 15b of the adjacent battery container 15 with a width about half the thickness of the battery container 15, respectively. 15 is opposed to the bottom surface 15b. The end of the bottom plate 23 in the cell stacking direction, that is, the tip of the one portion 23b and the tip of the other portion 23c are thin portions 23d. The thin portion 23d on the front side in the cell stacking direction of the bottom plate 23 is located on the upper side, and the thin portion 23d on the rear side is located on the lower side. The thin portion 23d on the front side of one cell holder 20 of the pair of adjacent cell holders 20 and the thin portion 23d on the rear side of the other cell holder 20 are engaged with each other in the height direction. Similarly, between the foremost cell holder 20 and the cell end holder 20E and between the rearmost cell holder 20 and the cell end holder 20E, the bottom 23 is engaged with each other at the thin portion 23d. An engaging portion with which the thin portion 23d is engaged is indicated by reference numeral 23a.
 図9は、図1に示された二次電池装置のIX―IX線の模式的断面図であり、図10は、図9示された模式的断面図の一部を拡大した図であり、図11は、図10の領域XIの拡大図である。
 二次電池装置100の組立時には、まず、交互に積層した二次電池セル10及びセルホルダ20の積層方向の両端にエンドセルホルダ20Eを配置する。さらに、これらの積層方向の両端にエンドプレート31を配置し、サイドプレート32をエンドプレート31にボルト33およびねじ34によって締結する。これにより、拘束部材30は、交互に積層したスペーサ21及び二次電池セル10に積層方向の圧縮力を加えた状態で、各部材を積層方向に拘束する。
9 is a schematic cross-sectional view taken along line IX-IX of the secondary battery device shown in FIG. 1, and FIG. 10 is an enlarged view of a part of the schematic cross-sectional view shown in FIG. FIG. 11 is an enlarged view of a region XI in FIG.
When the secondary battery device 100 is assembled, first, the end cell holders 20 </ b> E are disposed at both ends of the stacked secondary battery cells 10 and the cell holders 20 in the stacking direction. Further, end plates 31 are arranged at both ends in the stacking direction, and the side plate 32 is fastened to the end plate 31 with bolts 33 and screws 34. Thereby, the restraining member 30 restrains each member in the laminating direction in a state where a compression force in the laminating direction is applied to the spacers 21 and the secondary battery cells 10 that are alternately laminated.
 ここで、例えば、二次電池セル間に配置されるスペーサ部材が、二次電池セルの外面のうち最大面積の側面である被圧迫面を部分的に圧迫する構造とすると次のような問題が発生する。二次電池セルおよびスペーサ部材は、寸法公差を有している。そのため、スペーサ部材を介在して複数の二次電池セルを積層すると、スペーサ部材により二次電池セル被圧迫面が圧迫され、各部材の寸法公差によって個々の二次電池セルの被圧迫面への圧迫力が不均一になる虞がある。また、複数のスペーサ部材と二次電池セルとが積層された集合体を拘束部材により拘束する構造では、さらに、拘束部材の寸法公差が重畳されることになり、集合体毎の圧迫力のばらつき生じる。
 これに対し、本実施形態の二次電池装置100は、セル積層方向で一対のセルホルダ20のスペーサ21が、圧縮部26と連結部27とを有している。この圧縮部26は、図11に示すように、電池容器15の厚さTよりも狭い間隔で対向配置されており、電池容器15の端部15eをセル積層方向に圧縮している。また、連結部27は、圧縮部26よりも広い間隔で対向配置されて電池容器15の厚さ方向の両側の広側面15aに対向して配置されている。これにより、例えば、以下の手順によって、二次電池セル10、セルホルダ20または拘束部材30の寸法公差を吸収することができる。
Here, for example, if the spacer member arranged between the secondary battery cells has a structure that partially presses the pressed surface that is the side surface of the maximum area among the outer surfaces of the secondary battery cells, the following problem occurs. appear. The secondary battery cell and the spacer member have a dimensional tolerance. Therefore, when a plurality of secondary battery cells are stacked through the spacer member, the pressed surface of the secondary battery cell is pressed by the spacer member, and due to the dimensional tolerance of each member, the pressed surface of the individual secondary battery cell is pressed. There is a possibility that the compression force becomes uneven. Further, in a structure in which an assembly in which a plurality of spacer members and secondary battery cells are stacked is constrained by the restraining member, the dimensional tolerance of the restraining member is further superimposed, resulting in variations in the compression force of each assembly. Arise.
On the other hand, in the secondary battery device 100 of the present embodiment, the spacer 21 of the pair of cell holders 20 includes the compression part 26 and the connection part 27 in the cell stacking direction. As shown in FIG. 11, the compression portions 26 are arranged to face each other at a distance narrower than the thickness T of the battery container 15, and compress the end 15 e of the battery container 15 in the cell stacking direction. Further, the connecting portions 27 are arranged to face each other at a wider interval than the compression portions 26 and are arranged to face the wide side surfaces 15 a on both sides in the thickness direction of the battery container 15. Thereby, the dimensional tolerance of the secondary battery cell 10, the cell holder 20, or the restraint member 30 can be absorbed by the following procedures, for example.
 まず、複数の二次電池セル10及び複数のセルホルダ20を交互に積層させ、エンドセルホルダ20Eと拘束部材30のエンドプレート31を積層方向の両端に配置する。この状態では、電池容器15はスペーサ21の圧縮部26によって圧縮されておらず、圧縮部26は、電池容器15の広側面15aに当接して電池容器15の厚さTと略等しい間隔で対向配置されている。この状態から、不図示の圧縮装置により、積層方向の両端の拘束部材30のエンドプレート31の間隔を狭めるように圧縮して、エンドプレート31に圧縮力を加える。 First, a plurality of secondary battery cells 10 and a plurality of cell holders 20 are alternately stacked, and the end cell holders 20E and the end plates 31 of the restraining members 30 are disposed at both ends in the stacking direction. In this state, the battery container 15 is not compressed by the compression part 26 of the spacer 21, and the compression part 26 abuts on the wide side surface 15 a of the battery container 15 and is opposed at an interval substantially equal to the thickness T of the battery container 15. Has been placed. From this state, compression is performed on the end plate 31 by a compression device (not shown) so as to reduce the distance between the end plates 31 of the restraining members 30 at both ends in the stacking direction.
 この圧縮力により、スペーサ21の圧縮部26は、電池容器15の端部15eをセル積層方向に圧縮し、図11に示すように、電池容器15の厚さTよりも狭い間隔で対向配置される。同時に、スペーサ21の連結部27が電池容器15の広側面15aに当接し、圧縮部26よりも広い間隔で対向配置される。このとき、例えば、すべての二次電池セル10において、電池容器15の広側面15aにスペーサ21の連結部27が当接するまで圧縮力を加える。 With this compressive force, the compression portion 26 of the spacer 21 compresses the end portion 15e of the battery container 15 in the cell stacking direction, and is opposed to the battery container 15 at an interval narrower than the thickness T of the battery container 15, as shown in FIG. The At the same time, the connecting portion 27 of the spacer 21 comes into contact with the wide side surface 15 a of the battery container 15, and is disposed opposite to the compression portion 26 at a larger interval. At this time, for example, in all the secondary battery cells 10, a compressive force is applied until the connecting portion 27 of the spacer 21 contacts the wide side surface 15 a of the battery container 15.
 すべての二次電池セル10において電池容器15の広側面15aにスペーサ21の連結部27が当接したら、圧縮を停止して加えていた圧縮力を取り除き、電池容器15の広側面15aと連結部27との接触面圧を略ゼロにする。電池容器15が弾性変形または塑性変形せず、若しくは、電池容器15内の捲回体40に影響を与えない程度の低い面圧で、連結部27を電池容器15の広側面15aに密着または当接させた状態を維持するようにしてもよい。そして、拘束部材30のサイドプレート32をボルト33およびねじ34によってエンドプレート31に締結することで、本実施形態の二次電池装置100が構成される。 When the connecting portion 27 of the spacer 21 is brought into contact with the wide side surface 15a of the battery container 15 in all the secondary battery cells 10, the compression force is stopped by removing the compression, and the wide side surface 15a of the battery container 15 and the connecting portion are removed. The contact surface pressure with 27 is made substantially zero. The connecting portion 27 is brought into close contact with or against the wide side surface 15a of the battery container 15 with a low surface pressure that does not cause the battery container 15 to be elastically deformed or plastically deformed, or to affect the wound body 40 in the battery container 15. You may make it maintain the state made to contact. And the secondary battery apparatus 100 of this embodiment is comprised by fastening the side plate 32 of the restraint member 30 to the end plate 31 with the volt | bolt 33 and the screw 34. FIG.
 なお、圧縮する装置の押圧部間の距離を、組電池の最前端および最後端に配置されるエンドプレート31間の距離が適切となるように設定し、この設定値まで組電池を圧縮するようにすると、圧縮部26により電池容器15の端部15eを圧縮する作業を効率的に行うことができる。 The distance between the pressing parts of the device to be compressed is set so that the distance between the end plates 31 arranged at the foremost end and the rearmost end of the assembled battery is appropriate, and the assembled battery is compressed to this set value. If it does, the operation | work which compresses the edge part 15e of the battery container 15 by the compression part 26 can be performed efficiently.
 スペーサ21の圧縮部26によって電池容器15を圧縮して、圧縮部26を電池容器15の厚さTよりも狭い間隔で対向配置させるときに、スペーサ21の連結部27と二次電池セル10の電池容器15の広側面15aは、必ずしも密着または当接させる必要はない。例えば、すべてのスペーサ21の連結部27が、すべての二次電池セル10の電池容器15の広側面15aとの間に均一な隙間を開けて対向配置されるようにしてもよい。 When the battery container 15 is compressed by the compression part 26 of the spacer 21 and the compression part 26 is disposed opposite to the battery container 15 at a distance narrower than the thickness T of the battery container 15, the connection part 27 of the spacer 21 and the secondary battery cell 10 The wide side surface 15a of the battery case 15 does not necessarily need to be in close contact with or contacted. For example, the connecting portions 27 of all the spacers 21 may be disposed to face each other with a uniform gap between the wide side surfaces 15a of the battery containers 15 of all the secondary battery cells 10.
 このように、スペーサ21の圧縮部26によって電池容器15を圧縮することで、二次電池セル10、セルホルダ20、エンドセルホルダ20E、拘束部材30の寸法公差を吸収することができる。また、すべてのスペーサ21の連結部27を、すべての二次電池セル10の電池容器15の広側面15aに均一な面圧で当接させ、または、均一な隙間を開けた状態で対向して配置することができ、捲回体40に過度な圧迫力が加わることを防止できる。 Thus, by compressing the battery container 15 by the compression part 26 of the spacer 21, the dimensional tolerance of the secondary battery cell 10, the cell holder 20, the end cell holder 20E, and the restraining member 30 can be absorbed. Further, the connecting portions 27 of all the spacers 21 are brought into contact with the wide side surface 15a of the battery containers 15 of all the secondary battery cells 10 with a uniform surface pressure, or faced with a uniform gap therebetween. It can arrange | position and can prevent that the excessive compression force is added to the winding body 40. FIG.
 したがって、本実施形態の二次電池装置100によれば、二次電池セル10及びその周辺の部材の寸法公差によらず、例えば、個々の二次電池セル10の膨張時に、連結部27によって電池容器15の広側面15aに均一な押圧力を加えることができる。また、電池容器15の端部15eを圧縮部26によって強固に保持して、二次電池セル10の振動や位置ずれなどを確実に防止することができる。 Therefore, according to the secondary battery device 100 of the present embodiment, regardless of the dimensional tolerances of the secondary battery cell 10 and its peripheral members, for example, when the individual secondary battery cell 10 expands, the battery is connected by the connecting portion 27. A uniform pressing force can be applied to the wide side surface 15 a of the container 15. In addition, the end 15e of the battery container 15 can be firmly held by the compression unit 26, and the vibration and displacement of the secondary battery cell 10 can be reliably prevented.
 本実施形態の二次電池装置100によれば次のような作用効果も奏することができる。(1)本実施形態の二次電池装置100では、スペーサ21の圧縮部26は、捲回体40の中間部46よりも捲回軸D方向の外側で電池容器15の端部15eを圧縮している。これにより、二次電池装置100の組立時に、正負の電極41、42の正・負極合剤層41b、42bが積層された捲回体40の中間部46に過度の圧力が加わることが防止され、二次電池セル10の性能低下を防止することができる。 According to the secondary battery device 100 of the present embodiment, the following operational effects can also be achieved. (1) In the secondary battery device 100 of the present embodiment, the compression portion 26 of the spacer 21 compresses the end portion 15 e of the battery container 15 on the outer side in the winding axis D direction than the intermediate portion 46 of the winding body 40. ing. This prevents excessive pressure from being applied to the intermediate portion 46 of the wound body 40 in which the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are stacked when the secondary battery device 100 is assembled. The performance deterioration of the secondary battery cell 10 can be prevented.
 一方、二次電池セル10の充放電に伴う電池容器15の膨張時には、正負の電極41、42の正・負極合剤層41b、42bが積層された捲回体40の中間部46に対向する位置に配置された連結部27が、電池容器15の広側面15aに当接して、捲回体40の膨張を抑制することができる。これにより、捲回体40のよれやしわを抑制し、二次電池セル10の寿命を延長することができる。 On the other hand, when the battery container 15 expands due to charging / discharging of the secondary battery cell 10, it faces the intermediate portion 46 of the wound body 40 in which the positive and negative electrode mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 are laminated. The connecting portion 27 disposed at the position can contact the wide side surface 15 a of the battery container 15 and suppress the expansion of the wound body 40. Thereby, the twist and wrinkle of the winding body 40 can be suppressed, and the lifetime of the secondary battery cell 10 can be extended.
(2)二次電池セル10は、電池容器15の広側面15aと電極41、42の箔露出部41c、42cが積層された捲回体40の捲回軸D方向の両端部45との間に空間Gを有している。そのため、圧縮部26が、捲回体40の中間部46よりも捲回軸D方向の外側で電池容器15の端部15eを圧縮するときに、電池容器15を内部の空間Gに押し込むように変形させることができる。したがって、電池容器15内部の捲回体40に影響を与えることなく、電池容器15を変形させることができる。 (2) The secondary battery cell 10 is between the wide side surface 15a of the battery case 15 and both end portions 45 in the winding axis D direction of the wound body 40 in which the foil exposed portions 41c and 42c of the electrodes 41 and 42 are laminated. Has a space G. Therefore, when the compression part 26 compresses the end part 15e of the battery container 15 on the outer side in the winding axis D direction than the intermediate part 46 of the wound body 40, the battery container 15 is pushed into the internal space G. Can be deformed. Therefore, the battery container 15 can be deformed without affecting the wound body 40 inside the battery container 15.
(3)圧縮部26が、電池容器15を厚さ方向に圧縮して塑性変形させる場合には、積層させた二次電池セル10、セルホルダ20、エンドセルホルダ20Eを積層方向に圧縮した後、圧縮力を取り除いても、圧縮後の状態が維持される。したがって、拘束部材30による拘束が容易になり、二次電池装置100の製造を容易にして生産性を向上させることができる。 (3) When the compression unit 26 compresses and plastically deforms the battery container 15 in the thickness direction, the compressed secondary battery cell 10, the cell holder 20, and the end cell holder 20E are compressed in the stacking direction and then compressed. Even after the force is removed, the compressed state is maintained. Therefore, the restraint by the restraining member 30 is facilitated, the secondary battery device 100 can be easily manufactured, and the productivity can be improved.
(4)圧縮部26は、電池容器15の両端部15eの範囲内において狭側面15dまで延在している。そのため、圧縮部26は、電池容器15の広側面15aと狭側面15dとの間の角部15cの近傍を電池容器15の厚さ方向に圧縮することになる。この電池容器15の角部15c及びその近傍の部分は、例えば、電池缶14を深絞り加工によって作製することで、他の部分と比べて設計寸法に忠実に形成しやすい部分である。したがって、電池容器15の寸法公差を吸収するための電池容器15の圧縮量を最小限に留めることができる。 (4) The compression portion 26 extends to the narrow side surface 15d within the range of the both end portions 15e of the battery case 15. Therefore, the compression unit 26 compresses the vicinity of the corner 15c between the wide side surface 15a and the narrow side surface 15d of the battery case 15 in the thickness direction of the battery case 15. The corner portion 15c of the battery case 15 and a portion in the vicinity of the corner portion 15b are, for example, portions that are easy to be formed faithfully to the design dimensions as compared with other portions by manufacturing the battery can 14 by deep drawing. Therefore, the amount of compression of the battery container 15 for absorbing the dimensional tolerance of the battery container 15 can be minimized.
(5)スペーサ21は、捲回軸D方向に延在する複数の開口Sを備えている。これにより、セルホルダ20の一方の側板24に設けられた開口部24c(図6参照)から開口Sに冷媒を導入し、電池容器15の広側面15aを冷却することができる。 (5) The spacer 21 includes a plurality of openings S extending in the winding axis D direction. Thereby, a refrigerant | coolant can be introduce | transduced into the opening S from the opening part 24c (refer FIG. 6) provided in the one side plate 24 of the cell holder 20, and the wide side surface 15a of the battery container 15 can be cooled.
(6)スペーサ21は、開口Sによって二次電池セル10の高さ方向において複数に分割され、高さ方向に間隔を開けて配置されている。これにより、二次電池セル10の高さ方向における個々のスペーサ21の幅を調節すれば、圧縮部26の面積を調節することができる。したがって、比較的強度が高い電池容器15の角部15cを圧縮する場合でも、圧縮部26の面積を減少させ、二次電池セル10を圧縮するときに必要な力を低減することができる。 (6) The spacer 21 is divided into a plurality in the height direction of the secondary battery cell 10 by the opening S, and is arranged at intervals in the height direction. Thereby, if the width | variety of each spacer 21 in the height direction of the secondary battery cell 10 is adjusted, the area of the compression part 26 can be adjusted. Therefore, even when the corner portion 15c of the battery container 15 having relatively high strength is compressed, the area of the compression portion 26 can be reduced, and the force required when the secondary battery cell 10 is compressed can be reduced.
(7)スペーサ21の両端部に設けられた圧縮部26の厚さは、捲回軸D方向でスペーサの20の中間部に設けられた連結部27のセル積層方向の厚さよりも厚い。これにより、一対のセルホルダ20を積層方向に対向させて配置したときに、圧縮部26を電池容器15の厚さTよりも狭い間隔で対向配置すると共に、連結部27を圧縮部26よりも広い間隔で対向配置することができる。 (7) The thickness of the compression part 26 provided in the both ends of the spacer 21 is thicker than the thickness of the connecting part 27 provided in the intermediate part of the spacer 20 in the winding axis D direction in the cell stacking direction. As a result, when the pair of cell holders 20 are arranged to face each other in the stacking direction, the compression parts 26 are arranged to face each other at an interval narrower than the thickness T of the battery container 15, and the connecting parts 27 are wider than the compression parts 26. They can be placed opposite each other at intervals.
(8)連結部27は、電池容器15の広側面15aに対向する当接面21bを有し、圧縮部26は、電池容器15の広側面15aを押圧する押圧面21aを有している。そして、押圧面21aは、当接面21bに向かう下り勾配の傾斜面21cを有している。これにより、電池容器15に局所的な圧力が作用することを抑制し、また、捲回体40の捲回軸D方向の両端部45の形状に合わせて電池容器15を変形させることができる。 (8) The connecting portion 27 has a contact surface 21 b that faces the wide side surface 15 a of the battery case 15, and the compression portion 26 has a pressing surface 21 a that presses the wide side surface 15 a of the battery case 15. The pressing surface 21a has an inclined surface 21c having a downward slope toward the contact surface 21b. Thereby, it can suppress that a local pressure acts on the battery container 15, and can deform | transform the battery container 15 according to the shape of the both ends 45 of the winding body 40 in the winding axis D direction.
(9)セルホルダ20は、スペーサ21と、電池容器15の狭側面15dに沿う側板24と、側板24のセル積層方向における端部に設けられた係合部24aとを有している。そして、積層方向に対向する一対のセルホルダ20の係合部24aは、電池容器15の幅方向に互いに重なると共に積層方向に互いに間隙fを有する段差状に形成されている。
 これにより、スペーサ21の圧縮部26によって電池容器15を圧縮するときに、積層方向に対向する一対のセルホルダ20の側板24同士が積層方向に突き当たることが防止され、圧縮を妨げるのを防止することができる。また、積層方向に対向する一対のセルホルダ20の係合部24aが係合することで、セルホルダ20同士を一体化させ、組立時に外れ難くすることができ、密閉性を向上させることができる。
 このように、本実施形態の二次電池装置100によれば、二次電池セル10及びその周辺の部材の寸法公差によらず、個々の二次電池セル10に均一な押圧力を加えることが可能となる。
(9) The cell holder 20 includes a spacer 21, a side plate 24 along the narrow side surface 15 d of the battery container 15, and an engagement portion 24 a provided at an end of the side plate 24 in the cell stacking direction. And the engaging part 24a of a pair of cell holder 20 which opposes a lamination direction is formed in the level | step difference which mutually overlaps in the width direction of the battery container 15, and has the space | gap f in the lamination direction.
Thus, when the battery container 15 is compressed by the compression portion 26 of the spacer 21, the side plates 24 of the pair of cell holders 20 facing each other in the stacking direction are prevented from abutting in the stacking direction, thereby preventing the compression from being disturbed. Can do. Further, by engaging the engaging portions 24a of the pair of cell holders 20 facing each other in the stacking direction, the cell holders 20 can be integrated with each other and can be made difficult to come off during assembly, and the sealing performance can be improved.
Thus, according to the secondary battery device 100 of the present embodiment, a uniform pressing force can be applied to each secondary battery cell 10 regardless of the dimensional tolerances of the secondary battery cell 10 and its peripheral members. It becomes possible.
 図12は、図1に示された二次電池装置の一部を拡大した図であり、図12(A)は、セル積層方向の外力が作用しない通常の使用状態の正面図、図12(B)は、図12(A)のXII-XII線の模式的断面図である。図13は、図12に示された二次電池装置に、セル積層方向の外力が作用した状態を示し、図13(A)は正面図、図13(B)は、図13(A)のXIII-XIII線の模式的断面図である。図12(B)および図13(B)では、二次電池セル10の内部構造及びセルホルダ20のスリット部分等の細部構造は図示を省略している。 12 is an enlarged view of a part of the secondary battery device shown in FIG. 1. FIG. 12 (A) is a front view of a normal use state in which an external force in the cell stacking direction does not act, FIG. B) is a schematic cross-sectional view taken along line XII B -XII B of FIG. 13 shows a state where an external force in the cell stacking direction is applied to the secondary battery device shown in FIG. 12, FIG. 13 (A) is a front view, and FIG. 13 (B) is a diagram of FIG. 13 (A). 3 is a schematic cross-sectional view taken along line XIII B -XIII B. FIG. In FIG. 12B and FIG. 13B, the detailed structure such as the internal structure of the secondary battery cell 10 and the slit portion of the cell holder 20 is omitted.
 図12(A)、(B)に示すように、互いに隣り合う二次電池セル10の間には、筐体であるセルホルダ20が介在し、二次電池セル10を保持している。セルホルダ20には、押圧部材151が、例えばインサート成型によって設けられている。押圧部材151は、二次電池セル10の幅方向(図12における上下方向)の中央部に、各二次電池セル10のガス排出弁50と対向する位置に配置されている。押圧部材151は、直方体形状を有しており、押圧部材151の幅方向の長さは、ガス排出弁50より少し長い程度であり、電池蓋13の幅方向の長さよりも短い。また、押圧部材151のセル積層方向の長さは、電池蓋13間の距離よりも小さく、押圧部材151と電池蓋13との間には隙間が設けられている。押圧部材151の厚さ、すなわち図12(B)における上下方向の長さは、電池蓋13の厚さよりも大きい。 As shown in FIGS. 12A and 12B, a cell holder 20 as a housing is interposed between the secondary battery cells 10 adjacent to each other to hold the secondary battery cell 10. The cell holder 20 is provided with a pressing member 151 by insert molding, for example. The pressing member 151 is disposed at a position facing the gas discharge valve 50 of each secondary battery cell 10 at the center in the width direction (vertical direction in FIG. 12) of the secondary battery cell 10. The pressing member 151 has a rectangular parallelepiped shape, and the length in the width direction of the pressing member 151 is slightly longer than the gas discharge valve 50 and shorter than the length in the width direction of the battery lid 13. The length of the pressing member 151 in the cell stacking direction is smaller than the distance between the battery lids 13, and a gap is provided between the pressing member 151 and the battery lid 13. The thickness of the pressing member 151, that is, the vertical length in FIG. 12B is larger than the thickness of the battery lid 13.
 セル積層方向の圧縮力が二次電池装置100に作用した状態では、図13(A)、(B)に示されているように、セルホルダ20のスペーサ21およびフレーム部22が変形して、セル積層方向における距離が圧縮され、隣り合う二次電池セル10は接近する。つまり、押圧部材151と、押圧部材151に隣り合う二次電池セル10とが当接する。更に、圧縮が進むと、押圧部材151と対向する二次電池セル10の電池蓋13が、セル積層方向の両隣の押圧部材151により挟圧される。
 押圧部材151は、電池蓋13の一面の局所領域で外力を伝達するような形状とされている。押圧部材151の厚さは電池蓋13の厚さよりも厚い。したがって、電池蓋12に外力が作用して変形しても、押圧部材151は電池蓋13の厚さ方向の全領域で継続して外力を伝達することができる。また、押圧部材151は電池蓋13の一部の領域に接するので、電池蓋13には応力が集中し、電池蓋13が変形してガス排出弁50が開裂し易い。ガス排出弁50が開裂することにより、電池容器15の内部の圧力が解放される。なお、押圧部材151の挟圧によりガス排出弁50を確実に開裂させるため、押圧部材151は、電池蓋13が挟圧される方向の剛性が電池蓋13よりも大きい。
In a state where the compressive force in the cell stacking direction is applied to the secondary battery device 100, as shown in FIGS. 13A and 13B, the spacer 21 and the frame portion 22 of the cell holder 20 are deformed, and the cell The distance in the stacking direction is compressed, and adjacent secondary battery cells 10 approach each other. That is, the pressing member 151 contacts the secondary battery cell 10 adjacent to the pressing member 151. When the compression further proceeds, the battery cover 13 of the secondary battery cell 10 facing the pressing member 151 is pinched by the pressing members 151 on both sides in the cell stacking direction.
The pressing member 151 is configured to transmit an external force in a local region on one surface of the battery lid 13. The thickness of the pressing member 151 is thicker than the thickness of the battery lid 13. Therefore, even if an external force acts on the battery lid 12 and deforms, the pressing member 151 can continuously transmit the external force in the entire region in the thickness direction of the battery lid 13. Further, since the pressing member 151 is in contact with a part of the battery lid 13, stress concentrates on the battery lid 13, and the battery lid 13 is deformed and the gas discharge valve 50 is easily cleaved. When the gas discharge valve 50 is cleaved, the pressure inside the battery container 15 is released. Note that the pressure member 151 has a higher rigidity in the direction in which the battery lid 13 is clamped than the battery lid 13 in order to ensure that the gas discharge valve 50 is cleaved by the clamping pressure of the pressing member 151.
 外力により、すなわち、機械的応力によるガス排出弁50の開裂は、発電素子の異常発熱などに起因して電池容器15の内部の圧力が所定値に到達する以前に開始するように設計する。このため、二次電池セル10が外力より圧縮されて変形が生じた場合の電池缶内部を確実に開放することができる。また、密閉された二次電池セル10を開放することにより、電解液の蒸発を促進させ、結果として電池機能の低下を引き起こすことができる。
 なお、上記では、セルホルダ20に収容された二次電池セル10が開裂する作用について例示したが、セルホルダ20とエンドセルホルダ20Eに収容された二次電池セル10におけるガス排出弁50も、同様に開裂する。
The gas discharge valve 50 is cleaved by an external force, i.e., mechanical stress, so that it starts before the pressure inside the battery container 15 reaches a predetermined value due to abnormal heat generation of the power generation element. For this reason, the inside of the battery can can be reliably opened when the secondary battery cell 10 is compressed by an external force and deformed. Moreover, by opening the sealed secondary battery cell 10, evaporation of the electrolytic solution can be promoted, and as a result, the battery function can be lowered.
In addition, in the above, although the effect | action which the secondary battery cell 10 accommodated in the cell holder 20 cleaves was illustrated, the gas exhaust valve 50 in the secondary battery cell 10 accommodated in the cell holder 20 and the end cell holder 20E is also cleaved similarly. To do.
 本発明の第1の実施形態によれば下記の効果を奏する。
(1)二次電池装置100は、内部に捲回体40が収容された電池容器15の電池蓋13にガス排出弁50が設けられ、広側面15aに対向して積層された複数個の二次電池セル10と、各二次電池セル10のガス排出弁50が設けられた電池蓋13をセル積層方向に挟圧可能に設けられた少なくとも一対の押圧部材151とを備えている。このため、セル積層方向の外力が二次電池装置100に作用すると、ガス排出弁50が押圧部材151により挟圧され、ガス排出弁50が機械的応力により開裂する。従って、電池容器15の内部の圧力が所定値に到達する以前に、内部の圧力が解放され、安全性を確保することができる。
According to the first embodiment of the present invention, the following effects are obtained.
(1) In the secondary battery device 100, a plurality of two secondary batteries 100 are provided in which a gas discharge valve 50 is provided in the battery lid 13 of the battery container 15 in which the wound body 40 is accommodated, and are stacked facing the wide side surface 15a. The secondary battery cell 10 includes at least a pair of pressing members 151 provided so that the battery lid 13 provided with the gas discharge valve 50 of each secondary battery cell 10 can be clamped in the cell stacking direction. Therefore, when an external force in the cell stacking direction acts on the secondary battery device 100, the gas discharge valve 50 is clamped by the pressing member 151, and the gas discharge valve 50 is cleaved by mechanical stress. Therefore, the internal pressure is released before the internal pressure of the battery container 15 reaches a predetermined value, and safety can be ensured.
(2)複数の蓄電セル10の各電池蓋13は、互いに所定の間隔をあけて配列されている。押圧部材151は、外力が作用しないときは電池蓋13と非接触、外力が作用したときは電池蓋13と接触するように、複数の蓄電セルの各電池蓋13の間に配設され、外力が作用したときは電池蓋13の一部の領域を挟圧する。
 このため、外力が作用しない通常の使用時には、ガス排出弁50に応力が作用しない。
(2) The battery lids 13 of the plurality of storage cells 10 are arranged at a predetermined interval from each other. The pressing member 151 is disposed between the battery lids 13 of the plurality of storage cells so that the pressing member 151 is not in contact with the battery lid 13 when no external force is applied, and is in contact with the battery lid 13 when an external force is applied. When is applied, a part of the battery lid 13 is clamped.
For this reason, no stress acts on the gas discharge valve 50 during normal use where no external force acts.
(3)積層された複数の蓄電セル10の間には介在物としてセルホルダ20が配設され、蓄電セル20の積層方向の一端側および他端側にはエンドセルホルダ20Eが配設され、押圧部材151はセルホルダ20およびエンドセルホルダ20Eにそれぞれ設けられている。
 このため、電池蓋13の変形、これに伴うガス排出弁50の開裂が確実に行われる。
(3) A cell holder 20 is disposed as an inclusion between the plurality of stacked storage cells 10, and an end cell holder 20E is disposed on one end side and the other end side of the storage cell 20 in the stacking direction. 151 is provided in each of the cell holder 20 and the end cell holder 20E.
For this reason, the deformation | transformation of the battery cover 13 and the cleavage of the gas exhaust valve 50 accompanying this are performed reliably.
(4)押圧部材151は、挟圧される方向の剛性がガス排出弁50の剛性よりも大きい。剛性の高い材料を使用して押圧部材151を形成したり、あるいは、材料自体の硬さは電池蓋やガス排出弁の材料の硬さに比べて低い材料を使用する場合は、押圧部材151の上記圧縮方向の剛性が高くなるような構造を採用すれば良い。
 このため、押圧部材151の挟圧によりガス排出弁50の開裂の確実性を高いものとすることができる。
(4) The pressing member 151 has a rigidity in a direction in which the pressing member 151 is clamped larger than that of the gas discharge valve 50. When the pressing member 151 is formed using a material having high rigidity, or when the material itself has a lower hardness than the material of the battery lid or the gas discharge valve, the pressing member 151 A structure that increases the rigidity in the compression direction may be employed.
For this reason, the certainty of tearing of the gas discharge valve 50 can be made high by the clamping pressure of the pressing member 151.
(5)押圧部材151は、電池蓋13の一面の局所領域で外力を伝達するような形状とされ、押圧部材151の厚さは電池蓋13の厚さよりも厚く、外力が作用したときに電池蓋13の厚さ方向の全領域が押圧部材151に接触する。
 このため、押圧部材151は、電池容器15が変形した場合でも、確実に電池蓋13の側部に当接し、電池蓋13を挟圧することができる。
(5) The pressing member 151 is shaped to transmit an external force in a local region on one surface of the battery lid 13, and the thickness of the pressing member 151 is thicker than the thickness of the battery lid 13, and when the external force is applied, the battery The entire region in the thickness direction of the lid 13 is in contact with the pressing member 151.
For this reason, even when the battery container 15 is deformed, the pressing member 151 can reliably contact the side portion of the battery lid 13 and clamp the battery lid 13.
-第2の実施形態-
 図14は、本発明の第2の実施形態を示し、図14(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図14(B)は、図14(A)のXIV-XIV線の模式的断面図、図14(C)は表面が樹脂で覆われた押圧部材を説明する拡大図である。図15は、図14に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、図15(A)は正面図、図15(B)は、図15(A)のXV-XV線の模式的断面図である。
-Second Embodiment-
FIG. 14 shows a second embodiment of the present invention, FIG. 14 (A) is a front view of a normal use state where no external force is applied to the battery can, and FIG. 14 (B) is a diagram of FIG. 14 (A). FIG. 14C is a schematic sectional view taken along line XIV B -XIV B , and FIG. 14C is an enlarged view for explaining the pressing member whose surface is covered with resin. 15 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 14, FIG. 15 (A) is a front view, and FIG. 15 (B) is FIG. FIG. 6 is a schematic cross-sectional view taken along line XV B -XV B of A).
 第2の実施形態は、押圧部材151と電池蓋13との間に樹脂61が設けられた構造を有する。樹脂61は、セルホルダ20またはエンドセルホルダ20Eに一体成型により形成することができる。つまり、セルホルダ20またはエンドセルホルダ20Eは、押圧部材151をインサート品として、樹脂61が形成されるように成型により作製することができる。あるいは、樹脂61は、押圧部材151に接着などにより取り付けてもよい。 The second embodiment has a structure in which a resin 61 is provided between the pressing member 151 and the battery lid 13. The resin 61 can be formed by integral molding with the cell holder 20 or the end cell holder 20E. That is, the cell holder 20 or the end cell holder 20E can be produced by molding so that the resin 61 is formed using the pressing member 151 as an insert. Alternatively, the resin 61 may be attached to the pressing member 151 by adhesion or the like.
 第2の実施形態において、樹脂61は、隣り合う二次電池セル10により圧縮されるだけであり、押圧部材151により電池蓋13を挟圧してガス排出弁50を開裂する作用は第1の実施形態と同様である。従って、樹脂61の剛性は、電池蓋13より大きくする必要はない。樹脂61は、電池缶に外力が作用しない通常の使用時にガス排出弁50に応力が作用しないよう、電池蓋13との間に隙間が存するか、または軽く接触する程度に設けることが望ましい。 In the second embodiment, the resin 61 is only compressed by the adjacent secondary battery cells 10, and the action of clamping the battery lid 13 by the pressing member 151 and cleaving the gas discharge valve 50 is the first implementation. It is the same as the form. Therefore, the rigidity of the resin 61 does not need to be greater than that of the battery lid 13. It is desirable that the resin 61 be provided to such an extent that there is a gap between the resin lid 13 and the resin lid 13 so that no stress acts on the gas discharge valve 50 during normal use when no external force acts on the battery can.
 第2の実施形態における他の構造は第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 第2の実施形態においても、第1の実施形態の効果(1)、(3)~(5)を奏する。
 なお、第2の実施形態では、押圧部材151と電池蓋13との間に樹脂61が設けられおり、これによりセルホルダ20またはエンドセルホルダ20Eの上下方向の長さが増大し、これに伴い、二次電池セル10に接する面積が増大するので、二次電池セル10の保持力を大きくすることができる。
Other structures in the second embodiment are the same as those in the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.
Also in the second embodiment, the effects (1) and (3) to (5) of the first embodiment are achieved.
In the second embodiment, the resin 61 is provided between the pressing member 151 and the battery lid 13, thereby increasing the vertical length of the cell holder 20 or the end cell holder 20 </ b> E. Since the area in contact with the secondary battery cell 10 increases, the holding power of the secondary battery cell 10 can be increased.
-第3の実施形態-
 図16は、本発明の第3の実施形態を示し、図16(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図16(B)は、図16(A)のXVI-XVI線の模式的断面図である。図17は、図16に示された二次電池装置に二次電池セルの積層方向の外力が作用した状態を示し、図17(A)は正面図、図17(B)は、図17(A)のXVII-XVII線の模式的断面図である。
 第3の実施形態は、押圧部材152が、セルホルダ20またはエンドセルホルダ20Eとは分離した独立した部材として配置されている構造を有する。
-Third embodiment-
FIG. 16 shows a third embodiment of the present invention, FIG. 16 (A) is a front view of a normal use state where no external force is applied to the battery can, and FIG. 16 (B) is a view of FIG. 16 (A). FIG. 6 is a schematic sectional view taken along line XVI B -XVI B. 17 shows a state in which an external force in the stacking direction of the secondary battery cells is applied to the secondary battery device shown in FIG. 16, FIG. 17 (A) is a front view, and FIG. 17 (B) is FIG. FIG. 6 is a schematic cross-sectional view taken along line XVII B -XVII B of A).
The third embodiment has a structure in which the pressing member 152 is arranged as an independent member separated from the cell holder 20 or the end cell holder 20E.
 押圧部材152は、押圧部152aと、押圧部152aの両端に形成された支持部152bを有する。押圧部152aは、二次電池セル10の幅方向(図16(A)における上下方向)の中央部に、各二次電池セル10のガス排出弁50と対向する位置に配置されている。押圧部152aは、直方体形状を有しており、押圧部152aの幅方向の長さは、ガス排出弁50より少し長い程度であり、電池蓋13の幅方向の長さよりも短い。また、押圧部152aのセル積層方向の長さは、隣接する電池蓋13間の距離よりも短かい。すなわち、押圧部152aと電池蓋13とに間には隙間が設けられている。押圧部152aの厚さ(図16(B)における上下方向の長さ)は、電池蓋13の厚さよりも厚い。 The pressing member 152 includes a pressing portion 152a and support portions 152b formed at both ends of the pressing portion 152a. The pressing part 152a is arranged at a position facing the gas discharge valve 50 of each secondary battery cell 10 in the center of the secondary battery cell 10 in the width direction (vertical direction in FIG. 16A). The pressing part 152a has a rectangular parallelepiped shape, and the length in the width direction of the pressing part 152a is slightly longer than that of the gas discharge valve 50 and is shorter than the length of the battery cover 13 in the width direction. Further, the length of the pressing portion 152a in the cell stacking direction is shorter than the distance between the adjacent battery lids 13. That is, a gap is provided between the pressing portion 152 a and the battery lid 13. The thickness of the pressing portion 152 a (the length in the vertical direction in FIG. 16B) is thicker than the thickness of the battery lid 13.
 支持部152bは、押圧部152aの幅方向の両端部に設けられている。支持部152bのセル積層方向の長さは、押圧部152aよりも長い。換言すれば、支持部152bのセル積層方向の長さは、二次電池セル10間の距離よりも大きい。押圧部材152は、支持部152bの下面を隣り合う二次電池セル10の電池蓋13上に配置させて配設されている。つまり、押圧部材152の押圧部152aは二次電池セル10間に挿入される挿入部であり、支持部152bは、挿入部の上方に配置されている。支持部152bを電池蓋13に接着などにより固定してもよい。 The support portions 152b are provided at both ends of the pressing portion 152a in the width direction. The length of the support portion 152b in the cell stacking direction is longer than that of the pressing portion 152a. In other words, the length of the support portion 152 b in the cell stacking direction is larger than the distance between the secondary battery cells 10. The pressing member 152 is disposed with the lower surface of the support portion 152b disposed on the battery lid 13 of the adjacent secondary battery cell 10. That is, the pressing portion 152a of the pressing member 152 is an insertion portion that is inserted between the secondary battery cells 10, and the support portion 152b is disposed above the insertion portion. The support 152b may be fixed to the battery lid 13 by adhesion or the like.
 第3の実施形態における他の構造は第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 第3の実施形態においても、第1の実施形態と同様、図2に示すX方向の外力が二次電池装置100に作用すると、各二次電池セル10の電池蓋13は、前後に配置された押圧部材152の押圧部152aに挟圧され、ガス排出弁50が開裂する。
 第3の実施形態において、押圧部材152が電池蓋13に接着された構造であってもよい。このような構造を採用すると、外力が二次電池セル10に作用すると押圧部材152が電池蓋13から剥離することもあるが、その場合でも、各二次電池セル10間に介在して電池蓋13を挟圧する。
 従って、第3の実施形態においても、第1の実施形態の効果(1)、(2)、(4)、(5)を奏する。
Other structures in the third embodiment are the same as those in the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.
Also in the third embodiment, as in the first embodiment, when the external force in the X direction shown in FIG. 2 acts on the secondary battery device 100, the battery lids 13 of the respective secondary battery cells 10 are arranged in the front-rear direction. The gas discharge valve 50 is cleaved by being pressed by the pressing portion 152a of the pressing member 152.
In the third embodiment, the pressing member 152 may be bonded to the battery lid 13. When such a structure is adopted, the pressing member 152 may be peeled off from the battery lid 13 when an external force is applied to the secondary battery cell 10, but even in that case, the battery lid is interposed between the secondary battery cells 10. 13 is clamped.
Therefore, also in the third embodiment, the effects (1), (2), (4), and (5) of the first embodiment are achieved.
 なお、第3の実施形態では、押圧部材152をセルホルダ20またはエンドセルホルダ20Eと一体成型する構造ではないので部品点数は増大する。しかし、二次電池セル10のサイズにより押圧部材151またはセルホルダ20、エンドセルホルダ20Eのセル積層方向の長さが異なると、押圧部材151が一体成形されたセルホルダ20、エンドセルホルダ20Eの種類が増大し、サービス性に課題が生じる。第3の実施形態では、このような課題を解消することが可能であり、かつ、押圧部材152は、押圧部152aを二次電池セル10間に挿入するだけの簡単な作業で取りつけることができるため、自由度が大きいという利点を有する。 In the third embodiment, since the pressing member 152 is not integrally formed with the cell holder 20 or the end cell holder 20E, the number of parts increases. However, if the length of the pressing member 151 or the cell holder 20 and the end cell holder 20E in the cell stacking direction differs depending on the size of the secondary battery cell 10, the types of the cell holder 20 and the end cell holder 20E integrally formed with the pressing member 151 increase. , Problems arise in serviceability. In the third embodiment, such a problem can be solved, and the pressing member 152 can be attached by a simple operation of simply inserting the pressing portion 152a between the secondary battery cells 10. Therefore, there is an advantage that the degree of freedom is large.
-第4の実施形態-
 図18は、本発明の第4の実施形態を示し、図18(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図18(B)は、図18(A)のXVIII-XVIIII線の模式的断面図である。図19は、図18に示された二次電池装置にセル積層方向の外力が作用した状態を示し、図19(A)は正面図、図19(B)は、図19(A)のXIX-XIX線の模式的断面図である。
 第4の実施形態の二次電池装置100は、排気ダクト70を備えている。排気ダクト70は、二次電池セル10のガス排出弁が開弁して排出される管内部のガスを排出するための部材である。
-Fourth Embodiment-
FIG. 18 shows a fourth embodiment of the present invention, FIG. 18 (A) is a front view of a normal use state where no external force is applied to the battery can, and FIG. 18 (B) is a view of FIG. 18 (A). FIG. 7 is a schematic cross-sectional view taken along line XVIII B -XVIIII B. 19 shows a state where an external force in the cell stacking direction is applied to the secondary battery device shown in FIG. 18, FIG. 19A is a front view, and FIG. 19B is a XIX in FIG. 19A. FIG. 6 is a schematic cross-sectional view taken along line B- XIX B.
The secondary battery device 100 according to the fourth embodiment includes an exhaust duct 70. The exhaust duct 70 is a member for discharging the gas inside the pipe that is discharged when the gas discharge valve of the secondary battery cell 10 is opened.
 押圧部材151は、排気ダクト70にインサート成型により一体に成型することができる。あるいは、押圧部材151は、ボルトによる締結、テープによる束縛、接着などにより排気ダクト70に固定子してもよい。第4の実施形態の押圧部材151は、第1の実施形態と同様な形状を有し、同様な位置に配置される。
 なお、押圧部材151は、すべてを排気ダクト70に設けるのではなく、一部を、エンドセルホルダ20Eやエンドプレート31に設けてもよい。
The pressing member 151 can be integrally formed with the exhaust duct 70 by insert molding. Alternatively, the pressing member 151 may be fixed to the exhaust duct 70 by fastening with bolts, binding with tape, adhesion, or the like. The pressing member 151 of the fourth embodiment has the same shape as that of the first embodiment and is arranged at the same position.
Note that not all of the pressing members 151 are provided in the exhaust duct 70, but some of them may be provided in the end cell holder 20 </ b> E and the end plate 31.
 第4の実施形態における他の構造は第1の実施形態と同様であり、対応する部材に同一の符号を付して説明を省略する。
 第4の実施形態において、図2に示すX方向の外力が二次電池装置100に作用すると、押圧部材151は、排気ダクト70から分離し、あるいは排気ダクト70を破壊して排気ダクト70と共に移動して、二次電池セル10間に介在する。このため、各二次電池セル10の電池蓋13は、前後に配置された押圧部材151に挟圧され、ガス排出弁50が開裂する。
 従って、第3の実施形態においても、第1の実施形態の効果(1)、(2)、(4)、(5)を奏する。
 なお、第4の実施形態では、押圧部材151が排気ダクト70に設けられる構造であるため、押圧部材151と排気ダクト70とのレイアウトが容易になるという利点がある。
Other structures in the fourth embodiment are the same as those in the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof is omitted.
In the fourth embodiment, when an external force in the X direction shown in FIG. 2 acts on the secondary battery device 100, the pressing member 151 is separated from the exhaust duct 70 or moved together with the exhaust duct 70 by breaking the exhaust duct 70. Then, it is interposed between the secondary battery cells 10. For this reason, the battery cover 13 of each secondary battery cell 10 is pinched by the pressing members 151 arranged at the front and rear, and the gas discharge valve 50 is cleaved.
Therefore, also in the third embodiment, the effects (1), (2), (4), and (5) of the first embodiment are achieved.
In the fourth embodiment, since the pressing member 151 is provided in the exhaust duct 70, there is an advantage that the layout of the pressing member 151 and the exhaust duct 70 becomes easy.
-第5の実施形態-
 図20は、本発明の第5の実施形態を示し、図20(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図20(B)は、図20(A)のXX-XX線の模式的断面図である。図21は、図20に示されたセル積層方向の外力が作用した状態を示し、図20(A)は正面図、図20(B)は、図20(A)のXXI-XXI線の模式的断面図である。
 第5の実施形態は、セル積層方向の端部に配置された一対のエンドプレート31のみに押圧部材151を設けた構造を有する。
-Fifth embodiment-
FIG. 20 shows a fifth embodiment of the present invention, FIG. 20 (A) is a front view of a normal use state where no external force is applied to the battery can, and FIG. 20 (B) is a diagram of FIG. 20 (A). 3 is a schematic cross-sectional view taken along line XX B -XX B. FIG. 21 shows a state in which an external force in the cell stacking direction shown in FIG. 20 is applied, FIG. 20A is a front view, and FIG. 20B is a line XXI B -XXI B in FIG. FIG.
The fifth embodiment has a structure in which the pressing member 151 is provided only on the pair of end plates 31 arranged at the end in the cell stacking direction.
 第5の実施形態の二次電池装置100は、二次電池セル10間に配置されるセルホルダ20および前・後端に配置されるエンドセルホルダ20Eを備えていない。各二次電池セル10は、電池容器15の広側面15aを接触した状態で積層されている。電池容器15の広側面15a同士の接触は、図19、図20では、全面が接触する構造として例示されている。しかし、本発明は、電池容器15の広側面15aが湾曲形状であったり、広側面15aに放熱用のフィンが形成されていたりする場合にも適用することができ、このような構造では、電池容器15の広側面15aの一部が接触する。 The secondary battery device 100 of the fifth embodiment does not include the cell holder 20 disposed between the secondary battery cells 10 and the end cell holder 20E disposed at the front and rear ends. Each secondary battery cell 10 is laminated in a state where the wide side surface 15 a of the battery container 15 is in contact. The contact between the wide side surfaces 15a of the battery case 15 is illustrated as a structure in which the entire surface is in contact in FIGS. However, the present invention can also be applied to the case where the wide side surface 15a of the battery container 15 has a curved shape, or a fin for heat dissipation is formed on the wide side surface 15a. A part of the wide side surface 15a of the container 15 contacts.
 エンドプレート31には、押圧部材151と電池蓋13との間に配置される樹脂61が設けられている。樹脂61は、エンドプレート31に一体成型により形成することができる。つまり、エンドプレート31は、押圧部材151をインサート品として、樹脂61が形成されるように成型により作製することができる。押圧部材151は、電池蓋13を挟圧する方向の剛性が電池蓋13より大きい。隣り合う二次電池セル10の電池蓋13同士は、互いに接触している。 The end plate 31 is provided with a resin 61 disposed between the pressing member 151 and the battery lid 13. The resin 61 can be formed on the end plate 31 by integral molding. That is, the end plate 31 can be manufactured by molding so that the resin 61 is formed using the pressing member 151 as an insert. The pressing member 151 is larger in rigidity in the direction in which the battery lid 13 is clamped than the battery lid 13. The battery lids 13 of the adjacent secondary battery cells 10 are in contact with each other.
 二次電池装置100に図2に示すX方向の外力が作用すると、各二次電池セル10の電池蓋13は押圧部材151により挟圧される。第5の実施形態では、二次電池セル10間には、押圧部材151が配置されていないが、隣り合う二次電池セル10の電池蓋13同士は接触しているので、両端に配置された押圧部材151により一体的に挟圧され、これにより、各二次電池セル10のガス排出弁50が開裂する。 When an external force in the X direction shown in FIG. 2 acts on the secondary battery device 100, the battery lid 13 of each secondary battery cell 10 is pinched by the pressing member 151. In 5th Embodiment, although the press member 151 is not arrange | positioned between the secondary battery cells 10, since the battery cover 13 of the adjacent secondary battery cell 10 is contacting, it arrange | positioned at both ends. The pressing member 151 integrally clamps the gas, and thereby the gas discharge valve 50 of each secondary battery cell 10 is cleaved.
 隣り合う二次電池セル10の電池蓋13間にシート状の介在物を配置してもよい。この構造では、隣り合う二次電池セル10の電池蓋13同士は、介在物を介して互いに挟圧する。このため、介在物は、その剛性が電池蓋13より大きい部材である必要はない。
 第5の実施形態においても、第1の実施形態の効果(1)、(4)、(5)を奏する。
 また、第5の実施形態では、押圧部材151が、セル積層方向の両端部に配置されたエンドプレート31のみに設けられている。従って、押圧部材151の点数が削減され、安価にすることができる。また、第5の実施形態に示すように、本発明は、セルホルダ20、エンドセルホルダ20Eを備えていない二次電池装置100にも適用可能であり、適用範囲が極めて広いものである。
Sheet-like inclusions may be disposed between the battery lids 13 of the adjacent secondary battery cells 10. In this structure, the battery lids 13 of the adjacent secondary battery cells 10 are pressed against each other via inclusions. For this reason, the inclusion need not be a member whose rigidity is larger than that of the battery lid 13.
Also in the fifth embodiment, the effects (1), (4), and (5) of the first embodiment are achieved.
Moreover, in 5th Embodiment, the press member 151 is provided only in the end plate 31 arrange | positioned at the both ends of a cell lamination direction. Accordingly, the number of pressing members 151 can be reduced and the cost can be reduced. Further, as shown in the fifth embodiment, the present invention can be applied to the secondary battery device 100 that does not include the cell holder 20 and the end cell holder 20E, and has a very wide application range.
-第6の実施形態-
 図22は、本発明の第6の実施形態を示し、図22(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図22(B)は、図22(A)に示す二次電池装置に二次電池セルの積層方向の外力が作用した状態の正面図である。
 第6の実施形態は、一対の押圧部材151a、151bを各二次電池セル10の注液口16aに対向する位置に配置した構造を有する。
 上述したように、隣り合う二次電池セル10は、正極外部端子11と負極外部端子12が対向するよう、互い違いに配列されている。このため、隣り合う二次電池セル10の注液口16aのセル積層方向に直交する方向の位置は、二次電池セル10の中心に対して、図示の例では、ガス排出弁50の中心に対して交互に対称な位置に配置される。各押圧部材151a、151bは、このようにガス排出弁50に対して交互に対称な位置に配置された注液口16aに対向する位置に配置されている。
-Sixth embodiment-
FIG. 22 shows a sixth embodiment of the present invention, FIG. 22 (A) is a front view of a normal use state in which no external force is applied to the battery can, and FIG. 22 (B) is FIG. 22 (A). It is a front view in the state where the external force of the lamination direction of a secondary battery cell acted on the secondary battery device shown.
The sixth embodiment has a structure in which a pair of pressing members 151 a and 151 b are arranged at positions facing the liquid injection port 16 a of each secondary battery cell 10.
As described above, the adjacent secondary battery cells 10 are arranged alternately so that the positive external terminal 11 and the negative external terminal 12 face each other. For this reason, the position of the injection port 16a of the adjacent secondary battery cell 10 in the direction orthogonal to the cell stacking direction is at the center of the gas discharge valve 50 in the illustrated example with respect to the center of the secondary battery cell 10. They are alternately arranged at symmetrical positions. Each pressing member 151a, 151b is arranged at a position facing the liquid injection port 16a arranged at an alternately symmetrical position with respect to the gas discharge valve 50 in this way.
 電池蓋13の注液口16aが形成された部分は、他の部分よりも剛性が小さい。このため、電池蓋13が挟圧されると、電池蓋13の注液口16aが形成された付近が開裂を起こす。つまり、第6の実施形態は、電池蓋13のガス排出弁50に代えて、注液口16aに開裂を生じさせるようにした例である。
 第6の実施形態における他の構造は、第1の実施形態と同様である。
 従って、第6の実施形態においても、第1の実施形態の効果(1)~(5)と同様な効果を奏する。但し、第6の実施形態においては、第1の実施形態の効果(1)~(5)におけるガス排出弁50を注液口16a近傍に読み替えるものとする。
The portion of the battery lid 13 where the liquid injection port 16a is formed is less rigid than the other portions. For this reason, when the battery lid 13 is clamped, the vicinity of the battery lid 13 where the liquid injection port 16a is formed is cleaved. That is, the sixth embodiment is an example in which the liquid injection port 16a is cleaved in place of the gas discharge valve 50 of the battery lid 13.
Other structures in the sixth embodiment are the same as those in the first embodiment.
Therefore, the sixth embodiment also provides the same effects as the effects (1) to (5) of the first embodiment. However, in the sixth embodiment, the gas discharge valve 50 in the effects (1) to (5) of the first embodiment is replaced with the vicinity of the liquid injection port 16a.
-第7の実施形態-
 図23は、本発明の第7の実施形態を示し、図23(A)は電池缶に外力が加わっていない通常の使用状態の正面図、図23(B)は、図23(A)に示す二次電池装置に二次電池セルの積層方向の外力が作用した状態の正面図である。
 第7の実施形態の押圧部材151cは、ガス排出弁と注液口の双方にまたがる長さに形成されている。換言すると、第6の実施形態の押圧部材151aと151bを連続状に接続した部材とした構造を有する。
 第7の実施形態における他の構造は、第6の実施形態と同様である。
 第7の実施形態では、二次電池装置100に図2に示すX方向の外力が作用すると、電池蓋13のガス排出弁50または注液口16a近傍の両方または一方が開裂する。
 第7の実施形態においても、第6の実施形態の効果と同様な効果を奏する。
-Seventh embodiment-
FIG. 23 shows a seventh embodiment of the present invention, FIG. 23 (A) is a front view of a normal use state where no external force is applied to the battery can, and FIG. 23 (B) is FIG. 23 (A). It is a front view in the state where the external force of the lamination direction of a secondary battery cell acted on the secondary battery device shown.
The pressing member 151c of the seventh embodiment is formed to have a length that extends over both the gas discharge valve and the liquid injection port. In other words, it has a structure in which the pressing members 151a and 151b of the sixth embodiment are connected continuously.
Other structures in the seventh embodiment are the same as those in the sixth embodiment.
In the seventh embodiment, when an external force in the X direction shown in FIG. 2 acts on the secondary battery device 100, both or one of the gas discharge valve 50 or the vicinity of the liquid injection port 16a of the battery lid 13 is cleaved.
In the seventh embodiment, the same effect as that of the sixth embodiment is obtained.
-第8の実施形態-
 なお、上記各実施形態(但し、実施形態5は除く)においては、セルホルダ20を図6に示すものとして説明した。図6のセルホルダ20は、スペーサ21、フレーム部22、底板23、側板24を備え、スペーサ21には、圧縮部26と連結部27が設けられている。しかし、セルホルダ20に代えて、図24(A)に一例を示すような仕切り部材5を用いることもできる。
 なお、スペーサ21には圧縮部26と連結部27が設けられているが、図示を省略している。
 仕切り部材5は、矩形形状の枠部51と、複数の中間部54が、モールド成型等により一体に形成された部材である。枠部51は、上下方向に延在する一対の縦部52と、前後方向に延在する一対の横部53とを備える。枠部51内には、前後方向に延在する中間部54が上下方向に所定ピッチで設けられている。
-Eighth embodiment-
In each of the above embodiments (excluding Embodiment 5), the cell holder 20 has been described as shown in FIG. The cell holder 20 of FIG. 6 includes a spacer 21, a frame portion 22, a bottom plate 23, and a side plate 24, and the spacer 21 is provided with a compression portion 26 and a connecting portion 27. However, instead of the cell holder 20, a partition member 5 as shown in FIG. 24A can be used.
In addition, although the compression part 26 and the connection part 27 are provided in the spacer 21, illustration is abbreviate | omitted.
The partition member 5 is a member in which a rectangular frame portion 51 and a plurality of intermediate portions 54 are integrally formed by molding or the like. The frame portion 51 includes a pair of vertical portions 52 extending in the vertical direction and a pair of horizontal portions 53 extending in the front-rear direction. In the frame portion 51, intermediate portions 54 extending in the front-rear direction are provided at a predetermined pitch in the vertical direction.
 仕切り部材5は、横部53と中間部54との間、および中間部54間に形成された空隙部Sを有している。枠部51と中間部54は、厚さすなわちセル積層方向の長さがほぼおなじである。仕切り部材5は、二次電池セル10を収容する収容部を備えておらず、仕切り部材5は隣り合う二次電池セル10の電池容器15の広側面15aに接触した状態で組付けられて組電池が作製される。セルホルダ20に代えて仕切り部材5を用いる構造では、仕切り部材5に押圧部材151、151a、151bや樹脂61を一体成型することもできる。図24(B)に、仕切り部材5に押圧部材151および樹脂61を設けた一例を示す。 The partition member 5 has a gap portion S f formed between the lateral portion 53 and the intermediate portion 54 and between the intermediate portions 54. The frame portion 51 and the intermediate portion 54 have substantially the same thickness, that is, the length in the cell stacking direction. The partition member 5 does not include a housing portion that houses the secondary battery cell 10, and the partition member 5 is assembled in a state of being in contact with the wide side surface 15 a of the battery container 15 of the adjacent secondary battery cell 10. A battery is produced. In the structure using the partition member 5 instead of the cell holder 20, the pressing members 151, 151 a, 151 b and the resin 61 can be integrally formed on the partition member 5. FIG. 24B shows an example in which the partition member 5 is provided with the pressing member 151 and the resin 61.
 上記各実施形態では、押圧部材151、152は金属により形成されるとした。しかし、押圧部材は樹脂により形成してもよく、要は、電池蓋13が挟圧される方向の剛性に関し、押圧部材151、152の方が電池蓋13よりも大きい部材であればよい。 In the above embodiments, the pressing members 151 and 152 are made of metal. However, the pressing member may be formed of resin. In short, it is only necessary that the pressing members 151 and 152 are larger than the battery lid 13 with respect to the rigidity in the direction in which the battery lid 13 is clamped.
 上記各実施形態では、ガス排出弁50および注液口16aが二次電池セル10の電池蓋13に設けられている構造として例示した。しかし、ガス排出弁50および注液口16aの両方もしくは一方を二次電池セル10の狭側面15dや底面15b等、電池蓋13以外の一側面に設けてもよい。この場合、押圧部材151、152は、開裂すべきガス排出弁50または注液口16a、すなわち開裂部位に対向して配置すればよい。 In the above embodiments, the gas discharge valve 50 and the liquid injection port 16a are exemplified as the structure provided in the battery lid 13 of the secondary battery cell 10. However, both or one of the gas discharge valve 50 and the liquid injection port 16a may be provided on one side surface other than the battery lid 13, such as the narrow side surface 15d and the bottom surface 15b of the secondary battery cell 10. In this case, the pressing members 151 and 152 may be disposed to face the gas discharge valve 50 or the liquid injection port 16a to be cleaved, that is, the cleavage site.
 上記各実施形態では、二次電池セル10をリチウムイオン二次電池として例示した。しかし、本発明は、ニッケル水素電池またはニッケル・カドミウム電池、鉛蓄電池のように水溶性電解液を用いる二次電池にも適用が可能である。また、リチウムイオンキャパシタに適用することもできる。 In each of the above embodiments, the secondary battery cell 10 is exemplified as a lithium ion secondary battery. However, the present invention can also be applied to a secondary battery using a water-soluble electrolyte such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery. It can also be applied to a lithium ion capacitor.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。上記各実施の形態および変形例を組み合わせたり、本発明の趣旨の範囲内で変形したりしてもよく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. The above embodiments and modifications may be combined or modified within the scope of the gist of the present invention, and other modes conceivable within the scope of the technical idea of the present invention are also within the scope of the present invention. included.
 要するに、本発明は、積層された複数の蓄電セル10を備える蓄電装置100において、蓄電セル10に設けられ、外部から入力された外力により変形する変形部(たとえば電池蓋13)と、変形部の変形で破壊され、蓄電セル内部の圧力を大気開放する被破壊部(たとえばガス排出弁50あるいは注液口16)と、外力を変形部に伝達して変形させる押圧部材151とを備える種々の蓄電装置を含む。このような蓄電装置よれば、外力が作用したとき、内部の発電素子(たとえば捲回体40)の熱暴走が開始する前に被破壊部が破壊され、蓄電セル10の内部を大気開放することができる。 In short, according to the present invention, in a power storage device 100 including a plurality of stacked power storage cells 10, a deformation portion (for example, a battery lid 13) provided in the power storage cell 10 and deformed by an external force input from the outside, Various power storages including a part to be destroyed (for example, the gas discharge valve 50 or the liquid injection port 16) that is broken by deformation and releases the pressure inside the power storage cell to the atmosphere, and a pressing member 151 that transmits the external force to the deformation part and deforms it. Including equipment. According to such a power storage device, when an external force is applied, the to-be-destructed part is destroyed and the inside of the storage cell 10 is opened to the atmosphere before the thermal runaway of the internal power generation element (for example, the wound body 40) starts. Can do.
  5   仕切り部材
 10   二次電池セル
 13   電池蓋
 14   電池缶
 15   電池容器
 15a  広側面
 15b  底面
 15d  狭側面
 16a  注液口
 20   セルホルダ
 20E  エンドセルホルダ
 31   エンドプレート
 40   捲回体
 50   ガス排出弁
 61   樹脂
 70   排気ダクト
100   二次電池装置
151、151a、151b、152   押圧部材
152a  押圧部
152b  支持部
DESCRIPTION OF SYMBOLS 5 Partition member 10 Secondary battery cell 13 Battery cover 14 Battery can 15 Battery container 15a Wide side surface 15b Bottom surface 15d Narrow side surface 16a Injection port 20 Cell holder 20E End cell holder 31 End plate 40 Winding body 50 Gas exhaust valve 61 Resin 70 Exhaust duct 100 Secondary battery device 151, 151a, 151b, 152 Press member 152a Press part 152b Support part

Claims (9)

  1.  積層された複数の蓄電セルを備える蓄電装置において、
     前記蓄電セルに設けられ、外部から入力された外力により変形する変形部と、
     前記変形部の変形で破壊され、蓄電セル内部の圧力を大気開放する被破壊部と、
     前記外力を前記変形部に伝達して変形させる押圧部材とを備える、蓄電装置。
    In a power storage device including a plurality of stacked power storage cells,
    A deforming portion provided in the electricity storage cell and deformed by an external force input from the outside;
    A part to be destroyed which is destroyed by deformation of the deformation part and releases the pressure inside the storage cell to the atmosphere;
    A power storage device comprising: a pressing member that deforms the external force by transmitting the external force to the deformation portion.
  2.  請求項1に記載の蓄電装置において、
     前記被破壊部は、ガス排出弁および注液口の少なくとも一方である、蓄電装置。
    The power storage device according to claim 1,
    The said to-be-destructed part is an electrical storage apparatus which is at least one of a gas exhaust valve and a liquid inlet.
  3.  請求項2に記載の蓄電装置において、
     前記蓄電セルは、開口を有する電池缶と、前記電池缶の前記開口を塞ぐとともに、前記変形部としての電池蓋とを備え、
     前記電池蓋には、前記被破壊部としてのガス排出弁および前記注液口が設けられている、蓄電装置。
    The power storage device according to claim 2,
    The electrical storage cell includes a battery can having an opening, and the battery lid as the deformation portion, while closing the opening of the battery can.
    The battery cover is provided with a gas discharge valve as the portion to be destroyed and the liquid injection port.
  4.  請求項3に記載の蓄電装置において、
     複数の前記蓄電セルの各電池蓋は、互いに所定の間隔をあけて配列され、
     前記押圧部材は、前記外力が作用しないときは前記電池蓋と非接触、前記外力が作用したときは前記電池蓋と接触するように、複数の前記蓄電セルの各電池蓋の間に配設され、前記外力が作用したときは前記電池蓋の一部の領域を挟圧する、蓄電装置。
    The power storage device according to claim 3,
    The battery lids of the plurality of power storage cells are arranged at a predetermined interval from each other,
    The pressing member is disposed between the battery lids of the plurality of storage cells so that the pressing member is not in contact with the battery lid when the external force is not applied and is in contact with the battery lid when the external force is applied. A power storage device that clamps a partial region of the battery lid when the external force is applied.
  5.  請求項4に記載の蓄電装置において、
     積層された複数の前記蓄電セルの間には介在物が配設され、
     前記蓄電セルの積層方向の一端側および他端側にはエンドセルホルダが配設され、
     前記押圧部材は前記介在物および前記エンドセルホルダにそれぞれ設けられている、蓄電装置。
    The power storage device according to claim 4,
    Inclusions are disposed between the plurality of stacked storage cells,
    End cell holders are disposed on one end side and the other end side in the stacking direction of the storage cells,
    The power storage device, wherein the pressing member is provided on the inclusion and the end cell holder, respectively.
  6.  請求項5に記載の蓄電装置において、
     前記押圧部材は、前記電池蓋の一面の局所領域で前記外力を伝達するような形状とされ、
     前記押圧部材の厚さは前記電池蓋の厚さよりも厚く、前記外力が作用したときに前記電池蓋の厚さ方向の全領域が前記押圧部材に接触する、蓄電装置。
    The power storage device according to claim 5,
    The pressing member is shaped to transmit the external force in a local region on one surface of the battery lid,
    The thickness of the said pressing member is thicker than the thickness of the said battery cover, and the whole area | region of the thickness direction of the said battery cover contacts the said pressing member when the said external force acts.
  7.  請求項1から6までのいずれか一項に記載の蓄電装置において、
     前記押圧部材は、挟圧される方向の剛性が前記被破壊部の剛性よりも大きい部材により形成されている、蓄電装置。
    In the electrical storage apparatus as described in any one of Claim 1-6,
    The power storage device, wherein the pressing member is formed of a member having a rigidity in a pinched direction larger than a rigidity of the portion to be destroyed.
  8.  請求項1に記載の蓄電装置において、
     前記蓄電セルの積層方向の一端側および他端側にはエンドプレートが配設され、
     前記押圧部材は、前記一端側および前記他端側の前記エンドプレートにのみ設けられている、蓄電装置。
    The power storage device according to claim 1,
    End plates are disposed on one end side and the other end side in the stacking direction of the storage cells,
    The power storage device, wherein the pressing member is provided only on the end plates on the one end side and the other end side.
  9.  請求項1から3までのいずれか一項に記載の蓄電装置において、
     前記複数の蓄電セルから排出されるガスを集合して排出する排気ダクトを有し、
     前記押圧部材は、前記排気ダクトに設けられている、蓄電装置。
    In the electrical storage apparatus as described in any one of Claim 1 to 3,
    An exhaust duct that collects and discharges the gas discharged from the plurality of power storage cells;
    The pressure member is a power storage device provided in the exhaust duct.
PCT/JP2016/088268 2016-01-21 2016-12-22 Power storage device WO2017126285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562485A JP6506419B2 (en) 2016-01-21 2016-12-22 Power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016009830 2016-01-21
JP2016-009830 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126285A1 true WO2017126285A1 (en) 2017-07-27

Family

ID=59362611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088268 WO2017126285A1 (en) 2016-01-21 2016-12-22 Power storage device

Country Status (2)

Country Link
JP (1) JP6506419B2 (en)
WO (1) WO2017126285A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125456A (en) * 2018-01-15 2019-07-25 トヨタ自動車株式会社 Battery module
WO2019186933A1 (en) * 2018-03-29 2019-10-03 株式会社東芝 Battery assembly, battery, lid, and case
WO2019244413A1 (en) * 2018-06-19 2019-12-26 日立オートモティブシステムズ株式会社 Battery pack
CN112582747A (en) * 2019-09-30 2021-03-30 株式会社牧田 Battery pack
CN113228390A (en) * 2018-12-25 2021-08-06 株式会社丰田自动织机 Electricity storage device
EP3905372A4 (en) * 2018-12-28 2022-02-09 GS Yuasa International Ltd. Power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025525A (en) * 2000-07-07 2002-01-25 Fdk Corp Explosion-proof structure of square battery
JP2010165585A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Power storage device
JP2011187171A (en) * 2010-03-04 2011-09-22 Hitachi Maxell Energy Ltd Sealed battery
WO2014024426A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Power source device, electric vehicle provided with same, and electricity storage device
JP2015106491A (en) * 2013-11-29 2015-06-08 三菱自動車工業株式会社 Secondary battery with safety valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025525A (en) * 2000-07-07 2002-01-25 Fdk Corp Explosion-proof structure of square battery
JP2010165585A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Power storage device
JP2011187171A (en) * 2010-03-04 2011-09-22 Hitachi Maxell Energy Ltd Sealed battery
WO2014024426A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Power source device, electric vehicle provided with same, and electricity storage device
JP2015106491A (en) * 2013-11-29 2015-06-08 三菱自動車工業株式会社 Secondary battery with safety valve

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125456A (en) * 2018-01-15 2019-07-25 トヨタ自動車株式会社 Battery module
JP7022308B2 (en) 2018-01-15 2022-02-18 トヨタ自動車株式会社 Battery module
WO2019186933A1 (en) * 2018-03-29 2019-10-03 株式会社東芝 Battery assembly, battery, lid, and case
JPWO2019186933A1 (en) * 2018-03-29 2021-02-12 株式会社東芝 Battery assembly, battery, lid and case
JP7039687B2 (en) 2018-03-29 2022-03-22 株式会社東芝 Battery assembly and batteries
WO2019244413A1 (en) * 2018-06-19 2019-12-26 日立オートモティブシステムズ株式会社 Battery pack
JPWO2019244413A1 (en) * 2018-06-19 2021-03-11 ビークルエナジージャパン株式会社 Battery pack
JP7023359B2 (en) 2018-06-19 2022-02-21 ビークルエナジージャパン株式会社 Battery pack
CN113228390A (en) * 2018-12-25 2021-08-06 株式会社丰田自动织机 Electricity storage device
EP3905372A4 (en) * 2018-12-28 2022-02-09 GS Yuasa International Ltd. Power storage device
CN112582747A (en) * 2019-09-30 2021-03-30 株式会社牧田 Battery pack

Also Published As

Publication number Publication date
JPWO2017126285A1 (en) 2018-08-02
JP6506419B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2017126285A1 (en) Power storage device
JP6306431B2 (en) Battery module
KR101071462B1 (en) Power supply device for vehicle
EP2343754B1 (en) Battery cartridge, and battery module comprising same
KR101328354B1 (en) Lithium ion secondary battery, vehicle, and device equipped with battery
WO2013183945A1 (en) Battery module having stability-improved structure and high cooling efficiency
JP2016189247A (en) Square secondary battery and battery pack using the same
CN108701793B (en) Battery pack
CN110137388B (en) Secondary battery and battery pack
WO2014128841A1 (en) Assembled battery and battery used in same
KR20120074415A (en) Unit module of novel structure and battery module comprising the same
JP5633032B2 (en) Secondary battery
JP2011119265A (en) Secondary battery
WO2021049032A1 (en) Battery, battery pack, and vehicle
JP2010087170A (en) Electric storage device
JP2010186786A (en) Electrical storage device and electrical storage device module
JP2016219257A (en) Power storage device
KR20150069905A (en) Battery Pack
JP6530819B2 (en) Secondary battery
KR20190090299A (en) Method For Battery Module Having Bead Formed at Frame Structure and Battery Module Using the Same
CN107978801B (en) Method for manufacturing laminated electrode body
JP2014107217A (en) Power storage device
JP2011096485A (en) Secondary battery
WO2023068029A1 (en) Power storage device and method for manufacturing power storage device
CN113228389A (en) Battery pack and battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886524

Country of ref document: EP

Kind code of ref document: A1