WO2017124651A1 - 内窥镜、光机连接装置及改造二维内窥镜系统的方法 - Google Patents

内窥镜、光机连接装置及改造二维内窥镜系统的方法 Download PDF

Info

Publication number
WO2017124651A1
WO2017124651A1 PCT/CN2016/078949 CN2016078949W WO2017124651A1 WO 2017124651 A1 WO2017124651 A1 WO 2017124651A1 CN 2016078949 W CN2016078949 W CN 2016078949W WO 2017124651 A1 WO2017124651 A1 WO 2017124651A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
prism
endoscope
lens
reflective
Prior art date
Application number
PCT/CN2016/078949
Other languages
English (en)
French (fr)
Inventor
胡善云
刘鹏
Original Assignee
珠海康弘发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海康弘发展有限公司 filed Critical 珠海康弘发展有限公司
Priority to DE112016006249.4T priority Critical patent/DE112016006249T5/de
Priority to US16/070,983 priority patent/US20190021578A1/en
Publication of WO2017124651A1 publication Critical patent/WO2017124651A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres

Definitions

  • the present invention relates to an endoscope, a optomechanical connection device, and a method of retrofitting an existing two-dimensional endoscope system with the endoscope.
  • the present invention is based on a Chinese patent application filed on Jan. 19, 2016, the application number of which is incorporated herein by reference.
  • a three-dimensional endoscope including an insertion tube and a three-dimensional imaging unit is disclosed in the patent document published as CN104935915A.
  • the three-dimensional imaging unit includes an image sensor and a first lens and a second lens integrated in the insertion tube; the first lens and the second lens are used to simultaneously image the same scene to obtain a first image with parallax and The second image, and the first image and the second image are projected onto a target surface of the same image sensor for imaging.
  • the three-dimensional endoscope system including the three-dimensional endoscope can truly restore the stereoscopic field of view of the operation and has a magnifying effect, so that it is easy to find a lesion between various internal organs to accurately Resection and reconstruction, especially when encountering surgery with multiple anatomical levels, complicated blood vessels, and difficult surgery.
  • the three-dimensional endoscope system helps doctors better perform surgery by presenting a sense of depth in the real field.
  • Another object of the present invention is to provide an optical device connecting device for the above endoscope.
  • an endoscope provided by the present invention includes a optomechanical connection unit, an insertion tube, and a first lens and a second lens integrated in the insertion tube.
  • the optomechanical connection unit includes a light deflection assembly and a connection assembly, and the light deflection assembly includes a first prism and a second prism.
  • the first prism is located downstream of the first lens and the second prism is located downstream of the second lens.
  • the first prism is configured to reflect the first light beam received and projected by the first lens
  • the second prism is configured to reflect the second light beam received and projected by the second lens to change the light of the first light beam and the second light beam
  • the first prism and the second prism are both parallelogram prisms.
  • the light deflection assembly is simple in structure and low in cost.
  • the first prism includes a first reflective plane, a second reflective plane, and a third reflective plane
  • the second reflective plane is parallel to the optical axis of the first beam
  • the first reflective plane and the third reflective plane are located at the The same side of the two reflecting planes.
  • the third reflective plane is located downstream of the first reflective plane, the spacing between the first reflective plane and the second reflective plane is gradually reduced, and between the third reflective plane and the second reflective plane The spacing is gradually increased, and the angle between the first reflecting plane and the second reflecting plane is equal to the angle between the third reflecting plane and the second reflecting plane.
  • the second prism includes a fourth reflecting plane, a fifth reflecting plane and a sixth reflecting plane, wherein the fifth reflecting plane is parallel to the optical axis of the second beam, and the fourth reflecting plane and the sixth reflecting plane are on the same side of the fifth reflecting plane .
  • the sixth reflection plane is located downstream of the fourth reflection plane along the direction of travel of the light beam in the endoscope, and the spacing between the fourth reflection plane and the fifth reflection plane is gradually decreased, and between the sixth reflection plane and the fifth reflection plane The spacing is gradually increased, and the angle between the fourth reflecting plane and the fifth reflecting plane is equal to the angle between the sixth reflecting plane and the fifth reflecting plane. It facilitates the control of the lateral dimensions of the light deflection unit.
  • the first prism is composed of a first front prism and a first rear prism.
  • the first reflective plane is located on the first front prism, and the second reflective plane and the third reflective plane are located on the first rear prism.
  • the abutting faces of the prism and the first rear prism are fixedly connected by gluing, and the abutting faces of the first front prism and the first rear prism are plated with an anti-reflection film.
  • the second prism is composed of a second front prism and a second rear prism, the fourth reflection plane is located on the second front prism, the fifth reflection plane and the sixth reflection plane are located on the second rear prism, and the second front prism and the second rear prism
  • the abutting faces of the prisms are fixedly connected by gluing, and the abutting faces of the second front prism and the second rear prism are plated with an anti-reflection film.
  • the connecting assembly comprises a connecting collar and a set screw.
  • An inner shoulder is formed on an inner side of one end of the connecting collar, and the other end is detachably fixedly coupled to the camera connector; and a side wall of one end of the connecting sleeve is provided with a screw hole matched with the positioning screw.
  • One end of the connecting collar is sleeved on one end of the insertion tube, and the insertion tube is rotatable about the axis of the connecting collar with respect to the connecting collar.
  • the connecting assembly comprises a fixed connecting ring and a rotating connecting ring.
  • One end of the rotating connecting ring is fastened on one end of the fixed connecting ring, and the fixed connecting ring can rotate about its own axis.
  • the inner diameter of the fixed connecting ring is smaller than the inner diameter of the rotating connecting ring, and the other end of the fixed connecting ring is screwedly connected with the camera connector.
  • An external thread is formed on one end of the insertion tube, and an inner thread matching the external thread is formed on the inner side wall of the other end of the rotary coupling ring, and the rotation of the internal thread and the rotation of the thread formed on the other end of the fixed connection ring To the contrary.
  • the present invention provides an optical connector connecting device for an endoscope for connecting an endoscope to an imaging joint of a two-dimensional endoscope system.
  • the endoscope includes an insertion tube and a first lens and a second lens integrated in the insertion tube.
  • the optomechanical connection device includes a light deflection assembly and a connection assembly, and the light deflection assembly includes a first prism and a second prism.
  • the first prism is located downstream of the first lens and the second prism is located downstream of the second lens.
  • the first prism is configured to reflect the first light beam received and projected by the first lens
  • the second prism is configured to reflect the second light beam received and projected by the second lens to change the light of the first light beam and the second light beam
  • the connecting component comprises a connecting sleeve, one end of the connecting sleeve is screwed and fixedly connected to one end of the insertion tube, and the other end is screwedly connected to the camera connector, and the first prism and the second prism are installed in the connecting collar.
  • the method for modifying a two-dimensional endoscope system having a two-dimensional endoscope, a camera joint, and a back end processing device includes a selection step, a docking restriction step, and a back end processing. Device upgrade and replacement steps.
  • the selecting step is to select a three-dimensional endoscope matching the camera connector of the two-dimensional endoscope system to replace the existing two-dimensional endoscope, which is an endoscope described in any of the above technical solutions.
  • the docking and defining step is to dock the endoscope with the camera connector through the connecting component, and to define a spacing between the light deflecting component and the image sensor in the camera connector.
  • the endoscope provided by the present invention changes the spacing between the optical axes of the first image with the parallax and the optical axis of the second image obtained by simultaneously capturing the first lens and the second lens through the optical device connecting unit, and projects
  • the first photosensitive region and the second photosensitive region are separated from each other on the image sensor target surface of the camera connector for the two-dimensional endoscope system, so that the existing two-dimensional endoscope system can be transformed into the modified method provided by the present invention.
  • a three-dimensional endoscope system that reduces the cost of upgrades while reducing the idleness of equipment in existing two-dimensional endoscope systems.
  • the optical device connecting device provided by the present invention can connect the insertion tube integrated with the first lens and the second lens with the camera connector, so that only a small number of insertion tubes integrated with the first lens and the second lens and a plurality of insertion tubes are purchased.
  • the optomechanical connection unit can be used to upgrade two-dimensional endoscope systems for a variety of image sensors of different sizes to reduce upgrade costs.
  • FIG. 1 is a perspective view of a conventional camera joint of a two-dimensional endoscope system
  • FIG. 2 is a schematic structural view of the camera connector shown in FIG. 1;
  • Figure 3 is a first perspective perspective view of the first embodiment of the endoscope of the present invention with the connecting assembly omitted;
  • FIG. 4 is a second perspective view of the first embodiment of the endoscope of the present invention with the connecting assembly omitted;
  • Figure 5 is an axial cross-sectional view of the first embodiment of the endoscope of the present invention with the connecting assembly omitted;
  • Figure 6 is a perspective view of the connecting assembly of the first embodiment of the endoscope of the present invention.
  • Figure 7 is an axial cross-sectional view of the connecting assembly of the first embodiment of the endoscope of the present invention.
  • Figure 8 is a schematic view showing the optical path in the light deflection unit of the first embodiment of the endoscope of the present invention.
  • FIG. 9 is a flow chart of a method for modifying a conventional two-dimensional endoscope system using the first embodiment of the endoscope of the present invention.
  • FIG. 10 is a schematic structural view of an image sensor in the camera joint shown in FIG. 1;
  • FIG. 11 is a first state diagram of selection of a prism structure in a selection step of a method of modifying a conventional two-dimensional endoscope system using the first embodiment of the endoscope of the present invention
  • FIG. 12 is a second state diagram of selection of a prism structure in a selection step of a method of modifying a conventional two-dimensional endoscope system using the first embodiment of the endoscope of the present invention
  • Figure 13 is a third state diagram of the selection of the prism structure in the selection step of the method of modifying the prior art two-dimensional endoscope system using the first embodiment of the endoscope of the present invention
  • Figure 14 is a schematic view showing the assembly process of the first embodiment of the endoscope of the present invention and the camera connector;
  • 15 is a structural block diagram of a three-dimensional endoscope system after upgrading a two-dimensional endoscope system to a three-dimensional endoscope system using the first embodiment of the endoscope of the present invention
  • Figure 16 is a perspective view of the connecting assembly in the second embodiment of the endoscope of the present invention.
  • Figure 17 is an axial cross-sectional view of the connecting assembly in the second embodiment of the endoscope of the present invention.
  • Figure 18 is a schematic view showing the assembly process of the second embodiment of the endoscope of the present invention and the camera connector;
  • Figure 19 is a first optical path diagram of a first prism in a fourth embodiment of the endoscope according to the present invention.
  • 20 is a schematic view showing a second optical path of the first prism in the fourth embodiment of the endoscope according to the present invention.
  • Figure 21 is a perspective view of a fifth embodiment of the endoscope of the present invention with the connecting assembly omitted;
  • Figure 22 is a block diagram showing the structure of an endoscope according to a sixth embodiment of the present invention.
  • the main idea of the present invention is to provide a three-dimensional endoscope that can be matched with the camera joint of the existing two-dimensional endoscope system for upgrading the existing two-dimensional endoscope system into a three-dimensional endoscope system.
  • the idleness of the equipment in the existing two-dimensional endoscope system is reduced, mainly involving the structure of the optical machine connecting part of the endoscope and the camera joint in the existing two-dimensional endoscope system, and the like.
  • Part of the structure is designed according to existing products.
  • the camera connector 01 is a camera connector commonly used in the existing two-dimensional medical endoscope system.
  • the front end of the base 010 is provided with an internal thread interface 011, and an image sensor 012 is mounted in the inner cavity.
  • a signal output terminal 013 is provided on the back end.
  • the image sensor 012 is a CCD sensor, and the matching endoscope projects the received light beam onto the target surface of the image sensor 012, and outputs an electrical signal through the signal output terminal 013.
  • the present invention is described by taking a medical endoscope matched with the camera connector 01 as an example, but the connection interface of the camera connector, the interface to which the endoscope is connected, and the structure of the endoscope are not It is limited to the following embodiments.
  • the endoscope is inserted into the tube 1, the first lens 3, the second lens 4, and the illumination fiber 21 integrated in the front end tube 11 of the insertion tube 1, and is mounted on the rear end tube 12 of the insertion tube 1.
  • the light deflection unit 5 in the inner cavity 120, the focus ring 6 mounted on the outer periphery of the rear end tube 12 of the insertion tube 1, the fiber optic interface 22 provided at the junction of the front end tube 11 and the rear end tube 12, and the connection assembly 7 constitutes.
  • the light deflection unit 5 together with the connection unit 7 constitutes the optomechanical connection unit of the present embodiment.
  • the first lens 3 is composed of a protective sleeve and a first image taking lens 31 mounted in the protective sleeve, the first focusing lens group 33, and the first image taking lens 31 and the first focusing lens.
  • the image pickup body between the mirror groups 33 is constituted, and the image pickup body is composed of a plurality of image pickup columns 32.
  • the second lens 4 is composed of a protective sleeve and a second image taking lens 41 mounted in the protective sleeve, a second focusing lens group 43 and a transfer between the second image taking lens 41 and the second focusing lens group 43.
  • the image forming body is composed of a plurality of image columns 42.
  • the first lens 3 and the second lens 4 are both fixed-focus lenses, and the first focusing lens group 33 and the second focusing lens group 43 are focused by the focusing ring 6.
  • the first lens 3 and the second lens 4 are integrated in the insertion tube 1.
  • the illumination fiber 21 is filled between the outer surface of the protection sleeve of the first lens 3 and the second lens 4 and the inner side surface of the front end tube 11.
  • the fiber optic interface 22 is in communication with an external source to project illumination light from the port at the insertion end for illumination of the field.
  • An external thread 121 is formed on the outer side of the end of the rear end tube 12 away from the insertion end of the insertion tube 1, that is, an external thread 121 is formed on one end of the insertion tube 1.
  • the connecting component 7 is composed of a fixed connecting ring 71 and a rotating connecting ring 72.
  • the fixed connecting ring 71 is composed of an inner ring 711 and an outer ring 712 that is sleeved outside the inner ring 711.
  • the rotating connecting ring 72 is fixedly fixed.
  • An annular protrusion 720 is formed on the inner side of one end of the connecting ring 71.
  • the inner ring 711 is formed with an annular protrusion 7110 near the outer end of the rotating connecting ring 72.
  • the outer ring 712 is sleeved outside the inner ring 711 and fixedly connected.
  • An annular groove 710 for receiving the annular protrusion 720 is formed between the end surface of the annular protrusion 7110 and the end surface of the outer ring 712, so that one end of the rotating connection ring 72 is fastened on one end of the fixed connection ring 71, and is relatively fixed.
  • the connecting ring 71 is rotatable about its own axis.
  • An outer thread 7120 is formed on the outer side of the outer ring 712 away from the one end of the rotating connecting ring, and the inner thread 011 is matched with the inner thread 011 shown in FIG. 1.
  • the inner side of the rotating connecting ring 72 away from the fixed connecting ring 71 is formed as shown in FIG.
  • the external thread 121 is shown to match the internal thread 721, and the rotation of the internal thread 721 is opposite to the direction of rotation of the external thread 7120.
  • the light deflection unit 5 is composed of a first prism 51 and a second prism 52.
  • the first prism 51 is obtained by gluing the first front prism 511 and the first rear prism 512.
  • the bonding surface 5110 of the first front prism 511 and the bonding surface 5120 of the first rear prism 512 are plated with an anti-reflection film.
  • the second prism 52 is obtained by gluing the second front prism 521 and the second rear prism 522, and the bonding surface 5210 of the second front prism 521 and the bonding surface 5220 of the second rear prism 522 are plated with an anti-reflection film.
  • the first prism 51 is located downstream of the first lens 3 and the second prism 52 is located downstream of the second lens 4.
  • the first lens 3 receives and projects the first light beam 021, and the first light beam 021 is projected onto the incident surface of the first prism 51. After the first light beam 021 enters the first front prism 511, it is reflected by the first reflective plane 501 and then glued. The surface 5110 is projected and enters the first rear prism 512 from the bonding surface 5120, is reflected by the second reflecting plane 502 and the third reflecting plane 503, and projects the first light beam 022 from the exit surface of the first back prism 512.
  • the second lens 4 will receive and project a second beam 031, and the second beam 031 is projected onto the incident surface of the second prism 52. After the second beam 031 enters the second front prism 521, it is reflected by the fourth reflecting plane 504. The glued surface 5210 is projected and enters the second rear prism 522 from the bonding surface 5220, is reflected by the fifth reflecting plane 505 and the sixth reflecting plane 506, and projects the second light beam 032 from the exit surface of the second back prism 522.
  • the second reflection plane 502 is parallel to the optical axis of the first light beam 021.
  • the distance between the first reflective plane 501 and the second reflective plane 502 gradually decreases along the direction of travel of the light beam in the endoscope, and the spacing between the third reflective plane 503 and the second reflective plane 502 gradually increases, and
  • the angle ⁇ between the reflection plane 501 and the second reflection plane 502 is equal to the angle ⁇ between the third reflection plane 503 and the second reflection plane 502.
  • the fifth reflection plane 505 is parallel to the optical axis of the second beam 031.
  • the distance between the fourth reflective plane 504 and the fifth reflective plane 505 gradually decreases along the direction of travel of the light beam in the endoscope, and the spacing between the sixth reflective plane 506 and the fifth reflective plane 505 gradually increases, and
  • the angle ⁇ between the four reflection plane 504 and the fifth reflection plane 505 is equal to the angle ⁇ between the sixth reflection plane 506 and the fifth reflection plane 505.
  • the first reflective plane 501, the second reflective plane 502, the third reflective plane 503, the fourth reflective plane 504, the fifth reflective plane 505, and the sixth reflective plane 506 are all formed by plating a reflective film on the surface of the prism. Reflecting, thereby changing the spacing between the optical axes of the first beam and the second beam.
  • a modification method for upgrading a conventional two-dimensional endoscope system into a three-dimensional endoscope system by using the above endoscope includes a selection step S1, a docking restriction step S2, a software upgrade replacement step S3, and a display device upgrade replacement step. S4 is composed.
  • the software upgrade replacement step S3 and the display device upgrade replacement step S4 constitute the upgrade processing replacement step of the backend processing device of the present embodiment.
  • Selecting step S1 selecting an endoscope matching the camera connector 01, including (1) the mechanical connection interface of the connection component in the optical machine connection unit is matched with the mechanical connection interface of the camera connector 01; (2) due to the first lens and The first beam and the second beam projected by the second lens may not match the size of the image sensor, and a suitable light deflection component needs to be selected to change the spacing between the optical axes of the first beam and the second beam to satisfy the image.
  • the size requirements of the sensor; (3) the spacing between the light deflection component and the image sensor is limited by the connection component to meet the spacing requirement between the two; as follows:
  • the target surface 0120 of the image sensor 012 is divided into two parts from the center line 01201 along the width direction thereof, and the first photosensitive area 0121 is disposed in the left half, and the right half is provided.
  • the first beam 022 projected by the first prism 51 will be projected onto the first photosensitive region 0121, and the second beam 032 projected by the second prism 52 will be projected to The second photosensitive area is 0122. Therefore, it is necessary to select the first prism 51 and the second prism 52 having different sizes, as shown in FIGS. 11 to 13 , and the selection of the prism size structure will be described below by taking the first prism 51 as an example.
  • the adjustment is performed according to actual needs.
  • the projected first beam can be adjusted.
  • the relative position to the optical axis of the incident first beam thereby changing the spacing between the optical axes of the first beam and the second beam.
  • step S2 the endoscope is docked with the camera connector 01 through the connecting component 7, and the spacing between the light deflecting component 5 and the image sensor 012 of the camera connector 01 is defined;
  • the external thread 7120 of the fixed connecting ring 71 is screwedly connected with the internal thread 011 of the camera joint 01, so that the rotating connecting ring 72 rotates relative to the fixed connecting ring 71 about its own axis and rotates.
  • the engagement of the internal thread 721 on the connecting ring 72 with the external thread 121 on the rear end tube 12 gradually pulls the distance between the endoscope and the camera joint 01 until the end surface of the rear end tube 12 abuts against the fixed connecting ring 71.
  • the software upgrade replaces the step S3, and the original two-dimensional image processing software is upgraded and replaced into a three-dimensional image processing software.
  • the display device upgrade replacement step S4 the display device is upgraded and replaced with a three-dimensional display device having a three-dimensional display function.
  • the working process using the modified endoscope system includes an imaging step, a dividing step, a synthesizing step, and a developing step.
  • the first lens 3 is used to capture the first image of a scene
  • the second lens 4 is simultaneously imaged by the first prism 51 and the second prism 52
  • the first image is captured by the first prism 51 and the second prism 52.
  • the distance between the beam of light and the optical axis of the beam of the second image changes; the first photosensitive region 0121 on the target surface 0120 of the image sensor 012 receives the first image, and the second photosensitive region 0122 synchronously receives the second image to generate a third image. .
  • the two two-dimensional images of the mutually existing parallax obtained by the dividing step are processed to be combined into one three-dimensional image.
  • control module 023 in the processor 02 controls the three-dimensional display device 03 to display a three-dimensional image based on the image information described in the three-dimensional image synthesized by the image synthesizing module 022.
  • the connecting assembly 81 is composed of a connecting collar 811 and a set screw 812.
  • the inner side of the left end of the connecting collar 811 is formed with an inner shoulder 8110, and the side wall of the left end is formed with a screw hole 8112 matching the positioning screw 812; the outer side of the right end is formed with an external thread 8111 matching the internal thread 011.
  • the right end 820 of the rear end tube 82 is mated with the left port of the connecting collar 81, and the outer side wall of the right end 820 is formed with an annular positioning groove 8200 that matches the end of the set screw 812.
  • the connecting collar 811 is fixedly coupled to the camera connector 01 by the cooperation of the external thread 8111 and the internal thread 011, and the left port of the connecting collar 811 is sleeved outside the right end 820 of the rear end tube 82, and The end surface of the right end 820 is abutted against the inner shoulder 8110; relative to the connecting collar 81, the endoscope is rotated about the axis of the rotating collar 81 until the light deflection assembly 83 is aligned with the image sensor 012, and the positioning screw 812 is tightened to position The end of the screw 812 is embedded in the annular positioning groove 8200 to position the relative position therebetween.
  • a positioning hole provided on the right end 820 is used instead of the annular positioning groove 8200.
  • the positioning screw 812 is a spring plunger. The positioning of the positioning screw 812 and the positioning hole realizes the connection of the rear end tube 82 with respect to the connecting ring 81. The circumferential rotation is adjusted in place.
  • the first prism and the second prism are both parallelogram prisms 85 as shown in FIG. 19, and the incident light beam 041 is reflected by the first reflecting surface 851 and the second reflecting surface 852 to project an outgoing light beam 042, and the light of the incident light beam 041
  • the spacing between the axis and the optical axis of the outgoing beam 042 is adjusted such that the optical axis spacing of the first beam and the second beam is adjusted by the first prism and the second prism.
  • a parallelogram prism 85 is used as the deflection prism.
  • the deflection distance H of the center of the optical path is required to be larger than the diameter D of the incident beam 041 in a direction perpendicular to the optical axis of the beam 041.
  • the first lens 863, the second lens 864, the instrument channel 865, the water inlet channel 866, the water outlet channel 867, and the illumination fiber 862 are integrated in the insertion tube 86.
  • An optical fiber is used instead of the image pickup column as the image pickup body of this embodiment.
  • the light deflection unit 95 is mounted in the inner cavity of the connecting collar 91.
  • the inner side of the left end of the connecting collar 91 is formed with an internal thread 911
  • the outer end of the right end of the rear end tube 92 is formed with an external thread matching the internal thread 911. 920.
  • the two ends of the connecting collar 91 are fixedly connected to the rear end tube 92 and the camera joint by screws, after the threads between the three are screwed into place, the first lens, the second lens, the light deflection unit 95 and the image sensor are realized. Docking, and defining the spacing between the light deflection assembly 95 and the image sensor.
  • the connection assembly and the light deflection unit together constitute the optical machine connection device of the present embodiment, and also constitute the optical machine connection unit of the present embodiment.
  • the alignment of the connecting collar and the rear end tube is achieved by the positioning screw provided on the connecting collar and the positioning hole provided on the rear end tube, and the alignment of the lens and the prism is realized.
  • the first lens and the second lens are not limited to the fixed focus lens in the above embodiments, and may be a zoom lens; the fixed connection structure between the connection component and the rear end tube is not limited to the above embodiments, and there are many An obvious change; the structure and number of prisms are not limited to the above embodiments, and there are many obvious variations.
  • the endoscope of the present invention is suitable for upgrading an existing two-dimensional endoscope system into a three-dimensional endoscope system, and the existing two-dimensional endoscope system is upgraded by using the product of the invention by the modification method of the present invention, It is possible to reduce the idleness of equipment in existing two-dimensional endoscope systems while reducing the cost of upgrading.

Abstract

一种内窥镜、光机连接装置及改造二维内窥镜系统的方法。该内窥镜包括光机连接单元、插入管(1)及集成在该插入管(1)内的第一镜头(3)与第二镜头(4)。光机连接单元包括光偏转组件(5)与连接组件(7),光偏转组件(5)用于改变第一镜头(3)与第二镜头(4)接收并投射出的第一光束(021)与第二光束(031)的光轴间的间距,以匹配二维内窥镜系统的摄像接头(01)中的图像传感器(012)。连接组件(7)用于将内窥镜与摄像接头(01)对接,并用于对光偏转组件(5)与图像传感器(012)之间的间距进行限定。该光机连接装置对应于该内窥镜中的光机连接单元。该改造方法为采用该内窥镜,通过选择步骤(S1)、对接限定步骤(S2)及后端处理装置升级更换步骤(S3-S4),将现有二维内窥镜系统升级为三维内窥镜系统。

Description

内窥镜、光机连接装置及改造二维内窥镜系统的方法 技术领域
本发明涉及一种内窥镜、光机连接装置及用该内窥镜对现有二维内窥镜系统进行改造的方法。本发明基于申请日为2016年01月19日、申请号为201610033568.2的中国发明专利申请,该申请的内容作为与本发明密切相关的参考文献引入本文。
背景技术
近年来,随着微创外科的发展与普及,医用内窥镜系统在骨科等领域得到了大规模的应用。
公开号为CN104935915A的专利文献中公开了一种三维内窥镜,包括插入管及三维成像单元。其中,三维成像单元包括图像传感器及集成在插入管内的第一镜头与第二镜头;第一镜头与第二镜头用于在同时刻对同一场景进行取像,以获取存在视差的第一图像与第二图像,且第一图像与第二图像投射至同一图像传感器的靶面上进行成像。
与传统二维内窥镜系统相比,包含该三维内窥镜的三维内窥镜系统能够真实地还原手术立体视野,并具有放大作用,便于在各种内脏器官之间查找病变部位,以精确切除及重建,尤其是在遇到解剖层次多、血管复杂、手术难度大的手术时。该三维内窥镜系统通过呈现真实术野中的纵深感,以帮助医生更好地实施手术。
技术问题
在当前阶段,相当部分医院还在使用二维内窥镜系统,如果将这些二维内窥镜系统更换为三维内窥镜系统,不仅需要花费大量的资金,而且会产生大量的闲置设备。此外,除了上述用于人体医疗的二维内窥镜系统,动物医疗与工业用二维内窥镜系统也存在上述升级改造问题。
技术解决方案
本发明的主要目的是提供一种可用于将现有二维内窥镜系统改造为三维内窥镜系统的内窥镜。
本发明的另一目的是提供一种上述内窥镜用的光机连接装置。
本发明的再一目的是提供一种采用上述内窥镜将现有二维内窥镜系统升级为三维内窥镜系统的改造方法。
为了实现上述主要目的,本发明提供的内窥镜包括光机连接单元、插入管及集成在该插入管内的第一镜头与第二镜头。光机连接单元包括光偏转组件与连接组件,光偏转组件包括第一棱镜与第二棱镜。沿光束在内窥镜中的行进方向,第一棱镜位于第一镜头的下游,第二棱镜位于第二镜头的下游。第一棱镜用于对第一镜头接收并投射出的第一光束进行反射,第二棱镜用于对第二镜头接收并投射出的第二光束进行反射,改变第一光束与第二光束的光轴间的间距,以匹配二维内窥镜系统摄像接头中的图像传感器。连接组件用于将内窥镜与摄像接头对接,并用于对光偏转组件与图像传感器之间的间距进行限定。
一个具体的方案为第一棱镜与第二棱镜均为平行四边形棱镜。光偏转组件的结构简单且成本低。
另一具体的方案为第一棱镜包括第一反射平面、第二反射平面及第三反射平面,第二反射平面与第一光束的光轴相平行,第一反射平面与第三反射平面位于第二反射平面的同侧。沿光束在内窥镜中的行进方向,第三反射平面位于第一反射平面的下游,第一反射平面与第二反射平面间的间距逐渐减小,第三反射平面与第二反射平面间的间距逐渐增大,且第一反射平面与第二反射平面间的夹角等于第三反射平面与第二反射平面间的夹角。第二棱镜包括第四反射平面、第五反射平面及第六反射平面,第五反射平面与第二光束的光轴相平行,第四反射平面与第六反射平面位于第五反射平面的同侧。沿光束在内窥镜中的行进方向,第六反射平面位于第四反射平面的下游,第四反射平面与第五反射平面间的间距逐渐减小,第六反射平面与第五反射平面间的间距逐渐增大,且第四反射平面与第五反射平面间的夹角等于第六反射平面与第五反射平面间的夹角。便于对光偏转组件横向上尺寸的控制。
更具体的方案为第一棱镜由第一前棱镜与第一后棱镜组成,第一反射平面位于第一前棱镜上,第二反射平面与第三反射平面位于第一后棱镜上,第一前棱镜与第一后棱镜的对接面间通过胶合固定连接,第一前棱镜与第一后棱镜的对接面上均镀有增透膜。第二棱镜由第二前棱镜与第二后棱镜组成,第四反射平面位于第二前棱镜上,第五反射平面与第六反射平面位于第二后棱镜上,第二前棱镜与第二后棱镜的对接面间通过胶合固定连接,第二前棱镜与第二后棱镜的对接面上均镀有增透膜。
一个优选的方案为连接组件包括连接套环及定位螺钉。连接套环的一端内侧形成有内肩台,另一端与摄像接头可拆卸地固定连接;连接套环的一端侧壁上设有与定位螺钉相匹配的螺孔。连接套环的一端套接在插入管的一端上,插入管相对连接套环可绕连接套环的轴线旋转。内窥镜与摄像接头对接时,插入管一端的端面抵靠在内肩台上。组装过程简单。
另一个优选的方案为连接组件包括固定连接环与旋转连接环。旋转连接环的一端扣装在固定连接环的一端上,且相对固定连接环可绕自身轴线旋转,固定连接环的内径小于旋转连接环的内径,固定连接环的另一端与摄像接头螺纹固定连接;插入管的一端上形成外螺纹,旋转连接环另一端的内侧壁上形成与上述外螺纹相匹配的内螺纹,该内螺纹的旋向与形成于固定连接环的另一端上的螺纹的旋向相反。内窥镜与摄像接头对接时,插入管一端的端面抵靠在固定连接环一端的端面上。
为了上述另一目的,本发明提供一种内窥镜用光机连接装置,其用于将内窥镜与二维内窥镜系统的摄像接头连接。内窥镜包括插入管及集成在该插入管内的第一镜头与第二镜头。光机连接装置包括光偏转组件与连接组件,光偏转组件包括第一棱镜与第二棱镜。沿光束在内窥镜中的行进方向,第一棱镜位于第一镜头的下游,第二棱镜位于第二镜头的下游。第一棱镜用于对第一镜头接收并投射出的第一光束进行反射,第二棱镜用于对第二镜头接收并投射出的第二光束进行反射,改变第一光束与第二光束的光轴间的间距,以匹配二维内窥镜系统摄像接头中的图像传感器。连接组件用于将内窥镜与摄像接头对接,并用于对光偏转组件与图像传感器之间的间距进行限定。
具体的方案为连接组件包括连接套环,连接套环的一端与插入管的一端螺纹固定连接,另一端与摄像接头螺纹固定连接,第一棱镜与第二棱镜安装在连接套环内。
为了实现上述再一目的,本发明提供的用于对具有二维内窥镜、摄像接头及后端处理装置的二维内窥镜系统进行改造的方法包括选择步骤、对接限定步骤及后端处理装置升级更换步骤。其中,选择步骤为选择与二维内窥镜系统的摄像接头相匹配的三维内窥镜以替换现有的二维内窥镜,该三维内窥镜为上述任一技术方案所描述的内窥镜;对接限定步骤为通过连接组件将内窥镜与摄像接头对接,并对光偏转组件与摄像接头中的图像传感器之间的间距进行限定。
有益效果
本发明提供的内窥镜,其通过光机连接单元,将第一镜头与第二镜头在同时刻获得的具有视差的第一图像与第二图像的光束光轴间的间距进行改变,并投射在二维内窥镜系统用摄像接头的图像传感器靶面上相互分离的第一感光区与第二感光区上,从而可采用本发明提供的改造方法将现有二维内窥镜系统改造成三维内窥镜系统,以降低升级成本的同时,减少对现有二维内窥镜系统中设备的闲置。
此外,本发明提供的光机连接装置可将集成有第一镜头与第二镜头的插入管与摄像接头连接,从而只需采购少量的集成有第一镜头与第二镜头的插入管及多个光机连接装置,就可以为多种不同尺寸图像传感器的二维内窥镜系统进行升级,以减少升级成本。
附图说明
图1是现有一种二维内窥镜系统的摄像接头的立体示意图;
图2是图1所示摄像接头的结构示意图;
图3是略去连接组件的本发明内窥镜第一实施例的第一视角立体示意图;
图4是略去连接组件的本发明内窥镜第一实施例的第二视角立体示意图;
图5是略去连接组件的本发明内窥镜第一实施例的轴向剖视图;
图6是本发明内窥镜第一实施例中连接组件的立体图;
图7是本发明内窥镜第一实施例中连接组件的轴向剖视图;
图8是本发明内窥镜第一实施例中光偏转组件中的光路示意图;
图9是采用本发明内窥镜第一实施例对现有二维内窥镜系统进行改造的方法流程图;
图10是图1所示摄像接头中的图像传感器的结构示意图;
图11是采用本发明内窥镜第一实施例对现有二维内窥镜系统进行改造的方法的选择步骤中对棱镜结构选择的第一状态图;
图12是采用本发明内窥镜第一实施例对现有二维内窥镜系统进行改造的方法的选择步骤中对棱镜结构选择的第二状态图;
图13是采用本发明内窥镜第一实施例对现有二维内窥镜系统进行改造的方法的选择步骤中对棱镜结构选择的第三状态图;
图14是本发明内窥镜第一实施例与摄像接头的组装过程示意图;
图15是采用本发明内窥镜第一实施例将二维内窥镜系统升级成三维内窥镜系统后的三维内窥镜系统的结构框图;
图16是本发明内窥镜第二实施例中的连接组件的立体图;
图17是本发明内窥镜第二实施例中的连接组件的轴向剖视图;
图18是本发明内窥镜第二实施例与摄像接头的装配过程示意图;
图19是本发明内窥镜第四实施例中第一棱镜中的第一种光路示意图;
图20是本发明内窥镜第四实施例中第一棱镜中的第二种光路示意图;
图21略去连接组件的本发明内窥镜第五实施例的立体图;
图22是本发明内窥镜本发明内窥镜第六实施例的结构示意图。
以下结合实施例及其附图对本发明作进一步说明。
本发明的最佳实施方式
本发明的实施方式
本发明的主要构思是提供一款能够与现有二维内窥镜系统的摄像接头相匹配的三维内窥镜,以用于将现有二维内窥镜系统升级改造成三维内窥镜系统,在降低升级更换成本的同时,减少对现有二维内窥镜系统中设备的闲置,主要涉及内窥镜与现有二维内窥镜系统中摄像接头连接的光机连接部分结构,其他部分的结构根据现有产品进行设计。
如图1及图2所示,摄像接头01为现有二维医用内窥镜系统常用的一种摄像接头,其基体010的前端上设有内螺纹接口011,内腔内安装有图像传感器012,及后端上设有信号输出端013。图像传感器012为CCD传感器,与之相匹配的内窥镜将接收到的光束投射至图像传感器012的靶面上,并通过信号输出端013输出电信号。
在以下各实施例中,均以与摄像接头01相匹配的医用内窥镜为例对本发明进行说明,但摄像接头的连接接口,内窥镜与之连接的接口及内窥镜的结构并不局限于以下各实施例。
内窥镜第一实施例
参见图3至图7,内窥镜由插入管1,集成在插入管1的前端管11内的第一镜头3、第二镜头4与照明光纤21,安装在插入管1的后端管12的内腔120内的光偏转组件5,安装在插入管1的后端管12外周外的调焦环6,设于前端管11与后端管12的连接处的光纤接口22,及连接组件7构成。光偏转组件5与连接组件7一起构成本实施例的光机连接单元。
参见图3至图5,第一镜头3由保护套管及安装在保护套管内的第一取像镜头31、第一调焦镜组33和置于第一取像镜头31与第一调焦镜组33之间的传像体构成,传像体由多根传像柱32构成。第二镜头4由保护套管及安装在保护套管内的第二取像镜头41、第二调焦镜组43和置于第二取像镜头41与第二调焦镜组43之间的传像体构成,传像体由多根传像柱42构成。第一镜头3与第二镜头4均为定焦镜头,通过调焦环6对第一调焦镜组33与第二调焦镜组43进行调焦。
第一镜头3与第二镜头4集成于插入管1内,在第一镜头3、第二镜头4的保护套管的外侧面与前端管11的内侧面之间填充照明光纤21,照明光纤21通过光纤接口22与外部光源连通,从而将照明光从插入端的端口投射出,用于照明术野。后端管12远离插入管1的插入端的一端的外侧形成有外螺纹121,即插入管1的一端上形成有外螺纹121。
参见图6及图7,连接组件7由固定连接环71与旋转连接环72构成,固定连接环71由内环711与套接在内环711外的外环712构成,旋转连接环72靠近固定连接环71的一端内侧凸起形成有环形凸起720,内环711靠近旋转连接环72的一端外侧凸起形成有环形凸起7110,将外环712套接在内环711外并固定连接后,环形凸起7110的端面与外环712的端面间形成有用于容纳环形凸起720的环形凹槽710,从而使旋转连接环72的一端扣装在固定连接环71的一端上,且相对固定连接环71可绕自身轴线旋转。外环712远离旋转连接环的一端外侧形成有与如图1中所示的内螺纹011相匹配的外螺纹7120,旋转连接环72远离固定连接环71的一端内侧形成有与如图5中所示的外螺纹121相匹配的内螺纹721,内螺纹721的旋向与外螺纹7120的旋向相反。
参见图8,光偏转组件5由第一棱镜51与第二棱镜52构成。第一棱镜51由第一前棱镜511与第一后棱镜512通过胶合得到,第一前棱镜511的胶合面5110与第一后棱镜512的胶合面5120均镀有增透膜。第二棱镜52由第二前棱镜521与第二后棱镜522通过胶合得到,第二前棱镜521的胶合面5210与第二后棱镜522的胶合面5220均镀有增透膜。
参见图3、图5及图8,沿光束在内窥镜中的行进方向,第一棱镜51位于第一镜头3的下游,第二棱镜52位于第二镜头4的下游。
第一镜头3接收并投射出第一光束021,第一光束021投射至第一棱镜51的入射面上,第一光束021进入第一前棱镜511后,经第一反射平面501反射后从胶合面5110投射出,并从胶合面5120进入第一后棱镜512,先后经第二反射平面502及第三反射平面503反射,并从第一后棱镜512的出射面投射出第一光束022。
第二镜头4将接收并投射出第二光束031,第二光束031投射至第二棱镜52的入射面上,第二光束031进入第二前棱镜521后,经第四反射平面504反射后从胶合面5210投射出,并从胶合面5220进入第二后棱镜522,先后经第五反射平面505及第六反射平面506反射,并从第二后棱镜522的出射面投射出第二光束032。
在第一棱镜51中,第二反射平面502与第一光束021的光轴相平行。沿光束在内窥镜中的行进方向,第一反射平面501与第二反射平面502间的间距逐渐减小,而第三反射平面503与第二反射平面502间的间距逐渐增大,且第一反射平面501与第二反射平面502间的夹角α与第三反射平面503与第二反射平面502间的夹角β相等。在第二棱镜52中,第五反射平面505与第二光束031的光轴相平行。沿光束在内窥镜中的行进方向,第四反射平面504与第五反射平面505间的间距逐渐减小,而第六反射平面506与第五反射平面505间的间距逐渐增大,且第四反射平面504与第五反射平面505间的夹角γ与第六反射平面506与第五反射平面505间的夹角δ相等。
第一反射平面501、第二反射平面502、第三反射平面503、第四反射平面504、第五反射平面505及第六反射平面506均为在棱镜表面镀反射膜构成,经过这些反射平面的反射,从而改变第一光束与第二光束的光轴之间的间距。
参见图9,使用上述内窥镜将现有二维内窥镜系统升级改造为三维内窥镜系统的改造方法由选择步骤S1、对接限定步骤S2、软件升级更换步骤S3及显示装置升级更换步骤S4构成。软件升级更换步骤S3及显示装置升级更换步骤S4构成本实施例的后端处理装置升级更换步骤。
选择步骤S1,选择与摄像接头01相匹配的内窥镜,包括(1)光机连接单元中连接组件的机械连接接口与摄像接头01的机械连接接口相匹配;(2)由于第一镜头及第二镜头投射出的第一光束及第二光束会与图像传感器的尺寸不匹配,需要选择合适的光偏转组件,以改变第一光束与第二光束的光轴之间的间距,从而满足图像传感器的尺寸要求;(3)通过连接组件对光偏转组件与图像传感器之间的间距进行限定,以满足二者之间的间距要求;具体如下:
参见图10,根据图像传感器012的尺寸要求,沿其宽度方向,将图像传感器012的靶面0120从中线01201划分成两部分,左半部分内设有第一感光区0121,右半部分内设有第二感光区0122,第一感光区0121与第二感光区0122为相互分离的两个区域,即二者间无重叠部分。
如图8所示,通过选择合适的光偏转组件,使第一棱镜51投射出的第一光束022将投射至第一感光区0121上,第二棱镜52投射出的第二光束032将投射至第二感光区0122上。因此,需要通过选择不同尺寸结构的第一棱镜51与第二棱镜52,如图11至图13所示,以下以第一棱镜51为例,对棱镜尺寸结构的选择进行说明。
当第一后棱镜512的纵向尺寸满足要求,如果不满足要求则根据实际需要进行调整,通过改变第三反射平面503与第二反射平面502之间的间距,就可以调整投射出的第一光束与入射的第一光束的光轴的相对位置,从而改变第一光束与第二光束的光轴之间的间距。也可以通过改变第一反射平面及第三反射平面与第二反射平面之间的夹角来改变第一光束与第二光束的光轴之间的间距,从而满足不同尺寸图像传感器的成像要求。
对接限定步骤S2,参见图14,通过连接组件7将内窥镜与摄像接头01对接,并对光偏转组件5与摄像接头中01的图像传感器012之间的间距进行限定;具体如下:
使用第一夹具将内窥镜固定,第二夹具将摄像接头01固定,并将光偏转组件5与图像传感器012之间的相对位置关系调整好,且第一夹具与第二夹具中的至少一者可沿插入管的轴向移动,将固定连接环71的外螺纹7120与摄像接头01上的内螺纹011螺纹固定连接,使旋转连接环72相对固定连接环71绕自身轴线旋转,并通过旋转连接环72上的内螺纹721与后端管12上外螺纹121的配合,逐渐地拉近内窥镜与摄像接头01之间的间距,直至后端管12的端面抵靠在固定连接环71远离摄像接头01的端面上,由于内螺纹721与外螺纹7120的旋向相反,从而实现内窥镜、连接组件7及摄像接头01之间的固定连接,完成内窥镜与摄像接头01对接的同时,对光偏转组件5与图像传感器012之间间距的限定。
软件升级更换步骤S3,将原二维图像处理软件升级更换成三维图像处理软件。
显示装置升级更换步骤S4,将显示装置升级更换成具有三维显示功能的三维显示装置。
参见图3至图15,采用改造之后的内窥镜系统进行工作过程包括成像步骤、分割步骤、合成步骤及显影步骤。
成像步骤,第一镜头3对一场景获取的第一图像,第二镜头4对同一场景在同时刻取像获得的第二图像,经过第一棱镜51及第二棱镜52的反射,第一图像的光束与第二图像的光束光轴之间的间距产生变化;图像传感器012的靶面0120上第一感光区0121接收第一图像,第二感光区0122同步接收第二图像,生成第三图像。
分割步骤,通过处理器02中的图像分割模块021将成像步骤中得到第三图像分割成存在视差的两幅二维图像;
合成步骤,在处理器02的图像合成模块022中,将分割步骤分割得到的相互存在视差的两幅二维图像进行处理合成一幅三维图像。
显影步骤,处理器02中的控制模块023根据图像合成模块022合成得到的三维图像所记载的图像信息控制三维显示装置03显现三维图像。
内窥镜第二实施例
作为对本发明内窥镜第二实施例的说明,以下仅对与内窥镜第一实施例的不同之处进行说明。
参见图16至图18,连接组件81由连接套环811与定位螺钉812构成。
连接套环811的左端内侧形成有内肩台8110,左端的侧壁上形成有定位螺钉812相匹配的螺孔8112;右端的外侧形成有与内螺纹011相匹配的外螺纹8111。后端管82的右端820与连接套环81的左端口相匹配,右端820的外侧壁上形成有与定位螺钉812的末端相匹配的环形定位槽8200。
在对接限定步骤中,通过外螺纹8111与内螺纹011的配合,将连接套环811与摄像接头01固定连接,将连接套环811的左端口套接在后端管82的右端820外,并使右端820的端面抵靠内肩台8110上;相对连接套环81,调整内窥镜绕旋转套环81的轴线旋转直至光偏转组件83与图像传感器012对准,并拧紧定位螺钉812,定位螺钉812的末端嵌入环形定位槽8200,从而对二者之间的相对位置进行定位。
内窥镜第三实施例
作为对本发明内窥镜第三实施例的说明,以下仅对与内窥镜第二实施例的不同之处进行说明。
参见图18,采用设于右端820上的一个定位孔替代环形定位槽8200,定位螺钉812为一弹簧柱塞,通过定位螺钉812与定位孔的配合,实现后端管82相对连接套环81的周向旋转调整到位。
内窥镜第四实施例
作为对本发明内窥镜第四实施例的说明,以下仅对与内窥镜第一实施例的不同之处进行说明。
第一棱镜及第二棱镜均为如图19所示的平行四边形棱镜85,入射光束041经第一反射面851与第二反射面852的反射后投射出出射光束042,对入射光束041的光轴与出射光束042的光轴间的间距进行调整,从而通过第一棱镜与第二棱镜对第一光束与第二光束的光轴间距进行调整。
参见图20,使用平行四边形棱镜85为偏转棱镜,在该方案中,在沿垂直于光束041光轴的方向上,光路中心的偏转距离H要求大于入射光束041的直径D。
内窥镜第五实施例
作为对本发明内窥镜第五实施例的说明,以下仅对与内窥镜第一实施例的不同之处进行说明。
参加图21,插入管86内集成有第一镜头863、第二镜头864、器械通道865、进水通道866、出水通道867及照明光纤862。采用光纤替代传像柱作为本实施例的传像体。
内窥镜第六实施例
作为对本发明内窥镜第六实施例的说明,以下仅对与内窥镜第二实施例的不同之处进行说明。
参见图22,光偏转组件95安装在连接套环91的内腔内,连接套环91的左端内侧形成有内螺纹911,后端管92的右端外侧形成有与内螺纹911相匹配的外螺纹920。当连接套环91的两端通过螺纹与后端管92及摄像接头的固定连接,在三者之间的螺纹拧紧到位后,实现第一镜头、第二镜头、光偏转组件95及图像传感器的对接,及对光偏转组件95与图像传感器之间的间距进行限定。连接组件与光偏转组件一起构成本实施例的光机连接装置,也构成本实施例的光机连接单元。
内窥镜第七实施例
作为对本发明内窥镜第七实施例的说明,以下仅对与内窥镜第六实施例的不同之处进行说明。
采用设于连接套环上的定位螺钉与设于后端管上的定位孔的配合,实现连接套环与后端管的固定连接的同时,实现镜头与棱镜的对准。第一镜头与第二镜头并不局限于上述各实施例中的定焦镜头,也可以为变焦镜头;连接组件与后端管之间固定连接结构并不局限于上述各实施例,还有多种显而易见的变化;棱镜的结构及数量并不局限于上述各实施例,还有多种显而易见的变化。
内窥镜用光机连接装置实施例
由于在内窥镜第六实施例、第七实施例及它们与其他实施例的结合中,已对光机连接装置的结构进行了说明,在此不再赘述。
二维内窥镜系统的改造方法实施例
由于在内窥镜实施例中已对二维内窥镜系统的改造方法进行了说明,在此不再赘述。
工业实用性
本发明内窥镜适用于将现有二维内窥镜系统升级改造为三维内窥镜系统的场合,通过本发明改造方法利用本发明的产品对现有二维内窥镜系统进行升级改造,可以在降低升级改造的费用的同时,减少对现有二维内窥镜系统中设备的闲置。
序列表自由内容

Claims (10)

  1. 内窥镜,包括插入管及集成在所述插入管内的第一镜头与第二镜头,其特征在于:
    光机连接单元,所述光机连接单元包括光偏转组件与连接组件;
    所述光偏转组件包括第一棱镜与第二棱镜;
    沿光束在所述内窥镜中的行进方向,所述第一棱镜位于所述第一镜头的下游,所述第二棱镜位于所述第二镜头的下游;
    所述第一棱镜用于对所述第一镜头接收并投射出的第一光束进行反射,所述第二棱镜用于对所述第二镜头接收并投射出的第二光束进行反射,改变所述第一光束与所述第二光束的光轴间的间距,以匹配二维内窥镜系统的摄像接头中的图像传感器;
    所述连接组件用于将所述内窥镜与所述摄像接头对接,并用于对所述光偏转组件与所述图像传感器之间的间距进行限定。
  2. 根据权利要求1所述内窥镜,其特征在于:
    所述第一棱镜与所述第二棱镜均为平行四边形棱镜。
  3. 根据权利要求1所述内窥镜,其特征在于:
    所述第一棱镜包括第一反射平面、第二反射平面及第三反射平面,所述第二反射平面与所述第一光束的光轴相平行,所述第一反射平面与所述第三反射平面位于所述第二反射平面的同侧;
    沿光束在所述内窥镜中的行进方向,所述第三反射平面位于所述第一反射平面的下游,所述第一反射平面与所述第二反射平面间的间距逐渐减小,所述第三反射平面与所述第二反射平面间的间距逐渐增大,且所述第一反射平面与所述第二反射平面间的夹角等于所述第三反射平面与所述第二反射平面间的夹角;
    所述第二棱镜包括第四反射平面、第五反射平面及第六反射平面,所述第五反射平面与所述第二光束的光轴相平行,所述第四反射平面与所述第六反射平面位于所述第五反射平面的同侧;
    沿光束在所述内窥镜中的行进方向,所述第六反射平面位于所述第四反射平面的下游,所述第四反射平面与所述第五反射平面间的间距逐渐减小,所述第六反射平面与所述第五反射平面间的间距逐渐增大,且所述第四反射平面与所述第五反射平面间的夹角等于所述第六反射平面与所述第五反射平面间的夹角。
  4. 根据权利要求3所述内窥镜,其特征在于:
    所述第一棱镜由第一前棱镜与第一后棱镜组成,所述第一反射平面位于所述第一前棱镜上,所述第二反射平面与所述第三反射平面位于所述第一后棱镜上,所述第一前棱镜与所述第一后棱镜的对接面间通过胶合固定连接,所述第一前棱镜与所述第一后棱镜的对接面上均镀有增透膜;
    所述第二棱镜由第二前棱镜与第二后棱镜组成,所述第四反射平面位于所述第二前棱镜上,所述第五反射平面与所述第六反射平面位于所述第二后棱镜上,所述第二前棱镜与所述第二后棱镜的对接面间通过胶合固定连接,所述第二前棱镜与所述第二后棱镜的对接面上均镀有增透膜。
  5. 根据权利要求1至4任一项所述内窥镜,其特征在于:
    所述连接组件包括连接套环及定位螺钉;
    所述连接套环的一端的内侧形成有内肩台,另一端与所述摄像接头可拆卸地固定连接;
    所述连接套环的一端的侧壁上设有与所述定位螺钉相匹配的螺孔;
    所述连接套环的一端套接在所述插入管的一端上,所述插入管相对所述连接套环可绕所述连接套环的轴线旋转;
    所述内窥镜与所述摄像接头对接时,所述插入管的一端的端面抵靠在所述内肩台上。
  6. 根据权利要求1至4任一项所述内窥镜,其特征在于:
    所述连接组件包括固定连接环与旋转连接环;
    所述旋转连接环的一端扣装在所述固定连接环的一端上,且相对所述固定连接环可绕自身轴线旋转;
    所述固定连接环的内径小于所述旋转连接环的内径;
    所述固定连接环的另一端与所述摄像接头螺纹固定连接;
    所述插入管的一端上形成外螺纹,所述旋转连接环的另一端的内侧壁上形成与所述外螺纹相匹配的内螺纹;
    所述内螺纹的旋向与形成于所述固定连接环的另一端上的螺纹的旋向相反;
    所述内窥镜与所述摄像接头对接时,所述插入管的一端的端面抵靠在所述固定连接环的一端的端面上。
  7. 内窥镜用光机连接装置,所述光机连接装置用于将所述内窥镜与二维内窥镜系统的摄像接头连接,所述内窥镜包括插入管及集成在所述插入管内的第一镜头与第二镜头,其特征在于:
    所述光机连接装置包括光偏转组件与连接组件;
    所述光偏转组件包括第一棱镜与第二棱镜;
    沿光束在所述内窥镜中的行进方向,所述第一棱镜位于所述第一镜头的下游,所述第二棱镜位于所述第二镜头的下游;
    所述第一棱镜用于对所述第一镜头接收并投射出的第一光束进行反射,所述第二棱镜用于对所述第二镜头接收并投射出的第二光束进行反射,改变所述第一光束与所述第二光束的光轴间的间距,以匹配所述摄像接头中的图像传感器;
    所述连接组件用于将所述内窥镜与所述摄像接头对接,并用于对所述光偏转组件与所述图像传感器之间的间距进行限定。
  8. 根据权利要求7所述内窥镜用光机连接装置,其特征在于:
    所述连接组件包括连接套环;
    所述连接套环的一端与所述插入管的一端螺纹固定连接,另一端与所述摄像接头螺纹固定连接;
    所述第一棱镜与所述第二棱镜安装在所述连接套环内。
  9. 根据权利要求7或8所述内窥镜用光机连接装置,其特征在于:
    所述第一棱镜包括第一反射平面、第二反射平面及第三反射平面,所述第二反射平面与所述第一光束的光轴相平行,所述第一反射平面与所述第三反射平面位于所述第二反射平面的同侧;
    沿光束在所述内窥镜中的行进方向,所述第三反射平面位于所述第一反射平面的下游,所述第一反射平面与所述第二反射平面间的间距逐渐减小,所述第三反射平面与所述第二反射平面间的间距逐渐增大,且所述第一反射平面与所述第二反射平面间的夹角等于所述第三反射平面与所述第二反射平面间的夹角;
    所述第二棱镜包括第四反射平面、第五反射平面及第六反射平面,所述第五反射平面与所述第二光束的光轴相平行,所述第四反射平面与所述第六反射平面位于所述第五反射平面的同侧;
    沿光束在所述内窥镜中的行进方向,所述第六反射平面位于所述第四反射平面的下游,所述第四反射平面与所述第五反射平面间的间距逐渐减小,所述第六反射平面与所述第五反射平面间的间距逐渐增大,且所述第四反射平面与所述第五反射平面间的夹角等于所述第六反射平面与所述第五反射平面间的夹角。
  10. 二维内窥镜系统的改造方法,所述二维内窥镜系统包括二维内窥镜、摄像接头及后端处理装置;
    其特征在于包括以下步骤:
    选择步骤,选择与所述摄像接头相匹配的三维内窥镜以替换所述二维内窥镜,所述三维内窥镜为权利要求1至6任一项所述内窥镜;
    对接限定步骤,通过所述连接组件将所述三维内窥镜与所述摄像接头对接,并对所述光偏转组件与所述摄像接头中的图像传感器之间的间距进行限定;
    后端处理装置升级更换步骤,将所述后端处理装置升级更换为三维内窥镜系统的后端处理装置
PCT/CN2016/078949 2016-01-19 2016-04-11 内窥镜、光机连接装置及改造二维内窥镜系统的方法 WO2017124651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016006249.4T DE112016006249T5 (de) 2016-01-19 2016-04-11 Endoskop, Verbindungseinrichtung für ein optisches Gerät und Verfahren zum Modifizieren eines zweidimensionalen Endoskopsystems
US16/070,983 US20190021578A1 (en) 2016-01-19 2016-04-11 Endoscope, optical machine connecting device and method for modifying two-dimensional endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610033568.2A CN105511071B (zh) 2016-01-19 2016-01-19 内窥镜、光机连接装置及改造二维内窥镜系统的方法
CN201610033568.2 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017124651A1 true WO2017124651A1 (zh) 2017-07-27

Family

ID=55719166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078949 WO2017124651A1 (zh) 2016-01-19 2016-04-11 内窥镜、光机连接装置及改造二维内窥镜系统的方法

Country Status (4)

Country Link
US (1) US20190021578A1 (zh)
CN (1) CN105511071B (zh)
DE (1) DE112016006249T5 (zh)
WO (1) WO2017124651A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016106210U1 (de) * 2016-11-07 2016-12-06 Alfons Hofstetter Punktionsvorrichtung, Vorrichtung zur Beleuchtung von Gewebe und medizinisches Set
CN108803001A (zh) * 2018-06-14 2018-11-13 珠海康弘发展有限公司 一种兼容二维内窥镜的三维内窥镜系统以及内窥镜成像系统
WO2021131921A1 (ja) * 2019-12-27 2021-07-01 国立大学法人浜松医科大学 硬性鏡装置
CN112190347A (zh) * 2020-11-09 2021-01-08 珠海维尔康生物科技有限公司 一种显微内窥镜及显微内窥镜系统
CN113288012A (zh) * 2021-04-30 2021-08-24 上海澳华内镜股份有限公司 一种内窥镜摄像装置
TWI803065B (zh) * 2021-11-23 2023-05-21 醫電鼎眾股份有限公司 方便組裝的內視鏡鏡頭組合
CN114296230A (zh) * 2021-12-03 2022-04-08 青岛奥美克医疗科技有限公司 双镜头校准调焦方法、三维图像适配器及内窥镜系统
CN116671850A (zh) * 2023-06-30 2023-09-01 北理工郑州智能科技研究院 一种内窥镜成像组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636816Y (zh) * 2003-09-02 2004-09-01 申屠裕华 三维立体腹腔镜
CN103735243A (zh) * 2014-01-22 2014-04-23 江苏科沁光电科技有限公司 一种双路3d腹腔镜及双路3d腹腔镜系统
CN104000548A (zh) * 2013-02-22 2014-08-27 深圳先进技术研究院 用于三维尺寸测量的双目光电式内窥镜及内窥系统
CN104107026A (zh) * 2014-03-07 2014-10-22 董国庆 一种具有双光路双目镜头的硬管式内窥镜
US20140333721A1 (en) * 2013-05-07 2014-11-13 Integrated Medical Systems International, Inc. Stereo Comparator for Assembly and Inspection of Stereo Endoscopes
CN104207750A (zh) * 2013-05-28 2014-12-17 艾克松有限责任公司 视频内窥镜装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071977A2 (en) * 2004-01-14 2005-08-04 Precision Optics Corporation Convergence optics for stereoscopic imaging systems
CN201984206U (zh) * 2011-04-01 2011-09-21 长春理工大学 一种医用硬性内窥镜转像透镜
JP6010895B2 (ja) * 2011-11-14 2016-10-19 ソニー株式会社 撮像装置
JP2014110910A (ja) * 2012-10-30 2014-06-19 Mitaka Koki Co Ltd 立体内視鏡装置
CN104822306B (zh) * 2012-12-28 2017-03-08 奥林巴斯株式会社 三维内窥镜
CN103654703B (zh) * 2013-11-22 2015-07-08 杭州大力神医疗器械有限公司 电子数字内窥镜
CN104935915B (zh) 2015-07-17 2018-05-11 珠海康弘发展有限公司 成像装置、三维成像系统及三维成像方法
CN205301700U (zh) * 2016-01-19 2016-06-08 珠海康弘发展有限公司 内窥镜及其用光机连接装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636816Y (zh) * 2003-09-02 2004-09-01 申屠裕华 三维立体腹腔镜
CN104000548A (zh) * 2013-02-22 2014-08-27 深圳先进技术研究院 用于三维尺寸测量的双目光电式内窥镜及内窥系统
US20140333721A1 (en) * 2013-05-07 2014-11-13 Integrated Medical Systems International, Inc. Stereo Comparator for Assembly and Inspection of Stereo Endoscopes
CN104207750A (zh) * 2013-05-28 2014-12-17 艾克松有限责任公司 视频内窥镜装置
CN103735243A (zh) * 2014-01-22 2014-04-23 江苏科沁光电科技有限公司 一种双路3d腹腔镜及双路3d腹腔镜系统
CN104107026A (zh) * 2014-03-07 2014-10-22 董国庆 一种具有双光路双目镜头的硬管式内窥镜

Also Published As

Publication number Publication date
CN105511071A (zh) 2016-04-20
DE112016006249T5 (de) 2018-09-27
US20190021578A1 (en) 2019-01-24
CN105511071B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2017124651A1 (zh) 内窥镜、光机连接装置及改造二维内窥镜系统的方法
US7621868B2 (en) Convergence optics for stereoscopic imaging systems
US9979949B2 (en) Method and apparatus for obtaining stereoscopic 3D visualization using commercially available 2D endoscopes
EP0935774B1 (en) Optical coupler
US4873572A (en) Electronic endoscope apparatus
US10499792B2 (en) Phone adapter for flexible laryngoscope and rigid endoscopes
EP0672379A1 (en) Dental imaging system
JP2003502925A (ja) 一台の携帯カメラによる3d情景の撮影法
WO2018094928A1 (zh) 三维成像装置、三维成像系统及三维成像方法
US4440157A (en) Hard endoscope
JPH0856891A (ja) 立体視硬性内視鏡
WO2021187775A1 (ko) 이동 통신 단말기
US11796906B2 (en) Lens apparatus and image pickup apparatus
WO2018093102A1 (ko) 단일 카메라를 이용한 양안 촬영 장치
WO2010064816A2 (ko) 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템
WO2017111558A1 (ko) 단안식 입체 카메라
JP2003307672A (ja) レンズ装置
CN110840385A (zh) 基于单探测器的双目3d内窥镜三维图像处理方法及成像系统
CN205301700U (zh) 内窥镜及其用光机连接装置
JP3257641B2 (ja) 立体視内視鏡装置
WO2023103524A1 (zh) 一种可调焦的3d光学内窥镜系统
WO2019146904A1 (ko) 수술 지원 영상을 제공하는 헤드 마운트 시스템
JP2001221961A (ja) 双眼光学アダプタ
WO2019017511A1 (ko) 이미지 센서가 내장된 수술용 내시경
WO2019088716A1 (ko) 단안식 입체 카메라

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016006249

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885915

Country of ref document: EP

Kind code of ref document: A1