WO2023027096A1 - Optical module and optical module manufacturing method - Google Patents

Optical module and optical module manufacturing method Download PDF

Info

Publication number
WO2023027096A1
WO2023027096A1 PCT/JP2022/031822 JP2022031822W WO2023027096A1 WO 2023027096 A1 WO2023027096 A1 WO 2023027096A1 JP 2022031822 W JP2022031822 W JP 2022031822W WO 2023027096 A1 WO2023027096 A1 WO 2023027096A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
optical module
collimating lens
semiconductor laser
warp
Prior art date
Application number
PCT/JP2022/031822
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 森田
友博 京藤
正人 河▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023543947A priority Critical patent/JPWO2023027096A1/ja
Publication of WO2023027096A1 publication Critical patent/WO2023027096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present disclosure relates to an optical module that outputs laser light and a method for manufacturing the optical module.
  • an optical module that outputs a laser beam has been used to process a workpiece.
  • an optical module has been proposed that has a multi-emitter semiconductor laser bar including a plurality of light emitting points and a collimator lens array for collimating the plurality of beams output by the multi-emitter semiconductor laser bar.
  • a lens component having a plate-like portion, a lens portion provided on the lower surface of the plate-like portion, and a pair of rib portions extending along the plate-like portion with the plate-like portion therebetween (for example, See Patent Document 1).
  • an optical module that has a multi-emitter semiconductor laser bar including multiple light-emitting points and a collimating lens array for collimating the multiple beams output by the multi-emitter semiconductor laser bar.
  • the plurality of beams output from the multi-emitter semiconductor laser bar will not travel straight. If the beams do not travel straight, the amount of laser light that can be used for processing is reduced. When the amount of laser light decreases, it becomes difficult to process the workpiece.
  • Patent Document 1 discloses a technique for suppressing deformation on the lens side. and the warp direction of the collimating lens array are different. In other words, in the conventional technique, a loss in propagation of the laser light output from the optical module may occur.
  • an optical module includes a multi-emitter semiconductor laser bar having a plurality of light emitting points, and a multi-emitter semiconductor laser bar for collimating a plurality of beams output from the multi-emitter semiconductor laser bar.
  • a lens unit having a collimating lens array of .
  • the lens unit further has a holding member that holds the collimating lens array.
  • the direction of warp of the collimator lens array on a plane that is orthogonal to the propagation direction of the plurality of beams and contains the collimator lens array is determined by a plurality of warps on a plane that is orthogonal to the propagation direction and contains the plurality of light emitting points. It is the same as the warp direction of the line connecting the light emitting points.
  • the holding member supports the collimating lens array from one side in a first direction perpendicular to the warp direction and propagation direction of the collimating lens array.
  • the optical module according to the present disclosure has the effect of being able to suppress the occurrence of propagation loss of output laser light.
  • FIG. 2 schematically shows a side surface of the optical module according to the first embodiment
  • 1 is a diagram schematically showing a plane of an optical module according to Embodiment 1
  • FIG. FIG. 2 schematically shows the front surface of the optical module according to the first embodiment
  • 4 is a flow chart showing an example of the procedure of the method for manufacturing the optical module according to the first embodiment
  • 4A and 4B are diagrams for explaining the method for manufacturing the optical module according to the first embodiment
  • FIG. 4 is a diagram schematically showing a side surface of an optical module according to Embodiment 2
  • FIG. 1 is a first diagram for explaining effects obtained by the optical module according to the second embodiment
  • FIG. 2 is a second diagram for explaining effects obtained by the optical module according to the second embodiment
  • FIG. 1 is a first diagram for explaining effects obtained by the optical module according to the second embodiment
  • FIG. 2 is a second diagram for explaining effects obtained by the optical module according to the second embodiment
  • FIG. 1 is a first diagram for explaining effects obtained by the optical module according
  • FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 3;
  • FIG. 1 is a first diagram for explaining effects obtained by the optical module according to the third embodiment;
  • FIG. 2 is a second diagram for explaining effects obtained by the optical module according to the third embodiment;
  • FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 4;
  • FIG. 12 is a diagram schematically showing a plane of an optical module according to Embodiment 4;
  • FIG. 11 is a diagram schematically showing the front of an optical module according to a fourth embodiment;
  • FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 5;
  • optical module and the method for manufacturing the optical module according to the embodiment will be described in detail below with reference to the drawings.
  • FIG. 1 is a diagram schematically showing a side surface of an optical module 1 according to Embodiment 1.
  • FIG. 1 schematically shows a side surface of an optical module 1 parallel to a plane containing the Y-axis and Z-axis.
  • FIG. 2 is a schematic plan view of the optical module 1 according to the first embodiment. More specifically, FIG. 2 schematically shows the plane of the optical module 1 parallel to the plane containing the X-axis and Z-axis. The positive direction of the Z-axis is the direction in which the beam of laser light propagates.
  • the optical module 1 has a multi-emitter semiconductor laser bar 2 containing multiple light emitting points.
  • the multi-emitter semiconductor laser bar 2 is an element that outputs laser light.
  • the semiconductor that mainly contributes to the laser light output of the multi-emitter semiconductor laser bar 2 is gallium arsenide.
  • the oscillation output of the multi-emitter semiconductor laser bar 2 is several hundred watts or more.
  • the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points and thus outputs a plurality of beams. Details of the plurality of light emitting points will be described later.
  • the optical module 1 further comprises a cooling structure 3 on which the multi-emitter semiconductor laser bar 2 is mounted to dissipate the heat generated in the multi-emitter semiconductor laser bar 2 .
  • the cooling structure 3 is formed with water channels, and the cooling structure 3 dissipates the heat generated in the multi-emitter semiconductor laser bar 2 by the water flowing through the channels.
  • the optical module 1 further has a collimating lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2 .
  • the collimator lens array 4 is provided in front of the multi-emitter semiconductor laser bar 2 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate.
  • the longitudinal direction of the collimator lens array 4 is the direction of the X-axis.
  • the shape in the positive direction of the X-axis and the shape in the negative direction of the X-axis are symmetrical with respect to the center in the longitudinal direction.
  • the optical module 1 further has a holding member 5 for holding the collimator lens array 4 .
  • the material forming the holding member 5 and the material forming the collimating lens array 4 are preferably the same.
  • the optical module 1 further includes a first joint member 6 joining the collimating lens array 4 and the holding member 5 together, and a second joint member 7 joining the cooling structure 3 and the holding member 5 together. have. It is preferable that the heat resistance strength of the first joint member 6 is greater than the heat resistance strength of the second joint member 7 .
  • the second joining member 7 is preferably made of an ultraviolet curable resin adhesive. 1 and 2 do not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2. FIG.
  • the center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the plane containing the X-axis and Y-axis (hereinafter sometimes referred to as the XY plane) and the center of the collimating lens array 4 on the plane parallel to the XY plane
  • the connecting lines are parallel to the Z-axis.
  • FIG. 3 is a diagram schematically showing the front of the optical module 1 according to Embodiment 1.
  • FIG. The front side is the side from which the multi-emitter semiconductor laser bar 2 outputs a plurality of beams. More specifically, the front plane is a plane parallel to the plane containing the X and Y axes.
  • the multiple light-emitting points 2a of the multi-emitter semiconductor laser bar 2 are collimated by the collimating lens array 4. hide.
  • FIG. 3 shows a plurality of light emitting points 2a that the multi-emitter semiconductor laser bar 2 has.
  • a plurality of light emitting points 2a in FIG. 3 are shown to explain that the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points 2a.
  • FIG. 3 shows an arc 4a that indicates the warp of the collimating lens array 4.
  • Arc 4a is indicated by a dashed line.
  • the warp of the collimator lens array 4 is the warp of the collimator lens array 4 on a plane that is perpendicular to the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 and includes the collimator lens array 4 .
  • the direction of warp of collimating lens array 4 in FIG. 3 is the direction of protruding to the negative side of the Y-axis.
  • the direction of the warp of the collimating lens array 4 is a plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 and a plurality of light emitting points on a plane including the plurality of light emitting points 2a. It is the same as the warp direction of the line connecting 2a.
  • FIG. 4 is a flow chart showing an example of the procedure of the method for manufacturing the optical module 1 according to the first embodiment.
  • a line connecting a plurality of light emitting points 2a on a plane orthogonal to the propagation direction of a plurality of beams output from the multi-emitter semiconductor laser bar 2 and including the plurality of light emitting points 2a is measured (step S1). That is, in step S1, the warp direction of the line connecting the plurality of light emitting points 2a in the Y-axis direction is measured.
  • step S1 is described as "measure the direction of warpage of the multi-emitter semiconductor laser bar".
  • step S2 the direction of warp of the collimating lens array 4 is measured on a plane that is orthogonal to the propagation direction of the beams made parallel by the collimating lens array 4 and that includes the collimating lens array 4 (step S2). That is, in step S2, the warp direction of the collimating lens array 4 in the Y-axis direction is measured.
  • step S3 the measured warp direction of the collimating lens array 4 is made the same as the measured warp direction of the line connecting the plurality of light emitting points 2a (step S3).
  • step S3 is described as "making the direction of warp of the collimating lens array the same as the direction of warp of the multi-emitter semiconductor laser bar".
  • step S4 is described as "making the direction of warp of the collimating lens array the same as the direction of warp of the multi-emitter semiconductor laser bar".
  • step S4 the holding member 5 to which the collimating lens array 4 is bonded by the first bonding member 6 is bonded to the cooling structure
  • FIG. 5 is a diagram for explaining the method of manufacturing the optical module 1 according to the first embodiment. As shown on the left side of arrows A and B in FIG. 5, it is assumed that the collimator lens array 4 is warped in the direction of protruding toward the positive side of the Y axis.
  • the collimating lens array 4 is rotated halfway around its center axis parallel to the Z-axis, so that the direction of the warp of the collimating lens array 4 protrudes to the negative side of the Y-axis.
  • the warp direction of the collimating lens array 4 is made the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a.
  • a line 2b connecting the plurality of light emitting points 2a is indicated by a solid line.
  • the collimating lens array 4 is not rotated around the central axis parallel to the Z-axis of the collimating lens array 4. - ⁇ As a result, the warp direction of the collimating lens array 4 is made the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a.
  • the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1 can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1 can efficiently propagate the output laser light.
  • the optical module 1 is manufactured with the warp direction of the collimator lens array 4 being the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. Therefore, according to the method for manufacturing an optical module according to the first embodiment, it is possible to manufacture the optical module 1 that suppresses the occurrence of propagation loss of the output laser light.
  • FIG. 6 is a diagram schematically showing a side surface of the optical module 1A according to the second embodiment.
  • the optical module 1A has all the components of the optical module 1 according to the first embodiment.
  • the optical module 1A has components that the optical module 1 does not have.
  • Embodiment 2 differences from Embodiment 1 will be mainly described.
  • the optical module 1A further has an optical element 8a that the optical module 1 does not have.
  • the optical element 8a is provided in front of the collimator lens array 4 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate.
  • optical element 8a is a microlens array, a beam transfer system or a prism.
  • the optical module 1A further has a joining member 9a joining the optical element 8a and the holding member 5 together.
  • the joint member 9 a is made of the same material as the first joint member 6 .
  • the warp direction of the optical element 8a on the plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. are the same.
  • the direction of warp on a plane orthogonal to the propagation direction of the passing beam is measured. That is, the warpage of the optical element 8a in the Y-axis direction is measured.
  • the warp direction of the measured optical element 8a is set to be the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a.
  • a line connecting the center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimating lens array 4 on a plane parallel to the XY plane, and the center of the optical element 8a on a plane parallel to the XY plane. is parallel to the Z-axis.
  • FIG. 7 is a first diagram for explaining effects obtained by the optical module 1A according to the second embodiment.
  • the warp direction of the collimating lens array 4 is different from the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2.
  • the warp direction of the optical element 8 a is different from the warp direction of the collimator lens array 4 .
  • FIG. 8 is a second diagram for explaining the effects obtained by the optical module 1A according to the second embodiment.
  • the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2.
  • the warping direction of the optical element 8a is also the same as the warping direction of the line 2b connecting the plurality of light emitting points 2a.
  • FIG. 8 shows the state of propagation of a plurality of beams in the optical module 1A according to the second embodiment.
  • the optical module 1A can suppress the occurrence of propagation loss of the output laser light.
  • the direction of warp of the collimating lens array 4 and the direction of warp of the optical element 8a correspond to the direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. It is the same as the warp direction. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1A can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1A can efficiently propagate the output laser light.
  • the optical module 1A is manufactured by setting the warp directions of the collimating lens array 4 and the warp directions of the optical elements 8a to be the same as the warp directions of the lines 2b connecting the plurality of light emitting points 2a. Therefore, according to the optical module manufacturing method according to the second embodiment, it is possible to manufacture the optical module 1A that suppresses the occurrence of propagation loss of the output laser light.
  • FIG. 9 is a diagram schematically showing a side surface of the optical module 1B according to the third embodiment.
  • the optical module 1B has all the components of the optical module 1 according to the first embodiment.
  • the optical module 1B has components that the optical module 1 does not have.
  • differences from Embodiment 1 will be mainly described.
  • the optical module 1B further has optical elements 8a, . . . , 8n that the optical module 1 does not have.
  • each of the optical elements 8a, . . . , 8n has a different function than the other optical elements.
  • each of the optical elements 8a, . . . , 8n is a microlens array, a beam transfer system or a prism.
  • the optical module 1B further includes joining members 9a, . . . , 9n joining the optical elements 8a, .
  • each of the joint members 9a, . . . , 9n is made of the same material as the first joint member 6.
  • Embodiment 3 for each of the optical elements 8a, . It is the same as the warp direction of the connecting line 2b.
  • step S2 the process of measuring the warp direction of the line connecting the plurality of light emitting points 2a (step S1), and the collimator lens array 4.
  • the process of measuring the direction of warpage (step S2) may be performed in any order.
  • the optical elements 8a, . . . , 8n are arranged in the order of the optical elements 8a, . It is The center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimator lens array 4 on a plane parallel to the XY plane, and the optical elements 8a, . is parallel to the Z-axis.
  • FIG. 10 is a first diagram for explaining effects obtained by the optical module 1B according to the third embodiment.
