WO2017126189A1 - 複合材の成形方法、複合材の成形用治具及び複合材 - Google Patents

複合材の成形方法、複合材の成形用治具及び複合材 Download PDF

Info

Publication number
WO2017126189A1
WO2017126189A1 PCT/JP2016/082671 JP2016082671W WO2017126189A1 WO 2017126189 A1 WO2017126189 A1 WO 2017126189A1 JP 2016082671 W JP2016082671 W JP 2016082671W WO 2017126189 A1 WO2017126189 A1 WO 2017126189A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
corner portion
composite material
shaping
curved
Prior art date
Application number
PCT/JP2016/082671
Other languages
English (en)
French (fr)
Inventor
耕大 下野
寛 ▲徳▼冨
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA3006425A priority Critical patent/CA3006425C/en
Priority to EP16886428.8A priority patent/EP3369542B1/en
Priority to CN201680070073.5A priority patent/CN108290322B/zh
Priority to ES16886428T priority patent/ES2856015T3/es
Priority to US15/779,975 priority patent/US10744701B2/en
Publication of WO2017126189A1 publication Critical patent/WO2017126189A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • B29L2031/7739Curved shaped

Definitions

  • the present invention relates to a composite material forming method in which a curved corner portion is formed, a composite material forming jig, and a composite material.
  • a method for manufacturing a preform formed by bringing a reinforcing fiber laminate into close contact with a shaping die that is a male die is known (for example, , See Patent Document 1).
  • the male mold used in this manufacturing method has an upper surface, a shoulder portion, and a side surface.
  • the pressing force is sequentially applied from the upper surface to the side surface of the reinforcing fiber laminate
  • the pressing force is sequentially applied from the shoulder portion to the side surface of the reinforcing fiber laminate in order to closely adhere the reinforcing fiber laminate to the male mold.
  • the pressing pressure is sequentially applied from the upper surface of the reinforcing fiber laminate to the shoulder.
  • the upper surface, the shoulder portion, and the side surface are formed by curving both sides of the reinforcing fiber laminate that is a flat plate. Then, a pressing pressure is applied from the outside of the reinforcing fiber laminate to the shoulder portion of the reinforcing fiber laminate formed in a curved shape. When a pressing pressure is applied from the outside of the reinforcing fiber laminate, the thickness of the shoulder portion of the reinforcing fiber laminate is reduced. At this time, the outer peripheral length in the thickness direction of the reinforcing fiber laminate is shortened.
  • an object of the present invention is to provide a composite material forming method, a composite material forming jig, and a composite material that can suitably suppress the occurrence of forming defects at a curved corner portion.
  • the composite material molding method of the present invention is a composite material molding method in which a curved corner portion is formed.
  • the composite material has a corner portion that is curved at a first bending angle, and a laminated body in which fiber sheets are laminated.
  • a first shaping step for shaping the laminate so that the thickness of the laminate becomes thinner from the outside to the inside of the corner portion, and a second bending angle smaller than the first bending angle.
  • the laminated body is shaped using a male die that contacts the inside of the corner portion, and in the second shaping step, a male die or a female die that contacts the outside of the corner portion is appropriately used.
  • the laminate is shaped.
  • the fiber sheet may be a dry sheet or a prepreg impregnated with a resin.
  • the flat laminated body in which the fiber sheets are laminated may be bent at the first bending angle to form a corner portion, or the fiber sheet may be bent at the first bending angle.
  • a stacked body having a corner portion may be formed by stacking layers.
  • Another composite material molding method of the present invention is a composite material molding method in which a curved corner portion is formed.
  • the composite material has a corner portion that is curved at a first bending angle, and a laminate in which fiber sheets are laminated.
  • the first shape forming step for shaping the laminate so that the plate thickness of the laminate becomes thin, and the corner of the laminate so as to have a second bending angle smaller than the first bending angle.
  • the inner circumference of the corner portion is reduced. Becomes longer.
  • the laminate stretches inside the corner portion, it becomes difficult to densify the corner portion, and the fiber content in the corner portion decreases.
  • a 2nd shaping process by curving a laminated body so that it may become a 2nd bending angle from a 1st bending angle, the inside of a corner part is shrunk and a surplus part is beforehand generated inside a corner part. .
  • the second shaping step when the thickness of the laminate is reduced from the inside to the outside of the corner portion, there is an excess portion of the laminate, so that the peripheral length inside the corner portion is suitably extended. Can do.
  • the tension of the laminated body that occurs due to the increase in the inner circumference of the corner portion, the excess portion of the laminated body is generated in advance inside the corner portion,
  • By extending the inner peripheral length of the part it is possible to suppress the stretching of the laminated body. Therefore, by suppressing the stretching of the laminated body inside the corner portion of the laminated body, it is possible to suitably perform densification of the corner portion and to suppress the occurrence of molding defects in the corner portion.
  • the laminated body is shaped by appropriately using a male die that contacts the outside of the corner portion or a female die that contacts the outside of the corner portion, and in the second shaping step, a female die is used.
  • the laminate is shaped.
  • the fiber sheet may be a dry sheet or a prepreg impregnated with a resin.
  • the flat laminated body in which the fiber sheets are laminated may be bent at the first bending angle to form a corner portion, or the fiber sheet may be bent at the first bending angle.
  • a stacked body having a corner portion may be formed by stacking layers.
  • the laminated body is shaped using a male mold that contacts the inside of the corner portion so that the thickness of the laminated body decreases from the outside to the inside of the corner portion.
  • the laminate is formed so that the thickness of the laminate decreases from the inside to the outside of the corner portion. It is preferable to shape.
  • a laminated body can be shaped suitably so that the board
  • mold contacts the outer side of a corner part, the change of the outer periphery of the outer side of a corner part can be suppressed.
  • a laminated body in a 2nd shaping process, can be shaped suitably so that the board
  • the inner side of the corner portion in the second shaping step, is contracted while the outer circumference of the corner portion is extended by curving the laminate from the first bending angle to the second bending angle. A surplus portion can be generated inside the corner portion.
  • the circumference of the inner side of a corner part in a 2nd shaping process, the circumference of the inner side of a corner part can be extended by making the board
  • the occurrence of wrinkles on the outside of the corner portion of the laminated body can be suitably suppressed by extending the outer circumference of the corner portion by curving the corner portion.
  • the laminate thickness is reduced to increase the inner circumference of the corner portion, thereby suppressing the stretch of the laminated body.
  • the densification of the part can be suitably performed.
  • the composite material is a spar in which the corner portion is a right angle, the second bending angle is an angle that is a right angle, and the first bending angle is preferably an obtuse angle larger than the right angle. .
  • the molding jig of the present invention is a molding jig for a composite material in which a curved corner portion is formed, and has the corner portion curved at a first bending angle and forms a laminate in which fiber sheets are laminated. And a first mold for shaping the laminate so that the thickness of the laminate decreases from the outside to the inside of the corner portion, and a second bending angle smaller than the first bending angle. And a second mold for shaping the laminate so that the corner portion of the laminate is curved and the plate thickness of the laminate is reduced.
  • Another molding jig of the present invention is a molding jig for a composite material in which a curved corner portion is formed, and is a laminate in which the corner portion is curved at a first bending angle and a fiber sheet is laminated. And forming the laminate so that the thickness of the laminate is reduced, and the second bending angle smaller than the first bending angle so that the laminate is shaped. And a second mold for shaping the laminate so that the thickness of the laminate decreases from the inside to the outside of the corner. .
  • the first molding die is a male die that contacts the inside of the corner portion
  • the second molding die is a female die that contacts the outside of the corner portion.
  • the generation of wrinkles in the corner portion is preferably suppressed, and a composite material in which the corner portion is suitably densified can be formed.
  • the composite material of the present invention includes a curved corner portion and a straight portion connected to the corner portion, and the corner portion is thicker than the straight portion, and the fiber content of the corner portion is It becomes low compared with the fiber content rate of the said linear part.
  • the corner portion can be densified by 7% or more, and the difference in fiber content between the straight portion and the corner portion can be suppressed to 3% or less. Further, the fiber content in the corner part and the straight part can be made uniform.
  • FIG. 1 is a perspective view showing a spar as an example of a composite material formed by the composite material forming method according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a first mold used in the method for molding a composite material according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a second mold used in the method for molding a composite material according to the first embodiment.
  • FIG. 4 is an explanatory diagram relating to a method for forming a composite material according to the first embodiment.
  • FIG. 5 is an explanatory diagram relating to a method for forming a composite material according to the second embodiment.
  • the molding method of the composite material 1 according to the first embodiment is, for example, a method for molding the composite material 1 constituting an aircraft body or the like.
  • An example of the composite material 1 is a spar 10 shown in FIG.
  • the description is applied to the composite material 1 shown in FIG. 1, but the present invention is not limited to this composite material 1.
  • FIG. 1 is a perspective view showing a spar as an example of a composite material formed by the composite material forming method according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a first mold used in the method for molding a composite material according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a second mold used in the method for molding a composite material according to the first embodiment.
  • FIG. 4 is an explanatory diagram relating to a method for forming a composite material according to the first embodiment.
  • the composite material 1 shown in FIG. 1 is configured using carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastic).
  • CFRP Carbon Fiber Reinforced Plastic
  • the composite material 1 is formed by forming a laminated body 3 in which fiber sheets folded on both sides are laminated, and then impregnating the cured laminated body 3 with a resin and curing it.
  • resin which has the function of adhesion or adhesion exists between the layers of the fiber sheets of the laminate 3.
  • the laminate 3 is formed with corner portions 10 c by curving both sides in the width direction of the spar 10. That is, the spar 10 is formed in the width direction center portion 10a, the pair of side surface portions 10b formed on both sides of the center portion 10a in the width direction, and perpendicular to the center portion 10a, and the center portion 10a and the pair of side surface portions 10b. And a pair of corner portions 10c formed between the two. At this time, the central portion 10a and the pair of side surface portions 10b are straight portions that are not curved. Thus, if it is the spar 10 shown in FIG. 1, the laminated body 3 will be curved two-dimensionally because the pair of side part 10b curves with respect to the center part 10a, and the corner part 10c which curves is curved. Is formed.
  • the spar 10 shown in FIG. 1 is molded using a predetermined molding jig 30.
  • Forming jig 30 includes a first mold 31 for molding the laminate 3 having a corner portion 10c that is curved at a first bend angle phi 2, the angle phi 1 bend smaller second than the first bending angle phi 2 In this way, the second molding die 32 that curves the corner portion 10c of the laminate 3 is provided.
  • the first bend angle phi 2 is the angle between the outer surface of the outer surface and the side surface portion 10b of the central portion 10a, for example, is a major obtuse angle than 90 °.
  • the second bend angle phi 1 is the angle between the outer surface of the outer surface and the side surface portion 10b of the central portion 10a, for example, has an angle a 90 ° (perpendicular).
  • the first mold 31 is a male mold that contacts the inside of the corner portion 10 c.
  • stacked the fiber sheet may be curved by 1st bending angle (phi) 2
  • the corner part 10c may be shape
  • the first mold 31 has a male member 41, the male member 41 includes an upper surface portion 41a, are formed on both sides in the width direction of the upper surface portion 41a, a first bending angle phi 2 with respect to the upper surface portion 41a A pair of side surface portions 41b and a pair of corner portions 41c formed between the upper surface portion 41a and the pair of side surface portions 41b.
  • the inner surface of the central portion 10a of the laminate 3 is in contact with the outer surface of the upper surface portion 41a.
  • the inner surfaces of the pair of side surface portions 41b of the stacked body 3 are in contact with the outer surfaces of the pair of side surface portions 41b.
  • the inner surfaces of the pair of corner portions 10c of the stacked body 3 are in contact with the outer surfaces of the pair of corner portions 41c.
  • the male mold material 41 is covered with a bagging film 42.
  • the bagging film 42 covers the laminated body 3 installed on the male mold material 41, and a sealing material 43 is provided between the bagging film 42 and the male mold material 41, thereby hermetically sealing the inside.
  • the inside atmosphere of the airtightly sealed bagging film 42 is evacuated through the suction port 44 and heated by a heating device (not shown), thereby densifying the laminate 3.
  • the laminate 3 is heated by the heating device, so that the resin between the layers of the fiber sheets of the laminate 3 is melted.
  • the layered product 3 after densification that has been released in vacuum can be prevented from returning to the shape of the layered product 3 before densification because the shape is held by the resin between the layers.
  • the laminated body 3 is shaped so that the plate
  • the second mold 32 is a female mold that contacts the outside of the corner portion 10 c.
  • the second mold 32, the laminate 3 so as to form a first bend angle phi 2 smaller second bend is bent at an angle phi 1 and the corner portion 10c than the laminate from the inside of the corner portion 10c toward the outside
  • the laminated body 3 is shaped so that the plate thickness of 3 becomes thin.
  • molding die 32 has the female mold material 51, and the female mold material 51 is formed in the width direction both sides of the bottom face part 51a and the bottom face part 51a, and a 2nd bending angle (perpendicular) with respect to the bottom face part 51a.
  • the outer surface of the center portion 10a of the folded laminate 3 is in contact with the inner surface of the bottom surface portion 51a.
  • the outer surfaces of the pair of side surface portions 10b of the folded laminate 3 are in contact with the inner surfaces of the pair of side surface portions 51b.
  • the outer surfaces of the pair of corner portions 10c of the folded laminate 3 are in contact with the inner surfaces of the pair of corner portions 51c.
  • the female mold material 51 is covered with a bagging film 52.
  • the bagging film 52 covers the laminated body 3 installed on the female mold material 51, and a sealing material 53 is provided between the female mold material 51 and hermetically seals the inside. Then, the resin material is filled while evacuating the inside atmosphere of the bagging film 52 hermetically sealed through the suction port 54, and the resin material is thermally cured by being heated by a heating device (not shown). A spar 10 is formed.
  • the laminated body 3 is shaped so that the plate
  • the molding method of this composite material is a molding method using a fiber sheet in a dry state, and VaRTM (Vacuum assisted Resin Transfer Molding) molding, RTM (Resin Transfer Molding) molding, infusion molding, etc. can be applied. ing.
  • VaRTM Vauum assisted Resin Transfer Molding
  • RTM Resin Transfer Molding
  • infusion molding etc.
  • Step S1 First shaping step.
  • the laminate 3 is formed in the angle range ⁇ 2 such that the inner circumference of the corner portion 10c is a predetermined radius of curvature R1 ′ around the center point P.
  • the portion of the angular range ⁇ 2 that is curved with a predetermined radius of curvature R1 ′ is the corner portion 10c of the stacked body 3.
  • the angle range ⁇ 2 is, for example, 80 °.
  • the laminated body 3 is densified by heating in a vacuum so that the thickness of the laminated body 3 decreases from the outside to the inside of the corner portion 10c.
  • the outer circumference of the corner portion 10c is changed from the predetermined curvature radius R2 ′ around the center point P to the predetermined curvature radius R3. Thin plate thickness is formed. Note that the curvature radius R3 is shorter than the curvature radius R2 '.
  • step S2 second shaping step.
  • the angular range ⁇ 1 that is wider than the angular range ⁇ 2 so that the inner circumference of the corner portion 10c has a predetermined radius of curvature R1 ′ around the center point P.
  • the laminate 3 is curved. That is, the portion of the angle range ⁇ 1 that is curved at a predetermined radius of curvature R1 ′ is the corner portion 10c of the stacked body 3.
  • the angle range ⁇ 1 is, for example, 90 °.
  • the second shaping step S2 vacuum heating is performed so that the thickness of the laminate 3 decreases from the inside to the outside of the corner portion 10c, and the laminate 3 is densified.
  • the inner circumference of the corner portion 10c is changed from the predetermined curvature radius R1 ′ around the center point P to the predetermined curvature radius R1. Thin plate thickness is formed.
  • the curvature radius R1 is a curvature radius longer than the curvature radius R1 '.
  • the spar 10 is formed by thermally curing the resin in a high temperature and high pressure environment while injecting the resin into the laminate 3 (step S3).
  • the molded spar 10 has a shape in which the radius of curvature at the inner circumference is R1, the radius of curvature at the outer circumference is R3, and the bending angle formed by the center portion 10a and the side surface portion 10b is a right angle.
  • the outer circumference of the corner portion 10c of the laminate 3 that changes in the first shaping step S1 and the second shaping step S2 will be described.
  • the first shaping step S1 when the plate thickness of the laminate 3 changes so that the curvature radius R2 ′ changes to the curvature radius R3, the difference in the outer circumference of the laminate 3 before and after the plate thickness change is “2 ⁇ ( R2′ ⁇ R3) ⁇ ( ⁇ 2 / 360 °) (1) ”. That is, since the outer circumferential length of the laminate 3 is shortened by reducing the thickness of the laminate 3, a surplus is generated.
  • the surplus generated outside the corner portion 10c of the laminate 3 in the first shaping step S1 is first bent in the second shaping step S2.
  • the angle phi 2 is bent in the second bending angle phi 1, it is possible to prolong the surplus of the outer corner portion 10c.
  • the circumferential length difference between the inner side and the outer side of the laminated body 3 due to the angle change is “((R3-R1) / 2) ⁇ tan ( ⁇ 2- ⁇ 1) ⁇ (2) ". That is, since the circumferential length inside the laminated body 3 is shortened by changing from the angular range ⁇ 2 of the laminated body 3 to the angular range ⁇ 1, a surplus is generated.
  • the inner circumferential difference of the laminate 3 before and after the thickness change is: “2 ⁇ (R1-R1 ′) ⁇ ( ⁇ 1 / 360 °) (3)”.
  • the inner circumferential length of the laminate 3 is extended by reducing the thickness of the laminate 3. For this reason, a part of surplus is offset by the fiber elongation of the inner circumference.
  • the inside of the second in shaping process S2 is curved from the first bend angle phi 2 to the second bend angle phi 1, corner portions 10c of the laminate 3
  • the fiber tension inside the corner portion 10c can be suppressed.
  • the spar 10 thus formed is formed such that the corner portion 10c is slightly thicker than the central portion 10a and the pair of side surface portions 10b, which are straight portions. This is because in order to densify the corner portion 10c of the laminate 3, the inner circumference of the corner portion 10c has to be extended by ⁇ L, but the fibers inside the corner portion 10c are slightly stretched. . For this reason, the fiber content rate of the corner part 10c is low compared with the fiber content rate of the center part 10a and a pair of side part 10b. In the molding process, when using a material that causes densification such that the thickness of the central portion 10a and the pair of side surface portions 10b is reduced by about 10%, the corner portion 10c can be densified by 7% or more. Therefore, the difference between the fiber content of the corner portion 10c and the fiber content of the central portion 10a and the pair of side surface portions 10b can be 3% or less, and more preferably about 1%. it can.
  • the first shaping step S1 with respect to the laminated body 3 having a first bend angle phi 2 to become corner portions 10c, toward the outside of the stack 3 on the inner side plate
  • the laminate 3 can be densified, while the outer peripheral length of the corner portion 10c is shortened.
  • the second forming step S2 by curving the laminate 3 in the second bend angle phi 1, it is possible to extend the circumference of the outer corner portion 10c.
  • 1st shaping process S1 the excess part of the laminated body 3 which generate
  • the surplus portion of the generated stacked body 3 can be offset. Therefore, generation
  • the second forming step S2 by curving the laminate 3 as the first bending angle phi 2 becomes the second bend angle phi 1, advance to the inside of the corner portion 10c A surplus part can be generated.
  • 2nd shaping process S2 when reducing the plate
  • the male mold material 41 is in contact with the inside of the corner portion 10c, and therefore the change in the circumferential length inside the corner portion 10c. Can be suppressed.
  • the laminated body 3 can be shaped suitably so that the plate
  • the second shaping step S2 since the female mold material 51 is in contact with the outside of the corner portion 10c, the change in the peripheral length on the outside of the corner portion 10c can be suppressed.
  • the laminated body 3 can be shaped suitably so that the plate
  • the outer periphery of the corner part 10c can be extended suitably, and generation
  • the corner portion 10c is curved to generate an excess portion inside the corner portion 10c, the thickness of the laminate 3 can be reduced and the peripheral length inside the corner portion 10c can be suitably extended. The stretching of the body 3 can be suppressed, and the corner portion 10c can be made dense.
  • the spar 10 in which occurrence of molding defects in the corner portion 10c is suitably suppressed can be formed. it can.
  • the spar 10 in which the occurrence of molding defects in the corner portion 10c is suitably suppressed. Moreover, since the difference of the fiber content rate of the corner part 10c and the fiber content rate of the center part 10a and a pair of side part 10b can be 3% or less, the fiber content rate of the spar 10 whole can be equalize
  • the laminate 3 is formed using a carbon fiber sheet in a dry state, but the fiber sheet is not limited to carbon fiber, and may be a fiber sheet of other materials such as glass fiber or aramid fiber. Furthermore, you may use the prepreg which impregnated resin to the fiber sheet previously. In this case, in the second shaping step S2, it is preferable that the resin material is filled in a large amount, and the resin material is appropriately discharged during molding to adjust the filling amount.
  • the male mold material 41 is used in the first shaping process S1 and the female mold material 51 is used in the second shaping process S2.
  • the present invention is not particularly limited to this configuration.
  • a male or female mold that is the same mold may be used.
  • the applied composite material 1 is not specifically limited.
  • the spar 10 may have a corner portion 10c of 80 ° to 110 °, or may be applied to a Z-shaped longitudinal member having a corner portion 10c of about 45 °.
  • Even composite corner portion 10c is 45 °, the second bend angle phi 1 becomes a smaller angle than the first bend angle phi 2, The first bending angle phi 2, without an obtuse angle well, the second bend angle phi 1 becomes perpendicular or less.
  • FIG. 5 is an explanatory diagram relating to a method for forming a composite material according to the second embodiment.
  • the female first molding die 31A is used in the first shaping step S11, and the female second molding die 32 is used in the second shaping step S12.
  • the female first molding die 31A has substantially the same configuration as the female second molding die 32, and therefore the description thereof is omitted.
  • step S11 first shaping step
  • step S12 second shaping step.
  • 2nd shaping process S12 is the same as 2nd shaping process S2 of Embodiment 1, description is abbreviate
  • the thickness of the laminate 3 is reduced from the radius of curvature R1 'to the radius of curvature R1, so that the inner peripheral length of the laminate 3 is increased, and thus fiber elongation occurs. For this reason, the surplus previously generated inside the corner portion 10c in the second shaping step S12 is offset by the fiber elongation in the second shaping step S2.
  • the corner portion 10c A surplus part can be previously generated inside.
  • the second shaping step S12 when the thickness of the laminate 3 is reduced from the inside to the outside of the corner portion 10c, there is an excess portion, so that the inner circumferential length of the corner portion 10c is suitably extended. be able to. Therefore, the fiber tension on the inside of the corner portion 10c of the laminate 3 can be suppressed, and the corner portion 10c can be suitably densified, so that occurrence of molding defects in the corner portion 10c can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

湾曲するコーナー部10cが形成されるスパー10等の複合材1の成形方法において、第1曲げ角度φで湾曲するコーナー部10cを有すると共に繊維シートを積層した積層体3に対して、コーナー部10cの外側から内側に向かって積層体3の板厚が薄くなるように、積層体3を賦形する第1賦形工程S1と、第1曲げ角度よりも小さな第2曲げ角度φとなるように、積層体3のコーナー部10cを湾曲させ、コーナー部10cの内側から外側に向かって積層体3の板厚が薄くなるように、積層体3を賦形する第2賦形工程S2とを備える。

Description

複合材の成形方法、複合材の成形用治具及び複合材
 本発明は、湾曲するコーナー部が形成される複合材の成形方法、複合材の成形用治具及び複合材に関するものである。
 従来、湾曲するコーナー部が形成される複合材の成形方法として、雄型となる賦形型に、強化繊維積層体を密着させることにより成形されるプリフォームの製造方法が知られている(例えば、特許文献1参照)。この製造方法で用いられる雄型は、上面、肩部、側面を有している。そして、この製造方法では、雄型に強化繊維積層体を皺無く密着させるべく、強化繊維積層体に上面から側面に順次押し圧を加える際に、強化繊維積層体の肩部から側面にかけて順次押し圧を加えた後、強化繊維積層体の上面から肩部にかけて順次押し圧を加えている。
特開2010-120167号公報
 ここで、特許文献1の製造方法では、平板となる強化繊維積層体の両側を湾曲させることで、上面、肩部及び側面を形成している。そして、湾曲して形成される強化繊維積層体の肩部に対して、強化繊維積層体の外側から押し圧を加える。強化繊維積層体の外側から押し圧を加えると、強化繊維積層体の肩部において、その厚さが薄くなる。このとき、強化繊維積層体の厚み方向の外側の周長が短くなる。厚み方向の外側の周長が短くなると、短くなった分だけ強化繊維積層体の余剰が発生し、この余剰によって、強化繊維積層体の肩部の外側に皺(リンクル)が発生し易くなることから、リンクル等の成形不良の発生を抑制することが困難となる。
 そこで、本発明は、湾曲するコーナー部における成形不良の発生を好適に抑制することができる複合材の成形方法、複合材の成形用治具及び複合材を提供することを課題とする。
 本発明の複合材の成形方法は、湾曲するコーナー部が形成される複合材の成形方法において、第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体に対して、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第1賦形工程と、前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記積層体の板厚が薄くなるように、前記積層体を賦形する第2賦形工程と、を備えることを特徴とする。
 この構成によれば、第1賦形工程において、第1曲げ角度となるコーナー部を有する積層体に対し、積層体の外側から内側に向かって板厚が薄くなることで、積層体の緻密化を図ることができる一方で、コーナー部の外側の周長が短くなる。そして、第2賦形工程において、積層体を第2曲げ角度で湾曲させることで、コーナー部の外側の周長を伸ばすことができる。このように、第1賦形工程において、コーナー部の外側の周長が短くなることで発生する積層体の余剰部分を、第2賦形工程において、コーナー部の外側の周長を伸ばし、積層体の余剰部分を引き延ばすことで、発生した積層体の余剰部分を相殺することができる。よって、積層体のコーナー部の外側におけるリンクルの発生を好適に抑制することができ、コーナー部における成形不良の発生を抑制できる。なお、第1賦形工程では、コーナー部の内側が接する雄型を用いて、積層体を賦形し、第2賦形工程では、雄型、またはコーナー部の外側が接する雌型を適宜用いて、積層体を賦形している。また、繊維シートは、ドライとなるものであってもよいし、樹脂を含浸したプリプレグであってもよい。また、第1賦形工程では、繊維シートを積層した平板状の積層体を、第1曲げ角度で湾曲させて、コーナー部を形成してもよいし、繊維シートを第1曲げ角度で湾曲させつつ積層することで、コーナー部を有する積層体を形成してもよい。
 本発明の他の複合材の成形方法は、湾曲するコーナー部が形成される複合材の成形方法において、第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体に対して、前記積層体の板厚が薄くなるように、前記積層体を賦形する第1賦形工程と、前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第2賦形工程と、を備えることを特徴とする。
 この構成によれば、第2賦形工程において、第2曲げ角度となるコーナー部を有する積層体に対し、積層体の外側から内側に向かって板厚を薄くすると、コーナー部の内側の周長が長くなる。この場合、コーナー部の内側において積層体が突っ張ることから、コーナー部の緻密化が困難となり、コーナー部における繊維含有率が低下する。このため、第2賦形工程において、積層体を第1曲げ角度から第2曲げ角度となるように湾曲させることで、コーナー部の内側を縮ませてコーナー部の内側に余剰部分を予め発生させる。そして、第2賦形工程において、コーナー部の内側から外側に向かって積層体の板厚を薄くするときに、積層体の余剰部分があるため、コーナー部の内側の周長を好適に伸ばすことができる。このように、第2賦形工程において、コーナー部の内側の周長が長くなることで発生する積層体の突っ張りを、コーナー部の内側に積層体の余剰部分を予め発生させた状態で、コーナー部の内側の周長を長くすることで、積層体の突っ張りを抑制することができる。よって、積層体のコーナー部の内側における積層体の突っ張りを抑制することで、コーナー部の緻密化を好適に行うことができ、コーナー部における成形不良の発生を抑制できる。なお、第1賦形工程では、コーナー部の外側が接する雄型またはコーナー部の外側が接する雌型を適宜用いて、積層体を賦形し、第2賦形工程では、雌型を用いて、積層体を賦形している。また、繊維シートは、ドライとなるものであってもよいし、樹脂を含浸したプリプレグであってもよい。また、第1賦形工程では、繊維シートを積層した平板状の積層体を、第1曲げ角度で湾曲させて、コーナー部を形成してもよいし、繊維シートを第1曲げ角度で湾曲させつつ積層することで、コーナー部を有する積層体を形成してもよい。
 また、前記第1賦形工程では、前記コーナー部の内側が接する雄型を用いて、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形し、前記第2賦形工程では、前記コーナー部の外側が接する雌型を用いて、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形することが、好ましい。
 この構成によれば、第1賦形工程において、コーナー部の内側に雄型が接するため、コーナー部の内側の周長の変化を抑制することができる。このため、第1賦形工程において、コーナー部の外側から内側に向かって積層体の板厚が薄くなるように、積層体を好適に賦形することができる。また、第2賦形工程において、コーナー部の外側に雌型が接するため、コーナー部の外側の周長の変化を抑制することができる。このため、第2賦形工程において、コーナー部の内側から外側に向かって積層体の板厚が薄くなるように、積層体を好適に賦形することができる。以上から、第2賦形工程において、積層体を第1曲げ角度から第2曲げ角度となるように湾曲させることで、コーナー部の外側の周長を伸ばしつつ、コーナー部の内側を縮ませてコーナー部の内側に余剰部分を発生させることができる。そして、第2賦形工程において、コーナー部の内側から外側に向かって積層体の板厚を薄くすることで、コーナー部の内側の周長を伸ばすことができる。このように、コーナー部を湾曲させることによりコーナー部の外側の周長を伸ばすことで、積層体のコーナー部の外側におけるリンクルの発生を好適に抑制することができる。また、コーナー部を湾曲させてコーナー部の内側に余剰部分を発生させつつ、積層体の板厚を薄くしてコーナー部の内側の周長を伸ばすことで、積層体の突っ張りを抑制し、コーナー部の緻密化を好適に行うことができる。
 また、前記複合材は、前記コーナー部が直角となるスパーであり、前記第2曲げ角度は、直角となる角度であり、前記第1曲げ角度は、直角よりも大きい鈍角であることが、好ましい。
 この構成によれば、コーナー部が直角となるスパーを成形する場合において、コーナー部の成形不良の発生が好適に抑制された複合材を成形することができる。
 本発明の成型用治具は、湾曲するコーナー部が形成される複合材の成形用治具であって、第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体を形成すると共に、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第1成形型と、前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記積層体の板厚が薄くなるように、前記積層体を賦形する第2成形型と、を含むことを特徴とする。
 この構成によれば、第1成形型及び第2成形型を用いることで、コーナー部におけるリンクルの発生が好適に抑制された複合材を成形することができる。
 本発明の他の成型用治具は、湾曲するコーナー部が形成される複合材の成形用治具であって、第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体を形成すると共に、前記積層体の板厚が薄くなるように、前記積層体を賦形する第1成形型と、前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第2成形型と、を含むことを特徴とする。
 この構成によれば、第1成形型及び第2成形型を用いることで、コーナー部が好適に緻密化された複合材を成形することができる。
 また、前記第1成形型は、前記コーナー部の内側が接する雄型であり、前記第2成形型は、前記コーナー部の外側が接する雌型であることが、好ましい。
 この構成によれば、コーナー部におけるリンクルの発生が好適に抑制され、また、コーナー部が好適に緻密化された複合材を成形することができる。
 本発明の複合材は、湾曲するコーナー部と、前記コーナー部に連なる直線部と、を備え、前記コーナー部の厚みが、前記直線部に比して厚く、前記コーナー部の繊維含有率が、前記直線部の繊維含有率に比して低くなることを特徴とする。
 この構成によれば、コーナー部における成形不良の発生が好適に抑制された複合材とすることができる。また、成形過程で10%程度の緻密化が生じる材料を用いる場合、コーナー部においても7%以上緻密化させることができ、直線部とコーナー部の繊維含有率の差分を3%以下に抑えられ、コーナー部及び直線部における繊維含有率の均一化を図ることができる。
図1は、実施形態1に係る複合材の成形方法によって成形される複合材の一例としてのスパーを示す斜視図である。 図2は、実施形態1に係る複合材の成形方法に用いられる第1成形型を示す模式図である。 図3は、実施形態1に係る複合材の成形方法に用いられる第2成形型を示す模式図である。 図4は、実施形態1に係る複合材の成形方法に関する説明図である。 図5は、実施形態2に係る複合材の成形方法に関する説明図である。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
 実施形態1に係る複合材1の成形方法は、例えば、航空機の機体等を構成する複合材1を成形するための方法である。複合材1としては、例えば、図1に示すスパー10等がある。なお、本実施形態では、図1に示す複合材1に適用して説明するが、この複合材1に限定されるものではない。
 図1は、実施形態1に係る複合材の成形方法によって成形される複合材の一例としてのスパーを示す斜視図である。図2は、実施形態1に係る複合材の成形方法に用いられる第1成形型を示す模式図である。図3は、実施形態1に係る複合材の成形方法に用いられる第2成形型を示す模式図である。図4は、実施形態1に係る複合材の成形方法に関する説明図である。
 複合材1の成形方法の説明に先立ち、図1を参照して、この成形方法によって成形される複合材1について説明する。図1に示す複合材1は、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)を用いて構成されている。この複合材1は、両側が折り曲げられた繊維シートを積層した積層体3を成形した後、折り曲げられた積層体3に樹脂を含浸させて硬化させることにより成形される。なお、積層体3の繊維シートの層間には、接着または粘着の機能を有する樹脂が介在している。
 図1に示すスパー10であれば、積層体3は、スパー10の幅方向における両側が湾曲することで、コーナー部10cが形成されている。つまり、スパー10は、幅方向の中央部10aと、中央部10aの幅方向両側に形成され、中央部10aに対して垂直となる一対の側面部10bと、中央部10aと一対の側面部10bとの間に形成される一対のコーナー部10cとを有している。このとき、中央部10a及び一対の側面部10bが、湾曲しない直線部となっている。このように、図1に示すスパー10であれば、積層体3は、その一対の側面部10bが、中央部10aに対して湾曲することで、二次元的に湾曲し、湾曲するコーナー部10cが形成される。
 図1に示すスパー10は、所定の成形用治具30を用いて成形される。成形用治具30は、第1曲げ角度φで湾曲するコーナー部10cを有する積層体3を成形する第1成形型31と、第1曲げ角度φよりも小さな第2曲げ角度φとなるように、積層体3のコーナー部10cを湾曲させる第2成形型32とを有している。ここで、第1曲げ角度φは、中央部10aの外面と側面部10bの外面とが為す角度であり、例えば、90°よりも大きな鈍角な角度となっている。また、第2曲げ角度φは、中央部10aの外面と側面部10bの外面とが為す角度であり、例えば、90°(直角)となる角度となっている。
 第1成形型31は、図2に示すように、コーナー部10cの内側が接する雄型となっている。第1成形型31は、第1曲げ角度φで湾曲するコーナー部10cを有する積層体3を成形すると共に、コーナー部10cの外側から内側に向かって積層体3の板厚が薄くなるように、積層体3を緻密化させて賦形するために使用される。ここで、第1成形型31では、繊維シートを積層した平板状の積層体3を、第1曲げ角度φで湾曲させて、コーナー部10cを成形してもよいし、繊維シートを第1曲げ角度φで湾曲させつつ積層することで、コーナー部10cを有する積層体3を成形してもよい。
 第1成形型31は、雄型材41を有しており、雄型材41は、上面部41aと、上面部41aの幅方向両側に形成され、上面部41aに対して第1曲げ角度φとなる一対の側面部41bと、上面部41aと一対の側面部41bとの間に形成される一対のコーナー部41cとを有している。
 上面部41aの外側の面には、積層体3の中央部10aの内側が接する。一対の側面部41bの外側の面には、積層体3の一対の側面部41bの内側が接する。一対のコーナー部41cの外側の面には、積層体3の一対のコーナー部10cの内側が接する。
 雄型材41は、バギングフィルム42で覆われる。バギングフィルム42は、雄型材41に設置された積層体3を覆うと共に、雄型材41との間にシール材43が設けられることで、その内部を気密に封止している。そして、気密に封止されたバギングフィルム42の内部雰囲気を、吸引口44を介して真空引きすると共に、図示しない加熱装置によって加熱されることで、積層体3を緻密化する。このとき、加熱装置によって積層体3が加熱されることで、積層体3の繊維シートの層間の樹脂が溶融する。このため、真空解放された緻密化後の積層体3は、その形状が層間の樹脂によって保持されることから、緻密化前の積層体3の形状に戻ることを抑制できる。
 このように、積層体3のコーナー部10cの内側には、雄型材41が接するため、コーナー部10cの内側の周長の変化が抑制される。そして、第1成形型31では、コーナー部10cの外側から内側に向かって積層体3の板厚が薄くなるように、積層体3が賦形される。
 第2成形型32は、図3に示すように、コーナー部10cの外側が接する雌型となっている。第2成形型32は、積層体3を第1曲げ角度φよりも小さな第2曲げ角度φで湾曲させてコーナー部10cを形成すると共に、コーナー部10cの内側から外側に向かって積層体3の板厚が薄くなるように、積層体3を賦形するものとなっている。
 第2成形型32は、雌型材51を有しており、雌型材51は、底面部51aと、底面部51aの幅方向両側に形成され、底面部51aに対して第2曲げ角度(垂直)となる一対の側面部51bと、底面部51aと一対の側面部51bとの間に形成される一対のコーナー部51cと、一対の側面部51bの上部から外側に突出する一対のフランジ部51dとを有している。
 底面部51aの内側の面には、折り曲げられた積層体3の中央部10aの外側が接する。一対の側面部51bの内側の面には、折り曲げられた積層体3の一対の側面部10bの外側が接する。一対のコーナー部51cの内側の面には、折り曲げられた積層体3の一対のコーナー部10cの外側が接する。
 雌型材51は、バギングフィルム52で覆われる。バギングフィルム52は、雌型材51に設置された積層体3を覆うと共に、雌型材51との間にシール材53が設けられることで、その内部を気密に封止している。そして、気密に封止されたバギングフィルム52の内部雰囲気を、吸引口54を介して真空引きしつつ樹脂材が充填され、図示しない加熱装置によって加熱されることで、樹脂材が熱硬化し、スパー10が成形される。
 このように、積層体3のコーナー部10cの外側には、雌型材51が接するため、コーナー部10cの外側の周長の変化が抑制される。このため、第2成形型32では、コーナー部10cの内側から外側に向かって積層体3の板厚が薄くなるように、積層体3が賦形される。
 次に、図4を参照して、複合材の成形方法について説明する。この複合材の成形方法は、ドライ状態の繊維シートを用いた成型方法となっており、VaRTM(Vacuum assisted Resin Transfer Molding)成形、RTM(Resin Transfer Molding)成形、インフュージョン成形等が適用可能となっている。なお、以下の説明では、図1に示すスパー10を成形する場合について説明する。
 図4に示すように、この成形方法では、先ず、第1成形型31の雄型材41の形状に倣って、第1曲げ角度φで湾曲するコーナー部10cを有する積層体3を成形する(ステップS1:第1賦形工程)。具体的に、第1賦形工程S1では、コーナー部10cの内側の周長が、中心点Pを中心に所定の曲率半径R1’となるように、角度範囲θ2において、積層体3が成形される。つまり、所定の曲率半径R1’で湾曲する角度範囲θ2の部位が、積層体3のコーナー部10cとなっている。ここで、角度範囲θ2は、例えば、80°となっている。
 また、第1賦形工程S1では、コーナー部10cの外側から内側に向かって積層体3の板厚が薄くなるように真空加熱し、積層体3の緻密化が行われる。具体的に、第1賦形工程S1では、コーナー部10cの外側の周長が、中心点Pを中心に所定の曲率半径R2’から、所定の曲率半径R3となるように、積層体3の板厚が薄く成形される。なお、曲率半径R3は、曲率半径R2’よりも短い曲率半径となる。
 続いて、第1曲げ角度φとなる積層体3を、第2成形型32の雌型材51に嵌め入れることで、第2成形型32の雌型材51の形状に倣って、第1曲げ角度φよりも小さな第2曲げ角度φ(直角)となるように、積層体3のコーナー部10cを湾曲させる(ステップS2:第2賦形工程)。具体的に、第2賦形工程S2では、コーナー部10cの内側の周長が、中心点Pを中心に所定の曲率半径R1’となるように、角度範囲θ2よりも広角となる角度範囲θ1において、積層体3が湾曲させられる。つまり、所定の曲率半径R1’で湾曲する角度範囲θ1の部位が、積層体3のコーナー部10cとなっている。ここで、角度範囲θ1は、例えば、90°となっている。
 また、第2賦形工程S2では、コーナー部10cの内側から外側に向かって積層体3の板厚が薄くなるように真空加熱し、積層体3の緻密化が行われる。具体的に、第2賦形工程S2では、コーナー部10cの内側の周長が、中心点Pを中心に所定の曲率半径R1’から、所定の曲率半径R1となるように、積層体3の板厚が薄く成形される。なお、曲率半径R1は、曲率半径R1’よりも長い曲率半径となる。
 そして、第2賦形工程S2では、積層体3に樹脂を注入しつつ、高温高圧の環境下において、樹脂を熱硬化させることで、スパー10が成形される(ステップS3)。成形されたスパー10は、内側の周長における曲率半径がR1となり、外側の周長における曲率半径がR3となり、中央部10aと側面部10bとが為す曲げ角度が直角となる形状となる。
 ここで、第1賦形工程S1及び第2賦形工程S2において変化する積層体3のコーナー部10cにおける外側の周長について説明する。第1賦形工程S1において、曲率半径R2’から曲率半径R3となるように積層体3の板厚が変化する場合、板厚変化前後における積層体3の外側の周長差は、「2π(R2’-R3)×(θ2/360°)・・・(1)」となる。つまり、積層体3の板厚が薄くなることで、積層体3の外側の周長が短くなるため、余剰分が発生する。
 この後、第2賦形工程S2において曲げ角度が変化する場合、角度変化による積層体3の内側と外側との周長差は、「((R3-R1)/2)×tan(θ2-θ1)・・・(2)」となる。つまり、積層体3の角度範囲θ2から角度範囲θ1となることで、積層体3の外側の周長が伸ばされる。このため、余剰分の一部が、外側の周長の繊維伸びによって相殺される。つまり、(1)式から(2)式を減算することで、最終的な余剰分となる周長差は、ΔL’(=(1)式-(2)式)となる。
 よって、積層体3のコーナー部10cにおける外側の周長においては、第1賦形工程S1において積層体3のコーナー部10cの外側に発生する余剰分を、第2賦形工程S2において第1曲げ角度φから第2曲げ角度φに湾曲させることで、コーナー部10cの外側の余剰分を引き延ばすことができる。
 次に、第1賦形工程S1及び第2賦形工程S2において変化する積層体3のコーナー部10cにおける内側の周長について説明する。第2賦形工程S2において、曲げ角度が変化する場合、角度変化による積層体3の内側と外側との周長差は、「((R3-R1)/2)×tan(θ2-θ1)・・・(2)」となる。つまり、積層体3の角度範囲θ2から角度範囲θ1となることで、積層体3の内側の周長が短くなるため、余剰分が発生する。
 この後、第2賦形工程S2において、曲率半径R1’から曲率半径R1となるように積層体3の板厚が変化する場合、板厚変化前後における積層体3の内側の周長差は、「2π(R1-R1’)×(θ1/360°)・・・(3)」となる。つまり、積層体3の板厚が薄くなることで、積層体3の内側の周長が伸ばされる。このため、余剰分の一部が、内側の周長の繊維伸びによって相殺される。つまり、(3)式から(2)式を減算することで、最終的な繊維伸びとなる周長差は、ΔL(=(3)式-(2)式)となる。
 よって、積層体3のコーナー部10cにおける内側の周長においては、第2賦形工程S2において第1曲げ角度φから第2曲げ角度φに湾曲させ、積層体3のコーナー部10cの内側に予め余剰分を発生させることで、第2賦形工程S2においてコーナー部10cの内側の周長が伸ばされたとしても、コーナー部10cの内側における繊維の突っ張りを抑制することができる。
 このように成形されるスパー10は、コーナー部10cの厚みが、直線部となる中央部10a及び一対の側面部10bの厚みに比して僅かに厚く形成される。これは、積層体3のコーナー部10cを緻密化するためには、コーナー部10cの内側の周長がΔL分だけ伸びなければならないが、コーナー部10cの内側の繊維が僅かに突っ張るからである。このため、コーナー部10cの繊維含有率は、中央部10a及び一対の側面部10bの繊維含有率に比して低くなっている。そして、成形過程において、中央部10a及び一対の側面部10bの厚みが10%程度薄くなるような緻密化を生じさせる材料を用いる場合、コーナー部10cにおいても7%以上緻密化させることができる。よって、コーナー部10cの繊維含有率と、中央部10a及び一対の側面部10bの繊維含有率との差分は、3%以下にすることができ、より好適には、1%程度にすることができる。
 以上のように、実施形態1によれば、第1賦形工程S1において、第1曲げ角度φとなるコーナー部10cを有する積層体3に対し、積層体3の外側から内側に向かって板厚が薄くなることで、積層体3の緻密化を図ることができる一方で、コーナー部10cの外側の周長が短くなる。そして、第2賦形工程S2において、積層体3を第2曲げ角度φで湾曲させることで、コーナー部10cの外側の周長を伸ばすことができる。このように、第1賦形工程S1において、コーナー部10cの外側の周長が短くなることで発生する積層体3の余剰部分を、第2賦形工程S2において、コーナー部10cの外側の周長を伸ばし、積層体3の余剰部分を引き延ばすことで、発生した積層体3の余剰部分を相殺することができる。よって、積層体3のコーナー部10cの外側におけるリンクルの発生を好適に抑制することができ、コーナー部10cにおける成形不良の発生を抑制できる。
 また、実施形態1によれば、第2賦形工程S2において、積層体3を第1曲げ角度φから第2曲げ角度φとなるように湾曲させることで、コーナー部10cの内側に予め余剰部分を発生させることができる。そして、第2賦形工程S2において、コーナー部10cの内側から外側に向かって積層体3の板厚を薄くするときに、余剰部分があるため、コーナー部10cの内側の周長を好適に伸ばすことができる。よって、積層体3のコーナー部10cの内側における繊維の突っ張りを抑制することができ、コーナー部10cの緻密化を好適に行うことができることから、コーナー部10cにおける成形不良の発生を抑制できる。
 また、実施形態1によれば、第1賦形工程S1において、第1成形型31を用いることにより、コーナー部10cの内側に雄型材41が接するため、コーナー部10cの内側の周長の変化を抑制することができる。このため、第1賦形工程S1において、コーナー部10cの外側から内側に向かって積層体3の板厚が薄くなるように、積層体3を好適に賦形することができる。また、第2賦形工程S2において、コーナー部10cの外側に雌型材51が接するため、コーナー部10cの外側の周長の変化を抑制することができる。このため、第2賦形工程S2において、コーナー部10cの内側から外側に向かって積層体3の板厚が薄くなるように、積層体3を好適に賦形することができる。このため、コーナー部10cの外側の周長を好適に伸ばすことができ、積層体3のコーナー部10cの外側におけるリンクルの発生を好適に抑制することができる。また、コーナー部10cを湾曲させてコーナー部10cの内側に余剰部分を発生させつつ、積層体3の板厚を薄くしてコーナー部10cの内側の周長を好適に伸ばすことができるため、積層体3の突っ張りを抑制し、コーナー部10cの緻密化を好適に行うことができる。
 また、実施形態1によれば、コーナー部10cの曲げ角度が直角となるスパーを成形する場合であっても、コーナー部10cにおける成形不良の発生が好適に抑制されたスパー10を成形することができる。
 また、実施形態1によれば、コーナー部10cにおける成形不良の発生が好適に抑制されたスパー10を提供することができる。また、コーナー部10cの繊維含有率と、中央部10a及び一対の側面部10bの繊維含有率との差分を3%以下にできることから、スパー10全体の繊維含有率の均一化を図ることができる。
 なお、実施形態1では、ドライ状態の炭素繊維シートを用いて積層体3を形成したが、繊維シートは、炭素繊維に限定されず、ガラス繊維やアラミド繊維といった他の材料の繊維シートでも良いし、さらに、繊維シートに予め樹脂を含浸したプリプレグを用いてもよい。この場合、第2賦形工程S2において、樹脂材を多めに充填し、また、成形時において樹脂材を適宜排出して充填量を調整することが好ましい。
 また、実施形態1では、第1賦形工程S1において、雄型材41を用い、第2賦形工程S2において、雌型材51を用いたが、この構成に特に限定されない。第1賦形工程S1及び第2賦形工程S2において、同型となる雄型または雌型の成形型を用いてもよい。
 また、実施形態1では、コーナー部10cが直角となるスパー10に適用して説明したが、適用される複合材1は、特に限定されない。例えば、スパー10であっても、コーナー部10cが80°~110°であってもよいし、または、コーナー部10cが45°程度となるZ型の縦通材に適用してもよい。コーナー部10cが45°となる複合材であっても、第2曲げ角度φは、第1曲げ角度φよりも小さな角度となり、また、第1曲げ角度φは、鈍角でなくてもよく、第2曲げ角度φは、直角以下となる。
[実施形態2]
 次に、図5を参照して、実施形態2に係る複合材の成形方法について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図5は、実施形態2に係る複合材の成形方法に関する説明図である。
 実施形態2の複合材の成形方法では、第1賦形工程S11において、雌型の第1成形型31Aを用い、第2賦形工程S12において、雌型の第2成形型32を用いる。なお、雌型の第1成形型31Aは、雌型の第2成形型32とほぼ同様の構成であるため説明を省略する。
 図5に示すように、実施形態2の複合材の成形方法では、先ず、第1成形型31Aの雌型材の形状に倣って、第1曲げ角度φで湾曲するコーナー部10cを有する積層体3を成形する(ステップS11:第1賦形工程)。このとき、積層体3のコーナー部10cの外側には、第1成形型31Aが接するため、コーナー部10cの外側の周長の変化が抑制される。
 この後、第1曲げ角度となる積層体3を、第2成形型32の雌型材51に嵌め入れることで、第2成形型32の雌型材51の形状に倣って、第1曲げ角度よりも小さな第2曲げ角度(直角)となるように、積層体3のコーナー部10cを湾曲させる(ステップS12:第2賦形工程)。なお、第2賦形工程S12は、実施形態1の第2賦形工程S2と同様であるため、説明を省略する。
 第2賦形工程S12では、曲率半径R1’から曲率半径R1に積層体3の板厚が薄くなることで、積層体3の内側の周長が長くなるため、繊維伸びが発生する。このため、第2賦形工程S12においてコーナー部10cの内側に予め発生させた余剰分が、第2賦形工程S2の繊維伸びによって相殺される。
 以上のように、実施形態2によれば、第2賦形工程S12において、積層体3を第1曲げ角度φから第2曲げ角度φとなるように湾曲させることで、コーナー部10cの内側に予め余剰部分を発生させることができる。そして、第2賦形工程S12において、コーナー部10cの内側から外側に向かって積層体3の板厚を薄くするときに、余剰部分があるため、コーナー部10cの内側の周長を好適に伸ばすことができる。よって、積層体3のコーナー部10cの内側における繊維の突っ張りを抑制することができ、コーナー部10cの緻密化を好適に行うことができることから、コーナー部10cにおける成形不良の発生を抑制できる。
 1 複合材
 3 積層体
 10 スパー
 10a 中央部
 10b 側面部
 10c コーナー部
 30 成形用治具
 31 第1成形型
 32 第2成形型
 41 雄型材
 41a 上面部
 41b 側面部
 41c コーナー部
 42 バギングフィルム
 43 シール材
 44 吸引口
 51 雌型材
 51a 底面部
 51b 側面部
 51c コーナー部
 51d フランジ部
 52 バギングフィルム
 53 シール材
 54 吸引口
 φ 第1曲げ角度
 φ 第2曲げ角度

Claims (8)

  1.  湾曲するコーナー部が形成される複合材の成形方法において、
     第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体に対して、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第1賦形工程と、
     前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記積層体の板厚が薄くなるように、前記積層体を賦形する第2賦形工程と、を備えることを特徴とする複合材の成形方法。
  2.  湾曲するコーナー部が形成される複合材の成形方法において、
     第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体に対して、前記積層体の板厚が薄くなるように、前記積層体を賦形する第1賦形工程と、
     前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第2賦形工程と、を備えることを特徴とする複合材の成形方法。
  3.  前記第1賦形工程では、前記コーナー部の内側が接する雄型を用いて、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形し、
     前記第2賦形工程では、前記コーナー部の外側が接する雌型を用いて、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形することを特徴とする請求項1または2に記載の複合材の成形方法。
  4.  前記複合材は、前記コーナー部が直角となるスパーであり、
     前記第2曲げ角度は、直角となる角度であり、
     前記第1曲げ角度は、直角よりも大きい鈍角であることを特徴とする請求項1から3のいずれか1項に記載の複合材の成形方法。
  5.  湾曲するコーナー部が形成される複合材の成形用治具であって、
     第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体を形成すると共に、前記コーナー部の外側から内側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第1成形型と、
     前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記積層体の板厚が薄くなるように、前記積層体を賦形する第2成形型と、を含むことを特徴とする成形用治具。
  6.  湾曲するコーナー部が形成される複合材の成形用治具であって、
     第1曲げ角度で湾曲する前記コーナー部を有すると共に繊維シートを積層した積層体を形成すると共に、前記積層体の板厚が薄くなるように、前記積層体を賦形する第1成形型と、
     前記第1曲げ角度よりも小さな第2曲げ角度となるように、前記積層体の前記コーナー部を湾曲させ、前記コーナー部の内側から外側に向かって前記積層体の板厚が薄くなるように、前記積層体を賦形する第2成形型と、を含むことを特徴とする成形用治具。
  7.  前記第1成形型は、前記コーナー部の内側が接する雄型であり、
     前記第2成形型は、前記コーナー部の外側が接する雌型であることを特徴とする請求項5または6に記載の成形用治具。
  8.  湾曲するコーナー部と、
     前記コーナー部に連なる直線部と、を備え、
     前記コーナー部の厚みが、前記直線部に比して厚く、
     前記コーナー部の繊維含有率が、前記直線部の繊維含有率に比して低くなることを特徴とする複合材。
PCT/JP2016/082671 2016-01-22 2016-11-02 複合材の成形方法、複合材の成形用治具及び複合材 WO2017126189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3006425A CA3006425C (en) 2016-01-22 2016-11-02 Method for molding composite material, jig for molding composite material, and composite material
EP16886428.8A EP3369542B1 (en) 2016-01-22 2016-11-02 Method for molding composite material, jig for molding composite material, and composite material
CN201680070073.5A CN108290322B (zh) 2016-01-22 2016-11-02 复合材料的成型方法、复合材料的成型用夹具及复合材料
ES16886428T ES2856015T3 (es) 2016-01-22 2016-11-02 Método para moldear material compuesto, plantilla para moldear material compuesto y material compuesto
US15/779,975 US10744701B2 (en) 2016-01-22 2016-11-02 Method for molding composite material, jig for molding composite material, and composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010911 2016-01-22
JP2016010911A JP6543577B2 (ja) 2016-01-22 2016-01-22 複合材の成形方法及び複合材の成形用治具

Publications (1)

Publication Number Publication Date
WO2017126189A1 true WO2017126189A1 (ja) 2017-07-27

Family

ID=59362058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082671 WO2017126189A1 (ja) 2016-01-22 2016-11-02 複合材の成形方法、複合材の成形用治具及び複合材

Country Status (7)

Country Link
US (1) US10744701B2 (ja)
EP (1) EP3369542B1 (ja)
JP (1) JP6543577B2 (ja)
CN (1) CN108290322B (ja)
CA (1) CA3006425C (ja)
ES (1) ES2856015T3 (ja)
WO (1) WO2017126189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2595787A (en) * 2016-04-06 2021-12-08 Spirit Aerosys Inc Method for eliminating wrinkles or bridging in composite laminate corners or bends

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047869A1 (ja) * 2016-09-07 2018-03-15 三菱重工業株式会社 複合材の成形方法及び複合材の成形用治具
JP7225320B2 (ja) * 2021-06-28 2023-02-20 三菱重工業株式会社 賦形方法および賦形装置
JP2024032402A (ja) * 2022-08-29 2024-03-12 三菱重工業株式会社 複合材の成形方法及び成形装置
CN116494558A (zh) * 2023-03-22 2023-07-28 中建材(上海)航空技术有限公司 带曲率结构的成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230020A (ja) * 2007-03-20 2008-10-02 Mitsubishi Heavy Ind Ltd プリフォームおよびその製造方法並びにfrpの製造方法
JP2011083975A (ja) * 2009-10-16 2011-04-28 Toray Ind Inc 繊維強化プラスチックの製造方法
US20140284836A1 (en) * 2013-03-19 2014-09-25 The Boeing Company Method and Apparatus for Reducing Ply Wrinkling of Composite Laminates During Forming

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648109A (en) 1995-05-03 1997-07-15 Massachusetts Institute Of Technology Apparatus for diaphragm forming
JP2006312260A (ja) 2005-05-09 2006-11-16 Fuji Heavy Ind Ltd プリプレグの折曲成形装置及びその折曲成形方法
JP4652160B2 (ja) * 2005-07-11 2011-03-16 川崎重工業株式会社 積層複合材の矯正治具、矯正方法、および成形品
DE602005018782D1 (de) 2005-10-17 2010-02-25 Saab Ab Formverfahren mit einer Gleitschicht
JP2010120167A (ja) 2008-11-17 2010-06-03 Toray Ind Inc プリフォームおよび繊維強化プラスチックの製造方法
ES2432090B2 (es) 2012-03-26 2015-04-27 Airbus Operations, S.L. Procedimiento de fabricación de piezas realizadas en material compuesto y dispositivo empleado.
JP6216134B2 (ja) * 2013-03-28 2017-10-18 三菱航空機株式会社 繊維強化プラスチック部材の成形装置および成形方法
US9782937B1 (en) * 2014-05-16 2017-10-10 The Boeing Company Apparatus for forming contoured composite laminates
JP6537921B2 (ja) 2015-08-06 2019-07-03 三菱重工業株式会社 繊維強化プラスチックの製造装置、可動台、賦形繊維基材の製造方法及び繊維強化プラスチックの製造方法
WO2018047869A1 (ja) * 2016-09-07 2018-03-15 三菱重工業株式会社 複合材の成形方法及び複合材の成形用治具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230020A (ja) * 2007-03-20 2008-10-02 Mitsubishi Heavy Ind Ltd プリフォームおよびその製造方法並びにfrpの製造方法
JP2011083975A (ja) * 2009-10-16 2011-04-28 Toray Ind Inc 繊維強化プラスチックの製造方法
US20140284836A1 (en) * 2013-03-19 2014-09-25 The Boeing Company Method and Apparatus for Reducing Ply Wrinkling of Composite Laminates During Forming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2595787A (en) * 2016-04-06 2021-12-08 Spirit Aerosys Inc Method for eliminating wrinkles or bridging in composite laminate corners or bends
GB2597629A (en) * 2016-04-06 2022-02-02 Spirit Aerosys Inc Method for eliminating wrinkles or briding in composite laminate corner or bends
GB2595787B (en) * 2016-04-06 2022-05-25 Spirit Aerosys Inc Method for eliminating wrinkles or bridging in composite laminate corners or bends
GB2597629B (en) * 2016-04-06 2022-06-29 Spirit Aerosys Inc Method for eliminating wrinkles or bridging in composite laminate corner or bends

Also Published As

Publication number Publication date
EP3369542B1 (en) 2021-01-13
EP3369542A4 (en) 2018-12-19
CN108290322A (zh) 2018-07-17
CN108290322B (zh) 2021-04-20
CA3006425A1 (en) 2017-07-27
CA3006425C (en) 2021-01-19
EP3369542A1 (en) 2018-09-05
JP6543577B2 (ja) 2019-07-10
US20190084217A1 (en) 2019-03-21
JP2017128095A (ja) 2017-07-27
ES2856015T3 (es) 2021-09-27
US10744701B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2017126189A1 (ja) 複合材の成形方法、複合材の成形用治具及び複合材
WO2018047869A1 (ja) 複合材の成形方法及び複合材の成形用治具
JP6005086B2 (ja) 複合構造体の製造方法
JP5315713B2 (ja) Frp製部材用プリフォームの製造方法
US20100143648A1 (en) Fiber-reinforced polymeric casing and method for manufacturing the same
JP6581875B2 (ja) 複合材の成形方法
WO2016098426A1 (ja) 複合構造体及び複合構造体の成形方法
CN110891752A (zh) 复合材料成形夹具及复合材料成形方法
WO2012090469A1 (ja) 成形型
CN104385626B (zh) 基于间断铺层的复合材料薄壁壳体的制备方法
JP4941811B2 (ja) プリフォーム、frp成形体の製造方法
WO2018198934A1 (ja) 複合材料の成形方法および複合材料の成形装置
CN108099223A (zh) 复合材料/金属叠层结构复合管共固化制造方法
WO2019026594A1 (ja) 可撓性マンドレル、複合材部品の製造方法
JP2013233805A (ja) 膨張領域を有する外形カウル
WO2024048125A1 (ja) 複合材の成形方法及び成形装置
KR101144768B1 (ko) 복합재 샌드위치 제조방법
JP2002028944A (ja) 複合材ビームの成形方法
JPH10278185A (ja) サンドイッチ構造体の製造方法
WO2015093418A1 (ja) 複合材料の製造方法、及び複合材料
WO2019026418A1 (ja) 可撓性マンドレル、複合材部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3006425

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2016886428

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE