WO2017126035A1 - Laser light source device and manufacturing method thereof - Google Patents

Laser light source device and manufacturing method thereof Download PDF

Info

Publication number
WO2017126035A1
WO2017126035A1 PCT/JP2016/051450 JP2016051450W WO2017126035A1 WO 2017126035 A1 WO2017126035 A1 WO 2017126035A1 JP 2016051450 W JP2016051450 W JP 2016051450W WO 2017126035 A1 WO2017126035 A1 WO 2017126035A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser array
array
heat sink
submount
Prior art date
Application number
PCT/JP2016/051450
Other languages
French (fr)
Japanese (ja)
Inventor
充輝 二見
一貴 池田
山本 修平
矢部 実透
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/051450 priority Critical patent/WO2017126035A1/en
Publication of WO2017126035A1 publication Critical patent/WO2017126035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a laser light source device using a semiconductor laser array and a manufacturing method thereof.
  • a semiconductor laser array As a high-power semiconductor laser, it is common to use a semiconductor laser array in which a plurality of light emitting points are arranged in one bar.
  • warpage along the arrangement direction of the light emitting points becomes a problem.
  • the influence of warpage on optical characteristics is serious.
  • the microlens array arranged on the optical axis of the outgoing light of the semiconductor laser array has an optical working surface for collimating the fast axis direction on the incident side and an optical working surface for collimating the slow axis direction On the exit side.
  • the warp causes a deviation between the optical axis of the light emitting point at the center of the semiconductor laser array and the optical axis of the light emitting point at the end. Therefore, when the light emitted from the semiconductor laser array passes through the microlens array, the light beam at the end is largely deflected.
  • Patent Document 1 a protrusion is provided at the end of the submount to suppress warpage that occurs when the semiconductor laser array is mounted on the submount or the heat sink.
  • Patent Document 2 a semiconductor laser array having a warp is corrected by disposing and bonding submounts in which copper and tungsten are stacked above and below the semiconductor laser array.
  • Increase in residual stress has various effects on laser characteristics. For example, in the case of a red semiconductor laser array using GaAs as a substrate, if the residual stress in the compression direction increases near the interface with the submount or heat sink directly below it, the laser output decreases and the oscillation wavelength shifts to the short wavelength side. To do. Further, the residual stress increases the lattice defects in the active layer of the laser, leading to dark line degradation.
  • the present invention provides a technique capable of reducing the influence of warpage of a semiconductor laser array and suppressing an increase in residual stress and a deterioration in thermal resistance in a laser light source device using a semiconductor laser array. For the purpose.
  • a laser light source device includes a semiconductor laser array having a plurality of light emitting points, and a microlens array disposed on an optical axis of light emitted from the semiconductor laser array, and the semiconductor laser array emits the light emission
  • the microlens array is curved in the same direction as the warp of the semiconductor laser array, having a concave or convex warp along the arrangement direction of the dots.
  • a laser light source device includes a semiconductor laser array having a plurality of light emitting points, and a microlens array disposed on the optical axis of the emitted light of the semiconductor laser array.
  • the microlens array is curved in the same direction as the warp of the semiconductor laser array.
  • the optical axis of the light emitting point of the semiconductor laser array and the optical axis of the microlens array are coaxial, the deflection of the light beam can be suppressed. Thereby, the influence of the warp of the semiconductor laser array can be reduced.
  • the allowable range of the warp amount of the semiconductor laser array is widened, it is possible to adopt a structure in which the residual stress of the semiconductor laser array is kept low and a structure with low thermal resistance. Thereby, increase of residual stress and deterioration of thermal resistance can be suppressed.
  • FIG. 1 is a perspective view of a laser light source device 1 according to an embodiment.
  • xyz coordinate axes are appropriately shown in the drawing.
  • the + x direction and the ⁇ x direction are collectively referred to as an x-axis direction
  • the + y direction and the ⁇ y direction are collectively referred to as a y-axis direction
  • the + z direction and the ⁇ z direction are collectively referred to as a z-axis direction.
  • the laser light source device 1 includes a semiconductor laser array 10, a submount 20, a microlens array 30, a heat sink 41, and a plate 42.
  • the semiconductor laser array 10 is a red semiconductor laser obtained by epitaxially growing an AlGaInP-based compound semiconductor on a GaAs substrate.
  • the semiconductor laser array 10 is a broad area laser having two or more (plural) emission points, and each emission point has a wide stripe in the arrangement direction (x-axis direction) of the emission points.
  • the resonator length (z-axis direction length) is 0.5 mm or more and 2.0 mm or less
  • the lateral width (x-axis direction length) is 4 mm or more and 15 mm or less, which is a long dimension in the x-axis direction.
  • the horizontal width is preferably optimized mainly by the output specifications of the laser light source device.
  • the laser light source device 1 exerts a more remarkable effect in a long semiconductor laser array in which such a high output operation is expected. That is, the longer the horizontal width of the semiconductor laser array, the larger the amount of deviation of the light emitting point in the z-axis direction, and the greater the influence of warpage on the optical characteristics.
  • the semiconductor laser array 10 has a convex warp along the arrangement direction of the light emitting points. Details of the convex warpage will be described later.
  • FIG. 2 is a perspective view of the submount 20.
  • the semiconductor laser array 10 is bonded to one of two main surfaces facing each other along the epitaxial growth direction (x-axis direction).
  • the submount 20 includes a base material 21 and conductive layers 22, 23, and 24, and is electrically connected by the semiconductor laser array 10, the conductive layers 22 and 23, and the wires 25.
  • the base material 21 SiC or AlN having a linear expansion coefficient smaller than that of the heat sink 41 and higher thermal conductivity is used.
  • Cu is used as a material for the conductive layers 22, 23, and 24.
  • the conductive layers 22, 23, and 24 form a layer on the base material 21 by film formation by vacuum deposition or plating, or bonding by diffusion bonding or the like. Note that the conductive layer 24 is not intended to supply power, and is provided to suppress the warpage of the submount due to the difference in linear expansion coefficient between the base material 21 and the conductive layers 22 and 23.
  • FIG. 3 is a perspective view of the microlens array 30, and FIG. 4 is a perspective view of the microlens array 30 viewed from another direction.
  • the microlens array 30 includes an optical action surface 31 and an optical action surface 32.
  • the optical action surface 31 is a surface for collimating the fast axis (z-axis direction)
  • the optical action surface 32 is a surface for collimating the slow axis direction (x-axis direction).
  • the optical action surface 31 is provided on the side close to the semiconductor laser array 10, and the optical action surface 32 is provided on the side facing the optical action surface 31 (that is, the side far from the semiconductor laser array 10).
  • the microlens array 30 has a convex curve along the arrangement direction of the light emitting points. That is, the microlens array 30 is curved in the same direction as the warp of the semiconductor laser array 10.
  • the optical action surface 31 is a cylindrical lens array
  • the optical action surface 32 is a cylindrical lens array rotated by 90 ° with respect to the optical action surface 31.
  • Each cylindrical lens array is composed of at least as many cylindrical lenses as the light emitting points of the semiconductor laser array 10.
  • the cylindrical lens array on the optical action surface 31 is arranged so that the optical axis of each cylindrical lens is coaxial with the optical axis of the light emitting point of the corresponding semiconductor laser array 10. Thereby, even if the light emitting points of the semiconductor laser array 10 have shifted in the z-axis direction, the optical axis of the cylindrical lens is coaxial with respect to the respective light emitting points, so that the deflection of the light beam can be suppressed.
  • each cylindrical lens is arranged at the same interval as the light emitting points of the semiconductor laser array 10.
  • FIG. 5 is a yz plane sectional view of the laser light source device 1.
  • the plate 42 is inserted for the purpose of height adjustment for securing a space when the microlens array 30 is arranged in front of the semiconductor laser array 10 (+ y direction). For this reason, the plate 42 is disposed at a position where it does not interfere with the microlens array 30, and is further disposed along the emission end face of the semiconductor laser array 10 as shown in FIG.
  • the heat exhaust path of the heat generated near the emission end face of the semiconductor laser array 10 during heat generation during the laser operation is limited to the direction excluding the microlens array 30 side. Therefore, from the viewpoint of lowering the thermal resistance, it is necessary to ensure that the plate 42 has a space for arranging the microlens array 30 and is made as thin as possible so as to transfer heat to the heat sink 41 as soon as possible. Further, Cu or Al as the material of the heat sink 41 and the plate 42 has a large linear expansion coefficient with respect to GaAs as the material of the semiconductor laser array 10 or SiC or AlN as the main material of the submount 20. Therefore, from the viewpoint of reducing the residual stress of the semiconductor laser array 10, it is desirable to reduce the total thickness of the heat sink 41 and the plate 42 as much as possible.
  • the laser light source device 1 according to the present embodiment is characterized in that the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are joined by a single heating and pressing process using solder.
  • solder As the solder used at the time of joining, it is desirable to use AuSn solder having excellent reliability and thermal conductivity.
  • the melting point of the AuSn solder varies depending on the ratio of Au and Sn, but is approximately 300 ° C. or higher and 340 ° C. or lower.
  • FIG. 6 is a graph showing a temperature profile of the bonding process in the method for manufacturing the laser light source device 1
  • FIG. 7 is a diagram for explaining how the laser light source device 1 is warped in the bonding process. Note that states 1 to 3 in FIG. 7 indicate states of the laser light source device 1 in the range of states 1 to 3 indicated by the range of arrows in the temperature profile of FIG.
  • State 1 in FIG. 7 shows a state in which each member is not warped before joining. Since the temperature and load are uniformly applied when the members come in contact with each other at the time of heating and pressurization, it is desirable that each component before joining has no warp or has a small warp as in State 1.
  • State 2 in FIG. 7 shows a state in which each member is attached at a high temperature exceeding the melting point of the solder in the heating and pressurizing steps. Since the solder is a liquid above the melting point, the contact interfaces are not constrained to each other and no stress is generated. In order to uniformly apply the temperature to each member, the heating is performed from both directions of the upper surface of the semiconductor laser array 10 and the lower surface of the heat sink 41. Moreover, in order to prevent the position shift of each member, it is necessary to apply the pressure before exceeding the melting point of the solder. After the heating and pressurizing steps for a predetermined time, the temperature is lowered and the pressure is released, but pressure is applied until the temperature falls below the melting point of the solder for the reason described above.
  • State 3 in FIG. 7 shows a state where the cooling has progressed to a temperature below the melting point of the solder through the heating and pressurizing steps. Solder has changed to a solid state, and each member is constrained at each joint interface. Accordingly, thermal stress is generated from the difference in linear expansion coefficient of each member, and increases as the temperature decreases starting from the melting point of the solder.
  • the semiconductor laser array 10, the submount 20, the plate 42, and the heat sink 41 are symmetrically positioned with respect to the center in the arrangement direction of the light emitting points in plan view. Placed in. That is, by joining these members so as to be bilaterally symmetric with respect to the arrangement direction of the light emitting points, the thermal stress after joining is generated uniformly in the left and right directions, and the warped shape is also bilaterally symmetric. Therefore, the coupling efficiency between the emitted light of the semiconductor laser array 10 and the curved microlens array 30 is stabilized.
  • the axis of symmetry at this time is shown as an axis 100 in FIG. Note that the amount or shape of the warp generated in the state 3 in FIG. 7 varies depending on the material or size of the submount 20, the heat sink 41, and the plate 42.
  • FIG. 8 is a diagram illustrating a state where the microlens array 30 is bonded to the heat sink 41.
  • the microlens array 30 is aligned by active alignment, and the microlens array 30 is bonded to the heat sink 41 using an epoxy adhesive 51. Curing of the adhesive 51 is performed in two stages, and after the temporary curing by ultraviolet irradiation immediately after the bonding, a heat treatment process is performed to thermally cure.
  • epoxy-based adhesives have a large linear expansion coefficient (50 ⁇ 10 ⁇ 6 / ° C. or more and 100 ⁇ 10 ⁇ 6 / ° C. or less), so that the lens moves and condenses as the operating temperature of the laser light source device changes. There is concern about the deterioration of sex.
  • the amount of the epoxy adhesive 51 arranged between the microlens array 30 and the heat sink 41 is adjusted so that the thickness of the plate 42 is the minimum necessary thickness. ing. Therefore, the displacement of the microlens array 30 is minimized.
  • FIG. 8 by applying an epoxy adhesive 51 only to a partial region of the microlens array 30, the lens of the microlens array 30 and the heat sink 41 are caused by a difference in linear expansion coefficient. Prevents cracking or adhesive peeling.
  • the wiring process of the laser light source device 1 is performed between the solder bonding process and the bonding and curing process of the microlens array.
  • the wiring process includes wire bonding for supplying power from the submount 20 to the semiconductor laser array 10 and ribbon bonding for supplying power from the lead material to the submount 20. Then, the laser light source device 1 and the external power source are electrically connected via the lead material.
  • the above structure may be hermetically sealed using a cap or a lid.
  • FIG. 9 is a process block diagram of the method for manufacturing the laser light source device 1.
  • 11 and 12 are diagrams for explaining the influence of the warp of the semiconductor laser array 101 on the optical characteristics in the laser light source device according to the base technology.
  • the semiconductor laser array 101 has a convex warp along the arrangement direction of the light emitting points with the light emitting point at the center as the apex.
  • the microlens array 102 disposed on the optical axis of the emitted light of the semiconductor laser array 101 has an optical working surface for making the fast axis direction parallel light on the incident side and makes the slow axis direction parallel light.
  • the optical action surface is provided on the exit side.
  • the warp causes a deviation between the optical axis 201 of the light emitting point at the center of the semiconductor laser array 101 and the optical axis 202 of the light emitting point at the end. Therefore, as shown in FIG. 12, there is a problem that when the light emitted from the semiconductor laser array 101 passes through the microlens array 102, the light beam at the end is largely deflected.
  • the laser light source device 1 includes a semiconductor laser array 10 having a plurality of light emitting points, and a microlens array 30 disposed on the optical axis of emitted light from the semiconductor laser array 10.
  • the semiconductor laser array 10 has a convex warp along the arrangement direction of the light emitting points, and the microlens array 30 is curved in the same direction as the warp of the semiconductor laser array 10.
  • the method of manufacturing the laser light source device 1 includes a semiconductor laser array 10 having a plurality of light emitting points, a submount 20 disposed on one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array 10,
  • the heat sink 41 disposed on the surface opposite to the surface on which the semiconductor laser array 10 is disposed in the submount 20, and the plate 42 disposed between the heat sink 41 and the submount 20, respectively, have a light emitting point in plan view.
  • the step (a) of arranging the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 is performed by performing a step (a) of arranging the semiconductor laser array 10 at a symmetrical position with respect to the center in the arrangement direction and one heating and pressurization using solder.
  • the optical axis of the light emitting point of the semiconductor laser array 10 and the optical axis of the microlens array 30 are coaxial, the deflection of the light beam can be suppressed. Thereby, the influence of the curvature of the semiconductor laser array 10 can be reduced.
  • the allowable range of the warp amount of the semiconductor laser array 10 is widened, it is possible to adopt a structure in which the residual stress of the semiconductor laser array 10 is kept low and a structure with low thermal resistance. Thereby, increase of residual stress and deterioration of thermal resistance can be suppressed. Therefore, the durability of the laser light source device 1 is improved.
  • the method of suppressing the warp of the semiconductor laser array by providing a convex portion at the end of the submount requires two submounts, which increases the manufacturing cost of the laser light source device. Since only one form is required, there is no such problem.
  • FIG. 10 is a graph showing the relationship between the amount of warpage of the semiconductor laser array 10 and the stress when the thickness of the heat sink 41 is changed.
  • SiC is used as the base material of the submount 20 and Cu is used as the material of the heat sink 41 and the plate 42.
  • the horizontal axis indicates the thickness of the heat sink 41 of the reference structure as 1, and the vertical axis indicates the warpage amount and the stress value in the reference structure as 1, respectively.
  • the warping amount is the absolute value of the difference between the central portion and the end portion of the semiconductor laser array 10
  • the stress is the absolute value of the stress at the lower surface of the semiconductor laser array 10. It is an analysis result under the condition that there is no change. From FIG. 10, it can be seen that increasing the thickness of the heat sink 41 reduces the amount of warping while increasing the stress.
  • the influence of the deterioration of the optical characteristics due to the warp of the semiconductor laser array 10 can be absorbed by the curvature of the microlens array 30, and the heat sink that has been conventionally limited by the warp is thin, It is possible to employ a structure with a small residual stress.
  • the heat sink 41 thinner, the distance from the semiconductor laser array 10 that is the heat source of the laser light source device 1 to the cooling surface of the heat sink 41 can be shortened, and the thermal resistance as the laser light source device 1 is reduced. Leads to.
  • the submount 20 is bonded to one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array 10, and is bonded to the surface of the submount 20 facing the surface to which the semiconductor laser array 10 is bonded.
  • the semiconductor laser array 10, the submount 20, and the heat sink 41 are respectively disposed at positions symmetrical with respect to the center in the arrangement direction of the light emitting points in plan view.
  • the shape of the corresponding microlens array 30 is also made symmetrical with respect to the center of the light emitting points in the arrangement direction. be able to.
  • the optical axis of each light emission point and the optical axis of each microlens of the optical action surface 31 can be stably made coaxial.
  • the height of the optical axis with the semiconductor laser array 10 can be adjusted when the microlens array 30 is directly bonded to the heat sink 41. That is, the height of the optical axis can be adjusted only by directly bonding the microlens array 30 to the heat sink 41. Therefore, the optical axis alignment of the microlens array 30 is facilitated.
  • the step is formed by the plate 42 disposed between the heat sink 41 and the submount 20, the height of the optical axis can be adjusted by adjusting the thickness of the plate 42.
  • the microlens array 30 is bonded to the heat sink 41 via the adhesive 51, the height of the optical axis can be adjusted only by directly bonding the microlens array 30 to the heat sink 41. Therefore, the optical axis alignment of the microlens array 30 is facilitated.
  • the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are arranged symmetrically with respect to the center in the arrangement direction of the light emitting points in plan view, and soldered together. Therefore, the warpage of the semiconductor laser array 10 after the bonding can be stably made to be a left-right symmetrical curve shape with respect to the center in the arrangement direction of the light emitting points.
  • a pressurizing process is required one by one, and it becomes difficult to control the warped shape after bonding.
  • the thermal stress after soldering is not uniform with respect to the center of the light emitting point in the arrangement direction. It becomes asymmetrical with respect to the center in the arrangement direction.
  • the shape of the corresponding microlens array 30 is similarly the center of the light emitting point arrangement direction. Can be symmetrical.
  • the optical axis of each light emitting point and the optical axis of each microlens on the optical action surface 31 can be stably coaxial.
  • the plate 42 may have a structure integrated with the heat sink 41 in advance. For example, by providing a step corresponding to the thickness of the plate 42 to the heat sink 41 by cutting or pressing, the same effect as in the case of the embodiment can be obtained.
  • the semiconductor laser array 10 is not limited to the material or the oscillation wavelength described in the embodiment. That is, the same effect as in the case of the embodiment can be obtained even in a semiconductor laser array using InP, GaN, sapphire or the like as an initial growth substrate.
  • the semiconductor laser array 10 is not limited to the convex warp shape described in the embodiment. That is, a concave warpage shape may be used, and an effect equivalent to that of the embodiment can be obtained as long as the structure can stably generate the same warpage regardless of the amount of warpage.
  • the microlens array 30 is not limited to the arrangement of the optical action surfaces 31 and 32. That is, a microlens array having a shape in which the optical action surface 31 does not have a lens surface for incident light and the optical action surface 32 acts in the fast axis direction and the slow axis direction, or the optical action surface 31 is a fast axis. Even in the case of a microlens array having a shape that acts in the direction and the slow axis direction and the optical action surface 32 does not have a lens surface with respect to incident light, the same effect as in the case of the embodiment can be obtained.
  • 1 laser light source device 10 semiconductor laser array, 20 submount, 30 microlens array, 41 heat sink, 42 plate, 51 adhesive.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The purpose of the present invention is to provide, in a laser light source device using a semiconductor laser array, a technique by which it is possible to reduce the influence of warpage of the semiconductor laser array and suppress the increase of residual stress as well as the deterioration of thermal resistance. A laser light source device 1 comprises a semiconductor laser array 10 which has a plurality of light emitting points, and a micro lens array 30 arranged on an optical axis of the light emitted from the semiconductor laser array 10. The semiconductor laser array 10 has a warpage of a concave or convex shape along an arrangement direction of the light emitting points. The micro lens array 30 is curved in the same direction as the warpage of the semiconductor laser array 10.