  • the warp direction of the collimator lens array 4 is different from the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2.
  • the direction of warpage of each of the optical elements 8a is different from the warp direction of the element. That is, in the case of the optical elements 8b, . different.
  • a non-linear beam 20 is generated at each of the collimating lens array 4 and the optical elements 8a, . . . , 8n.
  • the generation of the beam 20 that does not travel straight means that the laser light output from the multi-emitter semiconductor laser bar 2 does not propagate efficiently.
  • FIG. 11 is a second diagram for explaining the effects obtained by the optical module 1B according to the third embodiment.
  • the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2.
  • FIG. 11 shows the state of propagation of a plurality of beams in the optical module 1B according to the third embodiment.
  • the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a .
  • Generation of the beams 20 is suppressed, and a relatively large number of beams out of the plurality of beams output from the multi-emitter semiconductor laser bar 2 become the straight beams 10 . Therefore, the optical module 1B can suppress the occurrence of propagation loss of the output laser light.
  • the optical module 1B As described above, in the optical module 1B according to the third embodiment, the direction of warp of the collimator lens array 4 and the direction of warp of each of the optical elements 8a, . It is the same as the warp direction of the line 2b connecting the light emitting points 2a. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not go straight. Therefore, the optical module 1B can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1B can efficiently propagate the output laser light.
  • An optical module 1B is manufactured. Therefore, according to the optical module manufacturing method according to the third embodiment, it is possible to manufacture the optical module 1B that suppresses the occurrence of propagation loss of the output laser light.
  • FIG. 12 is a diagram schematically showing a side surface of an optical module 1C according to the fourth embodiment.
  • FIG. 12 schematically shows a side surface of the optical module 1C parallel to a plane including the Y-axis and Z-axis (hereinafter referred to as YZ plane).
  • FIG. 13 is a schematic plan view of an optical module 1C according to the fourth embodiment.
  • FIG. 13 schematically shows a plane of the optical module 1C parallel to a plane containing the X-axis and the Z-axis (hereinafter referred to as the XZ plane).
  • FIG. 14 is a diagram schematically showing the front of an optical module 1C according to the fourth embodiment.
  • FIG. 14 schematically shows the front of the optical module 1C parallel to the XY plane, which is a plane containing the X axis and the Y axis.
  • the front face of the optical module 1C is the side from which the multi-emitter semiconductor laser bar 2 outputs a plurality of beams. More specifically, the front is the XY plane parallel to the plane containing the X and Y axes. 12 to 14 do not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2.
  • FIG. 1C The front face of the optical module 1C is the side from which the multi-emitter semiconductor laser bar 2 outputs a plurality of beams. More specifically, the front is the XY plane parallel to the plane containing the X and Y axes. 12 to 14 do not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2.
  • the center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane is connected to the center of the collimator lens array 4 on a plane parallel to the XY plane.
  • the lines are parallel to the Z-axis.
  • the optical module 1C has the multi-emitter semiconductor laser bar 2 and the cooling structure 3 described in the first to third embodiments.
  • Each of the multi-emitter semiconductor laser bar 2 and the cooling structure 3 is a rectangular parallelepiped having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
  • the optical module 1C further has a lens unit 25 including a collimating lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2.
  • the collimator lens array 4 is provided in front of the multi-emitter semiconductor laser bar 2 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate.
  • FIG. 14 shows a plurality of light emitting points 2a that the multi-emitter semiconductor laser bar 2 has.
  • a plurality of light emitting points 2a in FIG. 14 are shown for explaining that the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points 2a.
  • the collimating lens array 4 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
  • the front surface of the collimating lens array 4 is a plane parallel to the XY plane facing the negative direction of the Z axis.
  • the back surface of the collimating lens array 4 is a plane parallel to the XY plane facing the positive direction of the Z axis.
  • a plurality of beams output by the multi-emitter semiconductor laser bar 2 enter from the front surface of the collimating lens array 4 and emerge from the back surface.
  • the longitudinal direction of the collimator lens array 4 is the direction of the X-axis.
  • the shape in the positive direction of the X-axis and the shape in the negative direction of the X-axis are symmetrical with respect to the center in the longitudinal direction.
  • a multi-emitter semiconductor laser bar 2 and a collimator lens array 4 are arranged at the same positions as in the optical module 1. That is, the positional relationship of the collimating lens array 4 with respect to the multi-emitter semiconductor laser bar 2 is the same between the optical module 1 and the optical module 1C.
  • the lens unit 25 has a holding member 27 for holding the collimating lens array 4.
  • the optical module 1 ⁇ /b>C further has a third joint member 11 joining the cooling structure 3 and the holding member 27 of the lens unit 25 .
  • the holding member 27 supports the collimating lens array 4 from one side in the direction orthogonal to the direction of warp of the collimating lens array 4, and supports a plurality of beams collimated by the collimating lens array 4. let it pass. That is, the collimator lens array 4 is a cantilever beam.
  • the optical module 1C supports the collimator lens array 4 with a cantilever structure.
  • the holding member 27 supports the collimating lens array 4 from one side in the first direction perpendicular to the direction of warp of the collimating lens array 4 and the propagation direction of the plurality of beams.
  • the warping direction of the collimating lens array 4 is parallel to the Y-axis.
  • the propagation directions of the multiple beams are parallel to the Z-axis.
  • the first direction is a direction parallel to the X-axis.
  • the holding member 27 extends in the Z-axis direction.
  • the shape of the holding member 27 is, for example, a columnar shape such as a square column extending in the Z-axis direction. Below, the case where the shape of the holding member 27 is a quadrangular prism extending in the Z-axis direction will be described.
  • the holding member 27 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
  • a part of the bottom surface of the holding member 27 is joined to the upper surface of the cooling structure 3 by the third joining member 11 . That is, the holding member 27 has its bottom surface joined to the top surface of the cooling structure 3 and extends from the cooling structure 3 in a direction parallel to the Z-axis, which is the propagation direction of the plurality of beams. Both the bottom surface of the holding member 27 and the top surface of the cooling structure 3 are parallel to the XZ plane.
  • the holding member 27 may be joined to one of the side surfaces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2 by a fourth joining member (not shown). In other words, the holding member 27 may be joined to one end face of the multi-emitter semiconductor laser bar 2 in the X-axis direction by a fourth joining member.
  • the holding member 27 is joined by a fifth joining member 13 to one of the side surfaces of the collimating lens array 4 that are parallel to the YZ plane.
  • the holding member 27 is joined to one end surface of the collimating lens array 4 in the X-axis direction by the fifth joining member 13 .
  • the side surface parallel to the YZ plane of the holding member 27 is the first surface, and the bottom surface parallel to the XZ plane is the second surface.
  • the side surface of the multi-emitter semiconductor laser bar 2 parallel to the YZ plane is the third surface, and the side surface of the collimating lens array 4 parallel to the YZ plane is the fourth surface.
  • the holding member 27 may be joined to either of the two side surfaces of the multi-emitter semiconductor laser bar 2 parallel to the YZ plane.
  • the holding member 27 may be joined to the side facing the negative direction of the X-axis out of the two side faces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2, or the side facing the positive direction of the X-axis. may be joined to.
  • the holding member 27 may be joined to both of the two side surfaces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2, the side surface facing the negative direction of the X axis and the side surface facing the positive direction.
  • the material forming the holding member 27 and the material forming the collimating lens array 4 are preferably the same.
  • the third joint member 11, the fourth joint member and the fifth joint member 13 are, for example, adhesives.
  • the third joint member 11 is preferably made of an ultraviolet curable resin adhesive.
  • the heat resistance strength of the fourth joint member and the heat resistance strength of the fifth joint member 13 are preferably higher than the heat resistance strength of the third joint member 11 .
  • FIG. 14 shows an arc 4a that indicates the warp of the collimating lens array 4.
  • Arc 4a is indicated by a dashed line.
  • the warp of the collimator lens array 4 is the warp of the collimator lens array 4 on a plane that is perpendicular to the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 and includes the collimator lens array 4 .
  • the direction of warp of the collimating lens array 4 in FIG. 14 is the direction of protruding to the negative side of the Y axis.
  • the direction of the warp of the collimating lens array 4 is a plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 and the plurality of light emitting points on the plane including the plurality of light emitting points 2a. It is the same as the warp direction of the line 2b connecting 2a.
  • the direction of warpage of a line 2b connecting a plurality of light emitting points 2a on a plane orthogonal to the propagation direction of a plurality of beams output from the multi-emitter semiconductor laser bar 2 and including the plurality of light emitting points 2a is measured. That is, the direction of warp in the Y-axis direction of the multi-emitter semiconductor laser bar 2 is measured.
  • the multi-emitter semiconductor laser bar 2 is fixed on the upper surface of the cooling structure 3 .
  • the warp direction of the multi-emitter semiconductor laser bar 2 may be measured after fixing the multi-emitter semiconductor laser bar 2 to the upper surface of the cooling structure 3 .
  • the warp direction of the collimating lens array 4 on a plane that is perpendicular to the propagation direction of the beams collimated by the collimating lens array 4 and includes the collimating lens array 4 is measured.
  • the collimating lens array 4 is joined to the holding member 27 by the fifth joining member 13.
  • the warp direction of the collimating lens array 4 may be measured after the collimating lens array 4 is joined to the holding member 27 .
  • the measured warp direction of the collimating lens array 4 is made the same as the measured warp direction of the line 2b connecting the plurality of light emitting points 2a. Specifically, it is fixed to the collimator lens array 4 so that the measured warp direction of the collimator lens array 4 is the same as the measured warp direction of the line 2b connecting the plurality of light emitting points 2a.
  • a member 27 is secured to the upper surface of the cooling structure 3 by means of a third joining member 11 . Thereby, the optical module 1C is manufactured.
  • either the process of measuring the warp direction of the line 2b connecting the plurality of light emitting points 2a or the process of measuring the warp direction of the collimating lens array 4 may be performed first.
  • the fixing of the multi-emitter semiconductor laser bar 2, the cooling structure 3, the holding member 27, and the collimator lens array 4 may be performed in any order.
  • the warp direction of the collimating lens array 4 is the same as the warp direction of the line connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not go straight. Therefore, the optical module 1C can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1C can efficiently propagate the output laser light.
  • the optical module 1C is manufactured by making the direction of warp of the collimating lens array 4 the same as the direction of warp of the line 2b connecting the plurality of light emitting points 2a. Therefore, according to the optical module manufacturing method according to the fourth embodiment, it is possible to manufacture the optical module 1C that suppresses the occurrence of propagation loss of the output laser light.
  • a holding member is not required on the lower side of the collimator lens array 4, that is, on the negative side of the Y axis. Therefore, the shape of the cooling structure 3 in the Y-axis direction can be thinned. Therefore, it is possible to reduce the size of the cooling structure 3 in the Y-axis direction.
  • the collimator lens array 4 extending in the X-axis direction is a cantilever beam
  • the shape of the cooling structure 3 in the X-axis direction can be made thinner. Therefore, it is possible to reduce the size of the cooling structure 3 in the X-axis direction.
  • FIG. 15 is a diagram schematically showing a side surface of an optical module 1D according to the fifth embodiment.
  • FIG. 15 schematically shows a side surface of the optical module 1D parallel to the YZ plane, which is a plane containing the Y axis and the Z axis.
  • YZ plane which is a plane containing the Y axis and the Z axis.
  • FIG. 15 does not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2 .
  • the optical module 1D has a multi-emitter semiconductor laser bar 2, a cooling structure 3, and a collimating lens array 4 similar to the optical module 1C of the fourth embodiment.
  • the arrangement positions of the multi-emitter semiconductor laser bar 2, the cooling structure 3, and the collimating lens array 4 in the optical module 1D are the same as in the optical module 1C.
  • the optical module 1D further has a lens unit 35 including a collimator lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2. That is, the optical module 1D has a lens unit 35 instead of the lens unit 25 as compared with the optical module 1C.
  • the lens unit 35 has a holding member 37 for holding the collimating lens array 4.
  • the optical module 1D further has a sixth joint member 14 joining the cooling structure 3 and the holding member 37 of the lens unit 35 .
  • the holding member 37 supports the collimating lens array 4 in a direction orthogonal to the direction of warp of the collimating lens array 4, and allows a plurality of beams collimated by the collimating lens array 4 to pass therethrough.
  • the holding member 37 extends in the Z-axis direction.
  • the shape of the holding member 37 is, for example, a columnar shape such as a square column extending in the Z-axis direction. Below, the case where the shape of the holding member 37 is a quadrangular prism extending in the Z-axis direction will be described.
  • the holding member 37 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
  • the holding member 37 is longer than the holding member 27 in the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 . That is, the holding member 37 is longer than the holding member 27 in the Z-axis direction.
  • a part of the bottom surface of the holding member 37 is joined to the upper surface of the cooling structure 3 by the sixth joining member 14 .
  • Both the bottom surface of the holding member 37 and the top surface of the cooling structure 3 are parallel to the XZ plane.
  • the sixth joint member 14 is, for example, an adhesive.
  • the sixth joint member 14 is preferably made of an ultraviolet curable resin adhesive.
  • the optical module 1D further has optical elements 8a, . . . , 8n that the optical module 1C does not have.
  • the optical elements 8a, . . . , 8n of the optical module 1D are arranged at the same positions as the optical elements 8a, .
  • the optical module 1D further has a ninth joining member (not shown) joining the optical elements 8a, . . .
  • each of the ninth joint members is made of the same material as the fifth joint member 13 .
  • the optical elements 8a are planes parallel to the XY plane facing the negative direction of the Z axis.
  • the back surfaces of the optical elements 8a, . . . , 8n are planes parallel to the XY plane facing the positive direction of the Z axis.
  • a plurality of beams output by the collimating lens array 4 enter from the front surface of the optical elements 8a, .
  • the longitudinal direction of the optical elements 8a, . . . , 8n is the direction of the X-axis.
  • the positive and negative X-axis shapes are symmetrical with respect to the center in the longitudinal direction.
  • the holding member 37 supports the optical elements 8a, .
  • the side surfaces of the optical elements 8a, . . . , 8n parallel to the YZ plane are the fifth surfaces.
  • the optical elements 8a, . . . , 8n are arranged in the order of the optical elements 8a, . It is The center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimator lens array 4 on a plane parallel to the XY plane, and the optical elements 8a, . is parallel to the Z-axis.
  • Embodiment 5 for each of the optical elements 8a, . It is the same as the warp direction of the connecting line 2b.
  • the warpage of each of the optical elements 8a, . . . , 8n in the Y-axis direction is measured.
  • processing for measuring the warp directions of the optical elements 8a, . . . , 8n processing for measuring the warp directions of the multi-emitter semiconductor laser bar 2, and The process of measuring the orientation of may be executed in any order.
  • fixing the multi-emitter semiconductor laser bar 2, the cooling structure 3, the holding member 27, the collimating lens array 4, and the optical elements 8a, . . . , 8n may be performed in any order.
  • the optical module 1D may have one optical element 8a instead of a plurality.
  • the optical module 1D In the optical module 1D, the direction of warp of the collimator lens array 4 and the direction of warp of each of the optical elements 8a, .
  • a relatively large number of beams out of the plurality of beams output from the multi-emitter semiconductor laser bar 2 become beams 10 that travel straight. Therefore, the optical module 1D can suppress the occurrence of propagation loss of the output laser light.
  • the optical module 1D As described above, in the optical module 1D according to the fifth embodiment, the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a, . It is the same as the warp direction of the line 2b connecting the light emitting points 2a. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1D can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1D can efficiently propagate the output laser light.
  • An optical module 1D is manufactured. Therefore, according to the method for manufacturing an optical module according to the fifth embodiment, it is possible to manufacture an optical module 1D that suppresses the occurrence of loss in propagation of output laser light.
  • 1, 1A, 1B, 1C, 1D optical module 2 multi-emitter semiconductor laser bar, 2a multiple light emitting points, 2b line connecting multiple light emitting points, 3 cooling structure, 4 collimating lens array, 4a arc, 5, 27, 37 holding member, 6 first joint member, 7 second joint member, 8a, ..., 8n optical element, 9a, ..., 9n joint member, 10 straight beam, 11 third joint member, 13 Fifth joint member, 14 Sixth joint member, 20 Beam that does not go straight, 25, 35 Lens unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This optical module (1C) comprises: a multi-emitter semiconductor laser bar (2) equipped with a plurality of light-emitting points; a lens unit (25) having a collimating lens array (4) that causes a plurality of beams outputted from the multi-emitter semiconductor laser bar (2) to be parallel to one another; and a holding member (27) for holding the collimating lens array (4). The orientation of a curve of the collimating lens array (4) in a flat plane which includes the collimating lens array (4) and which is orthogonal to a beam propagation direction is identical with the orientation of a curve of a line connecting the plurality of light-emitting points in a flat plane which includes the plurality of light-emitting points and which is orthogonal to the beam propagation direction. The holding member (27) supports the collimating lens array (4) from one side of a first direction orthogonal to the beam propagation direction and to the orientation of the curve of the collimating lens array (4).

Description

光モジュール及び光モジュールの製造方法Optical module and method for manufacturing optical module
 本開示は、レーザ光を出力する光モジュール及び光モジュールの製造方法に関する。 The present disclosure relates to an optical module that outputs laser light and a method for manufacturing the optical module.
 従来、ワークを加工するためにレーザ光を出力する光モジュールが用いられている。例えば、複数の発光点を含むマルチエミッタ半導体レーザバーと、マルチエミッタ半導体レーザバーが出力する複数のビームを平行にするためのコリメートレンズアレイとを有する光モジュールが提案されている。従来、板状部と、板状部の下面に設けられたレンズ部と、板状部を挟んで板状部に沿って延びる一対のリブ部とを有するレンズ部品も提案されている(例えば、特許文献1参照)。 Conventionally, an optical module that outputs a laser beam has been used to process a workpiece. For example, an optical module has been proposed that has a multi-emitter semiconductor laser bar including a plurality of light emitting points and a collimator lens array for collimating the plurality of beams output by the multi-emitter semiconductor laser bar. Conventionally, there has also been proposed a lens component having a plate-like portion, a lens portion provided on the lower surface of the plate-like portion, and a pair of rib portions extending along the plate-like portion with the plate-like portion therebetween (for example, See Patent Document 1).
特許第5899925号公報Japanese Patent No. 5899925
 上述の通り、複数の発光点を含むマルチエミッタ半導体レーザバーと、マルチエミッタ半導体レーザバーが出力する複数のビームを平行にするためのコリメートレンズアレイとを有する光モジュールが知られている。当該光モジュールでは、複数の発光点を結ぶ線の反りの向きがコリメートレンズアレイの反りの向きと異なると、マルチエミッタ半導体レーザバーが出力する複数のビームが直進しなくなる。複数のビームが直進しないと、加工に使用することができるレーザ光の量が低下する。レーザ光の量が低下すると、ワークの加工が困難になる。 As described above, an optical module is known that has a multi-emitter semiconductor laser bar including multiple light-emitting points and a collimating lens array for collimating the multiple beams output by the multi-emitter semiconductor laser bar. In this optical module, if the direction of warp of the line connecting the plurality of light emitting points is different from the direction of warp of the collimating lens array, the plurality of beams output from the multi-emitter semiconductor laser bar will not travel straight. If the beams do not travel straight, the amount of laser light that can be used for processing is reduced. When the amount of laser light decreases, it becomes difficult to process the workpiece.
 特許文献1はレンズ側の変形を抑制する技術を開示しているが、特許文献1が開示している技術を考慮しても、上記の光モジュールにおける複数の発光点を結ぶ線の反りの向きとコリメートレンズアレイの反りの向きとが異なる状況は生じる。つまり、従来の技術では、光モジュールから出力されるレーザ光の伝搬の損失が発生する場合がある。 Patent Document 1 discloses a technique for suppressing deformation on the lens side. and the warp direction of the collimating lens array are different. In other words, in the conventional technique, a loss in propagation of the laser light output from the optical module may occur.
 本開示は、上記に鑑みてなされたものであって、出力するレーザ光の伝搬の損失の発生を抑制する光モジュールを得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain an optical module that suppresses the occurrence of propagation loss of output laser light.
 上述した課題を解決し、目的を達成するために、本開示に係る光モジュールは、複数の発光点を具備するマルチエミッタ半導体レーザバーと、マルチエミッタ半導体レーザバーが出力する複数のビームを平行にするためのコリメートレンズアレイを有するレンズユニットを備える。レンズユニットは、コリメートレンズアレイを保持する保持部材を更に有する。複数のビームの伝搬方向と直交する平面であってコリメートレンズアレイを含む平面でのコリメートレンズアレイの反りの向きは、伝搬方向と直交する平面であって複数の発光点を含む平面での複数の発光点を結ぶ線の反りの向きと同じである。保持部材は、コリメートレンズアレイの反りの向き及び伝搬方向と直交する第1の方向の片側からコリメートレンズアレイを支持する。 In order to solve the above-described problems and achieve the object, an optical module according to the present disclosure includes a multi-emitter semiconductor laser bar having a plurality of light emitting points, and a multi-emitter semiconductor laser bar for collimating a plurality of beams output from the multi-emitter semiconductor laser bar. a lens unit having a collimating lens array of . The lens unit further has a holding member that holds the collimating lens array. The direction of warp of the collimator lens array on a plane that is orthogonal to the propagation direction of the plurality of beams and contains the collimator lens array is determined by a plurality of warps on a plane that is orthogonal to the propagation direction and contains the plurality of light emitting points. It is the same as the warp direction of the line connecting the light emitting points. The holding member supports the collimating lens array from one side in a first direction perpendicular to the warp direction and propagation direction of the collimating lens array.
 本開示に係る光モジュールは、出力するレーザ光の伝搬の損失の発生を抑制することができるという効果を奏する。 The optical module according to the present disclosure has the effect of being able to suppress the occurrence of propagation loss of output laser light.
実施の形態1に係る光モジュールの側面を模式的に示す図FIG. 2 schematically shows a side surface of the optical module according to the first embodiment; 実施の形態1に係る光モジュールの平面を模式的に示す図1 is a diagram schematically showing a plane of an optical module according to Embodiment 1; FIG. 実施の形態1に係る光モジュールの正面を模式的に示す図FIG. 2 schematically shows the front surface of the optical module according to the first embodiment; 実施の形態1に係る光モジュールの製造方法の手順の例を示すフローチャート4 is a flow chart showing an example of the procedure of the method for manufacturing the optical module according to the first embodiment; 実施の形態1に係る光モジュールの製造方法を説明するための図4A and 4B are diagrams for explaining the method for manufacturing the optical module according to the first embodiment; 実施の形態2に係る光モジュールの側面を模式的に示す図FIG. 4 is a diagram schematically showing a side surface of an optical module according to Embodiment 2; 実施の形態2に係る光モジュールによって得られる効果を説明するための第1の図FIG. 1 is a first diagram for explaining effects obtained by the optical module according to the second embodiment; 実施の形態2に係る光モジュールによって得られる効果を説明するための第2の図FIG. 2 is a second diagram for explaining effects obtained by the optical module according to the second embodiment; 実施の形態3に係る光モジュールの側面を模式的に示す図FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 3; 実施の形態3に係る光モジュールによって得られる効果を説明するための第1の図FIG. 1 is a first diagram for explaining effects obtained by the optical module according to the third embodiment; 実施の形態3に係る光モジュールによって得られる効果を説明するための第2の図FIG. 2 is a second diagram for explaining effects obtained by the optical module according to the third embodiment; 実施の形態4に係る光モジュールの側面を模式的に示す図FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 4; 実施の形態4に係る光モジュールの平面を模式的に示す図FIG. 12 is a diagram schematically showing a plane of an optical module according to Embodiment 4; 実施の形態4に係る光モジュールの正面を模式的に示す図FIG. 11 is a diagram schematically showing the front of an optical module according to a fourth embodiment; 実施の形態5に係る光モジュールの側面を模式的に示す図FIG. 11 is a diagram schematically showing a side surface of an optical module according to Embodiment 5;
 以下に、実施の形態に係る光モジュール及び光モジュールの製造方法を図面に基づいて詳細に説明する。 The optical module and the method for manufacturing the optical module according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1に係る光モジュール1の側面を模式的に示す図である。本願の図面において、「X」、「Y」及び「Z」の各々は軸を示しており、X軸、Y軸、及びZ軸の各々は、他の二つの軸と直交している。図1は、Y軸とZ軸とを含む平面に平行な光モジュール1の側面を模式的に示している。図2は、実施の形態1に係る光モジュール1の平面を模式的に示す図である。更に言うと、図2は、X軸とZ軸とを含む平面に平行な光モジュール1の平面を模式的に示している。Z軸の正の向きが、レーザ光のビームが伝搬する向きである。
Embodiment 1.
FIG. 1 is a diagram schematically showing a side surface of an optical module 1 according to Embodiment 1. FIG. In the drawings of this application, each of "X,""Y," and "Z" designates an axis, and each of the X, Y, and Z axes are orthogonal to the other two axes. FIG. 1 schematically shows a side surface of an optical module 1 parallel to a plane containing the Y-axis and Z-axis. FIG. 2 is a schematic plan view of the optical module 1 according to the first embodiment. More specifically, FIG. 2 schematically shows the plane of the optical module 1 parallel to the plane containing the X-axis and Z-axis. The positive direction of the Z-axis is the direction in which the beam of laser light propagates.
 光モジュール1は、複数の発光点を含むマルチエミッタ半導体レーザバー2を有する。マルチエミッタ半導体レーザバー2は、レーザ光を出力する素子である。例えば、マルチエミッタ半導体レーザバー2のレーザ光の出力に主に寄与する半導体は、ヒ化ガリウムである。例えば、マルチエミッタ半導体レーザバー2の発振出力は、数百ワット以上である。上述の通り、マルチエミッタ半導体レーザバー2は、複数の発光点を有するので、複数のビームを出力する。複数の発光点の詳細については、後述する。 The optical module 1 has a multi-emitter semiconductor laser bar 2 containing multiple light emitting points. The multi-emitter semiconductor laser bar 2 is an element that outputs laser light. For example, the semiconductor that mainly contributes to the laser light output of the multi-emitter semiconductor laser bar 2 is gallium arsenide. For example, the oscillation output of the multi-emitter semiconductor laser bar 2 is several hundred watts or more. As described above, the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points and thus outputs a plurality of beams. Details of the plurality of light emitting points will be described later.
 光モジュール1は、マルチエミッタ半導体レーザバー2が載置されて、マルチエミッタ半導体レーザバー2で発生する熱を放散させる冷却構造体3を更に有する。例えば、冷却構造体3には水の流路が形成されていて、水が流路を流れることによって、冷却構造体3はマルチエミッタ半導体レーザバー2で発生する熱を放散させる。 The optical module 1 further comprises a cooling structure 3 on which the multi-emitter semiconductor laser bar 2 is mounted to dissipate the heat generated in the multi-emitter semiconductor laser bar 2 . For example, the cooling structure 3 is formed with water channels, and the cooling structure 3 dissipates the heat generated in the multi-emitter semiconductor laser bar 2 by the water flowing through the channels.
 光モジュール1は、マルチエミッタ半導体レーザバー2が出力する複数のビームを平行にするためのコリメートレンズアレイ4を更に有する。コリメートレンズアレイ4は、マルチエミッタ半導体レーザバー2が出力する複数のビームが伝搬する向きにおいて、マルチエミッタ半導体レーザバー2より前方に設けられている。コリメートレンズアレイ4の長手方向は、X軸の方向である。例えば、コリメートレンズアレイ4では、長手方向の中心に対して、X軸の正の向きの形状とX軸の負の向きの形状とが対称である。光モジュール1は、コリメートレンズアレイ4を保持するための保持部材5を更に有する。保持部材5を構成する材料とコリメートレンズアレイ4を構成する材料とが同じであることが好ましい。 The optical module 1 further has a collimating lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2 . The collimator lens array 4 is provided in front of the multi-emitter semiconductor laser bar 2 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate. The longitudinal direction of the collimator lens array 4 is the direction of the X-axis. For example, in the collimator lens array 4, the shape in the positive direction of the X-axis and the shape in the negative direction of the X-axis are symmetrical with respect to the center in the longitudinal direction. The optical module 1 further has a holding member 5 for holding the collimator lens array 4 . The material forming the holding member 5 and the material forming the collimating lens array 4 are preferably the same.
 光モジュール1は、コリメートレンズアレイ4と保持部材5とを接合している第1の接合部材6と、冷却構造体3と保持部材5とを接合している第2の接合部材7とを更に有する。第1の接合部材6の耐熱強度が第2の接合部材7の耐熱強度より大きいことが好ましい。第2の接合部材7については、紫外線硬化樹脂接着剤で形成されていることが好ましい。なお、図1及び図2には、マルチエミッタ半導体レーザバー2に電流を供給する給電機構は示されていない。マルチエミッタ半導体レーザバー2のX軸とY軸とを含む平面に平行な平面(以下、XY平面という場合がある)での中心と、コリメートレンズアレイ4のXY平面に平行な平面での中心とを結ぶ線は、Z軸に平行である。 The optical module 1 further includes a first joint member 6 joining the collimating lens array 4 and the holding member 5 together, and a second joint member 7 joining the cooling structure 3 and the holding member 5 together. have. It is preferable that the heat resistance strength of the first joint member 6 is greater than the heat resistance strength of the second joint member 7 . The second joining member 7 is preferably made of an ultraviolet curable resin adhesive. 1 and 2 do not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2. FIG. The center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the plane containing the X-axis and Y-axis (hereinafter sometimes referred to as the XY plane) and the center of the collimating lens array 4 on the plane parallel to the XY plane The connecting lines are parallel to the Z-axis.
 図3は、実施の形態1に係る光モジュール1の正面を模式的に示す図である。正面は、マルチエミッタ半導体レーザバー2が複数のビームを出力する側の面である。更に言うと、正面は、X軸とY軸とを含む平面に平行な平面である。図1から理解することができるように、Z軸の正の側からZ軸の負の側の向きに正面を見ると、マルチエミッタ半導体レーザバー2が有する複数の発光点2aはコリメートレンズアレイ4によって隠れる。しかしながら、図3には、マルチエミッタ半導体レーザバー2が有する複数の発光点2aが示されている。図3における複数の発光点2aは、マルチエミッタ半導体レーザバー2が複数の発光点2aを有することを説明するために示されている。 FIG. 3 is a diagram schematically showing the front of the optical module 1 according to Embodiment 1. FIG. The front side is the side from which the multi-emitter semiconductor laser bar 2 outputs a plurality of beams. More specifically, the front plane is a plane parallel to the plane containing the X and Y axes. As can be understood from FIG. 1, when viewed from the positive side of the Z-axis toward the negative side of the Z-axis, the multiple light-emitting points 2a of the multi-emitter semiconductor laser bar 2 are collimated by the collimating lens array 4. hide. However, FIG. 3 shows a plurality of light emitting points 2a that the multi-emitter semiconductor laser bar 2 has. A plurality of light emitting points 2a in FIG. 3 are shown to explain that the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points 2a.
 図3には、コリメートレンズアレイ4の反りを示す円弧4aが示されている。円弧4aは、一点鎖線で示されている。コリメートレンズアレイ4の反りは、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であってコリメートレンズアレイ4を含む平面でのコリメートレンズアレイ4の反りである。円弧4aが示す通り、図3のコリメートレンズアレイ4の反りの向きは、Y軸の負の側に突出する向きである。 FIG. 3 shows an arc 4a that indicates the warp of the collimating lens array 4. Arc 4a is indicated by a dashed line. The warp of the collimator lens array 4 is the warp of the collimator lens array 4 on a plane that is perpendicular to the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 and includes the collimator lens array 4 . As indicated by arc 4a, the direction of warp of collimating lens array 4 in FIG. 3 is the direction of protruding to the negative side of the Y-axis.
 光モジュール1では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であって複数の発光点2aを含む平面での複数の発光点2aを結ぶ線の反りの向きと同じである。 In the optical module 1, the direction of the warp of the collimating lens array 4 is a plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 and a plurality of light emitting points on a plane including the plurality of light emitting points 2a. It is the same as the warp direction of the line connecting 2a.
 図4は、実施の形態1に係る光モジュール1の製造方法の手順の例を示すフローチャートである。光モジュール1を製造する際、まず、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であって複数の発光点2aを含む平面での複数の発光点2aを結ぶ線の反りの向きを測定する(ステップS1)。すなわち、ステップS1において、Y軸の方向における複数の発光点2aを結ぶ線の反りの向きを測定する。図4では、ステップS1は「マルチエミッタ半導体レーザバーの反りの向きを測定する」と記載されている。 FIG. 4 is a flow chart showing an example of the procedure of the method for manufacturing the optical module 1 according to the first embodiment. When manufacturing the optical module 1, first, a line connecting a plurality of light emitting points 2a on a plane orthogonal to the propagation direction of a plurality of beams output from the multi-emitter semiconductor laser bar 2 and including the plurality of light emitting points 2a. The direction of warpage is measured (step S1). That is, in step S1, the warp direction of the line connecting the plurality of light emitting points 2a in the Y-axis direction is measured. In FIG. 4, step S1 is described as "measure the direction of warpage of the multi-emitter semiconductor laser bar".
 次に、コリメートレンズアレイ4で平行にされるビームの伝搬方向と直交する平面であってコリメートレンズアレイ4を含む平面でのコリメートレンズアレイ4の反りの向きを測定する(ステップS2)。つまり、ステップS2において、Y軸の方向におけるコリメートレンズアレイ4の反りの向きを測定する。次に、測定されたコリメートレンズアレイ4の反りの向きを、測定された複数の発光点2aを結ぶ線の反りの向きと同じにする(ステップS3)。図4では、ステップS3は「コリメートレンズアレイの反りの向きをマルチエミッタ半導体レーザバーの反りの向きと同じにする」と記載されている。次に、コリメートレンズアレイ4が第1の接合部材6によって接合されている保持部材5を、第2の接合部材7によって冷却構造体3に接合する(ステップS4)。なお、ステップS1とステップS2とは、何れが先に実行されてもよい。 Next, the direction of warp of the collimating lens array 4 is measured on a plane that is orthogonal to the propagation direction of the beams made parallel by the collimating lens array 4 and that includes the collimating lens array 4 (step S2). That is, in step S2, the warp direction of the collimating lens array 4 in the Y-axis direction is measured. Next, the measured warp direction of the collimating lens array 4 is made the same as the measured warp direction of the line connecting the plurality of light emitting points 2a (step S3). In FIG. 4, step S3 is described as "making the direction of warp of the collimating lens array the same as the direction of warp of the multi-emitter semiconductor laser bar". Next, the holding member 5 to which the collimating lens array 4 is bonded by the first bonding member 6 is bonded to the cooling structure 3 by the second bonding member 7 (step S4). Either step S1 or step S2 may be executed first.
 次に、図4のステップS3の動作を更に説明する。すなわち、コリメートレンズアレイ4の反りの向きを、複数の発光点2aを結ぶ線の反りの向きと同じにする動作を更に説明する。図5は、実施の形態1に係る光モジュール1の製造方法を説明するための図である。図5の矢印A及び矢印Bより左側で示されているように、コリメートレンズアレイ4の反りの向きがY軸の正の側に突出する向きである場合を想定する。 Next, the operation of step S3 in FIG. 4 will be further described. That is, the operation for making the warp direction of the collimator lens array 4 the same as the warp direction of the line connecting the plurality of light emitting points 2a will be further described. FIG. 5 is a diagram for explaining the method of manufacturing the optical module 1 according to the first embodiment. As shown on the left side of arrows A and B in FIG. 5, it is assumed that the collimator lens array 4 is warped in the direction of protruding toward the positive side of the Y axis.
 矢印Aより右側において示されているように、複数の発光点2aを結ぶ線2bの反りの向きがY軸の負の側に突出する向きである場合、矢印A1より右側において示されているように、コリメートレンズアレイ4のZ軸と平行な中心軸の周りにコリメートレンズアレイ4を半回転させて、コリメートレンズアレイ4の反りの向きをY軸の負の側に突出する向きにする。これにより、コリメートレンズアレイ4の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにする。なお、複数の発光点2aを結ぶ線2bは、実線で示されている。 As shown on the right side of the arrow A, when the direction of the warp of the line 2b connecting the plurality of light emitting points 2a projects toward the negative side of the Y axis, as shown on the right side of the arrow A1, Secondly, the collimating lens array 4 is rotated halfway around its center axis parallel to the Z-axis, so that the direction of the warp of the collimating lens array 4 protrudes to the negative side of the Y-axis. As a result, the warp direction of the collimating lens array 4 is made the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. A line 2b connecting the plurality of light emitting points 2a is indicated by a solid line.
 矢印Bより右側において示されているように、複数の発光点2aを結ぶ線2bの反りの向きがY軸の正の側に突出する向きである場合、矢印B1より右側において示されているように、コリメートレンズアレイ4のZ軸と平行な中心軸の周りにコリメートレンズアレイ4を回転させない。これにより、コリメートレンズアレイ4の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにする。 As shown on the right side of the arrow B, when the direction of the warp of the line 2b connecting the plurality of light emitting points 2a projects toward the positive side of the Y axis, as shown on the right side of the arrow B1 First, the collimating lens array 4 is not rotated around the central axis parallel to the Z-axis of the collimating lens array 4. - 特許庁As a result, the warp direction of the collimating lens array 4 is made the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a.
 上述の通り、実施の形態1に係る光モジュール1では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。そのため、マルチエミッタ半導体レーザバー2が出力する複数のビームが直進しなくなることは抑制される。したがって、光モジュール1は、出力するレーザ光の伝搬の損失の発生を抑制することができる。言い換えると、光モジュール1は、出力するレーザ光を効率良く伝搬させることができる。 As described above, in the optical module 1 according to Embodiment 1, the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1 can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1 can efficiently propagate the output laser light.
 実施の形態1では、コリメートレンズアレイ4の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにして光モジュール1を製造する。したがって、実施の形態1に係る光モジュールの製造方法によれば、出力するレーザ光の伝搬の損失の発生を抑制する光モジュール1を製造することができる。 In Embodiment 1, the optical module 1 is manufactured with the warp direction of the collimator lens array 4 being the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. Therefore, according to the method for manufacturing an optical module according to the first embodiment, it is possible to manufacture the optical module 1 that suppresses the occurrence of propagation loss of the output laser light.
実施の形態2.
 図6は、実施の形態2に係る光モジュール1Aの側面を模式的に示す図である。光モジュール1Aは、実施の形態1に係る光モジュール1が有するすべての構成要素を有する。光モジュール1Aは、光モジュール1が有しない構成要素を有する。実施の形態2では、実施の形態1との相違点を主に説明する。
Embodiment 2.
FIG. 6 is a diagram schematically showing a side surface of the optical module 1A according to the second embodiment. The optical module 1A has all the components of the optical module 1 according to the first embodiment. The optical module 1A has components that the optical module 1 does not have. In Embodiment 2, differences from Embodiment 1 will be mainly described.
 光モジュール1Aは、光モジュール1が有していない光学素子8aを更に有する。光学素子8aは、マルチエミッタ半導体レーザバー2が出力する複数のビームが伝搬する向きにおいて、コリメートレンズアレイ4より前方に設けられている。例えば、光学素子8aは、マイクロレンズアレイ、ビームトランスファーシステム、又は、プリズムである。光モジュール1Aは、光学素子8aと保持部材5とを接合している接合部材9aを更に有する。例えば、接合部材9aは第1の接合部材6と同じ材料によって形成されている。 The optical module 1A further has an optical element 8a that the optical module 1 does not have. The optical element 8a is provided in front of the collimator lens array 4 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate. For example, optical element 8a is a microlens array, a beam transfer system or a prism. The optical module 1A further has a joining member 9a joining the optical element 8a and the holding member 5 together. For example, the joint member 9 a is made of the same material as the first joint member 6 .
 実施の形態2では、光学素子8aについて、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面での反りの向きは、複数の発光点2aを結ぶ線2bの反りの向きと同じである。光モジュール1Aを製造する場合、光学素子8aについて、コリメートレンズアレイ4と同様に、通過するビームの伝搬方向と直交する平面での反りの向きを測定する。つまり、Y軸の方向における光学素子8aの反りを測定する。次に、測定された光学素子8aの反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにする。なお、光学素子8aの反りの向きを測定する処理と、上述したステップS1と、ステップS2とは、何れの順番で実行されてもよい。マルチエミッタ半導体レーザバー2のXY平面に平行な平面での中心と、コリメートレンズアレイ4のXY平面に平行な平面での中心と、光学素子8aのXY平面に平行な平面での中心とを結ぶ線は、Z軸に平行である。 In the second embodiment, the warp direction of the optical element 8a on the plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. are the same. When manufacturing the optical module 1A, for the optical element 8a, similarly to the collimating lens array 4, the direction of warp on a plane orthogonal to the propagation direction of the passing beam is measured. That is, the warpage of the optical element 8a in the Y-axis direction is measured. Next, the warp direction of the measured optical element 8a is set to be the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a. Note that the process of measuring the direction of warp of the optical element 8a, the above-described steps S1 and S2 may be performed in any order. A line connecting the center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimating lens array 4 on a plane parallel to the XY plane, and the center of the optical element 8a on a plane parallel to the XY plane. is parallel to the Z-axis.
 図7は、実施の形態2に係る光モジュール1Aによって得られる効果を説明するための第1の図である。図7では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと異なっている。加えて、光学素子8aの反りの向きは、コリメートレンズアレイ4の反りの向きと異なっている。 FIG. 7 is a first diagram for explaining effects obtained by the optical module 1A according to the second embodiment. In FIG. 7, the warp direction of the collimating lens array 4 is different from the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. In FIG. In addition, the warp direction of the optical element 8 a is different from the warp direction of the collimator lens array 4 .
 図7が示す状況では、マルチエミッタ半導体レーザバー2が出力する複数のビームのうちで直進するビーム10が存在する一方、直進しないビーム20も発生する。直進しないビーム20は、コリメートレンズアレイ4及び光学素子8aの各々において発生する。直進しないビーム20が発生することは、マルチエミッタ半導体レーザバー2が出力するレーザ光が効率良く伝搬しないことを意味する。 In the situation shown in FIG. 7, among the multiple beams output from the multi-emitter semiconductor laser bar 2, there are beams 10 that go straight, but there are also beams 20 that do not go straight. A non-linear beam 20 is generated at each of the collimating lens array 4 and the optical element 8a. The generation of the beam 20 that does not travel straight means that the laser light output from the multi-emitter semiconductor laser bar 2 does not propagate efficiently.
 図8は、実施の形態2に係る光モジュール1Aによって得られる効果を説明するための第2の図である。図8では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。光学素子8aの反りの向きも、複数の発光点2aを結ぶ線2bの反りの向きと同じである。 FIG. 8 is a second diagram for explaining the effects obtained by the optical module 1A according to the second embodiment. In FIG. 8, the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. In FIG. The warping direction of the optical element 8a is also the same as the warping direction of the line 2b connecting the plurality of light emitting points 2a.
 すなわち、図8は実施の形態2に係る光モジュール1Aにおける複数のビームの伝搬の状況を示している。上述の通り、コリメートレンズアレイ4の反りの向き及び光学素子8aの反りの向きが複数の発光点2aを結ぶ線2bの反りの向きと同じであるので、直進しないビーム20の発生は抑制され、マルチエミッタ半導体レーザバー2が出力する複数のビームのうちの比較的多数のビームが直進するビーム10となる。したがって、光モジュール1Aは、出力するレーザ光の伝搬の損失の発生を抑制することができる。 That is, FIG. 8 shows the state of propagation of a plurality of beams in the optical module 1A according to the second embodiment. As described above, since the direction of warp of the collimating lens array 4 and the direction of warp of the optical element 8a are the same as the direction of warp of the line 2b connecting the plurality of light emitting points 2a, generation of the beam 20 that does not travel straight is suppressed. A relatively large number of beams out of the plurality of beams output from the multi-emitter semiconductor laser bar 2 become beams 10 that travel straight. Therefore, the optical module 1A can suppress the occurrence of propagation loss of the output laser light.
 上述の通り、実施の形態2に係る光モジュール1Aでは、コリメートレンズアレイ4の反りの向き及び光学素子8aの反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。そのため、マルチエミッタ半導体レーザバー2が出力する複数のビームが直進しなくなることは抑制される。したがって、光モジュール1Aは、出力するレーザ光の伝搬の損失の発生を抑制することができる。言い換えると、光モジュール1Aは、出力するレーザ光を効率良く伝搬させることができる。 As described above, in the optical module 1A according to the second embodiment, the direction of warp of the collimating lens array 4 and the direction of warp of the optical element 8a correspond to the direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. It is the same as the warp direction. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1A can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1A can efficiently propagate the output laser light.
 実施の形態2では、コリメートレンズアレイ4の反りの向きと光学素子8aの反りの向きとを、複数の発光点2aを結ぶ線2bの反りの向きと同じにして光モジュール1Aを製造する。したがって、実施の形態2に係る光モジュールの製造方法によれば、出力するレーザ光の伝搬の損失の発生を抑制する光モジュール1Aを製造することができる。 In Embodiment 2, the optical module 1A is manufactured by setting the warp directions of the collimating lens array 4 and the warp directions of the optical elements 8a to be the same as the warp directions of the lines 2b connecting the plurality of light emitting points 2a. Therefore, according to the optical module manufacturing method according to the second embodiment, it is possible to manufacture the optical module 1A that suppresses the occurrence of propagation loss of the output laser light.
実施の形態3.
 図9は、実施の形態3に係る光モジュール1Bの側面を模式的に示す図である。光モジュール1Bは、実施の形態1に係る光モジュール1が有するすべての構成要素を有する。光モジュール1Bは、光モジュール1が有しない構成要素を有する。実施の形態3では、実施の形態1との相違点を主に説明する。
Embodiment 3.
FIG. 9 is a diagram schematically showing a side surface of the optical module 1B according to the third embodiment. The optical module 1B has all the components of the optical module 1 according to the first embodiment. The optical module 1B has components that the optical module 1 does not have. In Embodiment 3, differences from Embodiment 1 will be mainly described.
 光モジュール1Bは、光モジュール1が有していない光学素子8a,・・・,8nを更に有する。光学素子8a,・・・,8nは、マルチエミッタ半導体レーザバー2が出力する複数のビームが伝搬する向きにおいて、コリメートレンズアレイ4より前方に設けられている。例えば、光学素子8a,・・・,8nの各々は、他の光学素子と異なる機能を有する。例えば、光学素子8a,・・・,8nの各々は、マイクロレンズアレイ、ビームトランスファーシステム、又は、プリズムである。光モジュール1Bは、光学素子8a,・・・,8nと保持部材5とを接合している接合部材9a,・・・,9nを更に有する。例えば、接合部材9a,・・・,9nの各々は第1の接合部材6と同じ材料によって形成されている。 The optical module 1B further has optical elements 8a, . . . , 8n that the optical module 1 does not have. The optical elements 8a, . For example, each of the optical elements 8a, . . . , 8n has a different function than the other optical elements. For example, each of the optical elements 8a, . . . , 8n is a microlens array, a beam transfer system or a prism. The optical module 1B further includes joining members 9a, . . . , 9n joining the optical elements 8a, . For example, each of the joint members 9a, . . . , 9n is made of the same material as the first joint member 6.
 実施の形態3では、光学素子8a,・・・,8nの各々について、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面での反りの向きは、複数の発光点2aを結ぶ線2bの反りの向きと同じである。 In Embodiment 3, for each of the optical elements 8a, . It is the same as the warp direction of the connecting line 2b.
 光モジュール1Bを製造する場合、光学素子8a,・・・,8nの各々について、コリメートレンズアレイ4と同様に、通過するビームの伝搬方向と直交する平面での反りの向きを測定する。つまり、Y軸の方向における光学素子8a,・・・,8nの各々の反りを測定する。次に、測定された光学素子8a,・・・,8nの各々の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにする。 When manufacturing the optical module 1B, for each of the optical elements 8a, . That is, the warpage of each of the optical elements 8a, . . . , 8n in the Y-axis direction is measured. Next, the direction of warpage of each of the measured optical elements 8a, .
 なお、光学素子8a,・・・,8nの反りの向きを測定する処理と、上述した複数の発光点2aを結ぶ線の反りの向きを測定する処理(ステップS1)と、コリメートレンズアレイ4の反りの向きを測定する処理(ステップS2)とは、何れの順番で実行されてもよい。 . . , 8n, the process of measuring the warp direction of the line connecting the plurality of light emitting points 2a (step S1), and the collimator lens array 4. The process of measuring the direction of warpage (step S2) may be performed in any order.
 光モジュール1Bでは、Z軸に平行な方向で、Z軸の負の側から正の側に向かって、光学素子8a,・・・,8nの順番で光学素子8a,・・・,8nが配置されている。マルチエミッタ半導体レーザバー2のXY平面に平行な平面での中心と、コリメートレンズアレイ4のXY平面に平行な平面での中心と、光学素子8a,・・・,8nのXY平面に平行な平面での中心とを結ぶ線は、Z軸に平行である。 In the optical module 1B, the optical elements 8a, . . . , 8n are arranged in the order of the optical elements 8a, . It is The center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimator lens array 4 on a plane parallel to the XY plane, and the optical elements 8a, . is parallel to the Z-axis.
 図10は、実施の形態3に係る光モジュール1Bによって得られる効果を説明するための第1の図である。図10では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと異なっている。加えて、光学素子8a,・・・,8nの各々の反りの向きは、光学素子8aであればコリメートレンズアレイ4と異なり、光学素子8b,・・・,8nであれば1つ前の光学素子の反りの向きと異なっている。すなわち、光学素子8b,・・・,8nの場合、コリメートレンズアレイ4から数えてx番目の光学素子の反りの向きは、コリメートレンズアレイ4から数えて(x-1)番目の反りの向きと異なっている。 FIG. 10 is a first diagram for explaining effects obtained by the optical module 1B according to the third embodiment. In FIG. 10, the warp direction of the collimator lens array 4 is different from the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. In FIG. In addition, the direction of warpage of each of the optical elements 8a, . It is different from the warp direction of the element. That is, in the case of the optical elements 8b, . different.
 図10が示す状況では、マルチエミッタ半導体レーザバー2が出力する複数のビームのうちで直進するビーム10が存在する一方、直進しないビーム20も発生する。直進しないビーム20は、コリメートレンズアレイ4及び光学素子8a,・・・,8nの各々において発生する。直進しないビーム20が発生することは、マルチエミッタ半導体レーザバー2が出力するレーザ光が効率良く伝搬しないことを意味する。 In the situation shown in FIG. 10, among the plurality of beams output from the multi-emitter semiconductor laser bar 2, there are beams 10 that go straight, but there are also beams 20 that do not go straight. A non-linear beam 20 is generated at each of the collimating lens array 4 and the optical elements 8a, . . . , 8n. The generation of the beam 20 that does not travel straight means that the laser light output from the multi-emitter semiconductor laser bar 2 does not propagate efficiently.
 図11は、実施の形態3に係る光モジュール1Bによって得られる効果を説明するための第2の図である。図11では、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。光学素子8a,・・・,8nの各々の反りの向きも、複数の発光点2aを結ぶ線2bの反りの向きと同じである。 FIG. 11 is a second diagram for explaining the effects obtained by the optical module 1B according to the third embodiment. In FIG. 11, the warp direction of the collimating lens array 4 is the same as the warp direction of the line 2b connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. In FIG. The direction of warp of each of the optical elements 8a, .
 すなわち、図11は実施の形態3に係る光モジュール1Bにおける複数のビームの伝搬の状況を示している。上述の通り、コリメートレンズアレイ4の反りの向き及び光学素子8a,・・・,8nの各々の反りの向きが複数の発光点2aを結ぶ線2bの反りの向きと同じであるので、直進しないビーム20の発生は抑制され、マルチエミッタ半導体レーザバー2が出力する複数のビームのうちの比較的多数のビームが直進するビーム10となる。したがって、光モジュール1Bは、出力するレーザ光の伝搬の損失の発生を抑制することができる。 That is, FIG. 11 shows the state of propagation of a plurality of beams in the optical module 1B according to the third embodiment. As described above, the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a, . Generation of the beams 20 is suppressed, and a relatively large number of beams out of the plurality of beams output from the multi-emitter semiconductor laser bar 2 become the straight beams 10 . Therefore, the optical module 1B can suppress the occurrence of propagation loss of the output laser light.
 上述の通り、実施の形態3に係る光モジュール1Bでは、コリメートレンズアレイ4の反りの向き及び光学素子8a,・・・,8nの各々の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。そのため、マルチエミッタ半導体レーザバー2が出力する複数のビームが直進しなくなることは抑制される。したがって、光モジュール1Bは、出力するレーザ光の伝搬の損失の発生を抑制することができる。言い換えると、光モジュール1Bは、出力するレーザ光を効率良く伝搬させることができる。 As described above, in the optical module 1B according to the third embodiment, the direction of warp of the collimator lens array 4 and the direction of warp of each of the optical elements 8a, . It is the same as the warp direction of the line 2b connecting the light emitting points 2a. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not go straight. Therefore, the optical module 1B can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1B can efficiently propagate the output laser light.
 実施の形態3では、コリメートレンズアレイ4の反りの向きと光学素子8a,・・・,8nの各々の反りの向きとを、複数の発光点2aを結ぶ線2bの反りの向きと同じにして光モジュール1Bを製造する。したがって、実施の形態3に係る光モジュールの製造方法によれば、出力するレーザ光の伝搬の損失の発生を抑制する光モジュール1Bを製造することができる。 In the third embodiment, the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a, . An optical module 1B is manufactured. Therefore, according to the optical module manufacturing method according to the third embodiment, it is possible to manufacture the optical module 1B that suppresses the occurrence of propagation loss of the output laser light.
実施の形態4.
 図12は、実施の形態4に係る光モジュール1Cの側面を模式的に示す図である。図12は、Y軸とZ軸とを含む平面(以下、YZ平面という)に平行な光モジュール1Cの側面を模式的に示している。図13は、実施の形態4に係る光モジュール1Cの平面を模式的に示す図である。図13は、X軸とZ軸とを含む平面(以下、XZ平面という)に平行な光モジュール1Cの平面を模式的に示している。図14は、実施の形態4に係る光モジュール1Cの正面を模式的に示す図である。図14は、X軸とY軸とを含む平面であるXY平面に平行な光モジュール1Cの正面を模式的に示している。
Embodiment 4.
FIG. 12 is a diagram schematically showing a side surface of an optical module 1C according to the fourth embodiment. FIG. 12 schematically shows a side surface of the optical module 1C parallel to a plane including the Y-axis and Z-axis (hereinafter referred to as YZ plane). FIG. 13 is a schematic plan view of an optical module 1C according to the fourth embodiment. FIG. 13 schematically shows a plane of the optical module 1C parallel to a plane containing the X-axis and the Z-axis (hereinafter referred to as the XZ plane). FIG. 14 is a diagram schematically showing the front of an optical module 1C according to the fourth embodiment. FIG. 14 schematically shows the front of the optical module 1C parallel to the XY plane, which is a plane containing the X axis and the Y axis.
 光モジュール1Cの正面は、マルチエミッタ半導体レーザバー2が複数のビームを出力する側の面である。更に言うと、正面は、X軸とY軸とを含む平面に平行なXY平面である。なお、図12から図14には、マルチエミッタ半導体レーザバー2に電流を供給する給電機構は示されていない。 The front face of the optical module 1C is the side from which the multi-emitter semiconductor laser bar 2 outputs a plurality of beams. More specifically, the front is the XY plane parallel to the plane containing the X and Y axes. 12 to 14 do not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2. FIG.
 実施の形態4でも、実施の形態1から3と同様に、マルチエミッタ半導体レーザバー2のXY平面に平行な平面での中心と、コリメートレンズアレイ4のXY平面に平行な平面での中心とを結ぶ線は、Z軸に平行である。 In the fourth embodiment, as in the first to third embodiments, the center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane is connected to the center of the collimator lens array 4 on a plane parallel to the XY plane. The lines are parallel to the Z-axis.
 光モジュール1Cは、実施の形態1から3で説明したマルチエミッタ半導体レーザバー2と、冷却構造体3とを有する。マルチエミッタ半導体レーザバー2及び冷却構造体3は、何れもXY平面に平行な面と、YZ平面に平行な面と、XZ平面に平行な面とを有した直方体である。 The optical module 1C has the multi-emitter semiconductor laser bar 2 and the cooling structure 3 described in the first to third embodiments. Each of the multi-emitter semiconductor laser bar 2 and the cooling structure 3 is a rectangular parallelepiped having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
 また、光モジュール1Cは、マルチエミッタ半導体レーザバー2が出力する複数のビームを平行にするためのコリメートレンズアレイ4を含むレンズユニット25を更に有する。コリメートレンズアレイ4は、マルチエミッタ半導体レーザバー2が出力する複数のビームが伝搬する向きにおいて、マルチエミッタ半導体レーザバー2より前方に設けられている。 The optical module 1C further has a lens unit 25 including a collimating lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2. The collimator lens array 4 is provided in front of the multi-emitter semiconductor laser bar 2 in the direction in which the multiple beams output by the multi-emitter semiconductor laser bar 2 propagate.
 図12から理解することができるように、Z軸の正の側からZ軸の負の側の向きに正面を見ると、マルチエミッタ半導体レーザバー2が有する複数の発光点2aはコリメートレンズアレイ4によって隠れる。しかしながら、図14には、マルチエミッタ半導体レーザバー2が有する複数の発光点2aが示されている。図14における複数の発光点2aは、マルチエミッタ半導体レーザバー2が複数の発光点2aを有することを説明するために示されている。 As can be understood from FIG. 12, when viewed from the positive side of the Z-axis toward the negative side of the Z-axis, the multiple light-emitting points 2a of the multi-emitter semiconductor laser bar 2 are formed by the collimating lens array 4. hide. However, FIG. 14 shows a plurality of light emitting points 2a that the multi-emitter semiconductor laser bar 2 has. A plurality of light emitting points 2a in FIG. 14 are shown for explaining that the multi-emitter semiconductor laser bar 2 has a plurality of light emitting points 2a.
 コリメートレンズアレイ4は、XY平面に平行な面と、YZ平面に平行な面と、XZ平面に平行な面とを有した直方体である。コリメートレンズアレイ4のおもて面は、Z軸の負の方向を向くXY平面に平行な平面である。コリメートレンズアレイ4のうら面は、Z軸の正の方向を向くXY平面に平行な平面である。マルチエミッタ半導体レーザバー2が出力する複数のビームは、コリメートレンズアレイ4のおもて面から入り、うら面から出てくる。コリメートレンズアレイ4の長手方向は、X軸の方向である。例えば、コリメートレンズアレイ4では、長手方向の中心に対して、X軸の正の向きの形状とX軸の負の向きの形状とが対称である。 The collimating lens array 4 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane. The front surface of the collimating lens array 4 is a plane parallel to the XY plane facing the negative direction of the Z axis. The back surface of the collimating lens array 4 is a plane parallel to the XY plane facing the positive direction of the Z axis. A plurality of beams output by the multi-emitter semiconductor laser bar 2 enter from the front surface of the collimating lens array 4 and emerge from the back surface. The longitudinal direction of the collimator lens array 4 is the direction of the X-axis. For example, in the collimator lens array 4, the shape in the positive direction of the X-axis and the shape in the negative direction of the X-axis are symmetrical with respect to the center in the longitudinal direction.
 光モジュール1Cでは、光モジュール1と同様の位置にマルチエミッタ半導体レーザバー2及びコリメートレンズアレイ4が配置されている。すなわち、マルチエミッタ半導体レーザバー2に対するコリメートレンズアレイ4の位置関係は、光モジュール1と光モジュール1Cとで同じである。 In the optical module 1C, a multi-emitter semiconductor laser bar 2 and a collimator lens array 4 are arranged at the same positions as in the optical module 1. That is, the positional relationship of the collimating lens array 4 with respect to the multi-emitter semiconductor laser bar 2 is the same between the optical module 1 and the optical module 1C.
 レンズユニット25は、コリメートレンズアレイ4を保持するための保持部材27を有する。光モジュール1Cは、冷却構造体3とレンズユニット25の保持部材27とを接合している第3の接合部材11を更に有する。図14に示すように、保持部材27は、コリメートレンズアレイ4の反りの向きと直交する方向の片側からコリメートレンズアレイ4を支持しており、コリメートレンズアレイ4で平行にされる複数のビームを通過させる。すなわち、コリメートレンズアレイ4は、片持ち梁となっている。換言すると、光モジュール1Cは、片持ち梁構造によってコリメートレンズアレイ4を支持している。 The lens unit 25 has a holding member 27 for holding the collimating lens array 4. The optical module 1</b>C further has a third joint member 11 joining the cooling structure 3 and the holding member 27 of the lens unit 25 . As shown in FIG. 14, the holding member 27 supports the collimating lens array 4 from one side in the direction orthogonal to the direction of warp of the collimating lens array 4, and supports a plurality of beams collimated by the collimating lens array 4. let it pass. That is, the collimator lens array 4 is a cantilever beam. In other words, the optical module 1C supports the collimator lens array 4 with a cantilever structure.
 このように、保持部材27は、コリメートレンズアレイ4の反りの向き及び複数のビームの伝搬方向に直交する第1の方向の片側からコリメートレンズアレイ4を支持している。コリメートレンズアレイ4の反りの向きは、Y軸に平行な方向である。複数のビームの伝搬方向は、Z軸に平行な方向である。第1の方向は、X軸に平行な方向である。 Thus, the holding member 27 supports the collimating lens array 4 from one side in the first direction perpendicular to the direction of warp of the collimating lens array 4 and the propagation direction of the plurality of beams. The warping direction of the collimating lens array 4 is parallel to the Y-axis. The propagation directions of the multiple beams are parallel to the Z-axis. The first direction is a direction parallel to the X-axis.
 保持部材27は、Z軸の方向に延設されている。保持部材27の形状は、例えば、Z軸方向に延びる四角柱といった柱状である。以下では、保持部材27の形状が、Z軸方向に延びる四角柱である場合について説明する。保持部材27は、XY平面に平行な面と、YZ平面に平行な面と、XZ平面に平行な面とを有した直方体である。 The holding member 27 extends in the Z-axis direction. The shape of the holding member 27 is, for example, a columnar shape such as a square column extending in the Z-axis direction. Below, the case where the shape of the holding member 27 is a quadrangular prism extending in the Z-axis direction will be described. The holding member 27 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane.
 保持部材27の底面の一部は、冷却構造体3の上面に、第3の接合部材11によって接合されている。すなわち、保持部材27は、底面が冷却構造体3の上面に接合されて冷却構造体3から複数のビームの伝搬方向であるZ軸に平行な方向に延設されている。保持部材27の底面及び冷却構造体3の上面は、何れもXZ平面に平行な面である。 A part of the bottom surface of the holding member 27 is joined to the upper surface of the cooling structure 3 by the third joining member 11 . That is, the holding member 27 has its bottom surface joined to the top surface of the cooling structure 3 and extends from the cooling structure 3 in a direction parallel to the Z-axis, which is the propagation direction of the plurality of beams. Both the bottom surface of the holding member 27 and the top surface of the cooling structure 3 are parallel to the XZ plane.
 なお、保持部材27は、マルチエミッタ半導体レーザバー2が有するYZ平面に平行な側面のうちの一方の側面に、第4の接合部材(図示せず)によって接合されていてもよい。換言すると、保持部材27は、マルチエミッタ半導体レーザバー2のX軸の方向の一方の端面に、第4の接合部材によって接合されていてもよい。 It should be noted that the holding member 27 may be joined to one of the side surfaces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2 by a fourth joining member (not shown). In other words, the holding member 27 may be joined to one end face of the multi-emitter semiconductor laser bar 2 in the X-axis direction by a fourth joining member.
 また、保持部材27は、コリメートレンズアレイ4が有するYZ平面に平行な側面のうちの一方の側面に、第5の接合部材13によって接合されている。換言すると、保持部材27は、コリメートレンズアレイ4のX軸の方向の一方の端面に、第5の接合部材13によって接合されている。 In addition, the holding member 27 is joined by a fifth joining member 13 to one of the side surfaces of the collimating lens array 4 that are parallel to the YZ plane. In other words, the holding member 27 is joined to one end surface of the collimating lens array 4 in the X-axis direction by the fifth joining member 13 .
 保持部材27のYZ平面に平行な側面が第1の面であり、XZ平面に平行な底面が第2の面である。マルチエミッタ半導体レーザバー2のYZ平面に平行な側面が第3の面であり、コリメートレンズアレイ4のYZ平面に平行な側面が第4の面である。 The side surface parallel to the YZ plane of the holding member 27 is the first surface, and the bottom surface parallel to the XZ plane is the second surface. The side surface of the multi-emitter semiconductor laser bar 2 parallel to the YZ plane is the third surface, and the side surface of the collimating lens array 4 parallel to the YZ plane is the fourth surface.
 なお、保持部材27は、マルチエミッタ半導体レーザバー2が有するYZ平面に平行な2つの側面のうちの何れの側面に接合されてもよい。例えば、保持部材27は、マルチエミッタ半導体レーザバー2が有するYZ平面に平行な2つの側面のうちX軸の負の方向を向く側面に接合されてもよいし、X軸の正の方向を向く側面に接合されてもよい。なお、保持部材27は、マルチエミッタ半導体レーザバー2が有するYZ平面に平行な2つの側面のうちX軸の負の方向を向く側面及び正の方向を向く側面の両方に接合されてもよい。 It should be noted that the holding member 27 may be joined to either of the two side surfaces of the multi-emitter semiconductor laser bar 2 parallel to the YZ plane. For example, the holding member 27 may be joined to the side facing the negative direction of the X-axis out of the two side faces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2, or the side facing the positive direction of the X-axis. may be joined to. Note that the holding member 27 may be joined to both of the two side surfaces parallel to the YZ plane of the multi-emitter semiconductor laser bar 2, the side surface facing the negative direction of the X axis and the side surface facing the positive direction.
 保持部材27を構成する材料とコリメートレンズアレイ4を構成する材料とが同じであることが好ましい。第3の接合部材11、第4の接合部材及び第5の接合部材13は、例えば接着材である。第3の接合部材11は、紫外線硬化樹脂接着剤で形成されていることが好ましい。第4の接合部材の耐熱強度及び第5の接合部材13の耐熱強度は、第3の接合部材11の耐熱強度より大きいことが好ましい。 The material forming the holding member 27 and the material forming the collimating lens array 4 are preferably the same. The third joint member 11, the fourth joint member and the fifth joint member 13 are, for example, adhesives. The third joint member 11 is preferably made of an ultraviolet curable resin adhesive. The heat resistance strength of the fourth joint member and the heat resistance strength of the fifth joint member 13 are preferably higher than the heat resistance strength of the third joint member 11 .
 図14には、コリメートレンズアレイ4の反りを示す円弧4aが示されている。円弧4aは、一点鎖線で示されている。コリメートレンズアレイ4の反りは、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であってコリメートレンズアレイ4を含む平面でのコリメートレンズアレイ4の反りである。円弧4aが示す通り、図14のコリメートレンズアレイ4の反りの向きは、Y軸の負の側に突出する向きである。 FIG. 14 shows an arc 4a that indicates the warp of the collimating lens array 4. Arc 4a is indicated by a dashed line. The warp of the collimator lens array 4 is the warp of the collimator lens array 4 on a plane that is perpendicular to the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 and includes the collimator lens array 4 . As indicated by the arc 4a, the direction of warp of the collimating lens array 4 in FIG. 14 is the direction of protruding to the negative side of the Y axis.
 光モジュール1Cでは、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であって複数の発光点2aを含む平面での複数の発光点2aを結ぶ線2bの反りの向きと同じである。 In the optical module 1C, the direction of the warp of the collimating lens array 4 is a plane orthogonal to the propagation direction of the plurality of beams output from the multi-emitter semiconductor laser bar 2 and the plurality of light emitting points on the plane including the plurality of light emitting points 2a. It is the same as the warp direction of the line 2b connecting 2a.
 次に、実施の形態4に係る光モジュール1Cの製造方法を説明する。マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面であって複数の発光点2aを含む平面での複数の発光点2aを結ぶ線2bの反りの向きを測定する。すなわち、マルチエミッタ半導体レーザバー2のY軸の方向における反りの向きを測定する。 Next, a method for manufacturing the optical module 1C according to Embodiment 4 will be described. The direction of warpage of a line 2b connecting a plurality of light emitting points 2a on a plane orthogonal to the propagation direction of a plurality of beams output from the multi-emitter semiconductor laser bar 2 and including the plurality of light emitting points 2a is measured. That is, the direction of warp in the Y-axis direction of the multi-emitter semiconductor laser bar 2 is measured.
 次に、マルチエミッタ半導体レーザバー2を冷却構造体3の上面に固定する。なお、マルチエミッタ半導体レーザバー2の反りの向きは、マルチエミッタ半導体レーザバー2を冷却構造体3の上面に固定した後に測定されてもよい。 Next, the multi-emitter semiconductor laser bar 2 is fixed on the upper surface of the cooling structure 3 . The warp direction of the multi-emitter semiconductor laser bar 2 may be measured after fixing the multi-emitter semiconductor laser bar 2 to the upper surface of the cooling structure 3 .
 次に、コリメートレンズアレイ4で平行にされるビームの伝搬方向と直交する平面であってコリメートレンズアレイ4を含む平面でのコリメートレンズアレイ4の反りの向きを測定する。 Next, the warp direction of the collimating lens array 4 on a plane that is perpendicular to the propagation direction of the beams collimated by the collimating lens array 4 and includes the collimating lens array 4 is measured.
 次に、コリメートレンズアレイ4を第5の接合部材13によって保持部材27に接合する。なお、コリメートレンズアレイ4の反りの向きは、コリメートレンズアレイ4が保持部材27に接合された後に測定されてもよい。 Next, the collimating lens array 4 is joined to the holding member 27 by the fifth joining member 13. The warp direction of the collimating lens array 4 may be measured after the collimating lens array 4 is joined to the holding member 27 .
 次に、保持部材27を用いて、測定されたコリメートレンズアレイ4の反りの向きを、測定された複数の発光点2aを結ぶ線2bの反りの向きと同じにする。具体的には、測定されたコリメートレンズアレイ4の反りの向きが、測定された複数の発光点2aを結ぶ線2bの反りの向きと同じになるように、コリメートレンズアレイ4に固定された保持部材27を第3の接合部材11によって冷却構造体3の上面に固定する。これにより、光モジュール1Cは製造される。 Next, using the holding member 27, the measured warp direction of the collimating lens array 4 is made the same as the measured warp direction of the line 2b connecting the plurality of light emitting points 2a. Specifically, it is fixed to the collimator lens array 4 so that the measured warp direction of the collimator lens array 4 is the same as the measured warp direction of the line 2b connecting the plurality of light emitting points 2a. A member 27 is secured to the upper surface of the cooling structure 3 by means of a third joining member 11 . Thereby, the optical module 1C is manufactured.
 なお、複数の発光点2aを結ぶ線2bの反りの向きを測定する処理と、コリメートレンズアレイ4の反りの向きを測定する処理とは、何れを先に行ってもよい。また、マルチエミッタ半導体レーザバー2と、冷却構造体3と、保持部材27と、コリメートレンズアレイ4との固定は、何れの順番で行われてもよい。 It should be noted that either the process of measuring the warp direction of the line 2b connecting the plurality of light emitting points 2a or the process of measuring the warp direction of the collimating lens array 4 may be performed first. Moreover, the fixing of the multi-emitter semiconductor laser bar 2, the cooling structure 3, the holding member 27, and the collimator lens array 4 may be performed in any order.
 上述の通り、実施の形態4に係る光モジュール1Cでは、コリメートレンズアレイ4の反りの向きは、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線の反りの向きと同じである。そのため、マルチエミッタ半導体レーザバー2が出力する複数のビームが直進しなくなることは抑制される。したがって、光モジュール1Cは、出力するレーザ光の伝搬の損失の発生を抑制することができる。言い換えると、光モジュール1Cは、出力するレーザ光を効率良く伝搬させることができる。 As described above, in the optical module 1C according to Embodiment 4, the warp direction of the collimating lens array 4 is the same as the warp direction of the line connecting the plurality of light emitting points 2a of the multi-emitter semiconductor laser bar 2. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not go straight. Therefore, the optical module 1C can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1C can efficiently propagate the output laser light.
 実施の形態4では、コリメートレンズアレイ4の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにして光モジュール1Cを製造する。したがって、実施の形態4に係る光モジュールの製造方法によれば、出力するレーザ光の伝搬の損失の発生を抑制する光モジュール1Cを製造することができる。 In the fourth embodiment, the optical module 1C is manufactured by making the direction of warp of the collimating lens array 4 the same as the direction of warp of the line 2b connecting the plurality of light emitting points 2a. Therefore, according to the optical module manufacturing method according to the fourth embodiment, it is possible to manufacture the optical module 1C that suppresses the occurrence of propagation loss of the output laser light.
 また、光モジュール1Cでは、コリメートレンズアレイ4の下側、すなわちY軸の負の側に保持部材が不要となる。これにより、冷却構造体3のY軸方向における形状を薄肉化できる。したがって、冷却構造体3のY軸方向での小型化が可能となる。 Also, in the optical module 1C, a holding member is not required on the lower side of the collimator lens array 4, that is, on the negative side of the Y axis. Thereby, the shape of the cooling structure 3 in the Y-axis direction can be thinned. Therefore, it is possible to reduce the size of the cooling structure 3 in the Y-axis direction.
 また、X軸の方向に延びるコリメートレンズアレイ4が、片持ち梁となっているので、冷却構造体3のX軸方向における形状を薄肉化できる。したがって、冷却構造体3のX軸方向での小型化が可能となる。 Also, since the collimator lens array 4 extending in the X-axis direction is a cantilever beam, the shape of the cooling structure 3 in the X-axis direction can be made thinner. Therefore, it is possible to reduce the size of the cooling structure 3 in the X-axis direction.
実施の形態5.
 図15は、実施の形態5に係る光モジュール1Dの側面を模式的に示す図である。図15は、Y軸とZ軸とを含む平面であるYZ平面に平行な光モジュール1Dの側面を模式的に示している。実施の形態5では、実施の形態4との相違点を主に説明する。なお、図15には、マルチエミッタ半導体レーザバー2に電流を供給する給電機構は示されていない。
Embodiment 5.
FIG. 15 is a diagram schematically showing a side surface of an optical module 1D according to the fifth embodiment. FIG. 15 schematically shows a side surface of the optical module 1D parallel to the YZ plane, which is a plane containing the Y axis and the Z axis. In Embodiment 5, differences from Embodiment 4 will be mainly described. It should be noted that FIG. 15 does not show a power supply mechanism for supplying current to the multi-emitter semiconductor laser bar 2 .
 光モジュール1Dは、実施の形態4の光モジュール1Cと同様の、マルチエミッタ半導体レーザバー2と、冷却構造体3と、コリメートレンズアレイ4とを有する。光モジュール1Dにおけるマルチエミッタ半導体レーザバー2と、冷却構造体3と、コリメートレンズアレイ4との配置位置は、光モジュール1Cと同様である。 The optical module 1D has a multi-emitter semiconductor laser bar 2, a cooling structure 3, and a collimating lens array 4 similar to the optical module 1C of the fourth embodiment. The arrangement positions of the multi-emitter semiconductor laser bar 2, the cooling structure 3, and the collimating lens array 4 in the optical module 1D are the same as in the optical module 1C.
 光モジュール1Dは、マルチエミッタ半導体レーザバー2が出力する複数のビームを平行にするためのコリメートレンズアレイ4を含むレンズユニット35を更に有する。すなわち、光モジュール1Dは、光モジュール1Cと比較して、レンズユニット25の代わりにレンズユニット35を有する。 The optical module 1D further has a lens unit 35 including a collimator lens array 4 for collimating the multiple beams output by the multi-emitter semiconductor laser bar 2. That is, the optical module 1D has a lens unit 35 instead of the lens unit 25 as compared with the optical module 1C.
 レンズユニット35は、コリメートレンズアレイ4を保持するための保持部材37を有する。光モジュール1Dは、冷却構造体3とレンズユニット35の保持部材37とを接合している第6の接合部材14を更に有する。保持部材37は、コリメートレンズアレイ4の反りの向きと直交する方向でコリメートレンズアレイ4を支持しており、コリメートレンズアレイ4で平行にされる複数のビームを通過させる。 The lens unit 35 has a holding member 37 for holding the collimating lens array 4. The optical module 1D further has a sixth joint member 14 joining the cooling structure 3 and the holding member 37 of the lens unit 35 . The holding member 37 supports the collimating lens array 4 in a direction orthogonal to the direction of warp of the collimating lens array 4, and allows a plurality of beams collimated by the collimating lens array 4 to pass therethrough.
 保持部材37は、Z軸の方向に延設されている。保持部材37の形状は、例えば、Z軸方向に延びる四角柱といった柱状である。以下では、保持部材37の形状が、Z軸方向に延びる四角柱である場合について説明する。保持部材37は、XY平面に平行な面と、YZ平面に平行な面と、XZ平面に平行な面とを有した直方体である。保持部材37は、保持部材27よりも、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向における長さが長い。すなわち、保持部材37は、保持部材27よりもZ軸の方向の長さが長い。 The holding member 37 extends in the Z-axis direction. The shape of the holding member 37 is, for example, a columnar shape such as a square column extending in the Z-axis direction. Below, the case where the shape of the holding member 37 is a quadrangular prism extending in the Z-axis direction will be described. The holding member 37 is a cuboid having a surface parallel to the XY plane, a surface parallel to the YZ plane, and a surface parallel to the XZ plane. The holding member 37 is longer than the holding member 27 in the propagation direction of the multiple beams output from the multi-emitter semiconductor laser bar 2 . That is, the holding member 37 is longer than the holding member 27 in the Z-axis direction.
 保持部材37の底面の一部は、冷却構造体3の上面に、第6の接合部材14によって接合されている。保持部材37の底面及び冷却構造体3の上面は、何れもXZ平面に平行な面である。 A part of the bottom surface of the holding member 37 is joined to the upper surface of the cooling structure 3 by the sixth joining member 14 . Both the bottom surface of the holding member 37 and the top surface of the cooling structure 3 are parallel to the XZ plane.
 第6の接合部材14は、例えば接着材である。第6の接合部材14は、紫外線硬化樹脂接着剤で形成されていることが好ましい。 The sixth joint member 14 is, for example, an adhesive. The sixth joint member 14 is preferably made of an ultraviolet curable resin adhesive.
 光モジュール1Dは、光モジュール1Cが有していない光学素子8a,・・・,8nを更に有する。光モジュール1Dの光学素子8a,・・・,8nは、光モジュール1Bの光学素子8a,・・・,8nと同様の位置に配置されている。光モジュール1Dは、光学素子8a,・・・,8nと保持部材37とを接合している第9の接合部材(図示せず)を更に有する。例えば、第9の接合部材の各々は、第5の接合部材13と同じ材料によって形成されている。 The optical module 1D further has optical elements 8a, . . . , 8n that the optical module 1C does not have. The optical elements 8a, . . . , 8n of the optical module 1D are arranged at the same positions as the optical elements 8a, . The optical module 1D further has a ninth joining member (not shown) joining the optical elements 8a, . . . For example, each of the ninth joint members is made of the same material as the fifth joint member 13 .
 光学素子8a,・・・,8nは、それぞれXY平面に平行な面と、YZ平面に平行な面と、XZ平面に平行な面とを有した直方体である。光学素子8a,・・・,8nのおもて面は、Z軸の負の方向を向くXY平面に平行な平面である。光学素子8a,・・・,8nのうら面は、Z軸の正の方向を向くXY平面に平行な平面である。コリメートレンズアレイ4が出力する複数のビームは、光学素子8a,・・・,8nのおもて面から入り、うら面から出てくる。光学素子8a,・・・,8nの長手方向は、X軸の方向である。例えば、光学素子8a,・・・,8nでは、長手方向の中心に対して、X軸の正の向きの形状とX軸の負の向きの形状とが対称である。 The optical elements 8a, . The front surfaces of the optical elements 8a, . . . , 8n are planes parallel to the XY plane facing the negative direction of the Z axis. The back surfaces of the optical elements 8a, . . . , 8n are planes parallel to the XY plane facing the positive direction of the Z axis. A plurality of beams output by the collimating lens array 4 enter from the front surface of the optical elements 8a, . The longitudinal direction of the optical elements 8a, . . . , 8n is the direction of the X-axis. For example, in the optical elements 8a, . . . , 8n, the positive and negative X-axis shapes are symmetrical with respect to the center in the longitudinal direction.
 保持部材37は、マルチエミッタ半導体レーザバー2の反りの向き及び複数のビームの伝搬方向に直交する第1の方向の片側から光学素子8a,・・・,8nを支持している。光学素子8a,・・・,8nのYZ平面に平行な側面が第5の面である。 The holding member 37 supports the optical elements 8a, . The side surfaces of the optical elements 8a, . . . , 8n parallel to the YZ plane are the fifth surfaces.
 光モジュール1Dでは、Z軸に平行な方向で、Z軸の負の側から正の側に向かって、光学素子8a,・・・,8nの順番で光学素子8a,・・・,8nが配置されている。マルチエミッタ半導体レーザバー2のXY平面に平行な平面での中心と、コリメートレンズアレイ4のXY平面に平行な平面での中心と、光学素子8a,・・・,8nのXY平面に平行な平面での中心とを結ぶ線は、Z軸に平行である。 In the optical module 1D, the optical elements 8a, . . . , 8n are arranged in the order of the optical elements 8a, . It is The center of the multi-emitter semiconductor laser bar 2 on a plane parallel to the XY plane, the center of the collimator lens array 4 on a plane parallel to the XY plane, and the optical elements 8a, . is parallel to the Z-axis.
 実施の形態5では、光学素子8a,・・・,8nの各々について、マルチエミッタ半導体レーザバー2が出力する複数のビームの伝搬方向と直交する平面での反りの向きは、複数の発光点2aを結ぶ線2bの反りの向きと同じである。光モジュール1Dを製造する場合、光学素子8a,・・・,8nの各々について、コリメートレンズアレイ4と同様に、通過するビームの伝搬方向と直交する平面での反りの向きを測定する。つまり、Y軸の方向における光学素子8a,・・・,8nの各々の反りを測定する。次に、測定された光学素子8a,・・・,8nの各々の反りの向きを、複数の発光点2aを結ぶ線2bの反りの向きと同じにする。 In Embodiment 5, for each of the optical elements 8a, . It is the same as the warp direction of the connecting line 2b. When manufacturing the optical module 1D, for each of the optical elements 8a, . That is, the warpage of each of the optical elements 8a, . . . , 8n in the Y-axis direction is measured. Next, the direction of warpage of each of the measured optical elements 8a, .
 なお、実施の形態3と同様に、光学素子8a,・・・,8nの反りの向きを測定する処理と、マルチエミッタ半導体レーザバー2の反りの向きを測定する処理と、コリメートレンズアレイ4の反りの向きを測定する処理とは、何れの順番で実行されてもよい。また、マルチエミッタ半導体レーザバー2と、冷却構造体3と、保持部材27と、コリメートレンズアレイ4と、光学素子8a,・・・,8nとの固定は、何れの順番で行われてもよい。また、光モジュール1Dは、複数個ではなく、1個の光学素子8aを有していてもよい。 As in the third embodiment, processing for measuring the warp directions of the optical elements 8a, . . . , 8n, processing for measuring the warp directions of the multi-emitter semiconductor laser bar 2, and The process of measuring the orientation of may be executed in any order. Moreover, fixing the multi-emitter semiconductor laser bar 2, the cooling structure 3, the holding member 27, the collimating lens array 4, and the optical elements 8a, . . . , 8n may be performed in any order. Also, the optical module 1D may have one optical element 8a instead of a plurality.
 光モジュール1Dは、コリメートレンズアレイ4の反りの向き及び光学素子8a,・・・,8nの各々の反りの向きが複数の発光点2aを結ぶ線2bの反りの向きと同じであるので、直進しないビーム20の発生は抑制され、マルチエミッタ半導体レーザバー2が出力する複数のビームのうちの比較的多数のビームが直進するビーム10となる。したがって、光モジュール1Dは、出力するレーザ光の伝搬の損失の発生を抑制することができる。 In the optical module 1D, the direction of warp of the collimator lens array 4 and the direction of warp of each of the optical elements 8a, . A relatively large number of beams out of the plurality of beams output from the multi-emitter semiconductor laser bar 2 become beams 10 that travel straight. Therefore, the optical module 1D can suppress the occurrence of propagation loss of the output laser light.
 上述の通り、実施の形態5に係る光モジュール1Dでは、コリメートレンズアレイ4の反りの向き及び光学素子8a,・・・,8nの各々の反りの向きが、マルチエミッタ半導体レーザバー2が有する複数の発光点2aを結ぶ線2bの反りの向きと同じである。そのため、マルチエミッタ半導体レーザバー2が出力する複数のビームが直進しなくなることは抑制される。したがって、光モジュール1Dは、出力するレーザ光の伝搬の損失の発生を抑制することができる。言い換えると、光モジュール1Dは、出力するレーザ光を効率良く伝搬させることができる。 As described above, in the optical module 1D according to the fifth embodiment, the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a, . It is the same as the warp direction of the line 2b connecting the light emitting points 2a. Therefore, it is suppressed that a plurality of beams output from the multi-emitter semiconductor laser bar 2 do not travel straight. Therefore, the optical module 1D can suppress the occurrence of propagation loss of the output laser light. In other words, the optical module 1D can efficiently propagate the output laser light.
 実施の形態5では、コリメートレンズアレイ4の反りの向きと光学素子8a,・・・,8nの各々の反りの向きとを、複数の発光点2aを結ぶ線2bの反りの向きと同じにして光モジュール1Dを製造する。したがって、実施の形態5に係る光モジュールの製造方法によれば、出力するレーザ光の伝搬の損失の発生を抑制する光モジュール1Dを製造することができる。 In the fifth embodiment, the direction of warp of the collimating lens array 4 and the direction of warp of each of the optical elements 8a, . An optical module 1D is manufactured. Therefore, according to the method for manufacturing an optical module according to the fifth embodiment, it is possible to manufacture an optical module 1D that suppresses the occurrence of loss in propagation of output laser light.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1,1A,1B,1C,1D 光モジュール、2 マルチエミッタ半導体レーザバー、2a 複数の発光点、2b 複数の発光点を結ぶ線、3 冷却構造体、4 コリメートレンズアレイ、4a 円弧、5,27,37 保持部材、6 第1の接合部材、7 第2の接合部材、8a,・・・,8n 光学素子、9a,・・・,9n 接合部材、10 直進するビーム、11 第3の接合部材、13 第5の接合部材、14 第6の接合部材、20 直進しないビーム、25,35 レンズユニット。 1, 1A, 1B, 1C, 1D optical module, 2 multi-emitter semiconductor laser bar, 2a multiple light emitting points, 2b line connecting multiple light emitting points, 3 cooling structure, 4 collimating lens array, 4a arc, 5, 27, 37 holding member, 6 first joint member, 7 second joint member, 8a, ..., 8n optical element, 9a, ..., 9n joint member, 10 straight beam, 11 third joint member, 13 Fifth joint member, 14 Sixth joint member, 20 Beam that does not go straight, 25, 35 Lens unit.

Claims (8)

  1.  複数の発光点を具備するマルチエミッタ半導体レーザバーと、
     前記マルチエミッタ半導体レーザバーが出力する複数のビームを平行にするためのコリメートレンズアレイを有するレンズユニットと、
     を備え、
     前記レンズユニットは、前記コリメートレンズアレイを保持する保持部材を更に有し、
     前記複数のビームの伝搬方向と直交する平面であって前記コリメートレンズアレイを含む平面での前記コリメートレンズアレイの反りの向きは、前記伝搬方向と直交する平面であって前記複数の発光点を含む平面での前記複数の発光点を結ぶ線の反りの向きと同じであり、
     前記保持部材は、前記コリメートレンズアレイの反りの向き及び前記伝搬方向と直交する第1の方向の片側から前記コリメートレンズアレイを支持する、
     ことを特徴とする光モジュール。
    a multi-emitter semiconductor laser bar comprising a plurality of light emitting points;
    a lens unit having a collimating lens array for collimating a plurality of beams output from the multi-emitter semiconductor laser bar;
    with
    The lens unit further has a holding member that holds the collimating lens array,
    A warp direction of the collimating lens array on a plane that is orthogonal to the propagation direction of the plurality of beams and that includes the collimating lens array is a plane that is orthogonal to the propagation direction and includes the plurality of light emitting points. is the same as the warp direction of the line connecting the plurality of light emitting points on the plane,
    The holding member supports the collimating lens array from one side in a first direction orthogonal to the direction of warp of the collimating lens array and the propagation direction.
    An optical module characterized by:
  2.  前記レンズユニットよりも前記複数のビームの伝搬する向きの前方に配置される1個又は複数個の光学素子を更に備え、
     前記光学素子の各々について、前記伝搬方向と直交する平面であって前記光学素子を含む平面での反りの向きは、前記複数の発光点を結ぶ線の反りの向きと同じである、
     ことを特徴とする請求項1に記載の光モジュール。
    Further comprising one or more optical elements arranged in front of the lens unit in the direction in which the plurality of beams propagate,
    For each of the optical elements, the warp direction on a plane that is orthogonal to the propagation direction and includes the optical element is the same as the warp direction of the line that connects the plurality of light emitting points.
    2. The optical module according to claim 1, wherein:
  3.  前記マルチエミッタ半導体レーザバーで発生する熱を放散させる冷却構造体を更に備え、
     前記マルチエミッタ半導体レーザバーは、前記冷却構造体の上面に配置され、
     前記保持部材は、前記保持部材の底面が前記冷却構造体の上面に接合されて前記冷却構造体から前記伝搬方向に平行な方向に延設されている、
     ことを特徴とする請求項2に記載の光モジュール。
    further comprising a cooling structure for dissipating heat generated by the multi-emitter semiconductor laser bar;
    The multi-emitter semiconductor laser bar is positioned on top of the cooling structure,
    The holding member extends from the cooling structure in a direction parallel to the propagation direction, with the bottom surface of the holding member joined to the top surface of the cooling structure.
    3. The optical module according to claim 2, characterized by:
  4.  前記保持部材は、前記第1の方向に直交する第1の面と、前記冷却構造体の上面に平行な前記底面である第2の面とを有し、
     前記マルチエミッタ半導体レーザバーは、前記第1の方向に直交する第3の面を有し、
     前記コリメートレンズアレイは、前記第1の方向に直交する第4の面を有し、
     前記保持部材は、前記第1の面が前記第3の面および前記第4の面に接合されると共に前記第2の面が前記冷却構造体の上面に接合されている、
     ことを特徴とする請求項3に記載の光モジュール。
    the holding member has a first surface orthogonal to the first direction and a second surface parallel to the top surface of the cooling structure, which is the bottom surface;
    The multi-emitter semiconductor laser bar has a third surface orthogonal to the first direction,
    The collimating lens array has a fourth surface orthogonal to the first direction,
    The holding member has the first surface bonded to the third surface and the fourth surface, and the second surface bonded to the top surface of the cooling structure.
    4. The optical module according to claim 3, characterized by:
  5.  前記光学素子の各々は、前記第1の方向に直交する第5の面を有し、
     前記保持部材は、前記第1の面が前記第5の面に接合されることで、前記第1の方向の片側から前記光学素子の各々を支持する、
     ことを特徴とする請求項4に記載の光モジュール。
    each of the optical elements has a fifth surface perpendicular to the first direction;
    The holding member supports each of the optical elements from one side in the first direction by bonding the first surface to the fifth surface.
    5. The optical module according to claim 4, characterized by:
  6.  複数の発光点を具備するマルチエミッタ半導体レーザバーと、前記マルチエミッタ半導体レーザバーが出力する複数のビームを平行にするためのコリメートレンズアレイとを有する光モジュールを製造する光モジュールの製造方法であって、
     前記複数のビームの伝搬方向と直交する平面であって前記複数の発光点を含む平面での前記複数の発光点を結ぶ線の反りの向きを測定する第1のステップと、
     前記伝搬方向と直交する平面であって前記コリメートレンズアレイを含む平面での前記コリメートレンズアレイの反りの向きを測定する第2のステップと、
     前記コリメートレンズアレイの反りの向き及び前記複数のビームの伝搬方向に直交する第1の方向の片側から保持部材によって前記コリメートレンズアレイを支持し、測定された前記コリメートレンズアレイの反りの向きを、測定された前記複数の発光点を結ぶ線の反りの向きと同じにする第3のステップと、
     を含むことを特徴とする光モジュールの製造方法。
    An optical module manufacturing method for manufacturing an optical module having a multi-emitter semiconductor laser bar having a plurality of light emitting points and a collimating lens array for collimating a plurality of beams output from the multi-emitter semiconductor laser bar,
    a first step of measuring the direction of warpage of a line connecting the plurality of light emitting points on a plane orthogonal to the propagation direction of the plurality of beams and containing the plurality of light emitting points;
    a second step of measuring the warp orientation of the collimating lens array in a plane orthogonal to the propagation direction and containing the collimating lens array;
    supporting the collimating lens array from one side in a first direction orthogonal to the direction of warp of the collimating lens array and the propagation direction of the plurality of beams, and measuring the direction of the warping of the collimating lens array, a third step of making the direction of the warp of the line connecting the plurality of measured light emitting points the same;
    A method of manufacturing an optical module, comprising:
  7.  前記マルチエミッタ半導体レーザバーは、前記マルチエミッタ半導体レーザバーで発生する熱を放散させる冷却構造体の上面に配置されており、
     前記第3のステップでは、前記保持部材の底面が前記冷却構造体の上面に接合されて前記保持部材が前記冷却構造体から前記伝搬方向に平行な方向に延設される、
     ことを特徴とする請求項6に記載の光モジュールの製造方法。
    The multi-emitter semiconductor laser bar is disposed on an upper surface of a cooling structure for dissipating heat generated by the multi-emitter semiconductor laser bar,
    In the third step, the bottom surface of the holding member is joined to the top surface of the cooling structure, and the holding member extends from the cooling structure in a direction parallel to the propagation direction.
    7. The method of manufacturing an optical module according to claim 6, wherein:
  8.  前記光モジュールは、1個又は複数個の光学素子を更に有し、
     前記光学素子の各々について、前記伝搬方向と直交する平面であって前記光学素子を含む平面での反りの向きを測定する第4のステップと、
     前記第1の方向の片側から前記保持部材によって前記光学素子を支持し、測定された前記光学素子の各々の反りの向きを、測定された前記複数の発光点を結ぶ線の反りの向きと同じにする第5のステップと、
     を更に含むことを特徴とする請求項7に記載の光モジュールの製造方法。
    The optical module further comprises one or more optical elements,
    a fourth step of measuring, for each of said optical elements, the direction of warpage in a plane orthogonal to said propagation direction and containing said optical element;
    The optical element is supported by the holding member from one side in the first direction, and the measured warp direction of each of the optical elements is the same as the measured warp direction of the line connecting the plurality of light emitting points. a fifth step to
    8. The method of manufacturing an optical module according to claim 7, further comprising:
PCT/JP2022/031822 2021-08-26 2022-08-24 Optical module and optical module manufacturing method WO2023027096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543947A JPWO2023027096A1 (en) 2021-08-26 2022-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-137720 2021-08-26
JP2021137720 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027096A1 true WO2023027096A1 (en) 2023-03-02

Family

ID=85322863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031822 WO2023027096A1 (en) 2021-08-26 2022-08-24 Optical module and optical module manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2023027096A1 (en)
WO (1) WO2023027096A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178189B1 (en) * 1997-04-15 2001-01-23 Opto Power Corporation Multi-layer semiconductor devices with stress-relief profiles
JP2010171250A (en) * 2009-01-23 2010-08-05 Sony Corp Semiconductor laser device
JP2011187525A (en) * 2010-03-05 2011-09-22 Panasonic Corp Semiconductor laser device and method of manufacturing the same
JP2015128193A (en) * 2015-04-06 2015-07-09 株式会社フジクラ Semiconductor laser module
WO2017126035A1 (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Laser light source device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178189B1 (en) * 1997-04-15 2001-01-23 Opto Power Corporation Multi-layer semiconductor devices with stress-relief profiles
JP2010171250A (en) * 2009-01-23 2010-08-05 Sony Corp Semiconductor laser device
JP2011187525A (en) * 2010-03-05 2011-09-22 Panasonic Corp Semiconductor laser device and method of manufacturing the same
JP2015128193A (en) * 2015-04-06 2015-07-09 株式会社フジクラ Semiconductor laser module
WO2017126035A1 (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Laser light source device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2023027096A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US20180191135A1 (en) Laser unit and laser device
EP3367520B1 (en) Arrangement of diode laser module
JP5226856B1 (en) Laser module and manufacturing method thereof
JP2006284851A (en) Lens holder and laser array unit using the same
WO2014126124A1 (en) Semiconductor laser device
JPWO2017017864A1 (en) Laser light source device
JP5511944B2 (en) Laser equipment
JP6230720B2 (en) Optical component, optical module, and method of manufacturing optical component
JP2007163947A (en) Multiplexing optical system
JPWO2019193706A1 (en) Optical module
WO2023027096A1 (en) Optical module and optical module manufacturing method
JP2004200634A (en) Semiconductor laser device, semiconductor laser module for the semiconductor laser device and method for manufacturing the semiconductor laser device
WO2012157240A1 (en) Semiconductor laser module and method for manufacturing same
WO2017126035A1 (en) Laser light source device and manufacturing method thereof
US7733570B2 (en) Condenser
WO2023026772A1 (en) Optical module and method for manufacturing optical module
JP2021132150A (en) Optical module and manufacturing method thereof
WO2017173674A1 (en) Laser combining device
JP7426847B2 (en) Optical module and optical module manufacturing method
JP2018174176A (en) Manufacturing method of pcb mounting body and manufacturing method of semiconductor laser module
WO2016125301A1 (en) Laser device
JP2016122757A (en) Manufacturing method and apparatus for semiconductor laser device
JP2013174793A (en) Optical unit
US20220149596A1 (en) Semiconductor laser device
JP2009109663A (en) Light source unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE