JP2011187171A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2011187171A
JP2011187171A JP2010047965A JP2010047965A JP2011187171A JP 2011187171 A JP2011187171 A JP 2011187171A JP 2010047965 A JP2010047965 A JP 2010047965A JP 2010047965 A JP2010047965 A JP 2010047965A JP 2011187171 A JP2011187171 A JP 2011187171A
Authority
JP
Japan
Prior art keywords
sealing body
negative electrode
injection hole
liquid injection
sealed battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010047965A
Other languages
Japanese (ja)
Inventor
Yasushi Sakagami
裕史 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010047965A priority Critical patent/JP2011187171A/en
Publication of JP2011187171A publication Critical patent/JP2011187171A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery advantageous for internal short circuit prevention upon receiving external force. <P>SOLUTION: In the sealed battery 1 with an opening of a square exterior can 2 sealed with a sealing body 4, a cleavage vent 30 and a liquid injection hole 20 are arranged in a length direction of the sealing body 4 so as to interpose a negative electrode terminal 9 between them, an electrode body with a negative electrode collector lead and a positive electrode collector lead led out is built in the exterior can 2, and the negative electrode collector lead is placed further toward a cleavage vent 30 side than the positive electrode collector lead. When a compression load F is added to the exterior can 2 so as to compress the exterior can 2 in the length direction of the sealing body 4, a cross-section shape of the sealing body 4 is formed so that bending at a position further toward the liquid injection hole 20 side with respect to the negative electrode 9 as a fulcrum occurs before the bending at a position further toward a cleavage vent 30 side with respect to the negative electrode 9 as a fulcrum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、角形の外装缶の開口を封口体で封口した密閉型電池に関する。   The present invention relates to a sealed battery in which an opening of a rectangular outer can is sealed with a sealing body.

近年、携帯電話やモバイル機器等の小型軽量の電子機器が普及している。これらの電子機器に用いる電池として、角形の密閉型電池が知られている(例えば下記特許文献1参照)。密閉型電池は、電極体を内蔵した有底筒状の外装缶の開口を封口体で封止したものである。   In recent years, small and light electronic devices such as mobile phones and mobile devices have become widespread. As a battery used in these electronic devices, a rectangular sealed battery is known (see, for example, Patent Document 1 below). A sealed battery is obtained by sealing the opening of a bottomed cylindrical outer can containing an electrode body with a sealing body.

封口体に絶縁材を介して負極端子を設けた場合、負極端子に接続されたリード体に電極体から導出した負極集電リードが接合され、封口体に電極体から導出した正極集電リードが直接接合されることになる。この構成では、負極端子は負極電位に帯電し、封口体及び外装缶が正極電位に帯電することになる。この場合、封口体に金属板を接合し、これを正極端子として用いることができる。   When the negative electrode terminal is provided on the sealing body via an insulating material, the negative electrode current collecting lead led out from the electrode body is joined to the lead body connected to the negative electrode terminal, and the positive electrode current collecting lead led out from the electrode body is connected to the sealing body It will be joined directly. In this configuration, the negative electrode terminal is charged to the negative electrode potential, and the sealing body and the outer can are charged to the positive electrode potential. In this case, a metal plate can be joined to the sealing body and used as the positive electrode terminal.

特開2007−317577号公報JP 2007-317577 A

しかしながら、角形の密閉型電池は、高容量薄型化が進んでおり、これに伴い外装缶の厚さを薄くする傾向にある。この場合、密閉型電池に外力が加わった際の座屈による破損も生じ易くなる。座屈による破損は、応力集中が生じる部分や剛性の弱い部分で生じ易く、前記のような密閉型電池においては、封口体の表面に設けた開裂ベントの部分において生じ易くなる。   However, prismatic sealed batteries are becoming thinner and have a higher capacity, and accordingly, the thickness of the outer can tends to be reduced. In this case, damage due to buckling is easily caused when an external force is applied to the sealed battery. Damage due to buckling is likely to occur at a portion where stress concentration occurs or a portion where rigidity is weak, and in the sealed battery as described above, it is likely to occur at a portion of the cleavage vent provided on the surface of the sealing body.

開裂ベントが電極体から導出した負極集電リードの近傍に配置されていると、開裂ベント部分の変形により、電極体から導出した負極集電リードが、正極電位に帯電した外装缶の内壁に接触し易くなる。このような接触が生じると、内部短絡による発煙・発火の可能性も生じることになる。このため、密閉型電池の高容量薄型化が進むと、前記のような内部短絡の可能性も高まることになる。内部短絡防止は、絶縁テープの追加や絶縁材の塗布等により可能になるが、コスト面では不利になる。   If the cleavage vent is placed near the negative electrode current collector lead led out from the electrode body, the negative electrode current collector lead led out from the electrode body contacts the inner wall of the outer can charged to the positive electrode potential due to deformation of the cleavage vent part. It becomes easy to do. When such a contact occurs, there is a possibility of smoking and ignition due to an internal short circuit. For this reason, if the high capacity thinning of the sealed battery proceeds, the possibility of such an internal short circuit also increases. Internal short circuit prevention can be achieved by adding an insulating tape or applying an insulating material, but this is disadvantageous in terms of cost.

本発明は、前記のような問題を解決するものであり、外力を受けた際の内部短絡防止に有利な密閉型電池を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide a sealed battery that is advantageous for preventing an internal short circuit when an external force is applied.

前記目的を達成するために、本発明の密閉型電池は、角形の外装缶の開口を封口体で封口した密閉型電池であって、前記封口体の長手方向において、開裂ベンドと注液孔とが、負極端子を挟むように配置されており、前記外装缶内に、負極集電リード及び正負集電リードが導出された電極体が内蔵されており、前記負極集電リードは、前記正負集電リードよりも前記開裂ベンド側にあり、前記外装缶を前記封口体の長手方向において圧縮するように、前記外装缶に圧縮荷重を加えたときに、前記負極端子に対し前記注液孔側の位置を支点とした湾曲が、前記負極端子に対し前記開裂ベンド側の位置を支点とした湾曲よりも先に生じるように、前記封口体の断面形状が形成されていることを特徴とする。   In order to achieve the above object, a sealed battery of the present invention is a sealed battery in which an opening of a rectangular outer can is sealed with a sealing body, and in the longitudinal direction of the sealing body, a cleavage bend, a liquid injection hole, However, the electrode body from which the negative electrode current collecting lead and the positive and negative current collecting leads are led out is built in the outer can, and the negative electrode current collecting lead is connected to the positive and negative current collecting terminals. When the compressive load is applied to the outer can so that the outer can is compressed in the longitudinal direction of the sealing body, and the outer can is compressed with respect to the negative electrode terminal. The sealing body is characterized in that the cross-sectional shape of the sealing body is formed so that the curve with the position as a fulcrum occurs before the curve with the position on the cleavage bend side as a fulcrum with respect to the negative electrode terminal.

本発明の密閉型電池によれば、外力を受けた際の内部短絡防止に有利になる。   According to the sealed battery of the present invention, it is advantageous for preventing an internal short circuit when receiving an external force.

本発明の一実施の形態に係る密閉型電池1において、外装缶2の開口3に封口体4を嵌合させる様子を示す斜視図。The perspective view which shows a mode that the sealing body 4 is fitted to the opening 3 of the armored can 2 in the sealed battery 1 which concerns on one embodiment of this invention. (a)図は本発明の一実施の形態に係る封口体4の単体状態の平面図、(b)図は(a)図のAA線における断面図。(A) The figure is a top view of the single-piece | unit state of the sealing body 4 which concerns on one embodiment of this invention, (b) A figure is sectional drawing in the AA line of (a) figure. 本発明の一実施の形態に係る密閉型電池1において、外装缶2に封口体4を接合した状態を示す斜視図。The perspective view which shows the state which joined the sealing body 4 to the armored can 2 in the sealed battery 1 which concerns on one embodiment of this invention. 本発明の一実施の形態に係る密閉型電池1の完成状態の斜視図。The perspective view of the completion state of the sealed battery 1 which concerns on one embodiment of this invention. (a)図は図4のBB線における断面図、(b)図は比較例に係る密閉型電池の封口体104において(a)図のA部に相当する部分の断面図。(A) The figure is sectional drawing in the BB line of FIG. 4, (b) is sectional drawing of the part corresponded to the A section of (a) figure in the sealing body 104 of the sealed battery which concerns on a comparative example. 本発明の一実施の形態に係る密閉型電池1を直立させた状態を示した図。The figure which showed the state which made the sealed battery 1 which concerns on one embodiment of this invention stand upright. (a)図は本発明の一実施の形態に係る密閉型電池1が湾曲した状態を示した図、(b)図は比較例に係る密閉型電池100が湾曲した状態を示した図。(A) The figure which showed the state which the sealed battery 1 which concerns on one embodiment of this invention curved, (b) The figure which showed the state where the sealed battery 100 concerning a comparative example curved. (a)図は本発明の一実施の形態に係る開裂ベントの断面形状の別の一例を示した図、(b)図は本発明の一実施の形態に係る注液孔の断面形状の別の一例を示した図。(A) The figure showed another example of the cross-sectional shape of the cleavage vent which concerns on one embodiment of this invention, (b) The figure shows another cross-sectional shape of the injection hole which concerns on one embodiment of this invention The figure which showed an example.

本発明の密閉型電池によれば、外装缶を封口体の長手方向において圧縮するように、外装缶に圧縮荷重を加えたときに、密閉型電池の内部の電極体から導出された負極集電リードが外装缶に接触することを防止でき、密閉型電池の内部短絡による発煙・発火を防止することができる。また、内部短絡防止のために、絶縁テープの追加や絶縁材の塗布等は不要になり、コスト面でも有利になる。   According to the sealed battery of the present invention, when a compressive load is applied to the outer can so as to compress the outer can in the longitudinal direction of the sealing body, the negative electrode current collector derived from the electrode body inside the sealed battery The lead can be prevented from coming into contact with the outer can, and smoke and ignition due to an internal short circuit of the sealed battery can be prevented. Further, in order to prevent an internal short circuit, it is unnecessary to add an insulating tape or apply an insulating material, which is advantageous in terms of cost.

前記本発明の密閉型電池においては、前記注液孔の形成部分は、前記開裂ベンドの形成部分よりも応力集中による応力が大きくなるように、前記封口体の断面形状が形成されていることが好ましい。この構成によれば、負極集電リードの外装缶への接触による内部短絡防止により有利になる。   In the sealed battery of the present invention, the sealing body has a cross-sectional shape formed so that a stress due to stress concentration is larger in a portion where the injection hole is formed than in a portion where the cleavage bend is formed. preferable. According to this structure, it becomes advantageous by prevention of an internal short circuit by the contact of the negative electrode current collecting lead to the outer can.

また、前記注液孔の形成部分は、前記開裂ベンドの形成部分よりも剛性が低くなるように、前記封口体の断面形状が形成されていることが好ましい。この構成によっても、負極集電リードの外装缶への接触による内部短絡防止により有利になる。   Moreover, it is preferable that the cross-sectional shape of the said sealing body is formed so that the formation part of the said injection hole may become lower in rigidity than the formation part of the said cleavage bend. This configuration is also advantageous for preventing an internal short circuit due to contact of the negative electrode current collector lead with the outer can.

また、前記注液孔は、前記注液孔を封止する凸部が挿入される挿入部と、前記挿入部より径を大きくした拡径部とを含んでいることが好ましい。この構成によれば、簡単な構造で、圧縮荷重が印加されたときに、負極端子に対し注液孔側の位置を支点とした湾曲を生じ易くすることができる。   Moreover, it is preferable that the said liquid injection hole contains the insertion part in which the convex part which seals the said liquid injection hole is inserted, and the enlarged diameter part larger diameter than the said insertion part. According to this configuration, when a compressive load is applied with a simple structure, it is possible to easily generate a curve with the position on the liquid injection hole side as a fulcrum with respect to the negative electrode terminal.

また、前記封口体のうち前記負極端子に対し前記注液孔側において、前記注液孔とは別に凹部又は溝を形成していることが好ましい。この構成によっても、簡単な構造で、圧縮荷重が印加されてときに、負極端子に対し注液孔側の位置を支点とした湾曲を生じ易くすることができる。   Moreover, it is preferable that a recess or a groove is formed separately from the liquid injection hole on the liquid injection hole side with respect to the negative electrode terminal in the sealing body. Also with this configuration, when a compressive load is applied, it is possible to easily generate a curve with the position on the liquid injection hole side as a fulcrum with respect to the negative electrode terminal when a compressive load is applied.

以下、本発明の一実施の形態について、図面を参照しながら詳細に説明する。図1は、本実施の形態に係る密閉型電池1において、外装缶2の開口3に封口体4を嵌合させる様子を示す斜視図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing how the sealing body 4 is fitted into the opening 3 of the outer can 2 in the sealed battery 1 according to the present embodiment.

密閉型電池1は、例えば、角形リチウムイオン電池であり、携帯電話やモバイル機器等に用いられる。外装缶2は角形であり、上端に略矩形状の開口3を形成した有底筒状体である。外装缶2は、例えばアルミニウム又はアルミニウム合金の薄板を深絞り加工して形成する。   The sealed battery 1 is, for example, a rectangular lithium ion battery, and is used for a mobile phone, a mobile device, or the like. The outer can 2 has a rectangular shape and is a bottomed cylindrical body in which a substantially rectangular opening 3 is formed at the upper end. The outer can 2 is formed, for example, by deep drawing a thin plate of aluminum or aluminum alloy.

外装缶2内には扁平状の電極体5を内蔵している。電極体5は、帯状の正極集電体と帯状の負極集電体との間に、帯状のセパレータを介在させた状態で、正極集電体及び負極集電体を渦巻状に巻回して作製したものである。負極集電体からは薄板状の負極集電リード6を導出しており、正極集電体からは薄板状の正極集電リード7を導出している。   A flat electrode body 5 is built in the outer can 2. The electrode body 5 is produced by winding a positive electrode current collector and a negative electrode current collector in a spiral shape with a band-shaped separator interposed between the band-shaped positive electrode current collector and the band-shaped negative electrode current collector. It is a thing. A thin plate-like negative electrode current collecting lead 6 is led out from the negative electrode current collector, and a thin plate-like positive electrode current collecting lead 7 is led out from the positive electrode current collector.

封口体4は、例えばアルミニウム又はアルミニウム合金の薄板をプレス成形した横長状部材である。封口体4の表面には負極端子9(図3)を設けている。また、封口体4には、注液孔20及び開裂ベント30を形成している。注液孔20は、電解液を外装缶2内に注液するための孔である。開裂ベント30は、電池内圧が異常上昇したときに、開裂して電池内圧を開放するためのものである。開裂ベント30は、封口体4の裏面側の凹部31と表面側の凹部32(図2(b))とで構成されている。   The sealing body 4 is a horizontally long member obtained by press-molding a thin plate of aluminum or an aluminum alloy, for example. A negative electrode terminal 9 (FIG. 3) is provided on the surface of the sealing body 4. In addition, a liquid injection hole 20 and a cleavage vent 30 are formed in the sealing body 4. The liquid injection hole 20 is a hole for injecting the electrolytic solution into the outer can 2. The cleavage vent 30 is for cleaving and releasing the battery internal pressure when the battery internal pressure abnormally increases. The cleavage vent 30 includes a recess 31 on the back surface side of the sealing body 4 and a recess 32 on the front surface side (FIG. 2B).

封口体4の裏面には負極端子9(図3)に接続したリード体8を設けている。リード体8には、負極端子9と一体の凸部10が貫通している。リード体8と封口体4の裏面との間には、絶縁板16を介在させている。リード体8は負極集電リード6に接合されている。このことにより、負極端子9(図3)は負極電位に帯電することになる。負極端子9(図3)の取り付け構造の詳細は、後に図5(a)を参照しながら説明する。   A lead body 8 connected to the negative electrode terminal 9 (FIG. 3) is provided on the back surface of the sealing body 4. The lead body 8 has a convex portion 10 integral with the negative electrode terminal 9 passing therethrough. An insulating plate 16 is interposed between the lead body 8 and the back surface of the sealing body 4. The lead body 8 is joined to the negative electrode current collecting lead 6. As a result, the negative terminal 9 (FIG. 3) is charged to a negative potential. Details of the attachment structure of the negative electrode terminal 9 (FIG. 3) will be described later with reference to FIG.

また、封口体4には、正極集電リード7が直接接合されている。このことにより、封口体4及び封口体4が接合される外装缶2は、正極電位に帯電することになる。   A positive electrode current collecting lead 7 is directly joined to the sealing body 4. As a result, the sealing body 4 and the outer can 2 to which the sealing body 4 is joined are charged to the positive electrode potential.

図2(a)に、負極端子9(図3)を取り付ける前における封口体4の単体状態の平面図を示している。図2(b)は図2(a)のAA線における断面図である。図2(a)に示したように、負極端子の取り付け孔13を挟むように、注液孔20と開裂ベント30とが形成されている。   FIG. 2A shows a plan view of the sealing body 4 in a single state before the negative electrode terminal 9 (FIG. 3) is attached. FIG. 2B is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 2A, the liquid injection hole 20 and the cleavage vent 30 are formed so as to sandwich the attachment hole 13 of the negative electrode terminal.

図2(b)において、注液孔20は、挿入部21と拡径部22とで構成されている。挿入部21は、図3に示した封止体11と一体の凸部14が挿入される部分である。拡径部22の径は、挿入部21の径より大きくしている。これは、注液孔20の位置における封口体4の剛性を下げるためである。このことの詳細については、後に図6、7を参照しながら説明する。   In FIG. 2 (b), the liquid injection hole 20 is composed of an insertion portion 21 and an enlarged diameter portion 22. The insertion part 21 is a part into which the convex part 14 integrated with the sealing body 11 shown in FIG. 3 is inserted. The diameter of the enlarged diameter portion 22 is larger than the diameter of the insertion portion 21. This is to reduce the rigidity of the sealing body 4 at the position of the liquid injection hole 20. Details of this will be described later with reference to FIGS.

図3は、外装缶2に封口体4を接合した状態を示す斜視図である。図3の状態は、図1の状態から、負極集電リード6及び正極集電リード7を折り曲げつつ、封口体4の外周を、外装缶2の開口3の内周面に嵌合させている。さらに図3では、封口体4は、外装缶2の開口3(図1)の内周面に嵌合した状態で、シーム溶接により接合されている。   FIG. 3 is a perspective view showing a state in which the sealing body 4 is joined to the outer can 2. In the state of FIG. 3, the outer periphery of the sealing body 4 is fitted to the inner peripheral surface of the opening 3 of the outer can 2 while the negative electrode current collecting lead 6 and the positive electrode current collecting lead 7 are bent from the state of FIG. 1. . Further, in FIG. 3, the sealing body 4 is joined by seam welding in a state of being fitted to the inner peripheral surface of the opening 3 (FIG. 1) of the outer can 2.

図3には注液孔20に装着する前の封止体11が示されている。注液孔20から外装缶2内に非水電解液が注入された後に、注液孔20は封止体11で塞がれる。封止体11は、アルミニウム又はアルミニウム合金で形成されたアルミニウム板12と、ニッケル又はニッケル合金で形成したニッケル板13とを圧着して積層したものである。アルミニウム板12には、注液孔20の挿入部21に挿入される凸部14が一体になっている。ニッケル板13は正極端子として使用できる。   FIG. 3 shows the sealing body 11 before being attached to the liquid injection hole 20. After the nonaqueous electrolytic solution is injected into the outer can 2 from the liquid injection hole 20, the liquid injection hole 20 is closed with the sealing body 11. The sealing body 11 is formed by pressure bonding and laminating an aluminum plate 12 formed of aluminum or an aluminum alloy and a nickel plate 13 formed of nickel or a nickel alloy. The aluminum plate 12 is integrally formed with a convex portion 14 that is inserted into the insertion portion 21 of the liquid injection hole 20. The nickel plate 13 can be used as a positive terminal.

図4は、密閉型電池1の完成状態の斜視図を示している。本図の状態では、図3の注液孔20は封止体11で塞がれている。封止体11は、アルミニウム板12の外周部を封口体4に溶接することにより、封口体4に接合している。   FIG. 4 shows a perspective view of the sealed battery 1 in a completed state. In the state of this figure, the liquid injection hole 20 in FIG. 3 is closed by the sealing body 11. The sealing body 11 is joined to the sealing body 4 by welding the outer peripheral portion of the aluminum plate 12 to the sealing body 4.

封口体4とアルミニウム板12は、いずれもアルミニウム又はアルミニウム合金の同種金属で形成されている。このため両部材の溶接性は良好である。また、ニッケル板13には、ニッケル板13と同種金属のリードプレートとの溶接性が良好になる。   Both the sealing body 4 and the aluminum plate 12 are formed of the same kind of aluminum or aluminum alloy. For this reason, the weldability of both members is good. Further, the nickel plate 13 has good weldability between the nickel plate 13 and the lead plate of the same kind of metal.

図5(a)は、図4のBB線における断面図を示している。図5(a)では、外装缶2、負極集電リード6及び正極集電リード7の図示は省略している。負極端子9は凸部10が一体になっており、凸部10は絶縁パッキング15、絶縁板16及びリード体8を貫通している。凸部10とリード体8とは電気的に接続されており、リード体8には図1に示したように、負極集電リード6が接合される。このことにより、凸部10と一体の負極端子9は負極電位に帯電することになる。負極端子9と封口体4との間は絶縁パッキング15が介在し、リード体8と封口体4との間は絶縁板16が介在している。このことにより、負極電位に帯電する負極端子9及びリード体8は、正極集電リード7が接合されて正極電位に帯電する封口体4と絶縁されている。   FIG. 5A shows a cross-sectional view taken along the line BB in FIG. In FIG. 5A, illustration of the outer can 2, the negative electrode current collector lead 6, and the positive electrode current collector lead 7 is omitted. The negative electrode terminal 9 is integrally formed with a convex portion 10, and the convex portion 10 penetrates the insulating packing 15, the insulating plate 16 and the lead body 8. The convex portion 10 and the lead body 8 are electrically connected, and the negative electrode current collecting lead 6 is joined to the lead body 8 as shown in FIG. As a result, the negative terminal 9 integrated with the convex portion 10 is charged to a negative potential. An insulating packing 15 is interposed between the negative electrode terminal 9 and the sealing body 4, and an insulating plate 16 is interposed between the lead body 8 and the sealing body 4. Thus, the negative electrode terminal 9 and the lead body 8 charged to the negative electrode potential are insulated from the sealing body 4 charged to the positive electrode potential by joining the positive electrode current collecting lead 7.

封止体11の凸部14は、注液孔20の挿入部21に挿入されている。前記の通り、封止体11のアルミニウム板12の外周部は封口体4に溶接されているので、封止体11は封口体4と同じ正極電位に帯電する。このため、ニッケル板13は正極端子として使用できる。   The convex portion 14 of the sealing body 11 is inserted into the insertion portion 21 of the liquid injection hole 20. As described above, since the outer peripheral portion of the aluminum plate 12 of the sealing body 11 is welded to the sealing body 4, the sealing body 11 is charged to the same positive potential as the sealing body 4. For this reason, the nickel plate 13 can be used as a positive electrode terminal.

図5(b)は、比較例に係る密閉型電池の封口体104において図5(a)のC部に相当する部分の断面図を示している。図5(b)に示したように、比較例に係る封口体104は、封口体104の表面から裏面までの間において、同一径の挿入部(貫通孔)121を形成しているに止まり、図5(a)に示したような拡径部22は形成していない。この点を除けば、比較例に係る密閉型電池は、本実施の形態に係る密閉型電池1と同一仕様である。本実施の形態に係る密閉型電池1と比較例に係る密閉型電池との効果の差異については、後に図7(a)、(b)を参照しながら説明する。   FIG. 5B shows a cross-sectional view of a portion corresponding to part C of FIG. 5A in the sealing body 104 of the sealed battery according to the comparative example. As shown in FIG. 5 (b), the sealing body 104 according to the comparative example only forms an insertion portion (through hole) 121 having the same diameter between the front surface and the back surface of the sealing body 104, The enlarged diameter portion 22 as shown in FIG. 5A is not formed. Except for this point, the sealed battery according to the comparative example has the same specifications as the sealed battery 1 according to the present embodiment. Differences in effects between the sealed battery 1 according to the present embodiment and the sealed battery according to the comparative example will be described later with reference to FIGS. 7 (a) and 7 (b).

図6は、密閉型電池1を直立させた状態を示している。本図では、密閉型電池1は、封口体4の長手方向が接地面40に対し垂直になるように直立している。すなわち、密閉型電池1は封口体4が縦長状態になるように直立している。   FIG. 6 shows a state in which the sealed battery 1 is upright. In this figure, the sealed battery 1 stands upright so that the longitudinal direction of the sealing body 4 is perpendicular to the ground plane 40. That is, the sealed battery 1 stands upright so that the sealing body 4 is in a vertically long state.

図6では、外装缶2の上端部に圧縮荷重Fを加えている。圧縮荷重Fを増加させていくと、密閉型電池1は高さ方向に圧縮されずに、急に湾曲し不安定な状態になる座屈現象が生じる。   In FIG. 6, a compressive load F is applied to the upper end portion of the outer can 2. When the compressive load F is increased, the sealed battery 1 is not compressed in the height direction, but a buckling phenomenon occurs that suddenly curves and becomes unstable.

また、封口体4に形状が変化した部分があると、図6のように圧縮荷重Fが加わると、形状が変化した部分に応力集中が生じることになる。前記のような座屈現象が生じると、応力集中が生じる部分や剛性の低い部分において、破損が生じ易くなる。   Further, if there is a portion whose shape has changed in the sealing body 4, when a compressive load F is applied as shown in FIG. 6, stress concentration occurs in the portion whose shape has changed. When the buckling phenomenon as described above occurs, breakage is likely to occur in a portion where stress concentration occurs or a portion where rigidity is low.

このことについて、図7を参照しながら説明する。図7(a)は、本実施の形態に係る密閉型電池1が湾曲した状態を示した図である。図7(b)は、比較例に係る密閉型電池100が湾曲した状態を示した図である。密閉型電池100は、図5(b)に示した断面形状の封口体4を備えており、この点を除けば密閉型電池1と同一構成である。   This will be described with reference to FIG. FIG. 7A is a diagram showing a state where the sealed battery 1 according to the present embodiment is curved. FIG. 7B is a diagram illustrating a state in which the sealed battery 100 according to the comparative example is curved. The sealed battery 100 includes the sealing body 4 having the cross-sectional shape shown in FIG. 5B, and has the same configuration as the sealed battery 1 except for this point.

図7(a)の本実施の形態に係る密閉型電池1においては、圧縮荷重Fの増加により、注液孔20の位置を支点(P1)とした湾曲が生じている。これに対し、図7(b)の比較例に係る密閉型電池100においては、圧縮荷重Fの増加により、開裂ベント30の位置を支点(P2)とした湾曲が生じている。図7(b)のような湾曲が生じることは、実験によっても確認できた。このように、開裂ベント30の位置を支点とした湾曲が生じているのは、開裂ベント30の位置は応力が集中し、かつ剛性も低いためと考えられる。   In the sealed battery 1 according to the present embodiment shown in FIG. 7A, an increase in the compressive load F causes a curve with the position of the liquid injection hole 20 as a fulcrum (P1). On the other hand, in the sealed battery 100 according to the comparative example of FIG. 7B, the increase in the compressive load F causes a curve with the position of the cleavage vent 30 as a fulcrum (P2). It was confirmed by experiments that the curve as shown in FIG. Thus, it is considered that the bending with the position of the cleavage vent 30 as a fulcrum occurs because the stress is concentrated at the position of the cleavage vent 30 and the rigidity is low.

具体的には、図5(a)において、開裂ベント30の形成部分は、凹部31と凹部32とにより封口体4の断面形状を変化させている。このことにより、図6のように圧縮荷重Fが加わると、開裂ベント30の形成部分に応力が集中することになる。また、凹部31と凹部32とにより薄肉部33が形成されており、開裂ベント30の形成部分は剛性が低くなっている。   Specifically, in FIG. 5A, the section where the cleavage vent 30 is formed changes the cross-sectional shape of the sealing body 4 by the recess 31 and the recess 32. As a result, when a compressive load F is applied as shown in FIG. 6, stress concentrates on the portion where the cleavage vent 30 is formed. Moreover, the thin part 33 is formed of the recessed part 31 and the recessed part 32, and the formation part of the cleavage vent 30 has low rigidity.

ここで、図1に示したように、開裂ベント30の近傍には、電極体5から負極集電リード6が導出している。図7(b)のように、開裂ベント30の位置を支点とした湾曲が生じた場合には、負極集電リード6が外装缶2に接触し易くなる。   Here, as shown in FIG. 1, the negative electrode current collecting lead 6 is led out from the electrode body 5 in the vicinity of the cleavage vent 30. As shown in FIG. 7B, when a curve occurs with the position of the cleavage vent 30 as a fulcrum, the negative electrode current collecting lead 6 can easily come into contact with the outer can 2.

前記の通り外装缶2は、正極集電リード7が接合された封口体4に接合されているため、正極電位に帯電する。したがって、負極集電リード6と外装缶2とが接触すると、密閉型電池1内において内部短絡し、発煙・発火の可能性も高くなる。この可能性は、密閉型電池1の湾曲がさらに進み破損に至った場合に、一層高まることになる。   As described above, since the outer can 2 is bonded to the sealing body 4 to which the positive electrode current collecting lead 7 is bonded, it is charged to the positive electrode potential. Therefore, when the negative electrode current collector lead 6 and the outer can 2 come into contact with each other, an internal short circuit occurs in the sealed battery 1, and the possibility of smoke generation / ignition increases. This possibility is further increased when the sealed battery 1 is further bent and damaged.

一方、正極集電リード7が、正極電位に帯電した外装缶2に接触しても、内部短絡にはならない。このため、図6のように、圧縮荷重Fが加えた場合に、図7(b)の比較例のように開裂ベント30の位置を支点(P2)とした湾曲が生じるよりも先に、図7(a)のように注液孔20の位置を支点(P1)とした湾曲が生じれば、内部短絡による発煙・発火は防止できることになる。この場合、密閉型電池1の湾曲がさらに進み破損に至っても、内部短絡が生じないことには変りない。   On the other hand, even if the positive electrode current collecting lead 7 contacts the outer can 2 charged to the positive electrode potential, an internal short circuit does not occur. For this reason, as shown in FIG. 6, when a compressive load F is applied, the curve with the position of the cleavage vent 30 as a fulcrum (P2) as in the comparative example of FIG. If a curve with the position of the liquid injection hole 20 as a fulcrum (P1) occurs as shown in FIG. 7 (a), smoke and fire due to an internal short circuit can be prevented. In this case, even if the sealed battery 1 is further bent and damaged, it does not change that an internal short circuit does not occur.

一方、絶縁テープの追加や絶縁材の塗布等により、内部短絡防止を図ることもできるが、本実施の形態では、このような追加加工は不要になり、コスト面でも有利になる。   On the other hand, it is possible to prevent internal short circuit by adding an insulating tape or applying an insulating material. However, in this embodiment, such additional processing is unnecessary, which is advantageous in terms of cost.

なお、注液孔20側で湾曲が生じた場合やこの湾曲がさらに進み破損に至った場合は、圧縮荷重Fの印加状態や密閉型電池1の直立状態は不安定になる。このため、一旦注液孔20側の湾曲や破損が生じれば、開裂ベント30側の湾曲や破損が進行しないのが通常であると考えられる。   In addition, when a curve occurs on the liquid injection hole 20 side or when this curve further progresses and breaks, the application state of the compressive load F and the upright state of the sealed battery 1 become unstable. For this reason, it is considered that it is normal that the bending or breakage on the cleavage vent 30 side does not proceed once the bending or breakage on the liquid injection hole 20 side occurs.

前記の通り、図7(b)の比較例において、開裂ベント30の位置を支点とした湾曲が生じるのは、開裂ベント30の位置は応力が集中し、かつ剛性も低いためと考えられる。このことから、注液孔20の断面形状を開裂ベント30の断面形状よりも、応力が集中による応力が大きくなるようにしたり、剛性が低くなるようにしたりすれば、図7(b)のように、開裂ベント30の位置を支点とした湾曲が生じるよりも先に、注液孔20の位置を支点とした湾曲が生じることになる。   As described above, in the comparative example of FIG. 7B, the bending with the position of the cleavage vent 30 as a fulcrum occurs because the stress is concentrated at the position of the cleavage vent 30 and the rigidity is low. From this, if the cross-sectional shape of the liquid injection hole 20 is made larger than the cross-sectional shape of the cleavage vent 30 so that the stress due to the concentration of stress is increased or the rigidity is lowered, as shown in FIG. In addition, the curve having the position of the liquid injection hole 20 as a fulcrum occurs before the curve having the position of the cleavage vent 30 as a fulcrum.

図2(b)、図5(a)に示したように、本実施の形態では、封口体4の注液孔20に拡径部22を形成して、注液孔20の位置を開裂ベント30の位置よりも、応力が集中し易くし、かつ剛性も低くしている。このことにより、図6のように、圧縮荷重Fを加えた場合に、図7(a)のように注液孔20の位置を支点(P1)とした湾曲が生じるようにしている。   As shown in FIG. 2B and FIG. 5A, in the present embodiment, the enlarged portion 22 is formed in the liquid injection hole 20 of the sealing body 4 so that the position of the liquid injection hole 20 is a cleavage vent. The stress is more easily concentrated and the rigidity is lower than the position 30. As a result, as shown in FIG. 6, when a compressive load F is applied, a curve with the position of the liquid injection hole 20 as a fulcrum (P1) is generated as shown in FIG. 7A.

図8(a)に開裂ベントの断面形状の別の一例を示しており、図8(b)に注液孔の断面形状の別の一例を示している。図8(a)は図2(b)のA部の拡大図に相当し、図8(b)は図2(b)のB部の拡大図に相当する。   FIG. 8A shows another example of the sectional shape of the cleavage vent, and FIG. 8B shows another example of the sectional shape of the injection hole. 8A corresponds to an enlarged view of a portion A in FIG. 2B, and FIG. 8B corresponds to an enlarged view of a portion B in FIG. 2B.

図8(a)に示した開裂ベント34は、凹部35と凹部36とで薄肉部37を形成している。薄肉部37の外周に沿って溝38を設けて、薄肉部37より薄い薄肉部39を形成している。各部の寸法は、例えば、凹部35及び凹部36の長さd=3.3mm、凹部36の内周面と溝38との間の幅w=0.2mm、溝38の幅w1=0.2mm、薄肉部39の厚さt1=0.03mmとしたものが挙げられる。   In the cleavage vent 34 shown in FIG. 8A, the recessed portion 35 and the recessed portion 36 form a thin portion 37. A groove 38 is provided along the outer periphery of the thin portion 37 to form a thin portion 39 thinner than the thin portion 37. The dimensions of each part are, for example, the length d of the concave portion 35 and the concave portion d = 3.3 mm, the width w = 0.2 mm between the inner peripheral surface of the concave portion 36 and the groove 38, and the width w1 of the groove 38 = 0.2 mm. The thickness of the thin portion 39 is t1 = 0.03 mm.

図8(b)に示した注液孔23は、拡径部25と拡径部26との間に薄肉部27を形成しており、薄肉部27に挿入部24を形成している。薄肉部27には挿入部24を囲むように溝28を設けて、薄肉部27より薄い薄肉部29を形成している。各部の寸法は、例えば、拡径部25及び拡径部26の直径d1=3.3mm、挿入部24の直径d2=1.4mm、拡径部25の内周面と溝28との間の幅w2=0.2mm、溝28の幅w3=0.4mm、薄肉部27の厚さt2=0.03mmとしたものが挙げられる。   In the liquid injection hole 23 shown in FIG. 8B, a thin portion 27 is formed between the enlarged diameter portion 25 and the enlarged diameter portion 26, and an insertion portion 24 is formed in the thin portion 27. A groove 28 is provided in the thin portion 27 so as to surround the insertion portion 24, and a thin portion 29 thinner than the thin portion 27 is formed. The dimensions of each part are, for example, the diameter d1 = 3.3 mm of the enlarged diameter part 25 and the enlarged diameter part 26, the diameter d2 of the insertion part 24 = 1.4 mm, and the distance between the inner peripheral surface of the enlarged diameter part 25 and the groove 28. The width w2 = 0.2 mm, the width w3 of the groove 28 = 0.4 mm, and the thickness t2 of the thin portion 27 = 0.03 mm.

なお、前記実施の形態では、圧縮荷重Fの印加時の湾曲の支点が注液孔の位置になるようにしているが、図1に示した負極集電リード6と外装缶2との接触が防止できれば、湾曲の支点は他の位置にあってもよい。より具体的には、湾曲の支点が、負極端子9に対し注液孔20側の位置にあるようにすれば、負極集電リード6と外装缶2との接触による内部短絡防止に有利になる。   In the above-described embodiment, the fulcrum of the curve when the compressive load F is applied is the position of the liquid injection hole. However, the contact between the negative electrode current collector lead 6 and the outer can 2 shown in FIG. If it can be prevented, the fulcrum of curvature may be in another position. More specifically, if the fulcrum of the curve is located on the liquid injection hole 20 side with respect to the negative electrode terminal 9, it is advantageous for preventing an internal short circuit due to contact between the negative electrode current collecting lead 6 and the outer can 2. .

注液孔20の位置以外の部分を湾曲の支点とする場合には、注液孔20とは別に、封口体4の断面形状を変化させた部分を形成することになる。例えば、負極端子9と注液孔20との間に、溝や凹部を形成すればよい。   When a portion other than the position of the liquid injection hole 20 is used as a fulcrum for bending, a portion where the cross-sectional shape of the sealing body 4 is changed is formed separately from the liquid injection hole 20. For example, a groove or a recess may be formed between the negative electrode terminal 9 and the liquid injection hole 20.

また、注液孔20の位置を支点とする湾曲をより確実にするために、図2(b)、図5(a)に示した拡径部20以外にさらに断面形状を変化させた部分を追加してもよい。例えば、注液孔20を囲む溝を追加してもよく、注液孔20を挟むように溝や凹部を追加してもよい。   Further, in order to ensure the curvature with the position of the liquid injection hole 20 as a fulcrum, in addition to the enlarged diameter portion 20 shown in FIG. 2B and FIG. May be added. For example, a groove surrounding the liquid injection hole 20 may be added, or a groove or a recess may be added so as to sandwich the liquid injection hole 20.

また、本実施の形態では、図3に示した封止体11は2層構造の例で説明したが他の構成であってもよい。   Further, in the present embodiment, the sealing body 11 illustrated in FIG. 3 has been described as an example of a two-layer structure, but may have other configurations.

また、開裂ベントは、図2(b)のように、封止体4に凹部31及び凹部32を形成した例で説明したがこの形状に限るものではなく、封止体4の片側のみに凹部を設けたものでもよく、凹部に代えて略矩形状に溝を形成したものでもよい。   In addition, as shown in FIG. 2B, the cleavage vent has been described in the example in which the concave portion 31 and the concave portion 32 are formed in the sealing body 4, but the shape is not limited to this, and the concave portion is formed only on one side of the sealing body 4. May be provided, or a substantially rectangular groove may be formed instead of the recess.

以上のように、本発明に係る密閉型電池によれば、外力を受けた際の内部短絡防止に有利になるので、本発明に係る密閉型電池は、例えば携帯電話やモバイル機器に用いる密閉型電池として有用である。   As described above, according to the sealed battery according to the present invention, it is advantageous for preventing an internal short circuit when an external force is applied. Therefore, the sealed battery according to the present invention is, for example, a sealed battery used for a mobile phone or a mobile device. It is useful as a battery.

1 密閉型電池
2 外装缶
3 外装缶の開口
4 封口体
5 電極体
6 負極集電リード
7 正極集電リード
9 負極端子
11 封止体
14 凸部
20,23 注液孔
21,24 挿入部
22,25,26 拡径部
30,34 開裂ベント
DESCRIPTION OF SYMBOLS 1 Sealed battery 2 Exterior can 3 Opening of exterior can 4 Sealing body 5 Electrode body 6 Negative electrode current collection lead 7 Positive electrode current collection lead 9 Negative electrode terminal 11 Sealing body 14 Convex part 20, 23 Injection hole 21, 24 Insertion part 22 , 25, 26 Expanded diameter part 30, 34 Cleavage vent

Claims (5)

角形の外装缶の開口を封口体で封口した密閉型電池であって、
前記封口体の長手方向において、開裂ベンドと注液孔とが、負極端子を挟むように配置されており、
前記外装缶内に、負極集電リード及び正負集電リードが導出された電極体が内蔵されており、
前記負極集電リードは、前記正負集電リードよりも前記開裂ベンド側にあり、
前記外装缶を前記封口体の長手方向において圧縮するように、前記外装缶に圧縮荷重を加えたときに、
前記負極端子に対し前記注液孔側の位置を支点とした湾曲が、前記負極端子に対し前記開裂ベンド側の位置を支点とした湾曲よりも先に生じるように、前記封口体の断面形状が形成されていることを特徴とする密閉型電池。
A sealed battery in which the opening of a rectangular outer can is sealed with a sealing body,
In the longitudinal direction of the sealing body, the cleavage bend and the liquid injection hole are arranged so as to sandwich the negative electrode terminal,
In the outer can, an electrode body from which a negative current collecting lead and a positive and negative current collecting lead are derived is incorporated,
The negative electrode current collector lead is on the cleavage bend side with respect to the positive and negative current collector leads,
When a compressive load is applied to the outer can so as to compress the outer can in the longitudinal direction of the sealing body,
The cross-sectional shape of the sealing body is such that the bending with respect to the position on the liquid injection hole side with respect to the negative electrode terminal occurs before the bending with respect to the position on the cleavage bend side with respect to the negative electrode terminal. A sealed battery characterized by being formed.
前記注液孔の形成部分は、前記開裂ベンドの形成部分よりも応力集中による応力が大きくなるように、前記封口体の断面形状が形成されている請求項1に記載の密閉型電池。   2. The sealed battery according to claim 1, wherein a cross-sectional shape of the sealing body is formed in a portion where the liquid injection hole is formed so that stress due to stress concentration is larger than a portion where the cleavage bend is formed. 前記注液孔の形成部分は、前記開裂ベンドの形成部分よりも剛性が低くなるように、前記封口体の断面形状が形成されている請求項1又は2に記載の密閉型電池。   3. The sealed battery according to claim 1, wherein a cross-sectional shape of the sealing body is formed such that a portion where the liquid injection hole is formed is lower in rigidity than a portion where the cleavage bend is formed. 前記注液孔は、前記注液孔を封止する凸部が挿入される挿入部と、前記挿入部より径を大きくした拡径部とを含んでいる請求項1から3のいずれかに記載の密閉型電池。   The said liquid injection hole contains the insertion part in which the convex part which seals the said liquid injection hole is inserted, and the enlarged diameter part larger diameter than the said insertion part. Sealed battery. 前記封口体のうち前記負極端子に対し前記注液孔側において、前記注液孔とは別に凹部又は溝を形成している請求項1から4のいずれかに記載の密閉型電池。   The sealed battery according to claim 1, wherein a recess or a groove is formed separately from the liquid injection hole on the liquid injection hole side with respect to the negative electrode terminal in the sealing body.
JP2010047965A 2010-03-04 2010-03-04 Sealed battery Withdrawn JP2011187171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047965A JP2011187171A (en) 2010-03-04 2010-03-04 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047965A JP2011187171A (en) 2010-03-04 2010-03-04 Sealed battery

Publications (1)

Publication Number Publication Date
JP2011187171A true JP2011187171A (en) 2011-09-22

Family

ID=44793251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047965A Withdrawn JP2011187171A (en) 2010-03-04 2010-03-04 Sealed battery

Country Status (1)

Country Link
JP (1) JP2011187171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083758A1 (en) * 2013-12-04 2015-06-11 日立マクセル株式会社 Non-aqueous electrolyte secondary battery
WO2017126285A1 (en) * 2016-01-21 2017-07-27 日立オートモティブシステムズ株式会社 Power storage device
WO2019186933A1 (en) * 2018-03-29 2019-10-03 株式会社東芝 Battery assembly, battery, lid, and case

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083758A1 (en) * 2013-12-04 2015-06-11 日立マクセル株式会社 Non-aqueous electrolyte secondary battery
WO2017126285A1 (en) * 2016-01-21 2017-07-27 日立オートモティブシステムズ株式会社 Power storage device
JPWO2017126285A1 (en) * 2016-01-21 2018-08-02 日立オートモティブシステムズ株式会社 Power storage device
WO2019186933A1 (en) * 2018-03-29 2019-10-03 株式会社東芝 Battery assembly, battery, lid, and case
JPWO2019186933A1 (en) * 2018-03-29 2021-02-12 株式会社東芝 Battery assembly, battery, lid and case
JP7039687B2 (en) 2018-03-29 2022-03-22 株式会社東芝 Battery assembly and batteries

Similar Documents

Publication Publication Date Title
JP5070313B2 (en) Lithium secondary battery can and lithium secondary battery using the same
US8440334B2 (en) Rechargeable battery
JP5425526B2 (en) Sealed battery
JP5821969B2 (en) Secondary battery manufacturing method and secondary battery
US8920965B2 (en) Rechargeable battery
JP4526996B2 (en) Lithium ion secondary battery
JP2007123201A (en) Sealed rectangular battery
EP2482360A1 (en) Battery
JP4530333B2 (en) Sealed battery
JP2021052020A (en) Secondary battery and secondary battery assembly
JP5457690B2 (en) battery
CN103779531A (en) Current interrupting device of sealed battery
CN109755422A (en) Power battery top cover component, power battery and battery module
CN102903862B (en) Rechargeable battery
JP2011187171A (en) Sealed battery
KR20140049654A (en) Battery cell having electrode lead of improved resistance pressure and stability
JP6429361B2 (en) Secondary battery
KR101233440B1 (en) Secondary battery
JP2011187288A (en) Sealed battery
KR101049011B1 (en) Secondary Battery and Manufacturing Method Thereof
JP5328206B2 (en) Square sealed battery
JP5599627B2 (en) Sealed battery
JP2007214025A (en) Laminated cell and battery pack
JP6156728B2 (en) Power storage element and power storage device
JP2017059346A (en) Secondary battery and batty pack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507