Description

レーザ光源装置およびその製造方法Laser light source device and manufacturing method thereof
 本発明は、半導体レーザアレイを用いたレーザ光源装置およびその製造方法に関するものである。 The present invention relates to a laser light source device using a semiconductor laser array and a manufacturing method thereof.
 高出力用途の半導体レーザとして、複数の発光点が1つのバーに配列された半導体レーザアレイを用いることが一般的である。半導体レーザアレイを用いる際、発光点の配列方向に沿った反りが問題となる。特に、数十Wクラスの長尺の半導体レーザアレイでは反りが光学特性に及ぼす影響が深刻である。 As a high-power semiconductor laser, it is common to use a semiconductor laser array in which a plurality of light emitting points are arranged in one bar. When using a semiconductor laser array, warpage along the arrangement direction of the light emitting points becomes a problem. In particular, in a long semiconductor laser array of several tens of W class, the influence of warpage on optical characteristics is serious.
 半導体レーザアレイが中央部の発光点を頂点として発光点の配列方向に沿って凸状の反りを有する場合について説明する。半導体レーザアレイの出射光の光軸上に配置されるマイクロレンズアレイは、ファスト軸方向を平行光化するための光学作用面を入射側に、スロー軸方向を平行光化するための光学作用面を出射側に有する。このとき、反りによって半導体レーザアレイの中央部の発光点の光軸と端部の発光点の光軸との間にずれが生じる。したがって、半導体レーザアレイからの出射光がマイクロレンズアレイを通過すると端部の光線が大きく偏向してしまう。 The case where the semiconductor laser array has a convex warp along the arrangement direction of the light emitting points with the light emitting point at the center as an apex will be described. The microlens array arranged on the optical axis of the outgoing light of the semiconductor laser array has an optical working surface for collimating the fast axis direction on the incident side and an optical working surface for collimating the slow axis direction On the exit side. At this time, the warp causes a deviation between the optical axis of the light emitting point at the center of the semiconductor laser array and the optical axis of the light emitting point at the end. Therefore, when the light emitted from the semiconductor laser array passes through the microlens array, the light beam at the end is largely deflected.
 上記の問題に対し、例えば特許文献1では、サブマウントの端部に凸部を設けることで、半導体レーザアレイをサブマウントまたはヒートシンクへ実装する際に生じる反りを抑制している。また、例えば特許文献2では、銅とタングステンを積層したサブマウントを半導体レーザアレイの上下に配して接合することで、反りを有する半導体レーザアレイを矯正している。 In response to the above problem, for example, in Patent Document 1, a protrusion is provided at the end of the submount to suppress warpage that occurs when the semiconductor laser array is mounted on the submount or the heat sink. For example, in Patent Document 2, a semiconductor laser array having a warp is corrected by disposing and bonding submounts in which copper and tungsten are stacked above and below the semiconductor laser array.
国際公開2010/131498号International Publication No. 2010/131498 特開平11-163467号公報Japanese Patent Laid-Open No. 11-163467
 しかしながら、特許文献1に記載の技術では、反り量の抑制と引き換えに半導体レーザアレイへの残留応力が増大することが懸念される。また、特許文献2に記載の技術では、反りの矯正による残留応力の増大に加え、銅に対し熱伝導率の低いタングステンを半導体レーザアレイ直下に配することから、熱抵抗の悪化が懸念される。 However, with the technique described in Patent Document 1, there is a concern that the residual stress on the semiconductor laser array increases in exchange for suppressing the amount of warpage. Further, in the technique described in Patent Document 2, in addition to an increase in residual stress due to the correction of warpage, tungsten having a low thermal conductivity with respect to copper is disposed directly under the semiconductor laser array, so that there is a concern about deterioration of thermal resistance. .
 残留応力の増大は、レーザの特性に種々の影響を及ぼす。例えば、GaAsを基板とする赤色半導体レーザアレイの場合、その直下のサブマウントまたはヒートシンクとの界面付近で圧縮方向の残留応力が強くなるとレーザの出力が低減し、さらには発振波長が短波側にシフトする。また、残留応力によりレーザの活性層の格子欠陥を増長し、ダークライン劣化につながる。 Increase in residual stress has various effects on laser characteristics. For example, in the case of a red semiconductor laser array using GaAs as a substrate, if the residual stress in the compression direction increases near the interface with the submount or heat sink directly below it, the laser output decreases and the oscillation wavelength shifts to the short wavelength side. To do. Further, the residual stress increases the lattice defects in the active layer of the laser, leading to dark line degradation.
 熱抵抗の悪化は、レーザ発振時の活性層温度の上昇を招き、出力特性の悪化につながる。また、高温環境下でのレーザ駆動に際しては、上記の理由によりチラーによる水冷等の大がかりな冷却系を必要とする。したがって、レーザ光源装置を組み込んだ装置のコストアップ、およびサイズアップを招く。このように、反りの積極的な抑制は、残留応力の増大または熱抵抗の悪化による種々の影響とトレードオフの関係にあるといえる。 悪 化 Deterioration of thermal resistance leads to increase of active layer temperature during laser oscillation, leading to deterioration of output characteristics. Further, when the laser is driven in a high temperature environment, a large cooling system such as water cooling by a chiller is required for the above reason. Therefore, the cost and size of the device incorporating the laser light source device are increased. Thus, it can be said that the active suppression of warping has a trade-off relationship with various effects due to an increase in residual stress or a deterioration in thermal resistance.
 そこで、本発明は、半導体レーザアレイを用いたレーザ光源装置において、半導体レーザアレイの反りの影響を低減するとともに、残留応力の増大、および熱抵抗の悪化を抑制することが可能な技術を提供することを目的とする。 Accordingly, the present invention provides a technique capable of reducing the influence of warpage of a semiconductor laser array and suppressing an increase in residual stress and a deterioration in thermal resistance in a laser light source device using a semiconductor laser array. For the purpose.
 本発明に係るレーザ光源装置は、複数の発光点を有する半導体レーザアレイと、前記半導体レーザアレイの出射光の光軸上に配置されるマイクロレンズアレイとを備え、前記半導体レーザアレイは、前記発光点の配列方向に沿って凹状または凸状の反りを有し、前記マイクロレンズアレイは、前記半導体レーザアレイの反りと同方向に湾曲しているものである。 A laser light source device according to the present invention includes a semiconductor laser array having a plurality of light emitting points, and a microlens array disposed on an optical axis of light emitted from the semiconductor laser array, and the semiconductor laser array emits the light emission The microlens array is curved in the same direction as the warp of the semiconductor laser array, having a concave or convex warp along the arrangement direction of the dots.
 本発明によれば、レーザ光源装置は、複数の発光点を有する半導体レーザアレイと、半導体レーザアレイの出射光の光軸上に配置されるマイクロレンズアレイとを備え、半導体レーザアレイは、発光点の配列方向に沿って凹状または凸状の反りを有し、マイクロレンズアレイは、半導体レーザアレイの反りと同方向に湾曲している。 According to the present invention, a laser light source device includes a semiconductor laser array having a plurality of light emitting points, and a microlens array disposed on the optical axis of the emitted light of the semiconductor laser array. The microlens array is curved in the same direction as the warp of the semiconductor laser array.
 したがって、半導体レーザアレイの発光点の光軸とマイクロレンズアレイの光軸とが同軸となるため、光線の偏向を抑制することができる。これにより、半導体レーザアレイの反りの影響を低減することができる。 Therefore, since the optical axis of the light emitting point of the semiconductor laser array and the optical axis of the microlens array are coaxial, the deflection of the light beam can be suppressed. Thereby, the influence of the warp of the semiconductor laser array can be reduced.
 また、半導体レーザアレイの反り量の許容範囲が広がるため、半導体レーザアレイの残留応力を低く抑えた構造、および熱抵抗の低い構造を採用することができる。これにより、残留応力の増大、および熱抵抗の悪化を抑制することができる。 Also, since the allowable range of the warp amount of the semiconductor laser array is widened, it is possible to adopt a structure in which the residual stress of the semiconductor laser array is kept low and a structure with low thermal resistance. Thereby, increase of residual stress and deterioration of thermal resistance can be suppressed.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態に係るレーザ光源装置の斜視図である。It is a perspective view of the laser light source apparatus which concerns on embodiment. サブマウントの斜視図である。It is a perspective view of a submount. マイクロレンズアレイの斜視図である。It is a perspective view of a micro lens array. マイクロレンズアレイの別の方向から視た斜視図である。It is the perspective view seen from another direction of the micro lens array. レーザ光源装置のyz平面断面図である。It is yz plane sectional drawing of a laser light source device. レーザ光源装置の製造方法における接合工程の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of the joining process in the manufacturing method of a laser light source device. 接合工程において、レーザ光源装置に反りが生じる様子を説明するための図である。It is a figure for demonstrating a mode that a laser light source apparatus warp in a joining process. マイクロレンズアレイがヒートシンクに接着された状態を示す図である。It is a figure which shows the state with which the micro lens array was adhere | attached on the heat sink. レーザ光源装置の製造方法の工程ブロック図である。It is a process block diagram of the manufacturing method of a laser light source device. ヒートシンクの厚さを変化させたときの半導体レーザアレイの反り量と応力との関係を示すグラフである。It is a graph which shows the relationship between the curvature amount of a semiconductor laser array when a thickness of a heat sink is changed, and stress. 前提技術に係るレーザ光源装置において、半導体レーザアレイの反りが光学特性に及ぼす影響を説明するための図である。It is a figure for demonstrating the influence which the curvature of a semiconductor laser array has on an optical characteristic in the laser light source apparatus which concerns on a premise technique. 前提技術に係るレーザ光源装置において、半導体レーザアレイの反りが光学特性に及ぼす影響を説明するための図である。It is a figure for demonstrating the influence which the curvature of a semiconductor laser array has on an optical characteristic in the laser light source apparatus which concerns on a premise technique.
 <実施の形態>
 <構成>
 本発明の実施の形態について、図面を用いて以下に説明する。図1は、実施の形態に係るレーザ光源装置1の斜視図である。なお、説明を容易にするため、適宜、図中にxyzの座標軸を示す。ここで、+x方向と-x方向とをまとめてx軸方向、+y方向と-y方向とをまとめてy軸方向、+z方向と-z方向とをまとめてz軸方向ということとする。
<Embodiment>
<Configuration>
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a laser light source device 1 according to an embodiment. For ease of explanation, xyz coordinate axes are appropriately shown in the drawing. Here, the + x direction and the −x direction are collectively referred to as an x-axis direction, the + y direction and the −y direction are collectively referred to as a y-axis direction, and the + z direction and the −z direction are collectively referred to as a z-axis direction.
 レーザ光源装置1は、半導体レーザアレイ10、サブマウント20、マイクロレンズアレイ30、ヒートシンク41、およびプレート42を備える。 The laser light source device 1 includes a semiconductor laser array 10, a submount 20, a microlens array 30, a heat sink 41, and a plate 42.
 半導体レーザアレイ10は、GaAs基板上にAlGaInP系化合物半導体をエピタキシャル成長した赤色半導体レーザである。半導体レーザアレイ10は、2つ以上(複数)の発光点を有し、それぞれの発光点は、発光点の配列方向(x軸方向)に幅広のストライプを有するブロードエリアレーザである。また、共振器長(z軸方向の長さ)は0.5mm以上2.0mm以下、横幅(x軸方向の長さ)は4mm以上15mm以下の、x軸方向に長い寸法となっている。横幅は、主にレーザ光源装置の出力仕様によって最適化することが望ましい。 The semiconductor laser array 10 is a red semiconductor laser obtained by epitaxially growing an AlGaInP-based compound semiconductor on a GaAs substrate. The semiconductor laser array 10 is a broad area laser having two or more (plural) emission points, and each emission point has a wide stripe in the arrangement direction (x-axis direction) of the emission points. The resonator length (z-axis direction length) is 0.5 mm or more and 2.0 mm or less, and the lateral width (x-axis direction length) is 4 mm or more and 15 mm or less, which is a long dimension in the x-axis direction. The horizontal width is preferably optimized mainly by the output specifications of the laser light source device.
 一般的には、1つの半導体レーザアレイ当たりから高い出力が要求される場合は、さらに多くの発光点が必要となるため横幅は長尺化する。実施の形態に係るレーザ光源装置1は、このような高出力動作が期待される長尺の半導体レーザアレイにおいて、さらに顕著な効果を発揮する。すなわち、半導体レーザアレイの横幅が長尺であるほど、発光点のz軸方向のずれ量が大きくなり、反りが光学特性に与える影響も大きくなるためである。 Generally, when a high output is required from one semiconductor laser array, more light emitting points are required, so the lateral width becomes longer. The laser light source device 1 according to the embodiment exerts a more remarkable effect in a long semiconductor laser array in which such a high output operation is expected. That is, the longer the horizontal width of the semiconductor laser array, the larger the amount of deviation of the light emitting point in the z-axis direction, and the greater the influence of warpage on the optical characteristics.
 また、半導体レーザアレイ10は、発光点の配列方向に沿って凸状の反りを有している。凸状の反りの詳細については後述することとする。 Further, the semiconductor laser array 10 has a convex warp along the arrangement direction of the light emitting points. Details of the convex warpage will be described later.
 次に、サブマウント20について説明する。図2は、サブマウント20の斜視図である。図1に示すように、半導体レーザアレイ10のエピタキシャル成長方向(x軸方向)に沿って対向する2つの主面のうちの一方に接合される。図2に示すように、サブマウント20は、基材21、および導電層22,23,24を備え、半導体レーザアレイ10、導電層22,23、およびワイヤ25によって電気的に接続される。基材21としては、線膨張係数がヒートシンク41よりも小さく、さらに熱伝導率の高いSiCまたはAlNが用いられる。導電層22,23,24の材料としてはCuが用いられる。導電層22,23,24は、真空蒸着またはめっきによる成膜、または拡散接合等による張り合わせによって、基材21に対して層を形成する。なお、導電層24は、給電を目的としたものではなく、基材21と導電層22,23の線膨張係数の差のよるサブマウントの反りを抑制するために設けられる。 Next, the submount 20 will be described. FIG. 2 is a perspective view of the submount 20. As shown in FIG. 1, the semiconductor laser array 10 is bonded to one of two main surfaces facing each other along the epitaxial growth direction (x-axis direction). As shown in FIG. 2, the submount 20 includes a base material 21 and conductive layers 22, 23, and 24, and is electrically connected by the semiconductor laser array 10, the conductive layers 22 and 23, and the wires 25. As the base material 21, SiC or AlN having a linear expansion coefficient smaller than that of the heat sink 41 and higher thermal conductivity is used. Cu is used as a material for the conductive layers 22, 23, and 24. The conductive layers 22, 23, and 24 form a layer on the base material 21 by film formation by vacuum deposition or plating, or bonding by diffusion bonding or the like. Note that the conductive layer 24 is not intended to supply power, and is provided to suppress the warpage of the submount due to the difference in linear expansion coefficient between the base material 21 and the conductive layers 22 and 23.
 次に、マイクロレンズアレイ30について説明する。図3は、マイクロレンズアレイ30の斜視図であり、図4は、マイクロレンズアレイ30の別の方向から視た斜視図である。図3と図4に示すように、マイクロレンズアレイ30は、光学作用面31および光学作用面32を備える。光学作用面31は、ファスト軸(z軸方向)を平行光化するための面であり、光学作用面32は、スロー軸方向(x軸方向)を平行光化するための面である。光学作用面31は、半導体レーザアレイ10に近い側に設けられ、光学作用面32は、光学作用面31と対向する側(すなわち、半導体レーザアレイ10から遠い側)に設けられる。 Next, the microlens array 30 will be described. FIG. 3 is a perspective view of the microlens array 30, and FIG. 4 is a perspective view of the microlens array 30 viewed from another direction. As shown in FIGS. 3 and 4, the microlens array 30 includes an optical action surface 31 and an optical action surface 32. The optical action surface 31 is a surface for collimating the fast axis (z-axis direction), and the optical action surface 32 is a surface for collimating the slow axis direction (x-axis direction). The optical action surface 31 is provided on the side close to the semiconductor laser array 10, and the optical action surface 32 is provided on the side facing the optical action surface 31 (that is, the side far from the semiconductor laser array 10).
 また、マイクロレンズアレイ30は、図1に示すように、発光点の配列方向に沿った凸状の湾曲を有する。すなわち、マイクロレンズアレイ30は、半導体レーザアレイ10の反りと同方向に湾曲している。 Further, as shown in FIG. 1, the microlens array 30 has a convex curve along the arrangement direction of the light emitting points. That is, the microlens array 30 is curved in the same direction as the warp of the semiconductor laser array 10.
 図3と図4に示すように、光学作用面31はシリンドリカルレンズアレイであり、光学作用面32は、光学作用面31に対し90°回転したシリンドリカルレンズアレイである。各シリンドリカルレンズアレイは、半導体レーザアレイ10の発光点と同数以上のシリンドリカルレンズからなる。光学作用面31のシリンドリカルレンズアレイは、各シリンドリカルレンズの光軸が、対応する半導体レーザアレイ10の発光点の光軸と同軸になるように配列されている。これにより、半導体レーザアレイ10の発光点がz軸方向の光軸ずれをきたしていても、それぞれの発光点に対してシリンドリカルレンズの光軸が同軸となるため、光線の偏向を抑制できる。光学作用面32のシリンドリカルレンズアレイにおいて、各シリンドリカルレンズは半導体レーザアレイ10の発光点と同一間隔で配列されている。 As shown in FIGS. 3 and 4, the optical action surface 31 is a cylindrical lens array, and the optical action surface 32 is a cylindrical lens array rotated by 90 ° with respect to the optical action surface 31. Each cylindrical lens array is composed of at least as many cylindrical lenses as the light emitting points of the semiconductor laser array 10. The cylindrical lens array on the optical action surface 31 is arranged so that the optical axis of each cylindrical lens is coaxial with the optical axis of the light emitting point of the corresponding semiconductor laser array 10. Thereby, even if the light emitting points of the semiconductor laser array 10 have shifted in the z-axis direction, the optical axis of the cylindrical lens is coaxial with respect to the respective light emitting points, so that the deflection of the light beam can be suppressed. In the cylindrical lens array on the optical action surface 32, each cylindrical lens is arranged at the same interval as the light emitting points of the semiconductor laser array 10.
 次に、ヒートシンク41について説明する。図1に示すように、ヒートシンク41は、サブマウント20において半導体レーザアレイ10が接合される面と対向する面側に接合される。より具体的には、ヒートシンク41は、プレート42を介してサブマウント20とはんだ接合され、プレート42と接合した面と対向する面が冷却面となっている。ヒートシンク41およびプレート42の材料として、低熱抵抗化のために熱伝導率の高いCuまたはAlが用いられる。図5は、レーザ光源装置1のyz平面断面図である。図5に示すように、プレート42は、マイクロレンズアレイ30を半導体レーザアレイ10の前方(+y方向)に配置する際の空間確保のための高さ調整を目的として挿入されている。そのため、プレート42は、マイクロレンズアレイ30と干渉しない位置に配置され、さらには組立性の観点から、図5のように半導体レーザアレイ10の出射端面に沿って配置される。 Next, the heat sink 41 will be described. As shown in FIG. 1, the heat sink 41 is bonded to the surface of the submount 20 that faces the surface to which the semiconductor laser array 10 is bonded. More specifically, the heat sink 41 is solder-bonded to the submount 20 via the plate 42, and a surface facing the surface bonded to the plate 42 is a cooling surface. As a material for the heat sink 41 and the plate 42, Cu or Al having a high thermal conductivity is used to reduce the thermal resistance. FIG. 5 is a yz plane sectional view of the laser light source device 1. As shown in FIG. 5, the plate 42 is inserted for the purpose of height adjustment for securing a space when the microlens array 30 is arranged in front of the semiconductor laser array 10 (+ y direction). For this reason, the plate 42 is disposed at a position where it does not interfere with the microlens array 30, and is further disposed along the emission end face of the semiconductor laser array 10 as shown in FIG.
 このような構成では、レーザ動作時の発熱において、半導体レーザアレイ10の出射端面付近で発生した熱の排熱経路が、マイクロレンズアレイ30側を除く方向に制限される。したがって、低熱抵抗化の観点から、プレート42はマイクロレンズアレイ30を配置するための空間を確保したうえでできる限り薄くして、いち早くヒートシンク41へ熱を伝えることが必要である。また、ヒートシンク41およびプレート42の材料であるCuまたはAlは、半導体レーザアレイ10の材料であるGaAs、またはサブマウント20の主材料であるSiCまたはAlNに対して大きな線膨張係数を有する。したがって、半導体レーザアレイ10の低残留応力化の観点から、ヒートシンク41の厚さとプレート42の厚さを足し合わせた総厚をなるべく薄くすることが望ましい。 In such a configuration, the heat exhaust path of the heat generated near the emission end face of the semiconductor laser array 10 during heat generation during the laser operation is limited to the direction excluding the microlens array 30 side. Therefore, from the viewpoint of lowering the thermal resistance, it is necessary to ensure that the plate 42 has a space for arranging the microlens array 30 and is made as thin as possible so as to transfer heat to the heat sink 41 as soon as possible. Further, Cu or Al as the material of the heat sink 41 and the plate 42 has a large linear expansion coefficient with respect to GaAs as the material of the semiconductor laser array 10 or SiC or AlN as the main material of the submount 20. Therefore, from the viewpoint of reducing the residual stress of the semiconductor laser array 10, it is desirable to reduce the total thickness of the heat sink 41 and the plate 42 as much as possible.
 <製造方法>
 次に、実施の形態に係るレーザ光源装置1の製造方法に関して、特に各部品どうしの組立について説明する。本実施の形態に係るレーザ光源装置1は、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42について、はんだを用いた1回の加温および加圧工程によって接合することを特徴とする。接合時に使用されるはんだは、信頼性および熱伝導性に優れるAuSnはんだを用いることが望ましい。AuSnはんだの融点はAuとSnの比率によって変化するが、おおよそ300℃以上340℃以下である。
<Manufacturing method>
Next, regarding the method of manufacturing the laser light source device 1 according to the embodiment, the assembly of the components will be described in particular. The laser light source device 1 according to the present embodiment is characterized in that the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are joined by a single heating and pressing process using solder. As the solder used at the time of joining, it is desirable to use AuSn solder having excellent reliability and thermal conductivity. The melting point of the AuSn solder varies depending on the ratio of Au and Sn, but is approximately 300 ° C. or higher and 340 ° C. or lower.
 図6は、レーザ光源装置1の製造方法における接合工程の温度プロファイルを示すグラフであり、図7は、接合工程において、レーザ光源装置1に反りが生じる様子を説明するための図である。なお、図7の状態1~状態3は、図6の温度プロファイルにて矢印の範囲で示す状態1~状態3の範囲におけるレーザ光源装置1の状態を示している。 FIG. 6 is a graph showing a temperature profile of the bonding process in the method for manufacturing the laser light source device 1, and FIG. 7 is a diagram for explaining how the laser light source device 1 is warped in the bonding process. Note that states 1 to 3 in FIG. 7 indicate states of the laser light source device 1 in the range of states 1 to 3 indicated by the range of arrows in the temperature profile of FIG.
 最初に、半導体レーザアレイ10、サブマウント20、ヒートシンク41、およびプレート42をそれぞれ、平面視において発光点の配列方向の中心に対して左右対称な位置に配置する。図7の状態1は、接合前には各部材に反りが生じていない状態を示している。加温および加圧時に各部材が面で接触することで温度および荷重が均一に加えられるため、状態1のように接合前の各部品はいずれも反りがない、または反りが小さいことが望ましい。 First, the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are arranged at positions that are bilaterally symmetrical with respect to the center in the arrangement direction of the light emitting points in plan view. State 1 in FIG. 7 shows a state in which each member is not warped before joining. Since the temperature and load are uniformly applied when the members come in contact with each other at the time of heating and pressurization, it is desirable that each component before joining has no warp or has a small warp as in State 1.
 次に、はんだを用いた1回の加温および加圧を行い、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42を接合する。図7の状態2は、加温および加圧工程においてはんだの融点を超える高温下で各部材が着接している状態を示している。融点以上でははんだは液体のため、着接界面は互いに拘束されておらず、応力は生じていない状態である。なお、各部材に対し温度を均一に加えるために、加温は半導体レーザアレイ10の上面およびヒートシンク41の下面の両方向から行う。また、各部材の位置ずれを防ぐために、圧力ははんだの融点を超える前に印加しておくことが必要である。所定の時間の加温および加圧工程の後、降温および除圧するが、上記の理由のためはんだの融点を下回るまで圧力は加えられる。 Next, the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are joined by performing one heating and pressurization using solder. State 2 in FIG. 7 shows a state in which each member is attached at a high temperature exceeding the melting point of the solder in the heating and pressurizing steps. Since the solder is a liquid above the melting point, the contact interfaces are not constrained to each other and no stress is generated. In order to uniformly apply the temperature to each member, the heating is performed from both directions of the upper surface of the semiconductor laser array 10 and the lower surface of the heat sink 41. Moreover, in order to prevent the position shift of each member, it is necessary to apply the pressure before exceeding the melting point of the solder. After the heating and pressurizing steps for a predetermined time, the temperature is lowered and the pressure is released, but pressure is applied until the temperature falls below the melting point of the solder for the reason described above.
 次に、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42をはんだの融点以下の温度まで冷却し、半導体レーザアレイ10に対して発光点の配列方向に沿って凸状の反りを発生させる。図7の状態3は、加温および加圧工程を経て、はんだの融点以下の温度まで冷却が進んだ状態を示している。はんだは固体に状態変化しており、各部材はそれぞれの接合界面で拘束される。したがって、各部材の線膨張係数の差から熱応力が生じ、はんだの融点を起点として温度が下がるにつれ増加していく。このとき、半導体レーザアレイ10の主材料であるGaAsの線膨張係数(室温下で5.7×10-6/℃)に対し、ヒートシンク41およびプレート42の主材料であるCuの線膨張係数(室温下で16.8×10-6/℃)が非常に大きい。そのため、図7の状態3のように各部材に反りが発生する。なお、図7の状態3は反りを強調するために、実際の反り量と各部材のスケールが異なっている。 Next, the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are cooled to a temperature below the melting point of the solder, and a convex warp is generated along the arrangement direction of the light emitting points with respect to the semiconductor laser array 10. . State 3 in FIG. 7 shows a state where the cooling has progressed to a temperature below the melting point of the solder through the heating and pressurizing steps. Solder has changed to a solid state, and each member is constrained at each joint interface. Accordingly, thermal stress is generated from the difference in linear expansion coefficient of each member, and increases as the temperature decreases starting from the melting point of the solder. At this time, the linear expansion coefficient of Cu, which is the main material of the heat sink 41 and the plate 42, is compared to the linear expansion coefficient of GaAs, which is the main material of the semiconductor laser array 10 (5.7 × 10 −6 / ° C. at room temperature). 16.8 × 10 −6 / ° C. at room temperature) is very large. Therefore, each member is warped as in state 3 in FIG. Note that, in state 3 in FIG. 7, the actual warpage amount and the scale of each member are different in order to emphasize the warpage.
 実施の形態に係るレーザ光源装置1の製造方法においては、半導体レーザアレイ10、サブマウント20、プレート42、およびヒートシンク41はそれぞれ、平面視において発光点の配列方向の中心に対して左右対称な位置に配置される。すなわち、これらの部材を発光点の配列方向に対して左右対称となるよう接合することで、接合後の熱応力を左右均一に発生させ、反り形状も同じく左右対称となるようにしている。したがって、半導体レーザアレイ10の出射光と湾曲するマイクロレンズアレイ30の結合効率が安定する。このときの対称の軸を図7内に軸100として示している。なお、図7の状態3において発生する反りの量または形状は、サブマウント20、ヒートシンク41およびプレート42を構成する材料またはサイズによって変わる。 In the method of manufacturing the laser light source device 1 according to the embodiment, the semiconductor laser array 10, the submount 20, the plate 42, and the heat sink 41 are symmetrically positioned with respect to the center in the arrangement direction of the light emitting points in plan view. Placed in. That is, by joining these members so as to be bilaterally symmetric with respect to the arrangement direction of the light emitting points, the thermal stress after joining is generated uniformly in the left and right directions, and the warped shape is also bilaterally symmetric. Therefore, the coupling efficiency between the emitted light of the semiconductor laser array 10 and the curved microlens array 30 is stabilized. The axis of symmetry at this time is shown as an axis 100 in FIG. Note that the amount or shape of the warp generated in the state 3 in FIG. 7 varies depending on the material or size of the submount 20, the heat sink 41, and the plate 42.
 次に、半導体レーザアレイ10の反りと同方向に湾曲するマイクロレンズアレイ30を、半導体レーザアレイ10の出射光の光軸上に接着剤を介してヒートシンク41に接着する。以下、具体的に説明する。各部材の接合工程の後、マイクロレンズアレイ30を調芯した後、ヒートシンク41に接着する。図8は、マイクロレンズアレイ30がヒートシンク41に接着された状態を示す図である。マイクロレンズアレイ30の調芯はアクティブ調芯により行われ、マイクロレンズアレイ30のヒートシンク41への接着はエポキシ系の接着剤51が用いられる。接着剤51の硬化は2段階で行われ、接着直後に紫外線照射による仮硬化した後、熱処理工程を行って熱硬化させる。 Next, the microlens array 30 curved in the same direction as the warp of the semiconductor laser array 10 is bonded to the heat sink 41 via an adhesive on the optical axis of the emitted light of the semiconductor laser array 10. This will be specifically described below. After the joining process of each member, the microlens array 30 is aligned and then adhered to the heat sink 41. FIG. 8 is a diagram illustrating a state where the microlens array 30 is bonded to the heat sink 41. The microlens array 30 is aligned by active alignment, and the microlens array 30 is bonded to the heat sink 41 using an epoxy adhesive 51. Curing of the adhesive 51 is performed in two stages, and after the temporary curing by ultraviolet irradiation immediately after the bonding, a heat treatment process is performed to thermally cure.
 なお、一般的にエポキシ系の接着剤は線膨張係数が大きい(50×10-6/℃ 以上100×10-6/℃以下)ため、レーザ光源装置の動作温度の変化によってレンズが動き集光性が悪化することが懸念される。これに対し、実施の形態では、プレート42の厚さが必要最低限の厚さとなるように、マイクロレンズアレイ30とヒートシンク41との間に配置されるエポキシ系の接着剤51の量が調整されている。したがって、マイクロレンズアレイ30のずれは最小限に抑えられる。また、図8に示すように、エポキシ系の接着剤51をマイクロレンズアレイ30の一部の領域のみに塗布することで、マイクロレンズアレイ30とヒートシンク41の線膨張係数の差に起因するレンズの割れまたは接着剤剥がれを防止している。 In general, epoxy-based adhesives have a large linear expansion coefficient (50 × 10 −6 / ° C. or more and 100 × 10 −6 / ° C. or less), so that the lens moves and condenses as the operating temperature of the laser light source device changes. There is concern about the deterioration of sex. On the other hand, in the embodiment, the amount of the epoxy adhesive 51 arranged between the microlens array 30 and the heat sink 41 is adjusted so that the thickness of the plate 42 is the minimum necessary thickness. ing. Therefore, the displacement of the microlens array 30 is minimized. Further, as shown in FIG. 8, by applying an epoxy adhesive 51 only to a partial region of the microlens array 30, the lens of the microlens array 30 and the heat sink 41 are caused by a difference in linear expansion coefficient. Prevents cracking or adhesive peeling.
 以上の工程の他に、給電のための配線工程がある。実施の形態に係るレーザ光源装置1の配線工程は、マイクロレンズアレイ30をアクティブ調芯することから、はんだ接合工程とマイクロレンズアレイの接着および硬化工程の間で行われる。配線工程はサブマウント20から半導体レーザアレイ10に給電するためのワイヤ接合およびリード材からサブマウント20へ給電するためのリボン接合からなる。そして、リード材を介してレーザ光源装置1と外部電源が電気的に接続される。信頼性の向上のために、以上の構成にキャップまたはリッド等を用いて気密封止を施してもよい。以上説明した工程を、工程ブロック図にして図9に示す。図9は、レーザ光源装置1の製造方法の工程ブロック図である。 In addition to the above processes, there is a wiring process for power supply. Since the microlens array 30 is actively aligned, the wiring process of the laser light source device 1 according to the embodiment is performed between the solder bonding process and the bonding and curing process of the microlens array. The wiring process includes wire bonding for supplying power from the submount 20 to the semiconductor laser array 10 and ribbon bonding for supplying power from the lead material to the submount 20. Then, the laser light source device 1 and the external power source are electrically connected via the lead material. In order to improve reliability, the above structure may be hermetically sealed using a cap or a lid. The process described above is shown as a process block diagram in FIG. FIG. 9 is a process block diagram of the method for manufacturing the laser light source device 1.
 <効果>
 次に、実施の形態に係るレーザ光源装置1およびその製造方法から得られる効果について、前提技術と対比しながら説明する。
<Effect>
Next, the effects obtained from the laser light source device 1 according to the embodiment and the manufacturing method thereof will be described in comparison with the base technology.
 最初に前提技術について説明する。図11および図12は、前提技術に係るレーザ光源装置において、半導体レーザアレイ101の反りが光学特性に及ぼす影響を説明するための図である。 First, the prerequisite technology will be explained. 11 and 12 are diagrams for explaining the influence of the warp of the semiconductor laser array 101 on the optical characteristics in the laser light source device according to the base technology.
 図11に示すように、半導体レーザアレイ101は、中央部の発光点を頂点として発光点の配列方向に沿って凸状の反りを有する。また、半導体レーザアレイ101の出射光の光軸上に配置されるマイクロレンズアレイ102は、ファスト軸方向を平行光化するための光学作用面を入射側に、スロー軸方向を平行光化するための光学作用面を出射側に有する。このとき、反りによって半導体レーザアレイ101の中央部の発光点の光軸201と端部の発光点の光軸202の間にずれが生じる。したがって、図12に示すように、半導体レーザアレイ101からの出射光がマイクロレンズアレイ102を通過すると端部の光線が大きく偏向するという問題があった。 As shown in FIG. 11, the semiconductor laser array 101 has a convex warp along the arrangement direction of the light emitting points with the light emitting point at the center as the apex. Further, the microlens array 102 disposed on the optical axis of the emitted light of the semiconductor laser array 101 has an optical working surface for making the fast axis direction parallel light on the incident side and makes the slow axis direction parallel light. The optical action surface is provided on the exit side. At this time, the warp causes a deviation between the optical axis 201 of the light emitting point at the center of the semiconductor laser array 101 and the optical axis 202 of the light emitting point at the end. Therefore, as shown in FIG. 12, there is a problem that when the light emitted from the semiconductor laser array 101 passes through the microlens array 102, the light beam at the end is largely deflected.
 これに対して、実施の形態に係るレーザ光源装置1では、複数の発光点を有する半導体レーザアレイ10と、半導体レーザアレイ10の出射光の光軸上に配置されるマイクロレンズアレイ30とを備え、半導体レーザアレイ10は、発光点の配列方向に沿って凸状の反りを有し、マイクロレンズアレイ30は、半導体レーザアレイ10の反りと同方向に湾曲している。 On the other hand, the laser light source device 1 according to the embodiment includes a semiconductor laser array 10 having a plurality of light emitting points, and a microlens array 30 disposed on the optical axis of emitted light from the semiconductor laser array 10. The semiconductor laser array 10 has a convex warp along the arrangement direction of the light emitting points, and the microlens array 30 is curved in the same direction as the warp of the semiconductor laser array 10.
 また、レーザ光源装置1の製造方法は、複数の発光点を有する半導体レーザアレイ10、半導体レーザアレイ10のエピタキシャル成長方向に沿って対向する2つの主面のうちの一方に配置されるサブマウント20、サブマウント20において半導体レーザアレイ10が配置される面と対向する面側に配置されるヒートシンク41、およびヒートシンク41とサブマウント20との間に配置されるプレート42をそれぞれ、平面視において発光点の配列方向の中心に対して左右対称な位置に配置する工程(a)と、はんだを用いた1回の加温および加圧を行い、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42を接合する工程(b)と、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42をはんだの融点以下の温度まで冷却し、半導体レーザアレイ10に対して発光点の配列方向に沿って凸状の反りを発生させる工程(c)と、半導体レーザアレイ10の反りと同方向に湾曲するマイクロレンズアレイ30を、半導体レーザアレイ10の出射光の光軸上に接着剤を介してヒートシンク41に接着する工程(d)とを備える。 The method of manufacturing the laser light source device 1 includes a semiconductor laser array 10 having a plurality of light emitting points, a submount 20 disposed on one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array 10, The heat sink 41 disposed on the surface opposite to the surface on which the semiconductor laser array 10 is disposed in the submount 20, and the plate 42 disposed between the heat sink 41 and the submount 20, respectively, have a light emitting point in plan view. The step (a) of arranging the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 is performed by performing a step (a) of arranging the semiconductor laser array 10 at a symmetrical position with respect to the center in the arrangement direction and one heating and pressurization using solder. Bonding step (b), semiconductor laser array 10, submount 20, heat sink 41 And the step (c) of cooling the plate 42 to a temperature equal to or lower than the melting point of the solder to generate a convex warp along the arrangement direction of the light emitting points with respect to the semiconductor laser array 10, and the warp of the semiconductor laser array 10. A step (d) of adhering the microlens array 30 curved in the direction to the heat sink 41 via an adhesive on the optical axis of the emitted light of the semiconductor laser array 10.
 したがって、半導体レーザアレイ10の発光点の光軸とマイクロレンズアレイ30の光軸とが同軸となるため、光線の偏向を抑制することができる。これにより、半導体レーザアレイ10の反りの影響を低減することができる。 Therefore, since the optical axis of the light emitting point of the semiconductor laser array 10 and the optical axis of the microlens array 30 are coaxial, the deflection of the light beam can be suppressed. Thereby, the influence of the curvature of the semiconductor laser array 10 can be reduced.
 また、半導体レーザアレイ10の反り量の許容範囲が広がるため、半導体レーザアレイ10の残留応力を低く抑えた構造、および熱抵抗の低い構造を採用することができる。これにより、残留応力の増大、および熱抵抗の悪化を抑制することができる。よって、レーザ光源装置1の耐久性が向上する。 Further, since the allowable range of the warp amount of the semiconductor laser array 10 is widened, it is possible to adopt a structure in which the residual stress of the semiconductor laser array 10 is kept low and a structure with low thermal resistance. Thereby, increase of residual stress and deterioration of thermal resistance can be suppressed. Therefore, the durability of the laser light source device 1 is improved.
 また、集光特性の悪化を抑制することを目的として半導体レーザアレイ10の反りを抑制する必要がないため、反り抑制のための追加部材が不必要となり、集光特性の悪化の抑制をさらに安価に行うことができる。 Further, since it is not necessary to suppress the warp of the semiconductor laser array 10 for the purpose of suppressing the deterioration of the condensing characteristic, an additional member for suppressing the warp is unnecessary, and the suppression of the deterioration of the condensing characteristic is further inexpensive. Can be done.
 また、サブマウントの端部に凸部を設けることで半導体レーザアレイの反りを抑制する方法では2つのサブマウントが必要になりレーザ光源装置の製造コストが上昇するという問題があるが、本実施の形態では1つだけでよいため、このような問題はない。 In addition, the method of suppressing the warp of the semiconductor laser array by providing a convex portion at the end of the submount requires two submounts, which increases the manufacturing cost of the laser light source device. Since only one form is required, there is no such problem.
 ここで、ヒートシンク41の厚さを変化させたときの半導体レーザアレイ10の反り量と応力との関係について説明する。図10は、ヒートシンク41の厚さを変化させたときの半導体レーザアレイ10の反り量と応力との関係を示すグラフである。サブマウント20の基材としてSiCが、ヒートシンク41およびプレート42の材料としてCuが用いられている。横軸は基準となる構造のヒートシンク41の厚さを1に、縦軸は基準となる構造における反り量と応力の値をそれぞれ1としている。なお、反り量は半導体レーザアレイ10の中央部と端部との差の絶対値、応力は半導体レーザアレイ10の下面での応力の絶対値とし、ヒートシンク41の厚さ以外はいずれの部材も寸法の変化はないという条件のもとでの解析結果である。図10から、ヒートシンク41を厚くすることで反り量が軽減される一方、応力が増大することがわかる。 Here, the relationship between the amount of warpage of the semiconductor laser array 10 and the stress when the thickness of the heat sink 41 is changed will be described. FIG. 10 is a graph showing the relationship between the amount of warpage of the semiconductor laser array 10 and the stress when the thickness of the heat sink 41 is changed. SiC is used as the base material of the submount 20 and Cu is used as the material of the heat sink 41 and the plate 42. The horizontal axis indicates the thickness of the heat sink 41 of the reference structure as 1, and the vertical axis indicates the warpage amount and the stress value in the reference structure as 1, respectively. The warping amount is the absolute value of the difference between the central portion and the end portion of the semiconductor laser array 10, and the stress is the absolute value of the stress at the lower surface of the semiconductor laser array 10. It is an analysis result under the condition that there is no change. From FIG. 10, it can be seen that increasing the thickness of the heat sink 41 reduces the amount of warping while increasing the stress.
 上記のように、レーザ光源装置1では、半導体レーザアレイ10の反りによる光学特性悪化の影響をマイクロレンズアレイ30の湾曲によって吸収することができ、従来では反りによって制限されていたヒートシンクが薄く、かつ残留応力が小さいような構造を採用することが可能となる。また、ヒートシンク41を薄くすることで、レーザ光源装置1の熱源である半導体レーザアレイ10からヒートシンク41の冷却面までの距離を短くすることができ、レーザ光源装置1としての熱抵抗が低下することにつながる。 As described above, in the laser light source device 1, the influence of the deterioration of the optical characteristics due to the warp of the semiconductor laser array 10 can be absorbed by the curvature of the microlens array 30, and the heat sink that has been conventionally limited by the warp is thin, It is possible to employ a structure with a small residual stress. In addition, by making the heat sink 41 thinner, the distance from the semiconductor laser array 10 that is the heat source of the laser light source device 1 to the cooling surface of the heat sink 41 can be shortened, and the thermal resistance as the laser light source device 1 is reduced. Leads to.
 半導体レーザアレイ10のエピタキシャル成長方向に沿って対向する2つの主面のうちの一方に接合されるサブマウント20と、サブマウント20において半導体レーザアレイ10が接合される面と対向する面側に接合されるヒートシンク41とをさらに備え、半導体レーザアレイ10、サブマウント20およびヒートシンク41はそれぞれ、平面視において発光点の配列方向の中心に対して左右対称な位置に配置される。 The submount 20 is bonded to one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array 10, and is bonded to the surface of the submount 20 facing the surface to which the semiconductor laser array 10 is bonded. The semiconductor laser array 10, the submount 20, and the heat sink 41 are respectively disposed at positions symmetrical with respect to the center in the arrangement direction of the light emitting points in plan view.
 したがって、反り形状を安定的に発光点の配列方向の中心に対して左右対称にすることで、対応するマイクロレンズアレイ30の形状も同様に発光点の配列方向の中心に対して左右対称にすることができる。これにより、各発光点の光軸と光学作用面31の各マイクロレンズの光軸を安定的に同軸とすることができる。 Therefore, by stably making the warped shape bilaterally symmetrical with respect to the center of the light emitting points in the arrangement direction, the shape of the corresponding microlens array 30 is also made symmetrical with respect to the center of the light emitting points in the arrangement direction. be able to. Thereby, the optical axis of each light emission point and the optical axis of each microlens of the optical action surface 31 can be stably made coaxial.
 ヒートシンク41においてサブマウント20が接合される側の面に段差を有するため、マイクロレンズアレイ30を直接ヒートシンク41に接着したときに、半導体レーザアレイ10との光軸の高さを合わせることができる。すなわち、マイクロレンズアレイ30を直接ヒートシンク41に接着することのみで、光軸の高さ合わせを行うことができる。したがって、マイクロレンズアレイ30の光軸調芯が容易となる。 Since there is a step on the surface of the heat sink 41 where the submount 20 is bonded, the height of the optical axis with the semiconductor laser array 10 can be adjusted when the microlens array 30 is directly bonded to the heat sink 41. That is, the height of the optical axis can be adjusted only by directly bonding the microlens array 30 to the heat sink 41. Therefore, the optical axis alignment of the microlens array 30 is facilitated.
 段差は、ヒートシンク41とサブマウント20との間に配置されるプレート42によって形成されるため、プレート42の厚さを調整することで光軸の高さ合わせを行うことができる。 Since the step is formed by the plate 42 disposed between the heat sink 41 and the submount 20, the height of the optical axis can be adjusted by adjusting the thickness of the plate 42.
 マイクロレンズアレイ30は、接着剤51を介してヒートシンク41に接着されるため、マイクロレンズアレイ30を直接ヒートシンク41に接着することのみで、光軸の高さ合わせを行うことができる。したがって、マイクロレンズアレイ30の光軸調芯が容易となる。 Since the microlens array 30 is bonded to the heat sink 41 via the adhesive 51, the height of the optical axis can be adjusted only by directly bonding the microlens array 30 to the heat sink 41. Therefore, the optical axis alignment of the microlens array 30 is facilitated.
 また、レーザ光源装置1の製造方法では、半導体レーザアレイ10、サブマウント20、ヒートシンク41およびプレート42をそれぞれ、平面視において発光点の配列方向の中心に対して左右対称に配置し一括ではんだ接合するため、接合後の半導体レーザアレイ10の反りを安定的に発光点の配列方向の中心に対して左右対称の曲線形状にすることができる。これとは反対に、一括接合ではなく複数回の接合を行った場合、加圧工程が逐一必要となり接合後の反り形状のコントロールが困難になる。 Further, in the method of manufacturing the laser light source device 1, the semiconductor laser array 10, the submount 20, the heat sink 41, and the plate 42 are arranged symmetrically with respect to the center in the arrangement direction of the light emitting points in plan view, and soldered together. Therefore, the warpage of the semiconductor laser array 10 after the bonding can be stably made to be a left-right symmetrical curve shape with respect to the center in the arrangement direction of the light emitting points. On the other hand, when a plurality of times of bonding are performed instead of batch bonding, a pressurizing process is required one by one, and it becomes difficult to control the warped shape after bonding.
 また、発光点の配列方向の中心に対して左右非対称の配置の場合、はんだ接合後の熱応力が発光点の配列方向の中心に対して不均一となるため、半導体レーザアレイの反りが発光点の配列方向の中心に対して左右非対称となる。これに対し、半導体レーザアレイ10の反り形状を安定的に発光点の配列方向の中心に対して左右対称にすることで、対応するマイクロレンズアレイ30の形状も同様に発光点の配列方向の中心に対して左右対称にすることができる。また、各発光点の光軸と光学作用面31の各マイクロレンズの光軸を安定的に同軸とすることができる。 In addition, in the case of an asymmetrical arrangement with respect to the center of the light emitting point in the arrangement direction, the thermal stress after soldering is not uniform with respect to the center of the light emitting point in the arrangement direction. It becomes asymmetrical with respect to the center in the arrangement direction. In contrast, by making the warp shape of the semiconductor laser array 10 stably symmetrical with respect to the center of the light emitting point arrangement direction, the shape of the corresponding microlens array 30 is similarly the center of the light emitting point arrangement direction. Can be symmetrical. Further, the optical axis of each light emitting point and the optical axis of each microlens on the optical action surface 31 can be stably coaxial.
 なお、プレート42はヒートシンク41と予め一体となった構造であってもよい。例えば、切削加工またはプレス加工によって、ヒートシンク41に対しプレート42の厚さに相当する段差を設けることで、実施の形態の場合と同等の効果が得られる。 The plate 42 may have a structure integrated with the heat sink 41 in advance. For example, by providing a step corresponding to the thickness of the plate 42 to the heat sink 41 by cutting or pressing, the same effect as in the case of the embodiment can be obtained.
 また、半導体レーザアレイ10は、実施の形態で説明した材料または発振波長に限定されることはない。すなわち、InP、GaN、またはサファイア等を初期成長基板とした半導体レーザアレイにおいても、実施の形態の場合と同等の効果が得られる。 Further, the semiconductor laser array 10 is not limited to the material or the oscillation wavelength described in the embodiment. That is, the same effect as in the case of the embodiment can be obtained even in a semiconductor laser array using InP, GaN, sapphire or the like as an initial growth substrate.
 また、半導体レーザアレイ10は、実施の形態で説明した凸状の反り形状に限定されることはない。すなわち、凹状の反り形状であってもよいし、また反り量の大小によらず、同一の反りを安定的に発生できる構造であれば、実施の形態の場合と同等の効果が得られる。 Further, the semiconductor laser array 10 is not limited to the convex warp shape described in the embodiment. That is, a concave warpage shape may be used, and an effect equivalent to that of the embodiment can be obtained as long as the structure can stably generate the same warpage regardless of the amount of warpage.
 また、マイクロレンズアレイ30は、光学作用面31,32の配置に限定されることはない。すなわち、光学作用面31が入射光に対しレンズ面を持たず、光学作用面32がファスト軸方向およびスロー軸方向に作用するような形状を有するマイクロレンズアレイ、または、光学作用面31がファスト軸方向およびスロー軸方向に作用するような形状を有し、光学作用面32が入射光に対しレンズ面を持たないマイクロレンズアレイであっても、実施の形態の場合と同等の効果が得られる。 Further, the microlens array 30 is not limited to the arrangement of the optical action surfaces 31 and 32. That is, a microlens array having a shape in which the optical action surface 31 does not have a lens surface for incident light and the optical action surface 32 acts in the fast axis direction and the slow axis direction, or the optical action surface 31 is a fast axis. Even in the case of a microlens array having a shape that acts in the direction and the slow axis direction and the optical action surface 32 does not have a lens surface with respect to incident light, the same effect as in the case of the embodiment can be obtained.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 In the present invention, the embodiments can be appropriately modified or omitted within the scope of the invention.
 1 レーザ光源装置、10 半導体レーザアレイ、20 サブマウント、30 マイクロレンズアレイ、41 ヒートシンク、42 プレート、51 接着剤。 1 laser light source device, 10 semiconductor laser array, 20 submount, 30 microlens array, 41 heat sink, 42 plate, 51 adhesive.

Claims (7)

  1.  複数の発光点を有する半導体レーザアレイ(10)と、
     前記半導体レーザアレイ(10)の出射光の光軸上に配置されるマイクロレンズアレイ(30)と、
     を備え、
     前記半導体レーザアレイ(10)は、前記発光点の配列方向に沿って凹状または凸状の反りを有し、
     前記マイクロレンズアレイ(30)は、前記半導体レーザアレイ(10)の反りと同方向に湾曲している、レーザ光源装置。
    A semiconductor laser array (10) having a plurality of light emitting points;
    A microlens array (30) disposed on the optical axis of the emitted light of the semiconductor laser array (10);
    With
    The semiconductor laser array (10) has a concave or convex warp along the arrangement direction of the light emitting points,
    The microlens array (30) is a laser light source device that is curved in the same direction as the warp of the semiconductor laser array (10).
  2.  前記半導体レーザアレイ(10)のエピタキシャル成長方向に沿って対向する2つの主面のうちの一方に接合されるサブマウント(20)と、
     前記サブマウント(20)において前記半導体レーザアレイ(10)が接合される面と対向する面側に接合されるヒートシンク(41)と、
     をさらに備え、
     前記半導体レーザアレイ(10)、前記サブマウント(20)および前記ヒートシンク(41)はそれぞれ、平面視において前記発光点の配列方向の中心に対して左右対称な位置に配置される、請求項1記載のレーザ光源装置。
    A submount (20) joined to one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array (10);
    A heat sink (41) bonded to a surface facing the surface to which the semiconductor laser array (10) is bonded in the submount (20);
    Further comprising
    The said semiconductor laser array (10), the said submount (20), and the said heat sink (41) are respectively arrange | positioned in the left-right symmetric position with respect to the center of the arrangement direction of the said light emission point in planar view. Laser light source device.
  3.  前記ヒートシンク(41)において前記サブマウント(20)が接合される側の面に段差を有する、請求項2記載のレーザ光源装置。 The laser light source device according to claim 2, wherein the heat sink (41) has a step on a surface to which the submount (20) is joined.
  4.  前記段差は、前記ヒートシンク(41)と前記サブマウント(20)との間に配置されるプレート(42)によって形成される、請求項3記載のレーザ光源装置。 The laser light source device according to claim 3, wherein the step is formed by a plate (42) disposed between the heat sink (41) and the submount (20).
  5.  前記マイクロレンズアレイ(30)は、接着剤(51)を介して前記ヒートシンク(41)に接着される、請求項3記載のレーザ光源装置。 The laser light source device according to claim 3, wherein the microlens array (30) is bonded to the heat sink (41) via an adhesive (51).
  6.  前記マイクロレンズアレイ(30)は、接着剤(51)を介して前記ヒートシンク(41)に接着される、請求項4記載のレーザ光源装置。 The laser light source device according to claim 4, wherein the microlens array (30) is bonded to the heat sink (41) via an adhesive (51).
  7. (a)複数の発光点を有する半導体レーザアレイ(10)、前記半導体レーザアレイ(10)のエピタキシャル成長方向に沿って対向する2つの主面のうちの一方に配置されるサブマウント(20)、前記サブマウント(20)において前記半導体レーザアレイ(10)が配置される面と対向する面側に配置されるヒートシンク(41)、および前記ヒートシンク(41)と前記サブマウント(20)との間に配置されるプレート(42)をそれぞれ、平面視において前記発光点の配列方向の中心に対して左右対称な位置に配置する工程と、
    (b)はんだを用いた1回の加温および加圧を行い、前記半導体レーザアレイ(10)、前記サブマウント(20)、前記ヒートシンク(41)および前記プレート(42)を接合する工程と、
    (c)前記半導体レーザアレイ(10)、前記サブマウント(20)、前記ヒートシンク(41)および前記プレート(42)を前記はんだの融点以下の温度まで冷却し、前記半導体レーザアレイ(10)に対して前記発光点の配列方向に沿って凹状または凸状の反りを発生させる工程と、
    (d)前記半導体レーザアレイ(10)の反りと同方向に湾曲するマイクロレンズアレイ(30)を、前記半導体レーザアレイ(10)の出射光の光軸上に接着剤を介して前記ヒートシンク(41)に接着する工程と、
     を備える、レーザ光源装置の製造方法。
    (A) a semiconductor laser array (10) having a plurality of light emitting points, a submount (20) disposed on one of two main surfaces facing each other along the epitaxial growth direction of the semiconductor laser array (10), A heat sink (41) disposed on a surface facing the surface on which the semiconductor laser array (10) is disposed in the submount (20), and disposed between the heat sink (41) and the submount (20). Each of the plates (42) to be arranged at positions symmetrical with respect to the center in the arrangement direction of the light emitting points in plan view;
    (B) performing a single heating and pressurization using solder to join the semiconductor laser array (10), the submount (20), the heat sink (41), and the plate (42);
    (C) The semiconductor laser array (10), the submount (20), the heat sink (41) and the plate (42) are cooled to a temperature below the melting point of the solder, and the semiconductor laser array (10) Generating a concave or convex warp along the arrangement direction of the light emitting points;
    (D) A microlens array (30) that curves in the same direction as the warp of the semiconductor laser array (10) is placed on the heat sink (41) via an adhesive on the optical axis of the emitted light of the semiconductor laser array (10). A process of adhering to
    A method of manufacturing a laser light source device.
PCT/JP2016/051450 2016-01-19 2016-01-19 Laser light source device and manufacturing method thereof WO2017126035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051450 WO2017126035A1 (en) 2016-01-19 2016-01-19 Laser light source device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051450 WO2017126035A1 (en) 2016-01-19 2016-01-19 Laser light source device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017126035A1 true WO2017126035A1 (en) 2017-07-27

Family

ID=59361855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051450 WO2017126035A1 (en) 2016-01-19 2016-01-19 Laser light source device and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2017126035A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139354A (en) * 2016-02-04 2017-08-10 ウシオ電機株式会社 Semiconductor laser light source device and manufacturing method for semiconductor laser light source device
JP2021132150A (en) * 2020-02-20 2021-09-09 三菱電機株式会社 Optical module and manufacturing method thereof
JP2021132151A (en) * 2020-02-20 2021-09-09 三菱電機株式会社 Optical module and manufacturing method thereof
WO2023027096A1 (en) * 2021-08-26 2023-03-02 三菱電機株式会社 Optical module and optical module manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044478A (en) * 1996-05-31 1998-02-17 Eastman Kodak Co System for optically correcting deviation from linearity of laser emission array
US5861992A (en) * 1997-06-20 1999-01-19 Creo Products Inc Microlensing for multiple emitter laser diodes
US6166759A (en) * 1998-04-07 2000-12-26 Eastman Kodak Company Bent smile corrector
JP2004200634A (en) * 2002-12-13 2004-07-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co Kg Semiconductor laser device, semiconductor laser module for the semiconductor laser device and method for manufacturing the semiconductor laser device
JP2004235534A (en) * 2003-01-31 2004-08-19 Fuji Photo Film Co Ltd Laser element and manufacturing method thereof, and laser module using the laser element
US20060159147A1 (en) * 2005-01-14 2006-07-20 Institut National D'optique Symmetrization device and laser diode system provided with the same
JP2007180264A (en) * 2005-12-28 2007-07-12 Mitsubishi Electric Corp Arrayed semiconductor laser device
JP2010073758A (en) * 2008-09-16 2010-04-02 Furukawa Electric Co Ltd:The Semiconductor laser module
WO2011074262A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Laser module
JP2013521666A (en) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド Wavelength beam combining system and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044478A (en) * 1996-05-31 1998-02-17 Eastman Kodak Co System for optically correcting deviation from linearity of laser emission array
US5861992A (en) * 1997-06-20 1999-01-19 Creo Products Inc Microlensing for multiple emitter laser diodes
US6166759A (en) * 1998-04-07 2000-12-26 Eastman Kodak Company Bent smile corrector
JP2004200634A (en) * 2002-12-13 2004-07-15 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co Kg Semiconductor laser device, semiconductor laser module for the semiconductor laser device and method for manufacturing the semiconductor laser device
JP2004235534A (en) * 2003-01-31 2004-08-19 Fuji Photo Film Co Ltd Laser element and manufacturing method thereof, and laser module using the laser element
US20060159147A1 (en) * 2005-01-14 2006-07-20 Institut National D'optique Symmetrization device and laser diode system provided with the same
JP2007180264A (en) * 2005-12-28 2007-07-12 Mitsubishi Electric Corp Arrayed semiconductor laser device
JP2010073758A (en) * 2008-09-16 2010-04-02 Furukawa Electric Co Ltd:The Semiconductor laser module
WO2011074262A1 (en) * 2009-12-18 2011-06-23 三菱電機株式会社 Laser module
JP2013521666A (en) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド Wavelength beam combining system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139354A (en) * 2016-02-04 2017-08-10 ウシオ電機株式会社 Semiconductor laser light source device and manufacturing method for semiconductor laser light source device
JP2021132150A (en) * 2020-02-20 2021-09-09 三菱電機株式会社 Optical module and manufacturing method thereof
JP2021132151A (en) * 2020-02-20 2021-09-09 三菱電機株式会社 Optical module and manufacturing method thereof
JP7426847B2 (en) 2020-02-20 2024-02-02 三菱電機株式会社 Optical module and optical module manufacturing method
WO2023027096A1 (en) * 2021-08-26 2023-03-02 三菱電機株式会社 Optical module and optical module manufacturing method

Similar Documents

Publication Publication Date Title
US9203213B2 (en) Semiconductor light-emitting device
US8644357B2 (en) High reliability laser emitter modules
CA2708392C (en) Laser light source module
WO2017126035A1 (en) Laser light source device and manufacturing method thereof
US20070217469A1 (en) Laser diode stack side-pumped solid state laser
US11973313B2 (en) Diode laser assembly and method for producing a diode laser assembly
US20230033309A1 (en) Semiconductor laser device
US8774241B2 (en) Optical module
US10707643B2 (en) Laser light source module
KR101667464B1 (en) Semiconductor laser-excitation solid-state laser
WO2023042461A1 (en) Semiconductor light-emitting device
US20120082176A1 (en) Conduction cooled package laser and packaging method for forming the same
US11942758B2 (en) Semiconductor laser device manufacturing method
JP2009004760A (en) Semiconductor laser device
JP2023004162A (en) laser light source
TWI411183B (en) Laser diode element
JP6678427B2 (en) Laser light source device
JP2016122757A (en) Manufacturing method and apparatus for semiconductor laser device
JPH11163467A (en) Semiconductor device, its manufacturing method, and heat sink
JPH0846289A (en) Manufacturing method of semiconductor laser
JP2007073550A (en) Semiconductor laser module and semiconductor laser stack
JP2006269996A (en) Thermoelectric conversion module and electronic device
JP2014183156A (en) Semiconductor laser device
JP2005135933A (en) Method of manufacturing semiconductor laser
JP2010109397A (en) Method of manufacturing semiconductor laser device, and semiconductor laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP