WO2014126124A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2014126124A1
WO2014126124A1 PCT/JP2014/053258 JP2014053258W WO2014126124A1 WO 2014126124 A1 WO2014126124 A1 WO 2014126124A1 JP 2014053258 W JP2014053258 W JP 2014053258W WO 2014126124 A1 WO2014126124 A1 WO 2014126124A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
substrate
laser device
cooling path
support member
Prior art date
Application number
PCT/JP2014/053258
Other languages
French (fr)
Japanese (ja)
Inventor
真一 阪本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2014126124A1 publication Critical patent/WO2014126124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the present invention relates to a semiconductor laser device including a semiconductor laser unit in which a semiconductor laser diode array is formed.
  • a stack type laser for the purpose of obtaining a high-power laser beam is known (for example, see Patent Document 1 below).
  • This stack type laser is configured such that a plurality of semiconductor laser diodes are stacked (stacked), and a plurality of laser beams output from the plurality of semiconductor laser diodes are multiplexed.
  • the stack type laser is difficult to narrow the interval between the plurality of laser beams because of its structure. For this reason, the stack type laser cannot increase the energy density of a plurality of laser beams, and it is difficult to obtain a higher-luminance output beam such as the excitation light of a fiber laser.
  • a semiconductor laser device in which a plurality of semiconductor laser diode chips and a plurality of microlenses are arranged on the surface of a plate-like submount has been used.
  • this semiconductor laser device after collimating a plurality of laser beams emitted from a plurality of semiconductor laser diode chips by a plurality of microlenses, the plurality of laser beams are closely aligned, and further, the plurality of laser beams By focusing the light beam with a condenser lens, an output beam with higher brightness can be obtained.
  • such a semiconductor laser device in order to efficiently obtain a high-brightness output beam, the position and direction of each component on the submount are precisely adjusted, so that each of the emission positions of the plurality of laser beams is It is necessary to improve the accuracy of the propagation direction.
  • a semiconductor laser device may be affected by heat generated by a plurality of semiconductor laser diodes, and the submount may be distorted or warped. If the submount is distorted or warped, the positions and orientations of the constituent members are changed, and the accuracy of the laser beam emission position and propagation direction is reduced.
  • Patent Document 2 discloses a semiconductor laser device configured by stacking a plurality of semiconductor laser units.
  • each semiconductor laser unit includes a semiconductor laser module on the upper surface side of a plate-like and liquid-cooled heat sink.
  • JP-A-6-283807 Japanese Patent Publication “JP 2012-89584 A (published on May 1, 2012)”
  • the semiconductor laser device of Patent Document 2 cannot effectively cool the heat generated by the semiconductor laser diode while using a liquid-cooled heat sink, there is a problem of suppressing the heat sink warpage. It cannot be solved. For this reason, the semiconductor laser device of the above-mentioned patent document 2 is provided with a molybdenum reinforcing body on the back side of each semiconductor laser module so that the heat sink is not warped, thereby improving the overall rigidity.
  • the semiconductor laser device disclosed in Patent Document 2 has a cooling path that penetrates in a direction perpendicular to the surface of the semiconductor laser unit on which a plurality of semiconductor laser modules are arranged (direction in which the semiconductor laser units are stacked).
  • the structure which extends is adopted.
  • the cooling effect varies from part to part according to the distance from the cooling path, and therefore, temperature variation occurs from part to part of the heat sink.
  • such temperature variations cause distortion and deformation in the heat sink in which the semiconductor laser module is disposed, thereby reducing the accuracy of the emission position and propagation direction of the laser light emitted from the semiconductor laser module. It will be.
  • the present invention has been made in view of such problems, and an object of the present invention is to prevent deformation such as distortion and warpage of the substrate by suppressing temperature variations in the substrate on which a plurality of semiconductor laser diodes are arranged. It is to realize a semiconductor laser device capable of suppressing the above.
  • a semiconductor laser device includes a semiconductor laser unit in which a semiconductor laser diode array is formed on a surface of a substrate, and a support member that supports the substrate, and the support member Is characterized in that a cooling path extending along the semiconductor laser diode array is formed.
  • the present invention it is possible to suppress a variation in temperature in a substrate on which a plurality of semiconductor laser diodes are arranged. Therefore, it is possible to realize a semiconductor laser device capable of suppressing deformation such as distortion and warpage of the substrate. can do.
  • FIG. 3 is a cross-sectional view of the semiconductor laser device shown in FIG. 2 along AA. It is a top view which shows the structure of the semiconductor laser unit which concerns on this embodiment. It is a side view which shows the structure of the semiconductor laser apparatus which concerns on the modification of this embodiment. It is explanatory drawing which shows an example of the flow of the cooling fluid in the semiconductor laser apparatus which concerns on this embodiment. It is a top view which shows the structure (modified example of FIG. 4) of the semiconductor laser unit which concerns on this embodiment.
  • FIG. 1 is a perspective view showing a configuration of a semiconductor laser device 100 according to the present embodiment.
  • FIG. 2 is a side view showing the configuration of the semiconductor laser device 100 according to the present embodiment.
  • FIG. 3 is a cross-sectional view taken along the line AA of the semiconductor laser device 100 shown in FIG.
  • the semiconductor laser device 100 is a device that outputs a laser beam with high output and high brightness by emitting a laser beam from each of a plurality of semiconductor laser diodes and combining the plurality of laser beams. As shown in FIGS. 1 to 3, the semiconductor laser device 100 includes a plurality of semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4) stacked in the vertical direction (z-axis direction).
  • the semiconductor laser device 100 further includes a support member 120.
  • the supporting member 120 is a rear end portion of each of the plurality of semiconductor laser units 110 (an end portion on the negative side of the x-axis, in the state where the plurality of semiconductor laser units 110 are stacked at equal intervals, and the semiconductor laser diode array). Support nearby edge). That is, the semiconductor laser device 100 employs a configuration in which the plurality of semiconductor laser units 110 are cantilevered by the support member 120.
  • a number of notches (four in FIGS. 1 to 3) corresponding to the semiconductor laser unit 110 are formed on the front surface (the surface on the x-axis positive side) of the support member 120.
  • the notch has substantially the same shape as the shape of the rear end of the semiconductor laser unit 110 (submount 112). Then, the rear end portion of the corresponding semiconductor laser unit 110 (submount 112) is inserted into each notch, so that the support member 120 has a plurality of semiconductor laser units 110 in a predetermined posture.
  • the rear end portions of the plurality of semiconductor laser units 110 are supported so as to be sandwiched while closely contacting along the semiconductor laser diode row.
  • each semiconductor laser unit 110 is fixed to the support member 120 by a fixing means (not shown) (for example, adhesive, screw, etc.), so that the support of the semiconductor laser unit 110 by the support member 120 is more reliable. It will be something.
  • the support member 120 has a cooling path 122 through which a coolant flows, and also functions as a heat sink for cooling each semiconductor laser unit 110.
  • FIG. 4 is a top view showing the configuration of the semiconductor laser unit 110 according to the present embodiment. All of the four semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4) included in the semiconductor laser device 100 have the same configuration as the semiconductor laser unit 110 shown in FIG.
  • the semiconductor laser unit 110 includes a rectangular plate-shaped submount 112 (substrate) and semiconductor laser diodes (semiconductor laser diode chips) LD1 to LD10. Each of the semiconductor laser diodes LD1 to LD10 is formed on an independent chip.
  • the semiconductor laser diodes LD1 to LD10 are arranged in a line on the surface of the submount 112 along the rear end portion of the submount 112 in a straight line at equal intervals in the y-axis direction in the figure. Has been. That is, the semiconductor laser diodes LD1 to LD10 form a semiconductor laser diode array on the surface of the submount 112.
  • Each of the semiconductor laser diodes LD1 to LD10 is arranged on the surface of the submount 112 so that the active layer is parallel to the xy plane and the emission surface of the laser beam faces the positive direction of the x axis. Yes.
  • the plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 propagate on the surface of the submount 112 in parallel to the xy plane and in the positive x-axis direction. It will be. That is, the plurality of laser beams form a laser beam train that is equidistant and parallel on the surface of the submount 112.
  • the semiconductor laser unit 110 further includes F-axis collimating lenses FAC1 to FAC10, S-axis collimating lenses SAC1 to SAC10, and mirrors M1 to M10. That is, in the semiconductor laser unit 110, one F-axis collimating lens, one S-axis collimating lens, and one mirror are arranged in a straight line on the laser beam propagation path in order for one semiconductor laser diode. Has been. All of these members are installed on the surface of the submount 112 directly or via a mount (not shown). These members constitute a light guide device in the semiconductor laser unit 110.
  • the intervals between a plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 and propagating in the x-axis direction (first horizontal direction) are made closer, and the y-axis direction (second horizontal direction) ).
  • the laser beam transmitted through the F-axis collimating lens FACi and the S-axis collimating lens SACi becomes a collimated beam whose propagation direction is converged in the positive x-axis direction and propagates to the mirror Mi. Note that when the spread of the laser beam emitted from the semiconductor laser diode LDi in the S-axis direction is sufficiently small, the S-axis collimating lens SACi may be omitted.
  • Various conventionally known mirrors can be used as the mirror Mi, but a first mirror (so-called so-called mirror) that converts the propagation direction of the laser beam from the positive x-axis direction to the positive z-axis direction as necessary.
  • a second mirror (so-called “folding mirror”) that changes the propagation direction of the laser beam from the positive z-axis direction to the negative y-axis direction. preferable.
  • the positions of the mirrors M1 to M10 in the x-axis direction are closer to the emission direction (y-axis negative direction) of the plurality of laser beams (after the propagation direction is changed by the mirrors M1 to M10).
  • the negative x-axis direction In the direction approaching the semiconductor laser diode (the negative x-axis direction), it is shifted by a predetermined amount.
  • Each shift amount is smaller than the interval between the plurality of laser beams (before the propagation direction is changed by the mirrors M1 to M10).
  • the plurality of laser beams are emitted from the semiconductor laser unit 110 in an evenly spaced and more closely aligned state.
  • the plurality of laser beams emitted from the semiconductor laser unit 110 are converged by one or a plurality of condensing lenses arranged on the optical path of the plurality of laser beams and output as output beams.
  • a plurality (ten) of laser beams are focused on the incident end face of the optical fiber OF by the F-axis condenser lens FL and the S-axis condenser lens SL arranged on the optical path.
  • the laser beam (output beam) having high output and high brightness is incident on the optical fiber OF.
  • each of the four semiconductor laser units 110 has the same wavelength of a plurality of laser beams propagating in the same semiconductor laser unit 110. Further, the four semiconductor laser units 110 preferably have different output beam wavelengths for each layer. That is, it is preferable that the laser beam incident into the optical fiber OF is a wavelength-synthesized one. Thereby, the semiconductor laser device 100 can increase the output beam and increase the brightness of the output beam.
  • Each semiconductor laser unit 110 is adjusted to the support member 120 as shown in FIG. 1 after the positions and orientations of the constituent members arranged on the submount are precisely adjusted so as to obtain an optimum output beam.
  • the laminated structure is formed together with other semiconductor laser units 110.
  • Cooling Path 122 In the semiconductor laser device 100 of FIGS. 1 to 3, it should be noted that a plurality of cooling paths 122 (cooling paths 122-1 to 122-1) with respect to the support member 120 depending on the provision of the plurality of semiconductor laser units 110. 122-5) is formed.
  • the plurality of cooling paths 122 have the following ingenuity regarding their arrangement.
  • the support member 120 is formed with a cooling path 122 extending in the y-axis direction along the semiconductor laser diode array.
  • the temperature in the y-axis direction of the submount 112 can be made uniform, so that the semiconductor laser device 100 of this embodiment can uniformly cool a plurality of laser diodes constituting the semiconductor laser diode array.
  • the semiconductor laser device 100 according to the present embodiment can suppress deformation such as distortion and warpage of the submount 112 caused by variations in the temperature of the submount 112 in the y-axis direction. It is possible to suppress a decrease in accuracy of the beam emission position and propagation direction.
  • the cooling path 122 extends parallel to the semiconductor laser diode array. That is, the shortest distances from the plurality of semiconductor laser diodes constituting the semiconductor laser diode array to the cooling path 122 are equal to each other. Thereby, the semiconductor laser apparatus 100 of this embodiment can cool a some laser diode more uniformly.
  • a cooling path 122 extending in the y-axis direction along the semiconductor laser diode array is formed in the support member 120 for each semiconductor laser diode array.
  • the semiconductor laser device 100 of the present embodiment can make the temperature in the y-axis direction uniform for each of the plurality of submounts 112. Therefore, the semiconductor laser device 100 of the present embodiment can suppress deformations such as distortion and warping of the submount 112 for each of the plurality of semiconductor laser units 110, and thus the emission positions and propagation of the plurality of laser beams can be suppressed. A decrease in direction accuracy can be suppressed.
  • the support member 120 has a cooling path 122 on the front surface side of the submount 112 and a back surface of the submount 112 so as to be vertically (front and back) symmetrical with respect to each of the plurality of submounts 112.
  • a cooling path 122 on the side is formed.
  • the cooling paths 122-1 and 122-2 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-1.
  • cooling paths 122-2 and 122-3 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-2.
  • cooling paths 122-3 and 122-4 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-3.
  • cooling paths 122-4 and 122-5 are formed vertically symmetrically with respect to the submount 112 of the semiconductor laser unit 110-4.
  • the semiconductor laser device 100 of the present embodiment can cool each of the plurality of submounts 112 equally from both the front surface side and the back surface side. The temperature difference from the side can be suppressed, and the warpage of the submount 112 can be prevented. As a result, the semiconductor laser device 100 of this embodiment can suppress a decrease in accuracy of the emission positions and propagation directions of a plurality of laser beams due to warpage of the submount 112 in each semiconductor laser unit 110. A laser beam with high output and high brightness can be obtained.
  • the semiconductor laser device 100 of the present embodiment is configured to cool the two submounts with one cooling path 122.
  • the cooling path 122-2 cools both the submount 112 of the semiconductor laser unit 110-1 and the submount 112 of the semiconductor laser unit 110-2.
  • the cooling path 122-3 cools both the submount 112 of the semiconductor laser unit 110-2 and the submount 112 of the semiconductor laser unit 110-3.
  • the cooling path 122-4 cools both the submount 112 of the semiconductor laser unit 110-3 and the submount 112 of the semiconductor laser unit 110-4.
  • the semiconductor laser device 100 of this embodiment can reduce the number of the cooling paths 122 between the submounts 112 and can easily form the cooling paths 122.
  • the support member 120 The manufacturing cost can be suppressed.
  • the volume of the cooling path 122 between the submounts 112 can be increased, and thus the cooling effect can be enhanced.
  • FIG. 5 is a side view showing a configuration of a semiconductor laser device 100 according to a modification of the present embodiment.
  • the semiconductor laser device 100 of the present modification (FIG. 5) is different from the semiconductor laser of FIG. 2 in that a heat pipe 118 (heat transfer member) is provided for each submount 112 of the plurality of semiconductor laser units 110. Different from the device 100.
  • the first portion which is the portion closer to the support member 120 (x-axis negative side) than the semiconductor laser diode row, includes the submount as shown in FIG.
  • a heat pipe 118 having a higher thermal conductivity than that of the mount 112 is embedded.
  • the first portion has higher thermal conductivity than the second portion which is the portion on the opposite side (x-axis positive side) of the first portion. It has become a thing.
  • the heat pipe 118 is made of a metal (for example, copper) and a cylindrical member in which a liquid (for example, alternative chlorofluorocarbon) is sealed. On the high temperature side, the heat pipe 118 generates heat as the liquid evaporates. In the low temperature side, the liquid vapor releases heat by agglomeration, thereby improving heat transfer efficiency.
  • the semiconductor laser device 100 of the present modification can efficiently dissipate the heat generated by the semiconductor laser diode array, and therefore deformations such as distortion and warping of the submount 112 due to the heat generation are caused in each layer. Can be suppressed.
  • the semiconductor laser device 100 suppresses the positional deviation of each member (S-axis collimating lens and mirror) disposed in the second portion regardless of the optical path length from the semiconductor laser diode to the mirror. Therefore, it is possible to suppress a decrease in accuracy of the emission positions and propagation directions of the plurality of laser beams output from the plurality of semiconductor laser units 110.
  • the heat pipe 118 is used as an example of the heat transfer member, but is not limited thereto. That is, any heat transfer member may be used as long as it has a thermal conductivity higher than that of at least the submount 112.
  • the heat conductivity of the first portion of the submount 112 is higher than that of the second portion by embedding a heat transfer member in the submount 112, but the present invention is not limited to this. That is, the thermal conductivity of the first portion of the submount 112 may be higher than that of the second portion without embedding the heat transfer member in the submount 112.
  • the thermal conductivity of the first part may be made higher than that of the second part by making the material of the first part different from the material of the second part.
  • FIG. 6 shows an example of the flow of the coolant in the semiconductor laser device 100 according to the present embodiment.
  • the semiconductor laser device 100 further includes an injection pipe 602 and a discharge pipe 604.
  • the injection pipe 602 is for feeding a coolant into the cooling path 122.
  • the discharge pipe 604 is for discharging the coolant from the cooling path 122.
  • a metal for example, copper, aluminum
  • a resin for example, a resin
  • the cooling liquid for example, water, antifreeze liquid or the like is used.
  • the injection pipe 602 branches from one cooling path to five cooling paths.
  • Each of the five cooling paths of the injection pipe 602 is connected to the end of the corresponding cooling path 122 on the injection side (the y-axis negative side in the figure).
  • One cooling path of the injection pipe 602 is connected to, for example, a discharge port of a cooling pump (not shown).
  • the discharge pipe 604 merges from five cooling paths into one cooling path.
  • Each of the five cooling paths of the discharge pipe 604 is connected to the end of the corresponding cooling path 122 on the discharge side (y-axis positive side in the figure).
  • One cooling path of the discharge pipe 604 is connected to the inlet of the cooling pump, for example.
  • connection method of the pipe (injection pipe 602 and discharge pipe 604) to the cooling path 122 is not particularly limited, and various conventionally known connection methods (for example, a cylindrical shape extending from the end of the cooling path 122) A method of inserting the pipe into the connector, or a method of fixing the pipe to the wall surface of the support member 120 in a state where the end of the cooling path 122 and the end of the pipe are in close contact with each other can be employed.
  • the coolant fed into the injection pipe 602 is branched into the injection pipe 602, and is sent into each cooling path 122 (cooling paths 122-1 to 122-5).
  • the coolant fed into each cooling path 122 passes through each cooling path 122 in parallel to the xy plane and along each semiconductor laser diode array.
  • the coolant that has passed through each cooling path 122 is sent into the discharge pipe 604, joined in the discharge pipe 604, and then discharged from the discharge pipe 604.
  • the coolant discharged from the discharge pipe 604 is returned to the cooling pump, for example, and sent to the injection pipe 602 again.
  • each cooling path 122 since the cooling liquid having substantially the same temperature is sent to each cooling path 122 (cooling paths 122-1 to 122-5), the surface side of each of the plurality of submounts 112 is provided. Further, cooling can be performed more evenly from both the rear surface side and the rear surface side. Therefore, in each semiconductor laser unit 110, since temperature variation of the submount 112 can be suppressed, deformation such as distortion and warpage of the submount 112 can be suppressed.
  • the plurality of semiconductor laser units 110 semiconductor laser units 110-1 to 110-4.
  • semiconductor laser units 110-1 to 110-4 semiconductor laser units 110-1 to 110-4
  • a temperature difference between the semiconductor laser units 110 that is, , Variation in temperature in the z-axis direction. Therefore, it is possible to suppress variations in laser beam accuracy among the plurality of semiconductor laser devices 100.
  • FIG. 7 is a top view showing the configuration of the semiconductor laser unit 110 according to this embodiment (modified example of FIG. 4).
  • a wavelength selection beam splitter 116 is disposed at a position on the optical path of a plurality of laser beams densely aligned by the mirrors M1 to M10.
  • the wavelength selective beam splitter 116 reflects the laser beam incident from the side (y-axis positive direction) downward (z-axis negative direction).
  • the wavelength selective beam splitter 116 further transmits the laser beam incident from above (z-axis positive direction) downward.
  • the wavelength selection beam splitter 116 can synthesize the wavelength of the laser beam of the layer and the laser beam of the upper layer, and can emit the wavelength-synthesized laser beam downward.
  • an antireflection film (not shown) for preventing the reflection of the laser beam is mounted on the side surface and the upper surface of the wavelength selection beam splitter 116.
  • a hole 114 is formed at a position below the wavelength selective beam splitter 116 (that is, a position in the propagation direction of the laser beam emitted from the wavelength selective beam splitter 116).
  • the laser beam emitted downward from the wavelength selective beam splitter 116 can propagate to the back side of the submount 112 through the hole 114 without being blocked by the submount 112.
  • FIG. 8 shows an example of a configuration for synthesizing wavelengths of a plurality of laser beams in the semiconductor laser device 100 according to the present embodiment.
  • the propagation direction of the laser beam is indicated by an arrow.
  • a plurality of laser beams in units of layers having different wavelengths are used.
  • each of the plurality of semiconductor laser units 110 is provided with a wavelength selective beam splitter 116 and a hole 114 similarly to the semiconductor laser unit 110 of FIG.
  • the laser beam of the layer is reflected downward by the wavelength selective beam splitter 116, and the laser beam of the layer higher than the layer is transmitted downward by the wavelength selective beam splitter 116. It is configured. That is, each of the semiconductor laser units 110 is configured to synthesize the wavelength of the laser beam of the layer and the laser beam of the upper layer by the wavelength selection beam splitter 116 and to emit the wavelength-synthesized laser beam downward. Yes.
  • the semiconductor laser device 100 of FIG. 8 can synthesize a plurality of layers of laser beams having different wavelengths, and can emit a laser beam with higher brightness from the lowermost hole 114. It has become.
  • the wavelength of the laser beam of each layer is set as follows.
  • the wavelength selective beam splitter 116 of each layer is configured as follows.
  • First layer Reflects a laser beam having a wavelength ⁇ 1 incident from the side downward.
  • Second layer Reflects the laser beam with wavelength ⁇ 2 incident from the side downward and transmits the laser beam with wavelength ⁇ 1 incident from above downward.
  • Third layer Reflects the laser beam having the wavelength ⁇ 3 incident from the side downward and transmits the laser beams having the wavelengths ⁇ 1 and ⁇ 2 incident from the upper side downward.
  • Fourth layer Reflects the laser beam of wavelength ⁇ 4 incident from the side downward, and transmits the laser beams of wavelength ⁇ 1, wavelength ⁇ 2, and wavelength ⁇ 3 incident from above downward.
  • the semiconductor laser device 100 of FIG. 8 synthesizes the wavelength ⁇ 1, the wavelength ⁇ 2, the wavelength ⁇ 3, and the wavelength ⁇ 4 of the laser beam, and thereby the high-intensity laser beam is emitted from the hole 114 in the bottom layer Can be emitted.
  • the wavelength selection beam splitter is provided on the submount 112.
  • the wavelength selection beam splitter may be provided outside the submount 112. In this case, it is not necessary to form the holes in the submount 112.
  • the wavelength selective beam splitter or the like may have a cantilever structure as with the submount 112.
  • the semiconductor laser device 100 of this embodiment includes four semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4), but is not limited thereto. That is, the semiconductor laser device 100 may include three or less semiconductor laser units 110, or may include four or more semiconductor laser units 110.
  • each semiconductor laser unit 110 includes ten semiconductor laser diodes, but is not limited thereto. That is, each semiconductor laser unit 110 may include nine or less semiconductor laser diodes, or may include eleven or more semiconductor laser diodes.
  • the cooling path 122 to be formed in the support member 120 is vertically symmetrical with respect to the submount 112 and can be any one that extends along the semiconductor laser diode array. Such an arrangement / shape may be adopted.
  • a single cooling path 122 shared by the upper submount 112 and the lower submount 112 is provided between the upper and lower submounts 112.
  • the cooling path 122 for the upper submount 112 and the cooling path 122 for the upper submount 112 may be provided.
  • one cooling path 122 is provided for each of the front surface side and the back surface side of the submount 112, but a plurality of cooling paths 122 may be provided. .
  • the plurality of cooling paths 122 (cooling paths 122-1 to 122-5) are independent of each other, but at least some of the cooling paths 122 have other cooling paths 122. And a continuous cooling path may be configured together with the other cooling path 122.
  • the cooling path 122 is also configured to extend linearly.
  • the semiconductor laser diode array may have a state other than a linear shape (for example, an arc shape or a V shape).
  • the cooling path 122 can be extended to the other state by extending along the semiconductor laser diode array.
  • the support member 120 has a structure that supports the end of the submount 122 along the semiconductor laser diode row, but is cooled along at least the semiconductor laser diode row. Any other structure may be used as long as the path 122 extends.
  • FIG. 9 is a side view showing the configuration of the semiconductor laser device 100 according to this embodiment (modified example of FIG. 2).
  • the support member 120 includes a plurality of plate-like portions 120A stacked on each other and a columnar portion 120B that cantilever-supports the plurality of plate-like portions 120A, and each plate-like portion 120A A configuration in which the corresponding submount 112 is installed on the upper surface of the substrate may be adopted.
  • cooling paths 122 in the example shown in FIG. 9, cooling paths 122-1 to 122-4
  • the cooling path 122 is formed in the columnar part 120B, but the cooling path 122 may be formed in each plate-like part 120A.
  • a semiconductor laser device includes a semiconductor laser unit in which a semiconductor laser diode array is formed on a surface of a substrate, and a support member that supports the substrate, and the support member is connected to the semiconductor laser diode array. It is the structure in which the cooling path extended along is formed.
  • the cooling path is formed along the semiconductor laser diode array, a plurality of laser diodes can be uniformly cooled. Therefore, the temperature distribution for each laser diode unit on the substrate is the same. As a result, the semiconductor laser device can suppress distortion and warpage of the substrate due to variations in temperature distribution for each laser diode unit. Therefore, the semiconductor laser device can improve the accuracy of the emission positions and propagation directions of the plurality of laser beams, and as a result, the output beam can be increased in output and brightness.
  • a configuration in which the end of the substrate in the vicinity of the semiconductor laser diode array is held by a support member may be employed, and in this case, the heat generated from the semiconductor laser diode array can be efficiently cooled by the support member. it can.
  • the shortest distance from each of the plurality of semiconductor laser diodes constituting the semiconductor laser diode array to the cooling path is equal to each other.
  • the plurality of laser diodes can be cooled more uniformly, and therefore, the distortion and warpage of the substrate can be further suppressed.
  • the cooling path is formed on each of the surface side of the substrate and the back side of the substrate so that the support member is symmetrical with respect to the substrate.
  • the semiconductor laser device having the above configuration can suppress the change in the propagation direction of the plurality of laser beams due to the warp of the substrate. Therefore, the semiconductor laser device can improve the accuracy of the emission positions and propagation directions of the plurality of laser beams, and as a result, the output beam can be increased in output and brightness.
  • the semiconductor laser device includes a plurality of the semiconductor laser units stacked on each other, the support member supports an end of each of the plurality of semiconductor laser units, and the support member includes each of the plurality of substrates.
  • the cooling path is formed on each of the front surface side of the substrate and the back surface side of the substrate so as to be front-back symmetrical.
  • the support member functions as a cooling path on the back surface side with respect to the upper layer substrate between the upper layer substrate and the lower layer substrate, and also on the front surface side with respect to the lower layer substrate. It is preferable that the common cooling path that functions as the above is formed.
  • both the upper layer substrate and the lower layer substrate can be cooled by a single cooling path. That is, according to the semiconductor laser device having the above configuration, the number of cooling paths formed in the support member can be reduced, and therefore, for example, the manufacturing cost of the support member can be suppressed.
  • the substrate has a first portion that is a portion closer to the support member than the semiconductor laser diode array, than a second portion that is a portion opposite to the first portion. It is preferable to have a high thermal conductivity. In particular, in the semiconductor laser device, it is preferable that the substrate is provided with a heat pipe in the first portion.
  • the heat generated by the semiconductor laser diode array is transferred to the support member side (first portion) having a low thermal resistance, and is actively dissipated by the support member. It becomes. That is, according to the semiconductor laser device having the above configuration, the heat generated by the semiconductor laser diode array can be efficiently radiated.
  • the semiconductor diode array is preferably composed of a plurality of semiconductor diodes having the same wavelength of emitted laser beams.
  • the output beam can have higher output and higher brightness.
  • the plurality of semiconductor laser diode arrays corresponding to the plurality of semiconductor laser units have different wavelengths of emitted laser beams.
  • the output beam can have higher output and higher brightness.
  • the “submount” is used as an example of the “substrate” of the present invention.
  • the “substrate” of the present invention is not limited to this, and the “substrate” may be referred to as “mount”, for example.
  • the members on which the semiconductor laser diode array is formed are included.
  • the present invention can be suitably used for a semiconductor laser device including a semiconductor laser unit in which a semiconductor laser diode array is formed.
  • a semiconductor laser device in which a plurality of semiconductor laser units are stacked.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor laser device (100) is provided with: a semiconductor laser unit (110), in which a semiconductor laser diode array is formed on the surface of a submount (112); and a support member (120) which supports the submount (112). The support member (120) is provided with a cooling channel (122) which extends along the semiconductor laser diode array.

Description

半導体レーザ装置Semiconductor laser device
 本発明は、半導体レーザダイオード列が形成された半導体レーザユニットを備える、半導体レーザ装置に関する。 The present invention relates to a semiconductor laser device including a semiconductor laser unit in which a semiconductor laser diode array is formed.
 従来、高出力のレーザビームを得ることを目的としたスタック型レーザが知られている(例えば、下記特許文献1参照)。このスタック型レーザは、複数の半導体レーザダイオードが積層(スタック)され、これら複数の半導体レーザダイオードから出力された複数のレーザビームを合波するように構成されている。 Conventionally, a stack type laser for the purpose of obtaining a high-power laser beam is known (for example, see Patent Document 1 below). This stack type laser is configured such that a plurality of semiconductor laser diodes are stacked (stacked), and a plurality of laser beams output from the plurality of semiconductor laser diodes are multiplexed.
 しかしながら、上記スタック型レーザは、その構造上、複数のレーザビームの間隔を狭めることが困難である。このため、上記スタック型レーザは、複数のレーザビームのエネルギー密度を高めることができず、ファイバレーザの励起光のような、より高輝度な出力ビームを得ることが困難である。 However, the stack type laser is difficult to narrow the interval between the plurality of laser beams because of its structure. For this reason, the stack type laser cannot increase the energy density of a plurality of laser beams, and it is difficult to obtain a higher-luminance output beam such as the excitation light of a fiber laser.
 そこで、従来、より高輝度な出力ビームを得るために、板状のサブマウントの表面上に複数の半導体レーザダイオードチップおよび複数のマイクロレンズを配列した、半導体レーザ装置が用いられている。この半導体レーザ装置によれば、複数の半導体レーザダイオードチップから出射された複数のレーザビームを複数のマイクロレンズによってコリメートした後、これら複数のレーザビームを密に整列し、さらに、これら複数のレーザビームを集光レンズによって集束することにより、より高輝度な出力ビームが得られるようになっている。 Therefore, conventionally, in order to obtain a higher-luminance output beam, a semiconductor laser device in which a plurality of semiconductor laser diode chips and a plurality of microlenses are arranged on the surface of a plate-like submount has been used. According to this semiconductor laser device, after collimating a plurality of laser beams emitted from a plurality of semiconductor laser diode chips by a plurality of microlenses, the plurality of laser beams are closely aligned, and further, the plurality of laser beams By focusing the light beam with a condenser lens, an output beam with higher brightness can be obtained.
 このような半導体レーザ装置において、効率的に高輝度な出力ビームを得るためには、サブマウント上の各構成部材の位置や向きを精密に調整することにより、複数のレーザビームの各々の出射位置や伝搬方向の精度を高める必要がある。しかしながら、このような半導体レーザ装置は、複数の半導体レーザダイオードによって発せられた熱の影響を受け、サブマウントに歪や反りが生じてしまう虞がある。サブマウントに歪や反りが生じてしまうと、上記各構成部材の位置や向きが変化してしまい、レーザビームの出射位置や伝搬方向の精度が低下してしまう。 In such a semiconductor laser device, in order to efficiently obtain a high-brightness output beam, the position and direction of each component on the submount are precisely adjusted, so that each of the emission positions of the plurality of laser beams is It is necessary to improve the accuracy of the propagation direction. However, such a semiconductor laser device may be affected by heat generated by a plurality of semiconductor laser diodes, and the submount may be distorted or warped. If the submount is distorted or warped, the positions and orientations of the constituent members are changed, and the accuracy of the laser beam emission position and propagation direction is reduced.
 そこで、このような問題が生じないように、冷却機能を備えた半導体レーザ装置が考案されている。例えば、下記特許文献2には、複数の半導体レーザユニットが積層されて構成されている半導体レーザ装置が開示されている。当該半導体レーザ装置において、各半導体レーザユニットは、板状かつ液体冷却式のヒートシンクの上面側に、半導体レーザモジュールを備えた構成となっている。 Therefore, a semiconductor laser device having a cooling function has been devised so that such a problem does not occur. For example, Patent Document 2 below discloses a semiconductor laser device configured by stacking a plurality of semiconductor laser units. In the semiconductor laser device, each semiconductor laser unit includes a semiconductor laser module on the upper surface side of a plate-like and liquid-cooled heat sink.
日本国公開特許公報「特開平6-283807号公報(1994年10月7日公開)」Japanese Patent Publication “JP-A-6-283807” (published on October 7, 1994) 日本国公開特許公報「特開2012-89584号公報(2012年5月1日公開)」Japanese Patent Publication “JP 2012-89584 A (published on May 1, 2012)”
 しかしながら、上記特許文献2の半導体レーザ装置は、液体冷却式のヒートシンクを用いていながら、半導体レーザダイオードによって発せられた熱を効果的に冷却することができないため、ヒートシンクの反りを抑制するといった課題を解決することができない。このため、上記特許文献2の半導体レーザ装置は、ヒートシンクの反りが生じないように、各半導体レーザモジュールの裏側にモリブデン補強体をさらに設けることで、全体の剛性を高めている。 However, since the semiconductor laser device of Patent Document 2 cannot effectively cool the heat generated by the semiconductor laser diode while using a liquid-cooled heat sink, there is a problem of suppressing the heat sink warpage. It cannot be solved. For this reason, the semiconductor laser device of the above-mentioned patent document 2 is provided with a molybdenum reinforcing body on the back side of each semiconductor laser module so that the heat sink is not warped, thereby improving the overall rigidity.
 特に、上記特許文献2の半導体レーザ装置は、半導体レーザユニットにおける複数の半導体レーザモジュールが配置された面に対して垂直な方向(半導体レーザユニットが積層された方向)に貫通するように、冷却路を延伸させる構成を採用している。このために、半導体レーザモジュールが配置されたヒートシンクにおいては、冷却路からの距離に応じて部位毎に冷却効果が異なるために、ヒートシンクの部位毎に温度のばらつきが生じてしまう。半導体レーザモジュールにおいて、このような温度のばらつきは、当該半導体レーザモジュールが配置されたヒートシンクに歪や変形を生じさせ、半導体レーザモジュールから出射されるレーザ光の出射位置や伝搬方向の精度を低下させることとなる。 In particular, the semiconductor laser device disclosed in Patent Document 2 has a cooling path that penetrates in a direction perpendicular to the surface of the semiconductor laser unit on which a plurality of semiconductor laser modules are arranged (direction in which the semiconductor laser units are stacked). The structure which extends is adopted. For this reason, in the heat sink in which the semiconductor laser module is arranged, the cooling effect varies from part to part according to the distance from the cooling path, and therefore, temperature variation occurs from part to part of the heat sink. In the semiconductor laser module, such temperature variations cause distortion and deformation in the heat sink in which the semiconductor laser module is disposed, thereby reducing the accuracy of the emission position and propagation direction of the laser light emitted from the semiconductor laser module. It will be.
 本発明は、このような問題に鑑みてなされたものであり、その目的は、複数の半導体レーザダイオードが配置された基板における温度のばらつきを抑制することにより、当該基板の歪や反り等といった変形を抑制することが可能な、半導体レーザ装置を実現することにある。 The present invention has been made in view of such problems, and an object of the present invention is to prevent deformation such as distortion and warpage of the substrate by suppressing temperature variations in the substrate on which a plurality of semiconductor laser diodes are arranged. It is to realize a semiconductor laser device capable of suppressing the above.
 上述した課題を解決するため、本発明に係る半導体レーザ装置は、半導体レーザダイオード列が基板の表面上に形成されている半導体レーザユニットと、前記基板を支持する支持部材とを備え、前記支持部材は、前記半導体レーザダイオード列に沿って延伸する冷却路が形成されていることを特徴とする。 In order to solve the above-described problems, a semiconductor laser device according to the present invention includes a semiconductor laser unit in which a semiconductor laser diode array is formed on a surface of a substrate, and a support member that supports the substrate, and the support member Is characterized in that a cooling path extending along the semiconductor laser diode array is formed.
 本発明によれば、複数の半導体レーザダイオードが配置された基板における温度のばらつきを抑制することができるため、当該基板の歪や反り等といった変形を抑制することが可能な、半導体レーザ装置を実現することができる。 According to the present invention, it is possible to suppress a variation in temperature in a substrate on which a plurality of semiconductor laser diodes are arranged. Therefore, it is possible to realize a semiconductor laser device capable of suppressing deformation such as distortion and warpage of the substrate. can do.
本実施形態に係る半導体レーザ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the semiconductor laser apparatus which concerns on this embodiment. 本実施形態に係る半導体レーザ装置の構成を示す側面図である。It is a side view which shows the structure of the semiconductor laser apparatus which concerns on this embodiment. 図2に示す半導体レーザ装置のA-A断面図である。FIG. 3 is a cross-sectional view of the semiconductor laser device shown in FIG. 2 along AA. 本実施形態に係る半導体レーザユニットの構成を示す上面図である。It is a top view which shows the structure of the semiconductor laser unit which concerns on this embodiment. 本実施形態の変形例に係る半導体レーザ装置の構成を示す側面図である。It is a side view which shows the structure of the semiconductor laser apparatus which concerns on the modification of this embodiment. 本実施形態に係る半導体レーザ装置における、冷却液の流れの一例を示す説明図である。It is explanatory drawing which shows an example of the flow of the cooling fluid in the semiconductor laser apparatus which concerns on this embodiment. 本実施形態に係る半導体レーザユニットの構成(図4の変形例)を示す上面図である。It is a top view which shows the structure (modified example of FIG. 4) of the semiconductor laser unit which concerns on this embodiment. 本実施形態に係る半導体レーザ装置における、複数層のレーザビームを波長合成する構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure which carries out the wavelength synthesis | combination of the laser beam of several layers in the semiconductor laser apparatus which concerns on this embodiment. 本実施形態に係る半導体レーザ装置の構成(図2の変形例)を示す側面図である。It is a side view which shows the structure (modified example of FIG. 2) of the semiconductor laser apparatus which concerns on this embodiment.
 以下、添付の図面を参照して、本発明の一実施形態に係る半導体レーザ装置について説明する。 Hereinafter, a semiconductor laser device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 〔半導体レーザ装置100の構成〕
 まず、図1~図3を参照して、本実施形態に係る半導体レーザ装置100の構成について説明する。図1は、本実施形態に係る半導体レーザ装置100の構成を示す斜視図である。図2は、本実施形態に係る半導体レーザ装置100の構成を示す側面図である。図3は、図2に示す半導体レーザ装置100のA-A断面図である。
[Configuration of Semiconductor Laser Device 100]
First, the configuration of the semiconductor laser device 100 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a perspective view showing a configuration of a semiconductor laser device 100 according to the present embodiment. FIG. 2 is a side view showing the configuration of the semiconductor laser device 100 according to the present embodiment. FIG. 3 is a cross-sectional view taken along the line AA of the semiconductor laser device 100 shown in FIG.
 半導体レーザ装置100は、複数の半導体レーザダイオードの各々からレーザビームを出射し、これら複数のレーザビームを合波することによって、高出力かつ高輝度なレーザビームを出力する装置である。図1~図3に示すように、半導体レーザ装置100は、垂直方向(z軸方向)に積み重ねられた複数の半導体レーザユニット110(半導体レーザユニット110-1~110-4)を備えている。 The semiconductor laser device 100 is a device that outputs a laser beam with high output and high brightness by emitting a laser beam from each of a plurality of semiconductor laser diodes and combining the plurality of laser beams. As shown in FIGS. 1 to 3, the semiconductor laser device 100 includes a plurality of semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4) stacked in the vertical direction (z-axis direction).
 半導体レーザ装置100は、支持部材120をさらに備えている。支持部材120は、複数の半導体レーザユニット110が等間隔に積層された状態で、当該複数の半導体レーザユニット110の各々の後端部(x軸負側の端部であって、半導体レーザダイオード列近傍の端部)を支持する。すなわち、半導体レーザ装置100は、支持部材120によって、複数の半導体レーザユニット110を片持ちする構成を採用している。 The semiconductor laser device 100 further includes a support member 120. The supporting member 120 is a rear end portion of each of the plurality of semiconductor laser units 110 (an end portion on the negative side of the x-axis, in the state where the plurality of semiconductor laser units 110 are stacked at equal intervals, and the semiconductor laser diode array). Support nearby edge). That is, the semiconductor laser device 100 employs a configuration in which the plurality of semiconductor laser units 110 are cantilevered by the support member 120.
 具体的には、支持部材120の正面(x軸正側の面)には、半導体レーザユニット110に応じた数(図1~3では4つ)の切り欠きが形成されている。当該切り欠きは、半導体レーザユニット110(サブマウント112)の後端部の形状と、略同形状となっている。そして、各切り欠きに対し、対応する半導体レーザユニット110(サブマウント112)の後端部が差し込まれることにより、支持部材120は、複数の半導体レーザユニット110が予め定められた姿勢となるように、当該複数の半導体レーザユニット110の各々の後端部を、半導体レーザダイオード列に沿って、密着しつつ挟み込むように支持することとなる。 Specifically, a number of notches (four in FIGS. 1 to 3) corresponding to the semiconductor laser unit 110 are formed on the front surface (the surface on the x-axis positive side) of the support member 120. The notch has substantially the same shape as the shape of the rear end of the semiconductor laser unit 110 (submount 112). Then, the rear end portion of the corresponding semiconductor laser unit 110 (submount 112) is inserted into each notch, so that the support member 120 has a plurality of semiconductor laser units 110 in a predetermined posture. The rear end portions of the plurality of semiconductor laser units 110 are supported so as to be sandwiched while closely contacting along the semiconductor laser diode row.
 さらに、図示を省略する固定手段(例えば、接着剤、螺子等)によって、各半導体レーザユニット110が支持部材120に固定されることにより、支持部材120による各半導体レーザユニット110の支持は、より確実なものとなる。支持部材120は、内部に冷却液が流通する冷却路122が形成されており、各半導体レーザユニット110を冷却するヒートシンクとしても機能する。 Further, each semiconductor laser unit 110 is fixed to the support member 120 by a fixing means (not shown) (for example, adhesive, screw, etc.), so that the support of the semiconductor laser unit 110 by the support member 120 is more reliable. It will be something. The support member 120 has a cooling path 122 through which a coolant flows, and also functions as a heat sink for cooling each semiconductor laser unit 110.
 〔半導体レーザユニット110の構成〕
 次に、図4を参照して、半導体レーザユニット110の構成について説明する。図4は、本実施形態に係る半導体レーザユニット110の構成を示す上面図である。半導体レーザ装置100が備える4つの半導体レーザユニット110(半導体レーザユニット110-1~110-4)は、いずれも図4に示す半導体レーザユニット110と、同様の構成である。
[Configuration of Semiconductor Laser Unit 110]
Next, the configuration of the semiconductor laser unit 110 will be described with reference to FIG. FIG. 4 is a top view showing the configuration of the semiconductor laser unit 110 according to the present embodiment. All of the four semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4) included in the semiconductor laser device 100 have the same configuration as the semiconductor laser unit 110 shown in FIG.
 (半導体レーザダイオード)
 半導体レーザユニット110は、矩形板状のサブマウント112(基板)および半導体レーザダイオード(半導体レーザダイオードチップ)LD1~LD10を備えている。半導体レーザダイオードLD1~LD10は、各々が独立したチップ上に形成されている。半導体レーザダイオードLD1~LD10は、サブマウント112の表面上において、当該サブマウント112の後端部に沿って、図中y軸方向に、等間隔且つ直線状に、1列に並んだ状態に配置されている。すなわち、半導体レーザダイオードLD1~LD10は、サブマウント112の表面上において、半導体レーザダイオード列をなしている。
(Semiconductor laser diode)
The semiconductor laser unit 110 includes a rectangular plate-shaped submount 112 (substrate) and semiconductor laser diodes (semiconductor laser diode chips) LD1 to LD10. Each of the semiconductor laser diodes LD1 to LD10 is formed on an independent chip. The semiconductor laser diodes LD1 to LD10 are arranged in a line on the surface of the submount 112 along the rear end portion of the submount 112 in a straight line at equal intervals in the y-axis direction in the figure. Has been. That is, the semiconductor laser diodes LD1 to LD10 form a semiconductor laser diode array on the surface of the submount 112.
 半導体レーザダイオードLD1~LD10の各々は、サブマウント112の表面上において、活性層がxy平面と平行になるように、且つ、レーザビームの出射面がx軸正方向を向くように、配置されている。これにより、半導体レーザダイオードLD1~LD10から出射された複数のレーザビームは、各々が、サブマウント112の表面上において、xy平面に対して平行に、且つ、x軸正方向に向かって、伝搬することとなる。すなわち、上記複数のレーザビームは、サブマウント112の表面上において、等間隔且つ並列な、レーザビーム列をなす。 Each of the semiconductor laser diodes LD1 to LD10 is arranged on the surface of the submount 112 so that the active layer is parallel to the xy plane and the emission surface of the laser beam faces the positive direction of the x axis. Yes. As a result, the plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 propagate on the surface of the submount 112 in parallel to the xy plane and in the positive x-axis direction. It will be. That is, the plurality of laser beams form a laser beam train that is equidistant and parallel on the surface of the submount 112.
 (導光装置)
 半導体レーザユニット110は、さらに、F軸コリメートレンズFAC1~FAC10、S軸コリメートレンズSAC1~SAC10、およびミラーM1~M10を備えている。すなわち、半導体レーザユニット110においては、1つの半導体レーザダイオードに対し、レーザビームの伝搬経路上に、順に、F軸コリメートレンズ、S軸コリメートレンズ、およびミラーが、それぞれ1つずつ直線状に並べて配置されている。これらの部材は、何れも、直接、又は、不図示のマウントを介してサブマウント112の表面上に設置される。そして、これらの部材は、半導体レーザユニット110において、導光装置を構成する。この導光装置は、半導体レーザダイオードLD1~LD10から出射されたx軸方向(第1の水平方向)に伝搬する複数のレーザビームの間隔をより密にして、y軸方向(第2の水平方向)に伝搬させる機能を有する。
(Light guide device)
The semiconductor laser unit 110 further includes F-axis collimating lenses FAC1 to FAC10, S-axis collimating lenses SAC1 to SAC10, and mirrors M1 to M10. That is, in the semiconductor laser unit 110, one F-axis collimating lens, one S-axis collimating lens, and one mirror are arranged in a straight line on the laser beam propagation path in order for one semiconductor laser diode. Has been. All of these members are installed on the surface of the submount 112 directly or via a mount (not shown). These members constitute a light guide device in the semiconductor laser unit 110. In this light guide device, the intervals between a plurality of laser beams emitted from the semiconductor laser diodes LD1 to LD10 and propagating in the x-axis direction (first horizontal direction) are made closer, and the y-axis direction (second horizontal direction) ).
 F軸コリメートレンズFACi(i=1~10の整数)は、半導体レーザダイオードLDi(i=1~10の整数)から出射されたレーザビームのF軸方向の広がりをコリメートするためのものである。S軸コリメートレンズSACi(i=1~10の整数)は、半導体レーザダイオードLDiから出射されたレーザビームのS軸方向の広がりをコリメートするためのものである。F軸コリメートレンズFACi及びS軸コリメートレンズSACiを透過したレーザビームは、伝搬方向がx軸正方向に収斂されたコリメートビームとなり、ミラーMiへ伝搬する。なお、半導体レーザダイオードLDiから出射されるレーザビームのS軸方向の広がりが十分に小さい場合、S軸コリメートレンズSACiは省略しても構わない。 The F-axis collimating lens FACi (i = 1 to an integer of 1 to 10) is used to collimate the spread in the F-axis direction of the laser beam emitted from the semiconductor laser diode LDi (i = 1 to an integer of 10). The S-axis collimating lens SACi (i = 1 to an integer of 1 to 10) is for collimating the spread in the S-axis direction of the laser beam emitted from the semiconductor laser diode LDi. The laser beam transmitted through the F-axis collimating lens FACi and the S-axis collimating lens SACi becomes a collimated beam whose propagation direction is converged in the positive x-axis direction and propagates to the mirror Mi. Note that when the spread of the laser beam emitted from the semiconductor laser diode LDi in the S-axis direction is sufficiently small, the S-axis collimating lens SACi may be omitted.
 ミラーMi(i=1~10の整数)は、レーザビームの伝搬方向をx軸正方向から、y軸負方向へ変換するためのものである。ミラーMiには、従来から知られている各種ミラーを用いることができるが、必要に応じて、レーザビームの伝搬方向をx軸正方向から、z軸正方向へ変換する第1のミラー(いわゆる「跳ね上げミラー」)と、レーザビームの伝搬方向をz軸正方向から、y軸負方向へ変換する第2のミラー(いわゆる「折り返しミラー」)とを備えて構成されたものを用いることが好ましい。 The mirror Mi (i = 1 to an integer of 1 to 10) is for converting the propagation direction of the laser beam from the positive x-axis direction to the negative y-axis direction. Various conventionally known mirrors can be used as the mirror Mi, but a first mirror (so-called so-called mirror) that converts the propagation direction of the laser beam from the positive x-axis direction to the positive z-axis direction as necessary. And a second mirror (so-called “folding mirror”) that changes the propagation direction of the laser beam from the positive z-axis direction to the negative y-axis direction. preferable.
 ここで、ミラーM1~M10のx軸方向の位置は、上記複数のレーザビーム(ミラーM1~M10によって伝搬方向が変更された後のもの)の出射方向(y軸負方向)から離間するものほど、半導体レーザダイオードに近づく方向(x軸負方向)に、所定量ずつシフトしている。各シフト量は、上記複数のレーザビーム(ミラーM1~M10によって伝搬方向が変更される前のもの)の間隔よりも、小さくなっている。これにより、上記複数のレーザビームは、等間隔且つより密に整列した状態で、半導体レーザユニット110から出射されるようになっている。 Here, the positions of the mirrors M1 to M10 in the x-axis direction are closer to the emission direction (y-axis negative direction) of the plurality of laser beams (after the propagation direction is changed by the mirrors M1 to M10). In the direction approaching the semiconductor laser diode (the negative x-axis direction), it is shifted by a predetermined amount. Each shift amount is smaller than the interval between the plurality of laser beams (before the propagation direction is changed by the mirrors M1 to M10). As a result, the plurality of laser beams are emitted from the semiconductor laser unit 110 in an evenly spaced and more closely aligned state.
 半導体レーザユニット110から出射された上記複数のレーザビームは、当該複数のレーザビームの光路上に配置された1または複数の集光レンズによって集束され、出力ビームとして出力される。例えば、図4では、一例として、上記光路上に配置されたF軸集光レンズFLとS軸集光レンズSLとによって、複数(10本)のレーザビームが、光ファイバOFの入射端面において集束し、これにより、高出力化および高輝度化されたレーザビーム(出力ビーム)が光ファイバOF内に入射される様子を示している。実際には、4つの半導体レーザユニット110から出力された複数(10本×4=40本)のレーザビームが、光ファイバOFの入射端面において集束し、光ファイバOF内に入射されることとなる。 The plurality of laser beams emitted from the semiconductor laser unit 110 are converged by one or a plurality of condensing lenses arranged on the optical path of the plurality of laser beams and output as output beams. For example, in FIG. 4, as an example, a plurality (ten) of laser beams are focused on the incident end face of the optical fiber OF by the F-axis condenser lens FL and the S-axis condenser lens SL arranged on the optical path. Thus, it is shown that the laser beam (output beam) having high output and high brightness is incident on the optical fiber OF. Actually, a plurality (10 × 4 = 40) of laser beams output from the four semiconductor laser units 110 are focused on the incident end face of the optical fiber OF and are incident on the optical fiber OF. .
 ここで、4つの半導体レーザユニット110の各々は、同一の半導体レーザユニット110内を伝搬する複数のレーザビームの波長が同一であることが好ましい。さらに、上記4つの半導体レーザユニット110は、層単位で、出力ビームの波長が互いに異なっていることが好ましい。すなわち、光ファイバOF内に入射されるレーザビームは、波長合成されたものであることが好ましい。これにより、半導体レーザ装置100は、出力ビームをより高出力化およびより高輝度化することができる。 Here, it is preferable that each of the four semiconductor laser units 110 has the same wavelength of a plurality of laser beams propagating in the same semiconductor laser unit 110. Further, the four semiconductor laser units 110 preferably have different output beam wavelengths for each layer. That is, it is preferable that the laser beam incident into the optical fiber OF is a wavelength-synthesized one. Thereby, the semiconductor laser device 100 can increase the output beam and increase the brightness of the output beam.
 各半導体レーザユニット110は、最適な出力ビームが得られるように、サブマウント上に配置される各構成部材の位置および向きが精密に調整された後、図1に示すように、支持部材120に挿し込まれ、他の半導体レーザユニット110とともに積層構造をなすこととなる。 Each semiconductor laser unit 110 is adjusted to the support member 120 as shown in FIG. 1 after the positions and orientations of the constituent members arranged on the submount are precisely adjusted so as to obtain an optimum output beam. The laminated structure is formed together with other semiconductor laser units 110.
 〔冷却路122の構成〕
 図1~図3の半導体レーザ装置100において、注目すべきは、複数の半導体レーザユニット110を備えていることに応じて、支持部材120に対し、複数の冷却路122(冷却路122-1~122-5)が形成されている点である。特に、複数の冷却路122は、その配置に関し、以下の工夫点を有する。
[Configuration of Cooling Path 122]
In the semiconductor laser device 100 of FIGS. 1 to 3, it should be noted that a plurality of cooling paths 122 (cooling paths 122-1 to 122-1) with respect to the support member 120 depending on the provision of the plurality of semiconductor laser units 110. 122-5) is formed. In particular, the plurality of cooling paths 122 have the following ingenuity regarding their arrangement.
 (工夫点1)支持部材120には、半導体レーザダイオード列に沿ってy軸方向に延伸する冷却路122が形成されている。これにより、サブマウント112におけるy軸方向の温度を均一化することができるので、本実施形態の半導体レーザ装置100は、半導体レーザダイオード列を構成する複数のレーザダイオードを均一に冷却することができる。これにより、本実施形態の半導体レーザ装置100は、サブマウント112のy軸方向の温度のばらつきに起因する、サブマウント112の歪や反り等といった変形を抑制することができ、したがって、複数のレーザビームの出射位置や伝搬方向の精度低下を抑制することができる。 (Device 1) The support member 120 is formed with a cooling path 122 extending in the y-axis direction along the semiconductor laser diode array. As a result, the temperature in the y-axis direction of the submount 112 can be made uniform, so that the semiconductor laser device 100 of this embodiment can uniformly cool a plurality of laser diodes constituting the semiconductor laser diode array. . As a result, the semiconductor laser device 100 according to the present embodiment can suppress deformation such as distortion and warpage of the submount 112 caused by variations in the temperature of the submount 112 in the y-axis direction. It is possible to suppress a decrease in accuracy of the beam emission position and propagation direction.
 特に、冷却路122は、半導体レーザダイオード列と平行に延伸している。すなわち、半導体レーザダイオード列を構成する複数の半導体レーザダイオードの各々から、冷却路122までの最短距離が互いに等しくなっている。これにより、本実施形態の半導体レーザ装置100は、複数のレーザダイオードをより均一に冷却することができる。 In particular, the cooling path 122 extends parallel to the semiconductor laser diode array. That is, the shortest distances from the plurality of semiconductor laser diodes constituting the semiconductor laser diode array to the cooling path 122 are equal to each other. Thereby, the semiconductor laser apparatus 100 of this embodiment can cool a some laser diode more uniformly.
 (工夫点2)支持部材120には、半導体レーザダイオード列に沿ってy軸方向に延伸する冷却路122が、半導体レーザダイオード列毎に形成されている。これにより、本実施形態の半導体レーザ装置100は、複数のサブマウント112の各々について、y軸方向の温度を均一化することができる。したがって、本実施形態の半導体レーザ装置100は、複数の半導体レーザユニット110の各々について、サブマウント112の歪や反り等といった変形を抑制することができ、よって、複数のレーザビームの出射位置や伝搬方向の精度低下を抑制することができる。 (Ingenuity point 2) A cooling path 122 extending in the y-axis direction along the semiconductor laser diode array is formed in the support member 120 for each semiconductor laser diode array. Thereby, the semiconductor laser device 100 of the present embodiment can make the temperature in the y-axis direction uniform for each of the plurality of submounts 112. Therefore, the semiconductor laser device 100 of the present embodiment can suppress deformations such as distortion and warping of the submount 112 for each of the plurality of semiconductor laser units 110, and thus the emission positions and propagation of the plurality of laser beams can be suppressed. A decrease in direction accuracy can be suppressed.
 (工夫点3)支持部材120には、複数のサブマウント112の各々に対し、上下(表裏)対称となるように、当該サブマウント112の表面側の冷却路122と、当該サブマウント112の裏面側の冷却路122とが、それぞれ形成されている。具体的には、半導体レーザユニット110-1のサブマウント112に対し、冷却路122-1,122-2が、上下対称に形成されている。また、半導体レーザユニット110-2のサブマウント112に対し、冷却路122-2,122-3が、上下対称に形成されている。また、半導体レーザユニット110-3のサブマウント112に対し、冷却路122-3,122-4が、上下対称に形成されている。また、半導体レーザユニット110-4のサブマウント112に対し、冷却路122-4,122-5が、上下対称に形成されている。 (Device 3) The support member 120 has a cooling path 122 on the front surface side of the submount 112 and a back surface of the submount 112 so as to be vertically (front and back) symmetrical with respect to each of the plurality of submounts 112. A cooling path 122 on the side is formed. Specifically, the cooling paths 122-1 and 122-2 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-1. Further, cooling paths 122-2 and 122-3 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-2. Further, cooling paths 122-3 and 122-4 are formed symmetrically with respect to the submount 112 of the semiconductor laser unit 110-3. Further, cooling paths 122-4 and 122-5 are formed vertically symmetrically with respect to the submount 112 of the semiconductor laser unit 110-4.
 これにより、本実施形態の半導体レーザ装置100は、複数のサブマウント112の各々に対し、その表面側および裏面側の双方から均等に冷却することができるため、当該サブマウント112の表面側と裏面側との温度差を抑制し、当該サブマウント112の反りを防止することができる。これにより、本実施形態の半導体レーザ装置100は、各半導体レーザユニット110において、サブマウント112の反りに起因する、複数のレーザビームの出射位置や伝搬方向の精度低下を抑制することができ、したがって、高出力かつ高輝度なレーザビームを得ることができる。 As a result, the semiconductor laser device 100 of the present embodiment can cool each of the plurality of submounts 112 equally from both the front surface side and the back surface side. The temperature difference from the side can be suppressed, and the warpage of the submount 112 can be prevented. As a result, the semiconductor laser device 100 of this embodiment can suppress a decrease in accuracy of the emission positions and propagation directions of a plurality of laser beams due to warpage of the submount 112 in each semiconductor laser unit 110. A laser beam with high output and high brightness can be obtained.
 (工夫点4)支持部材120において、各上下一対のサブマウント112間には、上層のサブマウント112に対する裏面側の冷却路122として機能するとともに、下層のサブマウント112に対する表面側の冷却路として機能する、共用の冷却路122が形成されている。すなわち、本実施形態の半導体レーザ装置100は、1本の冷却路122で、2つのサブマウントを冷却するように構成されている。具体的には、冷却路122-2は、半導体レーザユニット110-1のサブマウント112と、半導体レーザユニット110-2のサブマウント112とを、ともに冷却する。また、冷却路122-3は、半導体レーザユニット110-2のサブマウント112と、半導体レーザユニット110-3のサブマウント112とを、ともに冷却する。また、冷却路122-4は、半導体レーザユニット110-3のサブマウント112と、半導体レーザユニット110-4のサブマウント112とを、ともに冷却する。 (Ingenuity point 4) In the support member 120, between the pair of upper and lower submounts 112, it functions as a cooling path 122 on the back surface side with respect to the upper submount 112 and as a cooling path on the front surface side with respect to the lower submount 112. A functioning common cooling path 122 is formed. That is, the semiconductor laser device 100 of the present embodiment is configured to cool the two submounts with one cooling path 122. Specifically, the cooling path 122-2 cools both the submount 112 of the semiconductor laser unit 110-1 and the submount 112 of the semiconductor laser unit 110-2. The cooling path 122-3 cools both the submount 112 of the semiconductor laser unit 110-2 and the submount 112 of the semiconductor laser unit 110-3. The cooling path 122-4 cools both the submount 112 of the semiconductor laser unit 110-3 and the submount 112 of the semiconductor laser unit 110-4.
 これにより、本実施形態の半導体レーザ装置100は、サブマウント112間における冷却路122の本数を削減することができ、当該冷却路122の形成を容易化することができるため、例えば、支持部材120の製造コストを抑制することができる。さらに、共用の冷却路122を設けたことにより、サブマウント112間における冷却路122の容積を拡大することができ、したがって、冷却効果を高めることができる。 Thereby, the semiconductor laser device 100 of this embodiment can reduce the number of the cooling paths 122 between the submounts 112 and can easily form the cooling paths 122. For example, the support member 120 The manufacturing cost can be suppressed. Furthermore, by providing the common cooling path 122, the volume of the cooling path 122 between the submounts 112 can be increased, and thus the cooling effect can be enhanced.
 (工夫点5)本実施形態の半導体レーザ装置100は、各サブマウント112の後端部を片持ちする構成を採用したために、仮に、いずれかのサブマウント112において、半導体レーザダイオードによって発せられた熱による応力が生じた場合であっても、当該応力を当該サブマウント112の先端へ逃がすことができる。このため、本実施形態の半導体レーザ装置100は、サブマウント112の歪や反り等の変形がより生じ難くなっている。 (Device 5) Since the semiconductor laser device 100 according to the present embodiment employs a configuration in which the rear end portion of each submount 112 is cantilevered, the laser diode is emitted from the semiconductor laser diode in any one of the submounts 112. Even when heat stress occurs, the stress can be released to the tip of the submount 112. For this reason, in the semiconductor laser device 100 of the present embodiment, deformation such as distortion and warpage of the submount 112 is less likely to occur.
 〔変形例〕
 次に、図5を参照して、半導体レーザ装置100の変形例について説明する。図5は、本実施形態の変形例に係る半導体レーザ装置100の構成を示す側面図である。
[Modification]
Next, a modification of the semiconductor laser device 100 will be described with reference to FIG. FIG. 5 is a side view showing a configuration of a semiconductor laser device 100 according to a modification of the present embodiment.
 本変形例(図5)の半導体レーザ装置100は、複数の半導体レーザユニット110の各々のサブマウント112に対し、ヒートパイプ118(伝熱部材)が設けられている点で、図2の半導体レーザ装置100と異なる。 The semiconductor laser device 100 of the present modification (FIG. 5) is different from the semiconductor laser of FIG. 2 in that a heat pipe 118 (heat transfer member) is provided for each submount 112 of the plurality of semiconductor laser units 110. Different from the device 100.
 具体的には、複数のサブマウント112の各々において、半導体レーザダイオード列よりも支持部材120側(x軸負側)の部分である第1の部分には、図5に示すように、当該サブマウント112よりも高い熱伝導率を有するヒートパイプ118が埋め込まれている。これにより、複数のサブマウント112の各々において、上記第1の部分は、当該第1の部分の反対側(x軸正側)の部分である第2の部分よりも、高い熱伝導率を有するものとなっている。ヒートパイプ118は、金属製(例えば、銅製)且つ筒状の部材の内部に、液体(例えば、代替フロン)が封入されたものであり、高温側においては、上記液体の蒸発に伴って熱を吸収し、低温側においては、上記液体の蒸気が凝集によって熱を放出することにより、伝熱効率を高めるものである。 Specifically, in each of the plurality of submounts 112, the first portion, which is the portion closer to the support member 120 (x-axis negative side) than the semiconductor laser diode row, includes the submount as shown in FIG. A heat pipe 118 having a higher thermal conductivity than that of the mount 112 is embedded. Accordingly, in each of the plurality of submounts 112, the first portion has higher thermal conductivity than the second portion which is the portion on the opposite side (x-axis positive side) of the first portion. It has become a thing. The heat pipe 118 is made of a metal (for example, copper) and a cylindrical member in which a liquid (for example, alternative chlorofluorocarbon) is sealed. On the high temperature side, the heat pipe 118 generates heat as the liquid evaporates. In the low temperature side, the liquid vapor releases heat by agglomeration, thereby improving heat transfer efficiency.
 これにより、複数のサブマウント112の各々において、半導体レーザダイオード列によって発せられた熱の殆どが、熱抵抗が低い支持部材120側(第1の部分)へ伝わり、支持部材120(具体的には、当該第1の部分の上下に設けられた冷却路122)によって積極的に放熱されることとなる。すなわち、本変形例の半導体レーザ装置100は、半導体レーザダイオード列によって発せられた熱を効率的に放熱することができ、したがって、各層において、上記発熱によるサブマウント112の歪や反り等の変形を抑制することができる。 Thereby, in each of the plurality of submounts 112, most of the heat generated by the semiconductor laser diode array is transferred to the support member 120 side (first portion) having a low thermal resistance, and the support member 120 (specifically, Then, heat is positively dissipated by the cooling path 122) provided above and below the first portion. That is, the semiconductor laser device 100 of the present modification can efficiently dissipate the heat generated by the semiconductor laser diode array, and therefore deformations such as distortion and warping of the submount 112 due to the heat generation are caused in each layer. Can be suppressed.
 また、複数のサブマウント112の各々においては、上記熱が、レーザビームが出射される側の部分である第2の部分に伝わり難くなったことにより、当該第2の部分において、上記熱に起因する歪(特に、積層された複数のサブマウント112同士の熱干渉に起因する歪)が生じ難くなっている。これにより、本変形例の半導体レーザ装置100は、半導体レーザダイオードからミラーまでの光路長に依らず、第2の部分に配置されている各部材(S軸コリメートレンズおよびミラー)の位置ずれを抑制することができ、したがって、複数の半導体レーザユニット110から出力される複数のレーザビームの、出射位置や伝搬方向の精度低下を抑制することができる。 Further, in each of the plurality of submounts 112, the heat is less likely to be transmitted to the second part, which is the part on the laser beam emission side, so that the second part is caused by the heat. Distortion (especially, distortion caused by thermal interference between the stacked submounts 112) is less likely to occur. As a result, the semiconductor laser device 100 according to the present modification suppresses the positional deviation of each member (S-axis collimating lens and mirror) disposed in the second portion regardless of the optical path length from the semiconductor laser diode to the mirror. Therefore, it is possible to suppress a decrease in accuracy of the emission positions and propagation directions of the plurality of laser beams output from the plurality of semiconductor laser units 110.
 なお、本変形例では、伝熱部材の一例として、ヒートパイプ118を用いたが、これに限らない。すなわち、伝熱部材には、少なくともサブマウント112よりも熱伝導率が高いものであれば、どのようなものを用いてもよい。また、本変形例では、サブマウント112に伝熱部材を埋め込むことにより、当該サブマウント112の第1の部分の熱伝導率を第2の部分よりも高めているが、これに限らない。すなわち、サブマウント112に伝熱部材を埋め込むことなく、当該サブマウント112の第1の部分の熱伝導率を第2の部分よりも高めてもよい。例えば、第1の部分の素材を第2の部分の素材と異ならせることにより、当該第1の部分の熱伝導率を第2の部分よりも高めてもよい。 In this modification, the heat pipe 118 is used as an example of the heat transfer member, but is not limited thereto. That is, any heat transfer member may be used as long as it has a thermal conductivity higher than that of at least the submount 112. In the present modification, the heat conductivity of the first portion of the submount 112 is higher than that of the second portion by embedding a heat transfer member in the submount 112, but the present invention is not limited to this. That is, the thermal conductivity of the first portion of the submount 112 may be higher than that of the second portion without embedding the heat transfer member in the submount 112. For example, the thermal conductivity of the first part may be made higher than that of the second part by making the material of the first part different from the material of the second part.
 〔冷却液の流れの一例〕
 次に、図6を参照して、半導体レーザ装置100における、冷却液の流れの一例を説明する。図6は、本実施形態に係る半導体レーザ装置100における、冷却液の流れの一例を示す。
[Example of coolant flow]
Next, an example of the flow of the coolant in the semiconductor laser device 100 will be described with reference to FIG. FIG. 6 shows an example of the flow of the coolant in the semiconductor laser device 100 according to the present embodiment.
 図6に示す例では、半導体レーザ装置100は、注入パイプ602および排出パイプ604をさらに備える。注入パイプ602は、冷却路122に冷却液を送り込むためのものである。排出パイプ604は、冷却路122から冷却液を排出するためのものである。注入パイプ602および排出パイプ604としては、例えば、金属製(例えば、銅製、アルミ製)のもの、樹脂製のもの、等が用いられる。冷却液としては、例えば、水、不凍液等が用いられる。 In the example shown in FIG. 6, the semiconductor laser device 100 further includes an injection pipe 602 and a discharge pipe 604. The injection pipe 602 is for feeding a coolant into the cooling path 122. The discharge pipe 604 is for discharging the coolant from the cooling path 122. As the injection pipe 602 and the discharge pipe 604, for example, a metal (for example, copper, aluminum), a resin, or the like is used. As the cooling liquid, for example, water, antifreeze liquid or the like is used.
 図6に示す例では、注入パイプ602は、1本の冷却路から5本の冷却路に分岐している。注入パイプ602の5本の冷却路は、それぞれ、対応する冷却路122の注入側(図中y軸負側)の端部へ接続されている。注入パイプ602の1本の冷却路は、例えば、冷却ポンプ(図示省略)の吐出口に接続されている。 In the example shown in FIG. 6, the injection pipe 602 branches from one cooling path to five cooling paths. Each of the five cooling paths of the injection pipe 602 is connected to the end of the corresponding cooling path 122 on the injection side (the y-axis negative side in the figure). One cooling path of the injection pipe 602 is connected to, for example, a discharge port of a cooling pump (not shown).
 一方、排出パイプ604は、5本の冷却路から1本の冷却路に合流している。排出パイプ604の5本の冷却路は、それぞれ、対応する冷却路122の排出側(図中y軸正側)の端部へ接続されている。排出パイプ604の1本の冷却路は、例えば、上記冷却ポンプの流入口に接続されている。 On the other hand, the discharge pipe 604 merges from five cooling paths into one cooling path. Each of the five cooling paths of the discharge pipe 604 is connected to the end of the corresponding cooling path 122 on the discharge side (y-axis positive side in the figure). One cooling path of the discharge pipe 604 is connected to the inlet of the cooling pump, for example.
 冷却路122に対するパイプ(注入パイプ602および排出パイプ604)の接続方法は、特に限定はせず、従来から知られている様々な接続方法(例えば、冷却路122の端部から延伸する筒状のコネクタに対しパイプを挿し込む方法、冷却路122の端部とパイプの端部とを密着させた状態で、パイプを支持部材120の壁面等に固定する方法)を採用することができる。 The connection method of the pipe (injection pipe 602 and discharge pipe 604) to the cooling path 122 is not particularly limited, and various conventionally known connection methods (for example, a cylindrical shape extending from the end of the cooling path 122) A method of inserting the pipe into the connector, or a method of fixing the pipe to the wall surface of the support member 120 in a state where the end of the cooling path 122 and the end of the pipe are in close contact with each other can be employed.
 図6の半導体レーザ装置100において、注入パイプ602に送り込まれた冷却液は、注入パイプ602内で分岐されることにより、各冷却路122(冷却路122-1~122-5)に送り込まれる。各冷却路122に送り込まれた冷却液は、xy平面に対して平行に、且つ、各半導体レーザダイオード列に沿って、各冷却路122内を通過する。そして、各冷却路122を通過した冷却液は、排出パイプ604内に送り込まれ、排出パイプ604内で合流された後、排出パイプ604から排出される。排出パイプ604から排出された冷却液は、例えば、上記冷却ポンプへ戻され、再び、注入パイプ602に送り込まれる。 In the semiconductor laser device 100 of FIG. 6, the coolant fed into the injection pipe 602 is branched into the injection pipe 602, and is sent into each cooling path 122 (cooling paths 122-1 to 122-5). The coolant fed into each cooling path 122 passes through each cooling path 122 in parallel to the xy plane and along each semiconductor laser diode array. Then, the coolant that has passed through each cooling path 122 is sent into the discharge pipe 604, joined in the discharge pipe 604, and then discharged from the discharge pipe 604. The coolant discharged from the discharge pipe 604 is returned to the cooling pump, for example, and sent to the injection pipe 602 again.
 図6の構成によれば、各冷却路122(冷却路122-1~122-5)に対し、概ね同じ温度の冷却液が送り込まれるため、複数のサブマウント112の各々に対し、その表面側および裏面側の双方から、より均等に冷却することができる。よって、各半導体レーザユニット110において、サブマウント112の温度ばらつきを抑制することができるため、当該サブマウント112の歪や反り等といった変形を抑制することができる。 According to the configuration of FIG. 6, since the cooling liquid having substantially the same temperature is sent to each cooling path 122 (cooling paths 122-1 to 122-5), the surface side of each of the plurality of submounts 112 is provided. Further, cooling can be performed more evenly from both the rear surface side and the rear surface side. Therefore, in each semiconductor laser unit 110, since temperature variation of the submount 112 can be suppressed, deformation such as distortion and warpage of the submount 112 can be suppressed.
 さらに、図6の構成によれば、複数の半導体レーザユニット110(半導体レーザユニット110-1~110-4)を同程度に冷却することができるため、各半導体レーザユニット110間における温度差(すなわち、z軸方向の温度のばらつき)を抑制することができる。よって、複数の半導体レーザ装置100間において、レーザビームの精度のばらつきを抑制することができる。 Further, according to the configuration of FIG. 6, since the plurality of semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4) can be cooled to the same extent, a temperature difference between the semiconductor laser units 110 (that is, , Variation in temperature in the z-axis direction). Therefore, it is possible to suppress variations in laser beam accuracy among the plurality of semiconductor laser devices 100.
 〔複数層のレーザビームを波長合成する構成の一例〕
 次に、図7および図8を参照して、半導体レーザ装置100における、複数層のレーザビームを波長合成する構成の一例を説明する。
[Example of configuration for wavelength synthesis of multiple layers of laser beams]
Next, with reference to FIGS. 7 and 8, an example of a configuration for combining the wavelengths of a plurality of laser beams in the semiconductor laser device 100 will be described.
 図7は、本実施形態に係る半導体レーザユニット110の構成(図4の変形例)を示す上面図である。 FIG. 7 is a top view showing the configuration of the semiconductor laser unit 110 according to this embodiment (modified example of FIG. 4).
 図7に示すサブマウント112の表面上において、ミラーM1~M10によって密に整列された複数のレーザビームの光路上となる位置には、波長選択ビームスプリッタ116が配置されている。この波長選択ビームスプリッタ116は、側方(y軸正方向)から入射されたレーザビームを、その内部において下方(z軸負方向)へ反射する。波長選択ビームスプリッタ116は、さらに、上方(z軸正方向)から入射されたレーザビームを、下方へ透過する。これにより、波長選択ビームスプリッタ116は、当該層のレーザビームと、上層のレーザビームとを波長合成し、この波長合成されたレーザビームを下方へ出射することが可能となっている。なお、波長選択ビームスプリッタ116の側面および上面には、レーザビームの反射を防止するための反射防止膜(図示省略)が装着されている。 On the surface of the submount 112 shown in FIG. 7, a wavelength selection beam splitter 116 is disposed at a position on the optical path of a plurality of laser beams densely aligned by the mirrors M1 to M10. The wavelength selective beam splitter 116 reflects the laser beam incident from the side (y-axis positive direction) downward (z-axis negative direction). The wavelength selective beam splitter 116 further transmits the laser beam incident from above (z-axis positive direction) downward. Thereby, the wavelength selection beam splitter 116 can synthesize the wavelength of the laser beam of the layer and the laser beam of the upper layer, and can emit the wavelength-synthesized laser beam downward. Note that an antireflection film (not shown) for preventing the reflection of the laser beam is mounted on the side surface and the upper surface of the wavelength selection beam splitter 116.
 図7のサブマウント112において、波長選択ビームスプリッタ116の下方となる位置(すなわち、波長選択ビームスプリッタ116から出射されたレーザビームの伝搬方向の位置)には、空孔114が形成されている。これにより、波長選択ビームスプリッタ116から下方に出射されたレーザビームは、サブマウント112によって遮られることなく、空孔114内を通って、サブマウント112の裏側へと伝搬可能となっている。 7, a hole 114 is formed at a position below the wavelength selective beam splitter 116 (that is, a position in the propagation direction of the laser beam emitted from the wavelength selective beam splitter 116). As a result, the laser beam emitted downward from the wavelength selective beam splitter 116 can propagate to the back side of the submount 112 through the hole 114 without being blocked by the submount 112.
 図8は、本実施形態に係る半導体レーザ装置100における、複数層のレーザビームを波長合成する構成の一例を示す。図8において、レーザビームの伝搬方向を矢印で示す。また、図8の半導体レーザ装置100において、層単位での複数のレーザビームには、互いに波長が異なるものが用いられている。また、複数の半導体レーザユニット110の各々には、図7の半導体レーザユニット110と同様に、波長選択ビームスプリッタ116および空孔114が設けられている。 FIG. 8 shows an example of a configuration for synthesizing wavelengths of a plurality of laser beams in the semiconductor laser device 100 according to the present embodiment. In FIG. 8, the propagation direction of the laser beam is indicated by an arrow. Further, in the semiconductor laser device 100 of FIG. 8, a plurality of laser beams in units of layers having different wavelengths are used. Further, each of the plurality of semiconductor laser units 110 is provided with a wavelength selective beam splitter 116 and a hole 114 similarly to the semiconductor laser unit 110 of FIG.
 そして、いずれの半導体レーザユニット110も、当該層のレーザビームを、波長選択ビームスプリッタ116によって下方へ反射するとともに、当該層よりも上層のレーザビームを、波長選択ビームスプリッタ116によって下方へ透過するように構成されている。すなわち、いずれの半導体レーザユニット110も、波長選択ビームスプリッタ116によって、当該層のレーザビームと、上層のレーザビームとを波長合成し、波長合成されたレーザビームを下方へ出射するように構成されている。 In any of the semiconductor laser units 110, the laser beam of the layer is reflected downward by the wavelength selective beam splitter 116, and the laser beam of the layer higher than the layer is transmitted downward by the wavelength selective beam splitter 116. It is configured. That is, each of the semiconductor laser units 110 is configured to synthesize the wavelength of the laser beam of the layer and the laser beam of the upper layer by the wavelength selection beam splitter 116 and to emit the wavelength-synthesized laser beam downward. Yes.
 これにより、図8の半導体レーザ装置100は、互いに波長が異なる複数層のレーザビームを波長合成し、これにより高輝度化されたレーザビームを、最下層の空孔114から出射することが可能となっている。 Accordingly, the semiconductor laser device 100 of FIG. 8 can synthesize a plurality of layers of laser beams having different wavelengths, and can emit a laser beam with higher brightness from the lowermost hole 114. It has become.
 ここで、半導体レーザ装置100による波長合成の具体例を説明する。例えば、各層のレーザビームの波長を、以下のように設定する。 Here, a specific example of wavelength synthesis by the semiconductor laser device 100 will be described. For example, the wavelength of the laser beam of each layer is set as follows.
 第1層(半導体レーザユニット110-1):λ1
 第2層(半導体レーザユニット110-2):λ2
 第3層(半導体レーザユニット110-3):λ3
 第4層(半導体レーザユニット110-4):λ4
 そして、各層の波長選択ビームスプリッタ116を、以下のように構成する。
First layer (semiconductor laser unit 110-1): λ1
Second layer (semiconductor laser unit 110-2): λ2
Third layer (semiconductor laser unit 110-3): λ3
Fourth layer (semiconductor laser unit 110-4): λ4
Then, the wavelength selective beam splitter 116 of each layer is configured as follows.
 第1層:側方から入射された波長λ1のレーザビームを下方へ反射する。 First layer: Reflects a laser beam having a wavelength λ1 incident from the side downward.
 第2層:側方から入射された波長λ2のレーザビームを下方へ反射するとともに、上方から入射された波長λ1のレーザビームを下方へ透過する。 Second layer: Reflects the laser beam with wavelength λ2 incident from the side downward and transmits the laser beam with wavelength λ1 incident from above downward.
 第3層:側方から入射された波長λ3のレーザビームを下方へ反射するとともに、上方から入射された波長λ1および波長λ2のレーザビームを下方へ透過する。 Third layer: Reflects the laser beam having the wavelength λ3 incident from the side downward and transmits the laser beams having the wavelengths λ1 and λ2 incident from the upper side downward.
 第4層:側方から入射された波長λ4のレーザビームを下方へ反射するとともに、上方から入射された波長λ1、波長λ2、および波長λ3のレーザビームを下方へ透過する。 Fourth layer: Reflects the laser beam of wavelength λ4 incident from the side downward, and transmits the laser beams of wavelength λ1, wavelength λ2, and wavelength λ3 incident from above downward.
 これにより、図8の半導体レーザ装置100は、波長λ1、波長λ2、波長λ3、および波長λ4のレーザビームを波長合成し、これにより高輝度化されたレーザビームを、最下層の空孔114から出射することができる。 As a result, the semiconductor laser device 100 of FIG. 8 synthesizes the wavelength λ1, the wavelength λ2, the wavelength λ3, and the wavelength λ4 of the laser beam, and thereby the high-intensity laser beam is emitted from the hole 114 in the bottom layer Can be emitted.
 なお、本例では、波長選択ビームスプリッタをサブマウント112に設ける例を示したが、波長選択ビームスプリッタをサブマウント112の外部に設ける構成としてもよい。この場合、サブマウント112には、上記空孔を形成する必要はない。 In this example, the wavelength selection beam splitter is provided on the submount 112. However, the wavelength selection beam splitter may be provided outside the submount 112. In this case, it is not necessary to form the holes in the submount 112.
 また、波長選択ビームスプリッタの代わりに、ミラーや回折格子等を用いてもよい。波長選択ビームスプリッタ等をサブマウント112の外部に設ける場合、波長選択ビームスプリッタ等は、サブマウント112と同様に片持ち梁構造を有していてもよい。 In addition, a mirror, a diffraction grating, or the like may be used instead of the wavelength selective beam splitter. When the wavelength selective beam splitter or the like is provided outside the submount 112, the wavelength selective beam splitter or the like may have a cantilever structure as with the submount 112.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 (半導体レーザユニットの数について)
 本実施形態の半導体レーザ装置100は、4つの半導体レーザユニット110(半導体レーザユニット110-1~110-4)を備えているが、これに限らない。すなわち、半導体レーザ装置100は、3つ以下の半導体レーザユニット110を備えてもよく、4つ以上の半導体レーザユニット110を備えてもよい。
(Number of semiconductor laser units)
The semiconductor laser device 100 of this embodiment includes four semiconductor laser units 110 (semiconductor laser units 110-1 to 110-4), but is not limited thereto. That is, the semiconductor laser device 100 may include three or less semiconductor laser units 110, or may include four or more semiconductor laser units 110.
 (半導体レーザダイオードの数について)
 本実施形態の半導体レーザ装置100において、各半導体レーザユニット110は、10個の半導体レーザダイオードを備えているが、これに限らない。すなわち、各半導体レーザユニット110は、9つ以下の半導体レーザダイオードを備えてもよく、11個以上の半導体レーザダイオードを備えてもよい。
(About the number of semiconductor laser diodes)
In the semiconductor laser device 100 of the present embodiment, each semiconductor laser unit 110 includes ten semiconductor laser diodes, but is not limited thereto. That is, each semiconductor laser unit 110 may include nine or less semiconductor laser diodes, or may include eleven or more semiconductor laser diodes.
 (冷却路122の配置・形状について)
 本実施形態の半導体レーザ装置100において、支持部材120に形成すべき冷却路122は、サブマウント112に対して上下対称であり、かつ、半導体レーザダイオード列に沿って延伸するものであれば、どのような配置・形状であってもよい。
(About the arrangement and shape of the cooling path 122)
In the semiconductor laser device 100 of the present embodiment, the cooling path 122 to be formed in the support member 120 is vertically symmetrical with respect to the submount 112 and can be any one that extends along the semiconductor laser diode array. Such an arrangement / shape may be adopted.
 例えば、本実施形態の半導体レーザ装置100では、支持部材120において、上下一対のサブマウント112間に、上層のサブマウント112と下層のサブマウント112とで共用の1つの冷却路122を設けることとしたが、上層のサブマウント112用の冷却路122と、上層のサブマウント112用の冷却路122とを、それぞれ設ける構成としてもよい。 For example, in the semiconductor laser device 100 of this embodiment, in the support member 120, a single cooling path 122 shared by the upper submount 112 and the lower submount 112 is provided between the upper and lower submounts 112. However, the cooling path 122 for the upper submount 112 and the cooling path 122 for the upper submount 112 may be provided.
 また、本実施形態の半導体レーザ装置100では、サブマウント112の表面側および裏面側に対して、それぞれ1つの冷却路122を設けることとしたが、それぞれ複数の冷却路122を設ける構成としてもよい。 In the semiconductor laser device 100 of the present embodiment, one cooling path 122 is provided for each of the front surface side and the back surface side of the submount 112, but a plurality of cooling paths 122 may be provided. .
 また、本実施形態の半導体レーザ装置100では、複数の冷却路122(冷却路122-1~122-5)がそれぞれ独立しているが、少なくとも一部の冷却路122において、他の冷却路122とつながっており、当該他の冷却路122とともに一続きの冷却路を構成するものであってもよい。 In the semiconductor laser device 100 of this embodiment, the plurality of cooling paths 122 (cooling paths 122-1 to 122-5) are independent of each other, but at least some of the cooling paths 122 have other cooling paths 122. And a continuous cooling path may be configured together with the other cooling path 122.
 また、本実施形態の半導体レーザ装置100では、半導体レーザダイオード列が直線状を成しているため、冷却路122も直線状に延伸する構成としている。ここで、半導体レーザダイオード列は、直線状以外の他の状態(例えば、円弧状、V字状)を成していてもよい。この場合、冷却路122は、半導体レーザダイオード列に沿って延伸することにより、上記他の状態に延伸するものとなり得る。 Further, in the semiconductor laser device 100 of the present embodiment, since the semiconductor laser diode array is linear, the cooling path 122 is also configured to extend linearly. Here, the semiconductor laser diode array may have a state other than a linear shape (for example, an arc shape or a V shape). In this case, the cooling path 122 can be extended to the other state by extending along the semiconductor laser diode array.
 また、本実施形態の半導体レーザ装置100において、支持部材120は、半導体レーザダイオード列に沿ってサブマウント122の端部を支持する構造を有しているが、少なくとも半導体レーザダイオード列に沿って冷却路122が延伸する構造であれば、他の構造を有していてもよい。 Further, in the semiconductor laser device 100 of the present embodiment, the support member 120 has a structure that supports the end of the submount 122 along the semiconductor laser diode row, but is cooled along at least the semiconductor laser diode row. Any other structure may be used as long as the path 122 extends.
 図9は、本実施形態に係る半導体レーザ装置100の構成(図2の変形例)を示す側面図である。例えば、図9に示すように、支持部材120は、互いに積層された複数の板状部120Aと、当該複数の板状部120Aを片持ち支持する柱状部120Bとを備え、各板状部120Aの上面に、対応するサブマウント112を設置する構成を採用してもよい。この場合も、図9に示すように、半導体レーザダイオード列に沿って延伸するように、支持部材120に冷却路122(図9に示す例では、冷却路122-1~122-4)を形成すれば、サブマウント112における温度のばらつきを抑制することができる。なお、図9に示す例では、柱状部120Bに冷却路122が形成されているが、各板状部120Aに冷却路122を形成してもよい。 FIG. 9 is a side view showing the configuration of the semiconductor laser device 100 according to this embodiment (modified example of FIG. 2). For example, as shown in FIG. 9, the support member 120 includes a plurality of plate-like portions 120A stacked on each other and a columnar portion 120B that cantilever-supports the plurality of plate-like portions 120A, and each plate-like portion 120A A configuration in which the corresponding submount 112 is installed on the upper surface of the substrate may be adopted. Also in this case, as shown in FIG. 9, cooling paths 122 (in the example shown in FIG. 9, cooling paths 122-1 to 122-4) are formed in the support member 120 so as to extend along the semiconductor laser diode array. By doing so, temperature variations in the submount 112 can be suppressed. In the example shown in FIG. 9, the cooling path 122 is formed in the columnar part 120B, but the cooling path 122 may be formed in each plate-like part 120A.
 本発明に係る半導体レーザ装置は、半導体レーザダイオード列が基板の表面上に形成されている半導体レーザユニットと、前記基板を支持する支持部材とを備え、前記支持部材は、前記半導体レーザダイオード列に沿って延伸する冷却路が形成されている構成である。 A semiconductor laser device according to the present invention includes a semiconductor laser unit in which a semiconductor laser diode array is formed on a surface of a substrate, and a support member that supports the substrate, and the support member is connected to the semiconductor laser diode array. It is the structure in which the cooling path extended along is formed.
 上記の構成によれば、半導体レーザダイオード列に沿って上記冷却路が形成されているため、複数のレーザダイオードを均一に冷却することができる。よって、上記基板におけるレーザダイオード単位毎の温度分布は、いずれも同様のものとなる。これにより、上記半導体レーザ装置は、上記レーザダイオード単位毎の温度分布のばらつきに起因する、上記基板の歪や反りを抑制することができる。したがって、上記半導体レーザ装置は、上記複数のレーザビームの出射位置や伝搬方向の精度を高めることができ、結果的に、出力ビームを高出力化および高輝度化することができる。特に、半導体レーザダイオード列の近傍の基板端部を支持部材によって保持する構成を採用してもよく、この場合、半導体レーザダイオード列から発せられた熱を、支持部材によって効率的に冷却することができる。 According to the above configuration, since the cooling path is formed along the semiconductor laser diode array, a plurality of laser diodes can be uniformly cooled. Therefore, the temperature distribution for each laser diode unit on the substrate is the same. As a result, the semiconductor laser device can suppress distortion and warpage of the substrate due to variations in temperature distribution for each laser diode unit. Therefore, the semiconductor laser device can improve the accuracy of the emission positions and propagation directions of the plurality of laser beams, and as a result, the output beam can be increased in output and brightness. In particular, a configuration in which the end of the substrate in the vicinity of the semiconductor laser diode array is held by a support member may be employed, and in this case, the heat generated from the semiconductor laser diode array can be efficiently cooled by the support member. it can.
 上記半導体レーザ装置において、前記半導体レーザダイオード列を構成する複数の半導体レーザダイオードの各々から、前記冷却路までの最短距離は、互いに等しいことが好ましい。 In the semiconductor laser device, it is preferable that the shortest distance from each of the plurality of semiconductor laser diodes constituting the semiconductor laser diode array to the cooling path is equal to each other.
 上記の構成によれば、複数のレーザダイオードをより均一に冷却することができ、よって、上記基板の歪や反りをより抑制することができる。 According to the above configuration, the plurality of laser diodes can be cooled more uniformly, and therefore, the distortion and warpage of the substrate can be further suppressed.
 上記半導体レーザ装置において、前記支持部材は、前記基板に対して表裏対称となるように、前記基板の表面側および前記基板の裏面側の各々に、前記冷却路が形成されていることが好ましい。 In the semiconductor laser device, it is preferable that the cooling path is formed on each of the surface side of the substrate and the back side of the substrate so that the support member is symmetrical with respect to the substrate.
 上記の構成によれば、上記基板を、その表面側および裏面側の双方から均等に冷却することができるため、当該基板の表面側と裏面側との温度差を抑制し、当該基板の反りを防止することができる。これにより、上記構成の半導体レーザ装置は、上記基板の反りに起因する、上記複数のレーザビームの伝搬方向の変化を抑制することができる。したがって、上記半導体レーザ装置は、上記複数のレーザビームの出射位置や伝搬方向の精度を高めることができ、結果的に、出力ビームを高出力化および高輝度化することができる。 According to said structure, since the said board | substrate can be cooled equally from both the surface side and the back surface side, the temperature difference between the surface side of the said board | substrate and a back surface side is suppressed, and the curvature of the said board | substrate is carried out. Can be prevented. Thereby, the semiconductor laser device having the above configuration can suppress the change in the propagation direction of the plurality of laser beams due to the warp of the substrate. Therefore, the semiconductor laser device can improve the accuracy of the emission positions and propagation directions of the plurality of laser beams, and as a result, the output beam can be increased in output and brightness.
 上記半導体レーザ装置において、互いに積層された複数の前記半導体レーザユニットを備え、前記支持部材は、前記複数の半導体レーザユニットの各々の端部を支持し、前記支持部材は、前記複数の基板の各々に対して、表裏対称となるように、当該基板の表面側および当該基板の裏面側の各々に、前記冷却路が形成されていることが好ましい。 The semiconductor laser device includes a plurality of the semiconductor laser units stacked on each other, the support member supports an end of each of the plurality of semiconductor laser units, and the support member includes each of the plurality of substrates. On the other hand, it is preferable that the cooling path is formed on each of the front surface side of the substrate and the back surface side of the substrate so as to be front-back symmetrical.
 上記の構成によれば、複数の半導体レーザユニットの各々において、基板の反りを防止することができる。 According to the above configuration, it is possible to prevent the substrate from warping in each of the plurality of semiconductor laser units.
 上記半導体レーザ装置において、前記支持部材は、上層の基板と下層の基板との間に、前記上層の基板に対する前記裏面側の冷却路として機能するとともに、前記下層の基板に対する前記表面側の冷却路として機能する、共用の前記冷却路が形成されていることが好ましい。 In the semiconductor laser device, the support member functions as a cooling path on the back surface side with respect to the upper layer substrate between the upper layer substrate and the lower layer substrate, and also on the front surface side with respect to the lower layer substrate. It is preferable that the common cooling path that functions as the above is formed.
 上記の構成によれば、1本の冷却路によって上層の基板および下層の基板の双方を冷却することができる。すなわち、上記構成の半導体レーザ装置によれば、支持部材に形成する冷却路の本数を削減することができるため、例えば、支持部材の製造コストを抑制することができる。 According to the above configuration, both the upper layer substrate and the lower layer substrate can be cooled by a single cooling path. That is, according to the semiconductor laser device having the above configuration, the number of cooling paths formed in the support member can be reduced, and therefore, for example, the manufacturing cost of the support member can be suppressed.
 上記半導体レーザ装置において、前記基板は、前記半導体レーザダイオード列よりも前記支持部材側の部分である第1の部分が、当該第1の部分の反対側の部分である第2の部分よりも、高い熱伝導率を有することが好ましい。特に、上記半導体レーザ装置において、前記基板は、前記第1の部分に、ヒートパイプが設けられていることが好ましい。 In the semiconductor laser device, the substrate has a first portion that is a portion closer to the support member than the semiconductor laser diode array, than a second portion that is a portion opposite to the first portion. It is preferable to have a high thermal conductivity. In particular, in the semiconductor laser device, it is preferable that the substrate is provided with a heat pipe in the first portion.
 上記の構成によれば、上記基板において、半導体レーザダイオード列によって発せられた熱の殆どが、熱抵抗が低い支持部材側(第1の部分)へ伝わり、支持部材によって積極的に放熱されることとなる。すなわち、上記構成の半導体レーザ装置によれば、半導体レーザダイオード列によって発せられた熱を、効率的に放熱することができる。 According to the above configuration, in the substrate, most of the heat generated by the semiconductor laser diode array is transferred to the support member side (first portion) having a low thermal resistance, and is actively dissipated by the support member. It becomes. That is, according to the semiconductor laser device having the above configuration, the heat generated by the semiconductor laser diode array can be efficiently radiated.
 上記半導体レーザ装置において、前記半導体ダイオード列は、出射されるレーザビームの波長が互いに同一である、複数の半導体ダイオードから構成されていることが好ましい。 In the semiconductor laser device, the semiconductor diode array is preferably composed of a plurality of semiconductor diodes having the same wavelength of emitted laser beams.
 上記の構成によれば、出力ビームをより高出力化およびより高輝度化することができる。 According to the above configuration, the output beam can have higher output and higher brightness.
 上記半導体レーザ装置において、前記複数の半導体レーザユニットに対応する複数の前記半導体レーザダイオード列は、出射されるレーザビームの波長が互いに異なることが好ましい。 In the semiconductor laser device, it is preferable that the plurality of semiconductor laser diode arrays corresponding to the plurality of semiconductor laser units have different wavelengths of emitted laser beams.
 上記の構成によれば、出力ビームをより高出力化およびより高輝度化することができる。 According to the above configuration, the output beam can have higher output and higher brightness.
 本実施形態では、本発明の「基板」の一例として「サブマウント」を用いたが、これに限らず、本発明の「基板」には、例えば「マウント」と呼称されるもの、「基板」と呼称されるもの等、半導体レーザダイオード列が形成される部材全般が含まれる。 In the present embodiment, the “submount” is used as an example of the “substrate” of the present invention. However, the “substrate” of the present invention is not limited to this, and the “substrate” may be referred to as “mount”, for example. In general, the members on which the semiconductor laser diode array is formed are included.
 本発明は、半導体レーザダイオード列が形成された半導体レーザユニットを備える、半導体レーザ装置に好適に利用することができる。特に、複数の半導体レーザユニットが積層された半導体レーザ装置に好適に利用することができる。 The present invention can be suitably used for a semiconductor laser device including a semiconductor laser unit in which a semiconductor laser diode array is formed. In particular, it can be suitably used for a semiconductor laser device in which a plurality of semiconductor laser units are stacked.
 100 半導体レーザ装置
 110(110-1~110-4) 半導体レーザユニット
 112 サブマウント(基板)
 118 ヒートパイプ
 120 支持部材
 122(122-1~122-5) 冷却路
 602 注入パイプ
 604 排出パイプ
 LD1~LD10 半導体レーザダイオード
 FAC1~FAC10 F軸コリメートレンズ
 SAC1~SAC10 S軸コリメートレンズ
 M1~M10 ミラー
100 Semiconductor Laser Device 110 (110-1 to 110-4) Semiconductor Laser Unit 112 Submount (Substrate)
118 Heat pipe 120 Support member 122 (122-1 to 122-5) Cooling path 602 Injection pipe 604 Discharge pipe LD1 to LD10 Semiconductor laser diode FAC1 to FAC10 F-axis collimating lens SAC1 to SAC10 S-axis collimating lens M1 to M10 Mirror

Claims (9)

  1.  半導体レーザダイオード列が基板の表面上に形成されている半導体レーザユニットと、
     前記基板を支持する支持部材と
     を備え、
     前記支持部材は、
     前記半導体レーザダイオード列に沿って延伸する冷却路が形成されている
     ことを特徴とする半導体レーザ装置。
    A semiconductor laser unit in which a semiconductor laser diode array is formed on the surface of the substrate;
    A support member for supporting the substrate,
    The support member is
    A cooling path extending along the semiconductor laser diode array is formed. A semiconductor laser device, wherein:
  2.  前記半導体レーザダイオード列を構成する複数の半導体レーザダイオードの各々から、前記冷却路までの最短距離が互いに等しい
     ことを特徴とする請求項1に記載の半導体レーザ装置。
    2. The semiconductor laser device according to claim 1, wherein a shortest distance from each of the plurality of semiconductor laser diodes constituting the semiconductor laser diode array to the cooling path is equal to one another.
  3.  前記支持部材は、
     前記基板に対して表裏対称となるように、前記基板の表面側および前記基板の裏面側の各々に、前記冷却路が形成されている
     ことを特徴とする請求項1または2に記載の半導体レーザ装置。
    The support member is
    3. The semiconductor laser according to claim 1, wherein the cooling path is formed on each of a front surface side of the substrate and a back surface side of the substrate so as to be symmetric with respect to the substrate. 4. apparatus.
  4.  互いに積層された複数の前記半導体レーザユニットを備え、
     前記支持部材は、
     前記複数の半導体レーザユニットの各々の端部を支持し、
     前記支持部材は、
     前記複数の基板の各々に対して、表裏対称となるように、当該基板の表面側の前記冷却路と、当該基板の裏面側の前記冷却路とが、それぞれ形成されている
     ことを特徴とする請求項3に記載の半導体レーザ装置。
    A plurality of the semiconductor laser units stacked on each other;
    The support member is
    Supporting an end of each of the plurality of semiconductor laser units;
    The support member is
    The cooling path on the front surface side of the substrate and the cooling path on the back surface side of the substrate are respectively formed so as to be symmetric with respect to each of the plurality of substrates. The semiconductor laser device according to claim 3.
  5.  前記支持部材は、
     上層の基板と下層の基板との間に、前記上層の基板に対する前記裏面側の冷却路として機能するとともに、前記下層の基板に対する前記表面側の冷却路として機能する、共用の前記冷却路が形成されている
     ことを特徴とする請求項4に記載の半導体レーザ装置。
    The support member is
    The common cooling path that functions as the cooling path on the back surface side with respect to the upper layer substrate and functions as the cooling path on the front surface side with respect to the lower layer substrate is formed between the upper layer substrate and the lower layer substrate. The semiconductor laser device according to claim 4, wherein the semiconductor laser device is provided.
  6.  前記基板は、
     前記半導体レーザダイオード列よりも前記支持部材側の部分である第1の部分が、当該第1の部分の反対側の部分である第2の部分よりも、高い熱伝導率を有する
     ことを特徴とする請求項4または5に記載の半導体レーザ装置。
    The substrate is
    The first part, which is the part closer to the support member than the semiconductor laser diode array, has a higher thermal conductivity than the second part, which is the part opposite to the first part. A semiconductor laser device according to claim 4 or 5.
  7.  前記基板は、
     前記第1の部分に、ヒートパイプが設けられている
     ことを特徴とする請求項6に記載の半導体レーザ装置。
    The substrate is
    The semiconductor laser device according to claim 6, wherein a heat pipe is provided in the first portion.
  8.  前記半導体レーザダイオード列は、出射されるレーザビームの波長が互いに同一である、複数の半導体ダイオードから構成されている
     ことを特徴とする請求項4から7のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 4, wherein the semiconductor laser diode array includes a plurality of semiconductor diodes having the same wavelength of emitted laser beam. .
  9.  前記複数の半導体レーザユニットに対応する複数の前記半導体レーザダイオード列は、出射されるレーザビームの波長が互いに異なる
     ことを特徴とする請求項8に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 8, wherein the plurality of semiconductor laser diode arrays corresponding to the plurality of semiconductor laser units have different wavelengths of emitted laser beams.
PCT/JP2014/053258 2013-02-13 2014-02-13 Semiconductor laser device WO2014126124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026032A JP5764152B2 (en) 2013-02-13 2013-02-13 Semiconductor laser device
JP2013-026032 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126124A1 true WO2014126124A1 (en) 2014-08-21

Family

ID=51354123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053258 WO2014126124A1 (en) 2013-02-13 2014-02-13 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JP5764152B2 (en)
WO (1) WO2014126124A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208015A1 (en) * 2015-06-24 2018-04-19 オリンパス株式会社 Light source device and endoscope device
US11095084B1 (en) * 2019-02-07 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Laser system with isolated optical cavity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851970B (en) * 2015-07-15 2021-04-27 努布鲁有限公司 Applications, methods and systems for laser-transmissive addressable arrays
JP2018059757A (en) 2016-10-04 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 Light projection optical system and object detector
JP7021833B2 (en) * 2018-05-17 2022-02-17 三菱電機株式会社 Laser device
KR102071464B1 (en) * 2018-05-21 2020-01-30 국방과학연구소 Device for cooling of laser diode bars
KR102489766B1 (en) * 2020-03-31 2023-01-17 임성은 Direct active cooling structure and laser source including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103132A (en) * 1997-09-29 1999-04-13 Mitsubishi Heavy Ind Ltd Two-dimensional ld array device and ld exciting solid-state laser
JPH11177181A (en) * 1997-12-08 1999-07-02 Toshiba Corp Two-dimensional semiconductor array and unit thereof, and machining apparatus with laser
WO1999039412A1 (en) * 1998-01-30 1999-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2003172854A (en) * 2001-12-05 2003-06-20 Hitachi Cable Ltd Optical parts with cooling means
JP2006171348A (en) * 2004-12-15 2006-06-29 Nippon Steel Corp Semiconductor laser device
JP2006253491A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Laser device and laser system
JP2006344743A (en) * 2005-06-08 2006-12-21 Sony Corp Semiconductor laser device
JP2006352019A (en) * 2005-06-20 2006-12-28 Hamamatsu Photonics Kk Heat sink, laser device having the same, and laser stacking device
JP2008501236A (en) * 2004-06-01 2008-01-17 トルンプ フォトニクス,インコーポレイテッド Laser diode array mount and step mirror for shaping a symmetric laser beam

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8908049U1 (en) * 1989-07-01 1989-08-24 Carl Zeiss, 89518 Heidenheim Cooling device for semiconductor pump light sources
US5305344A (en) * 1993-04-29 1994-04-19 Opto Power Corporation Laser diode array
JP3473540B2 (en) * 2000-02-23 2003-12-08 日本電気株式会社 Semiconductor laser cooling device
JP2001284732A (en) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd Multi-wavelength laser light-emitting device, semiconductor laser array element used therefor, and manufacturing method thereof
AU2001271955A1 (en) * 2000-07-10 2002-01-21 Corporation For Laser Optics Research Systems and methods for speckle reduction through bandwidth enhancement
JP2002134799A (en) * 2000-10-19 2002-05-10 Komatsu Ltd Silicon substrate, manufacturing method therefor, thermoelectric module, and semiconductor laser device
JP2002374031A (en) * 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc Convergence system for semiconductor laser
JP2003188462A (en) * 2001-10-12 2003-07-04 Fuji Photo Film Co Ltd Cooling device for laser diode
DE10234704A1 (en) * 2002-07-30 2004-02-19 Osram Opto Semiconductors Gmbh Semiconductor device comprises a semiconductor component, especially power laser diode billet, arranged on cooling element containing channel for introducing coolant and microstructures for effective heat transfer to the coolant
JP4238558B2 (en) * 2002-10-28 2009-03-18 ソニー株式会社 Semiconductor laser module
JP2004186212A (en) * 2002-11-29 2004-07-02 Sony Corp Semiconductor laser array device
JP2004186527A (en) * 2002-12-05 2004-07-02 Tecnisco Ltd Laser diode cooling apparatus
JP2005079580A (en) * 2003-08-29 2005-03-24 Osram Opto Semiconductors Gmbh Laser apparatus having multiple light emitting regions
JP4167209B2 (en) * 2004-08-12 2008-10-15 浜松ホトニクス株式会社 Laser equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103132A (en) * 1997-09-29 1999-04-13 Mitsubishi Heavy Ind Ltd Two-dimensional ld array device and ld exciting solid-state laser
JPH11177181A (en) * 1997-12-08 1999-07-02 Toshiba Corp Two-dimensional semiconductor array and unit thereof, and machining apparatus with laser
WO1999039412A1 (en) * 1998-01-30 1999-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2003172854A (en) * 2001-12-05 2003-06-20 Hitachi Cable Ltd Optical parts with cooling means
JP2008501236A (en) * 2004-06-01 2008-01-17 トルンプ フォトニクス,インコーポレイテッド Laser diode array mount and step mirror for shaping a symmetric laser beam
JP2006171348A (en) * 2004-12-15 2006-06-29 Nippon Steel Corp Semiconductor laser device
JP2006253491A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Laser device and laser system
JP2006344743A (en) * 2005-06-08 2006-12-21 Sony Corp Semiconductor laser device
JP2006352019A (en) * 2005-06-20 2006-12-28 Hamamatsu Photonics Kk Heat sink, laser device having the same, and laser stacking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208015A1 (en) * 2015-06-24 2018-04-19 オリンパス株式会社 Light source device and endoscope device
US11095084B1 (en) * 2019-02-07 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Laser system with isolated optical cavity

Also Published As

Publication number Publication date
JP5764152B2 (en) 2015-08-12
JP2014154851A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5764152B2 (en) Semiconductor laser device
US8213479B2 (en) High power diode laser having multiple emitters and method for its production
CN107851963B (en) Stepped diode laser module with cooling structure
US7801190B2 (en) Carrier for a vertical arrangement of laser diodes with a stop
US6898222B2 (en) Diode laser arrangement with a plurality of diode laser arrays
US9450377B1 (en) Multi-emitter diode laser package
CN110299668B (en) Construction of multiple diode laser modules and method of operating the same
US20120081893A1 (en) Laser diode combiner modules
JP2009170881A (en) High power laser diode array comprising at least one high power diode laser, and laser light source comprising the same
JP2004096088A (en) Multiplex laser light source and aligner
US7817693B2 (en) Method and a laser device for producing high optical power density
JP6272067B2 (en) Laser light source module and laser light source device
JP2007163947A (en) Multiplexing optical system
JP5270949B2 (en) LASER LIGHT EMITTING DEVICE AND LASER DEVICE
JP2014007232A (en) Semiconductor laser device
JP2008021900A (en) Laser condensing device
JP2001044574A (en) Semiconductor laser
KR102345387B1 (en) High-power laser diode module having multi-layer structure
US20240178633A1 (en) Laser diode package
WO2023027096A1 (en) Optical module and optical module manufacturing method
JP2008103564A (en) Semiconductor laser device
JP2009146973A (en) Laser apparatus
JPWO2023027096A5 (en)
TW202323721A (en) Optical transmitting assembly and optical module
JP2005010190A (en) Laser apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752024

Country of ref document: EP

Kind code of ref document: A1