WO2010064816A2 - 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템 - Google Patents

3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템 Download PDF

Info

Publication number
WO2010064816A2
WO2010064816A2 PCT/KR2009/007074 KR2009007074W WO2010064816A2 WO 2010064816 A2 WO2010064816 A2 WO 2010064816A2 KR 2009007074 W KR2009007074 W KR 2009007074W WO 2010064816 A2 WO2010064816 A2 WO 2010064816A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
projection
projector
unit
Prior art date
Application number
PCT/KR2009/007074
Other languages
English (en)
French (fr)
Other versions
WO2010064816A3 (ko
Inventor
지남석
Original Assignee
포스앤핏 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스앤핏 주식회사 filed Critical 포스앤핏 주식회사
Publication of WO2010064816A2 publication Critical patent/WO2010064816A2/ko
Publication of WO2010064816A3 publication Critical patent/WO2010064816A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention provides a lens device for a projector that can be irradiated with a predetermined line pattern to the subject to obtain three-dimensional data about the subject, an image capture lens device for receiving an image of the subject irradiated with the line pattern and these It relates to a three-dimensional scanning system provided together.
  • a projector for projecting a predetermined pattern on a subject is primarily required.
  • Such a conventional pattern projection projector is based on a xenon lamp, a halogen lamp, or a general visible light LED. It was equipped with a focus lens, a zoom lens, and an iris lens.
  • the lens occupy a large volume, but there is a problem of space limitation, and a light source such as a xenon lamp or a halogen lamp has high power consumption, high heat generation, and lifetime. There was a problem with this short.
  • This method of projecting the grid pattern has the advantage that the structure is simple, but there is a problem that it is difficult to obtain an image with high precision due to the large size of the lamp as a light source and the sharpness of the projected shadow.
  • an object of the present invention is to significantly reduce the space occupied, to reduce the production cost and to reduce the weight compared to the conventional pattern projection projector, and to reduce the weight of the modular lens type projector lens device, image capture lens device and these To provide a three-dimensional scanning system.
  • an object of the present invention is to provide a lens device for a projector, image capture for minimizing the occurrence of noise when projecting the line pattern and to minimize the distortion of the line pattern ultimately to obtain high-precision three-dimensional data It is to provide a lens device and a three-dimensional scanning system having them.
  • the present invention provides a lens device for a projector for generating three-dimensional data, the light source; A condensing lens unit for condensing light emitted from the light source and projecting the light uniformly and linearly within a predetermined range; A micro pattern for passing a light projected from the condenser lens unit to form a predetermined line pattern; And a projection lens unit for projecting the line pattern toward a projection range of a predetermined distance by receiving and focusing the line pattern from the micro pattern.
  • the projection lens unit may include first to sixth lenses satisfying the requirements of Table 1 below.
  • the projection lens unit may include a barrel for supporting the third lens and the fourth lens, respectively, at both ends, wherein the barrel may have a V-shaped multi-groove formed on an inner circumferential surface to block light reflection.
  • the condensing lens unit may include first to third lenses satisfying the requirements of Table 2 below.
  • the light source is an infrared light source may be a near infrared ray having a wavelength of 720 to 950 [ ⁇ m].
  • the projector lens apparatus for generating the 3D data may further include an infrared filter interposed between the micro pattern and the projection lens unit.
  • the projector lens apparatus may further include a condenser lens passage configured to accommodate and support the condenser lens unit therein; A pattern holder accommodating and supporting the micro pattern inside and detachably coupled to the front of the condenser lens barrel; And a projection lens barrel configured to receive and support the projection lens unit inside, and to be detachably coupled to the condensing lens barrel in a state where the pattern holder is interposed through one end portion.
  • the present invention provides a lens device for image capture for generating three-dimensional data, the light receiving lens unit for adjusting the focus by receiving light reflected from the subject, and the focus by the light receiving lens unit
  • the light receiving lens unit includes a barrel for supporting the third lens and the fourth lens, respectively, at both ends, wherein the barrel may be formed in the V-shaped multi-groove on the inner circumferential surface to block the light reflection.
  • the image capturing lens device for generating 3D data may further include an infrared filter interposed between the light receiving lens unit and the CCD array.
  • the present invention is a three-dimensional scanning system for generating three-dimensional data, a light condensing lens for condensing the light emitted from the light source and uniformly and uniformly projected within a predetermined range And a micro pattern for passing a light projected from the condenser lens unit to form a predetermined line pattern, and receiving and focusing the line pattern from the micro pattern to project the line pattern toward a projection range of a predetermined distance.
  • a lens device for a projector having a projection lens unit; And a light receiving lens unit for receiving the light reflected from the subject to adjust the focus, and a lens device for image capture including a CCD array for receiving the light whose focus is adjusted by the light receiving lens unit. Provide a scanning system.
  • the projection lens unit and the light receiving lens unit may have the same configuration.
  • the focal length between the micro-pattern and the projection lens unit may be the same as the focal length between the light receiving lens unit and the CCD array.
  • the three-dimensional scanning system may further include an infrared filter interposed between the micro pattern and the projection lens unit.
  • the 3D scanning system may further include an infrared filter interposed between the light receiving lens unit and the CCD array.
  • the light source may be an infrared light source.
  • micro-pattern and projection lens unit can provide an optimized configuration for the projection of the line pattern, accordingly
  • the lens apparatus for a projector according to the present invention by having a lens unit that satisfies the requirements of Tables 1 to 3 can minimize the distortion of the line pattern, thereby obtaining high-precision three-dimensional data can do.
  • the pattern holder for supporting the micro pattern is provided to be detachable to the condenser lens barrel for supporting the condenser lens part so that the micro pattern can be replaced, thereby projecting various patterns using the same lens and the barrel structure. Since data can be obtained, it is not necessary to provide a lens device for each micro pattern unlike in the case of the prior art.
  • the wavelength band may be provided differently so that the lens device for the projector or the lens device for image capturing is changed even if the wavelength band of the light source is changed. Not only can it be used as it is, and by providing the infrared filter, it is possible to minimize the occurrence of noise in the image by blocking the image of the unnecessary wavelength band.
  • the three-dimensional scanning system including the lens device for the projector and the lens device for image capture as described above, it is possible to have a lens structure in which the focus is equally adjusted between the projector lens device and the image capture lens device. Therefore, high-definition line patterns can be projected and captured, enabling accurate three-dimensional images.
  • the three-dimensional scanning system according to the present invention, it is very convenient to adjust the area of the line pattern projected and photographed on the subject by using the same lens device for the projector and the lens device for image capture, and in the prior art Otherwise, the time and cost required for zoom control can be saved.
  • FIG. 1 and 2 are cross-sectional view of a lens device for a projector according to an embodiment of the present invention
  • FIG. 3 and 4 are cross-sectional views of the lens device for image capture according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a use state of a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 6 and 7 are photographs showing images obtained by projecting and receiving a line pattern onto a subject using the three-dimensional scanning system of FIG. 5, respectively.
  • FIG. 8 is a photograph showing an image obtained by projecting and receiving a line pattern onto a plane through a three-dimensional scanning system according to the prior art.
  • the lens device 100 for a projector includes a light source 110, a condenser lens unit 120, a micro pattern 130, and an infrared filter 140. And a projection lens unit 150.
  • the light source 110 generates light as a point light source and irradiates it radially. At this time, when there is no infrared filter 140 to be described later it can be used to generate infrared light as the light source 110.
  • the condenser lens unit 120 condenses the light irradiated radially from the light source 110 and functions to uniformly and linearly project it toward the infrared filter 140.
  • the condensing lens unit 120 includes three of the first lens 121 to the third lens 123 as shown.
  • the specifications of the first lens 121 to the third lens 123 based on the light source 110 are shown in Table 4 below.
  • R11, R13 and R15 are the radius of curvature of the incident surface of each lens
  • R12, R14, R16 are the radius of curvature of the exit surface of each lens
  • D11, D13, and D15 are thicknesses on the optical axis of each lens
  • D12 is an interval between the first lens 121 and the second lens 122
  • D14 is the second lens 122 and the third lens 123. Gap between.
  • first to third lenses 121, 122, and 123 are accommodated and supported in order inside the condenser lens barrel 124.
  • the micro pattern 130 is disposed in front of the right side of the condenser lens unit 120.
  • the micro pattern 130 is received and supported inside the pattern holder 131, and the edge portion of the pattern holder 131 is screwed to the condenser lens barrel 124.
  • the pattern formed on the micro-pattern 130 is a line pattern and has a form in which a plurality of slits are spaced at regular intervals. 5 illustrates the shape of the line pattern 1 projected through the micro pattern 130.
  • the micro-pattern 130 has a structure that can be easily coupled and separated from the condensing lens unit 120 by the pattern holder 131 as shown.
  • the user may appropriately select the line pattern 1 according to the required condition such as the shape of the subject and replace the line pattern 1 with the corresponding micro pattern 130 to be combined with the condensing lens unit 120.
  • the infrared filter 140 is interposed between the micro pattern 130 and the projection lens unit 150.
  • Light projected from the light source 110 is filtered by the infrared filter 140 to allow only infrared light of a specific wavelength to pass through.
  • the wavelength of the infrared ray can be selected as a near infrared ray of 720 to 950 [ ⁇ m] without any hazard in consideration of the case where it is projected onto the human body.
  • the infrared ray is projected from the lens device 100 for the projector, unlike the case of using a conventional visible light or a laser, it is advantageous in that it does not need to work in a dark room to capture the projected light.
  • direct sunlight is irradiated to the eye, there is an advantage that it does not feel rejection.
  • the light source 110 to project only the infrared of a specific wavelength so that light of a wavelength other than the infrared of the specific wavelength is not projected on the subject. can do.
  • the projection lens unit 150 receives the line pattern formed through the micro-pattern 130 and passes through the infrared filter 140, adjusts its focus, and projects the line pattern formed into the projection range region spaced a predetermined distance apart. .
  • the projection lens unit 150 consists of six of the first lens 151 to the sixth lens 156.
  • the optical axis of the incident surface of the first lens 151 is in contact with the infrared filter 140 on the front left side, and the specifications of each lens based on this are shown in Table 5 below.
  • R21, R23, R25, R27, R29, and R211 are the radius of curvature of the incident surface of each lens
  • R22, R24, R26, R28, R210, and R212 are the radius of curvature of the exit surface of each lens.
  • D21, D23, D25, D27, D29, and D211 are the thicknesses on the optical axis of each lens.
  • D22 is an interval between the first lens 151 and the second lens 152
  • D24 is an interval between the second lens 152 and the third lens 153
  • D26 is a third lens 153
  • D28 is the distance between the fourth lens 154 and the fifth lens 155
  • D210 is the distance between the fifth lens 155 and the sixth lens 156. to be.
  • These first to sixth lenses 151 to 156 are sequentially received and supported inside the projection lens barrel 157.
  • the projection lens barrel 157 is coupled to the condensing lens barrel 124 through the extension barrel 158.
  • the projection lens barrel 157 further includes an inner barrel 159.
  • the inner barrel 159 receives a path between the third lens 153 and the fourth lens 154 of the projection lens unit 150, the inner peripheral surface is formed with a V-shaped multi-groove extending in the axial direction It blocks light reflection.
  • the line pattern passing through the projection lens unit 150 is projected onto the subject in the form as shown in FIG. 5.
  • FIGS. 6 and 7 are photographs showing a state in which a line pattern is projected onto a human body 2.
  • FIG. 6 shows a case of projecting a line pattern in the form of visible light
  • FIG. 7 shows a case of projecting a line pattern in the form of infrared light
  • FIGS. 6 and 7 show an image in which the projected line pattern is reflected from the subject. The image received through the capture lens unit 200 is shown.
  • the line pattern 1 projected onto the subject is received by the lens device 200 for image capturing.
  • the lens capturing apparatus 200 includes a light receiving lens unit 210, an infrared filter 220, and a CCD array 230 as illustrated in FIGS. 3 and 4.
  • the light receiving lens unit 210 receives the light reflected from the subject and adjusts the focus.
  • the light receiving lens unit 210 includes six of the first to second lenses 211 to 216.
  • the lens standard of the light receiving lens unit 210 as described above has substantially the same structure as the lens standard of the projection lens unit 150 of the lens apparatus 100 for the projector in the reverse order.
  • the first to sixth lenses 211 to 216 constituting the light receiving lens unit 210 are received and supported in order inside the light receiving lens barrel 217.
  • the light receiving lens barrel 217 is coupled to the side provided with the CCD array 230 via the extension barrel 218.
  • the light receiving lens barrel 217 further includes an inner barrel 219 as in the case of the projection lens unit 150 described above.
  • the inner barrel 219 accommodates a path between the third lens 213 and the fourth lens 214 of the light receiving lens unit 210, and an inner circumferential surface thereof is formed with a V-shaped multi-groove extending in the axial direction. It blocks light reflection.
  • the light passing through the light receiving lens unit 210 that is, the line pattern, is focused by the light receiving lens unit 210 and passes through the infrared filter 220.
  • the line pattern is filtered by the infrared filter 220 and passed in the form of infrared rays of a specific wavelength.
  • the wavelength of the infrared rays at this time can be selected as the near-infrared ray of 720 to 950 [ ⁇ m] which is not harmful considering the case where it is projected on the human body.
  • the infrared filter 220 may not be provided.
  • the line pattern passing through the infrared filter 220 is received by the CCD array 230.
  • the 3D scanning system includes the projector lens device 100 and the image capturing lens device 200 described above.
  • the projection lens unit 150 of the projector lens unit 100 and the light receiving lens unit 210 of the image capturing lens unit 200 have the same configuration.
  • the focal length between the micropattern 130 and the projection lens unit 150 in the projector lens unit 100 is the light receiving lens unit 210 and the CCD in the lens unit 200 for image capture (200).
  • the same focal length between the array 230 is provided.
  • the projector lens device 100, the image capture lens device 200, and the three-dimensional scanning system having the same as described above are merely exemplary embodiments to help understanding of the present invention. It should not be understood to be limited to these.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

본 발명은 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템에 관한 것으로서, 대표적으로 상기 프로젝터용 렌즈 장치의 경우 광원과, 상기 광원으로부터 조사되는 빛을 집광한 후 이를 소정 범위 내에서 균일하게 직선적으로 투사하는 집광렌즈부와, 상기 집광렌즈부로부터 투사된 빛을 통과시켜 소정의 라인패턴을 형성하는 마이크로 패턴, 및 상기 마이크로 패턴으로부터 상기 라인패턴을 수광 및 초점을 조절하여 소정 거리의 투사범위를 향해 상기 라인패턴을 투사하는 투사렌즈부를 포함하는 것을 특징으로 한다. 이에 의해, 종래의 패턴 투사용 프로젝터에 비해 차지하는 공간을 크게 축소시키고 무게를 감소시켜 소형화된 모듈 형태의 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템을 제공할 수 있다.

Description

3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템
본 발명은 피사체에 관한 3차원 데이터를 얻기 위해 상기 피사체에 소정의 라인패턴을 조사할 수 있도록 하는 프로젝터용 렌즈 장치, 상기 라인패턴이 조사된 피사체의 이미지를 수신하기 위한 이미지 캡쳐용 렌즈 장치 및 이들을 함께 구비하는 3차원 스캐닝 시스템에 관한 것이다.
종래, 3차원 영상의 획득을 위해서는 1차적으로 피사체에 소정의 패턴을 투사하기 위한 프로젝터가 필요한 바, 이러한 종래의 패턴 투사용 프로젝터는 제논램프, 할로겐 램프 또는 일반 가시광선 LED를 광원으로 한 것이 일반적이었으며 여기에는 포커스 조절용 렌즈, 줌 조절용 렌즈, 아이리스 조절용 렌즈가 함께 구비되었다.
그러나, 이러한 종래의 패턴 투사용 프로젝터에 의하면 상기 렌즈들이 많은 부피를 차지함으로 인해 공간상의 제약이 따른다는 문제가 있을 뿐 아니라 제논램프나 할로겐 램프 등의 광원은 전력소모가 매우 높고 고열이 발생하며 수명이 짧다는 문제가 있었다.
또한, 종래의 다른 패턴 투사용 프로젝터로서 레이저빔을 이용한 기술이 있었으나 빛의 직진도가 높고 선명하다는 장점이 있는 반면, 여러 개의 광원을 사용하여 수 개에서 수십 개의 라인패턴을 동시에 균일하게 투사하는 데 기술적인 어려움이 있었으며, 종래의 일반 렌즈들은 또한 도 8에 도시된 바와 같이, 투사되는 다수의 라인패턴이 왜곡되는 현상으로 인해 피사체로부터 수집되는 데이터의 정확도가 떨어진다는 문제가 있었다.
한편, 종래의 다른 패턴 투사용 프로젝터로서 광원의 전방에 격자무늬의 망을 위치시켜, 격자무늬의 그림자가 패턴으로서 투영되는 방법이 있었다.
이와 같이 격자무늬를 투영시키는 방법은 구조가 간단하다는 장점은 있으나 광원으로서의 램프의 크기가 크고 투영되는 그림자의 선명도가 떨어져서 정밀도가 높은 이미지를 얻기가 어렵다는 문제가 있었다.
따라서, 본 발명의 목적은 종래의 패턴 투사용 프로젝터에 비해 차지하는 공간을 크게 축소시키고 제작비용을 감소시키며 또한 무게를 감소시켜 소형화된 모듈 형태의 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템을 제공하는 데 있다.
또한, 본 발명의 목적은 라인패턴의 투사 시 노이즈의 발생을 최소화하고 상기 라인패턴의 왜곡현상을 최소화함으로써 궁극적으로는 정밀도가 높은 3차원 데이터를 획득할 수 있도록 하는 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템을 제공하는 데 있다.
상기 목적을 달성하기 위해 본 발명은 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치에 있어서, 광원과; 상기 광원으로부터 조사되는 빛을 집광한 후 이를 소정 범위 내에서 균일하게 직선적으로 투사하는 집광렌즈부와; 상기 집광렌즈부로부터 투사된 빛을 통과시켜 소정의 라인패턴을 형성하는 마이크로 패턴; 및 상기 마이크로 패턴으로부터 상기 라인패턴을 수광 및 초점을 조절하여 소정 거리의 투사범위를 향해 상기 라인패턴을 투사하는 투사렌즈부를 포함하는 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치를 제공한다.
여기서, 상기 투사렌즈부는 아래의 표 1의 요건을 만족하는 제1렌즈 내지 제6렌즈를 구비할 수 있다.
표 1
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈 R1= 40 D1= 0.5
R2= 5.3 D2= 0
제2렌즈 R3= 5.3 D3= 3.2
R4= -13.9 D4= 0
제3렌즈 R5= 8.3 D5= 1.5
R6= 21.7 D6= 8.566126
제4렌즈 R7= 15.498 D7= 1.35
R8= 115 D8= 1.768410
제5렌즈 R9= -4.86 D9= 0.5
R10= ∞ D10= 6.148415
제6렌즈 R11= 166 D11= 3.0
R12= -40 -
이때, 상기 투사렌즈부는 상기 제3렌즈와 제4렌즈를 각각 양단부로 지지하는 경통을 포함하되, 상기 경통은 광반사 차단을 위해 내주면에 V형 다중홈이 형성되도록 할 수도 있다.
그리고, 상기 집광렌즈부는 아래의 표 2의 요건을 만족하는 제1렌즈 내지 제3렌즈를 구비하도록 할 수도 있다.
표 2
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈 R1= 54.887 D1= 2.5
R2= ∞ D2= 0.977
제2렌즈 R3= 12.283 D3= 2.36
R4= 6.921 D4= 0
제3렌즈 R5= ∞ D5= 2.53
R6= 15.492 -
한편, 상기 광원은 적외선 광원으로서 파장이 720 내지 950 [㎛]인 근적외선일 수 있다.
또는, 상기 3차원 데이터 생성을 위한 상기 프로젝터용 렌즈 장치는 상기 마이크로 패턴과 상기 투사렌즈부 사이에 개재되는 적외선 필터를 더 포함할 수도 있다.
또한, 상기 프로젝터용 렌즈 장치는 내측에 상기 집광렌즈부를 수용 및 지지하는 집광렌즈경통과; 내측에 상기 마이크로 패턴을 수용 및 지지하고 상기 집광렌즈경통의 전방에 탈착 가능하도록 결합하는 패턴홀더; 및 내측에 상기 투사렌즈부를 수용 및 지지하고, 일측 단부를 통해 상기 패턴홀더가 개재된 상태에서 상기 집광렌즈경통과 탈착 가능하도록 결합하는 투사렌즈경통를 더 포함할 수도 있다.
한편, 상기 목적을 달성하기 위해 본 발명은 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치에 있어서, 피사체로부터 반사되는 빛을 수광하여 초점을 조절하는 수광렌즈부와, 상기 수광렌즈부에 의해 초점이 조절된 빛을 수신하는 CCD 어레이를 포함하되, 상기 수광렌즈부는 아래의 표 3의 요건을 만족하는 제1렌즈 내지 제6렌즈를 구비하는 것을 특징으로 하는 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치를 제공한다.
표 3
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈 R1= 40 D1= 3.0
R2= -166 D2= 6.148415
제2렌즈 R3= ∞ D3= 0.5
R4= 4.86 D4= 1.768410
제3렌즈 R5= -115 D5= 1.35
R6= -15.498 D6= 8.566126
제4렌즈 R7= -21.7 D7= 1.5
R8= -8.3 D8= 0
제5렌즈 R9= 13.9 D9= 3.2
R10= -5.3 D10= 0
제6렌즈 R11= -5.3 D11= 0.5
R12= -40 -
여기서, 상기 수광렌즈부는 상기 제3렌즈와 제4렌즈를 각각 양단부로 지지하는 경통을 포함하되, 상기 경통은 광반사 차단을 위해 내주면에 V형 다중홈이 형성되도록 할 수도 있다.
그리고, 상기 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치는 상기 수광렌즈부와 상기 CCD 어레이 사이에 개재되는 적외선 필터를 더 포함할 수도 있다.
또한, 상기 목적을 달성하기 위해 본 발명은 3차원 데이터 생성을 위한 3차원 스캐닝 시스템에 있어서, 광원과, 상기 광원으로부터 조사되는 빛을 집광한 후 이를 소정 범위 내에서 균일하게 직선적으로 투사하는 집광렌즈부와, 상기 집광렌즈부로부터 투사된 빛을 통과시켜 소정의 라인패턴을 형성하는 마이크로 패턴 및 상기 마이크로 패턴으로부터 상기 라인패턴을 수광 및 초점을 조절하여 소정 거리의 투사범위를 향해 상기 라인패턴을 투사하는 투사렌즈부를 구비하는 프로젝터용 렌즈 장치와; 피사체로부터 반사되는 빛을 수광하여 초점을 조절하는 수광렌즈부와, 상기 수광렌즈부에 의해 초점이 조절된 빛을 수신하는 CCD 어레이를 구비하는 이미지 캡쳐용 렌즈 장치를 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템을 제공한다.
여기서, 상기 투사렌즈부와 상기 수광렌즈부는 서로 동일한 구성을 갖도록 할 수도 있다.
이때, 상기 마이크로 패턴과 상기 투사렌즈부 간의 초점거리는 상기 수광렌즈부와 상기 CCD 어레이 간의 초점거리와 동일하게 형성할 수도 있다.
또한, 상기 3차원 스캐닝 시스템은 상기 마이크로 패턴과 상기 투사렌즈부 사이에 개재되는 적외선 필터를 더 포함할 수도 있다.
이때, 상기 3차원 스캐닝 시스템은 상기 수광렌즈부와 상기 CCD 어레이 사이에 개재되는 적외선 필터를 더 포함할 수도 있다.
또는, 상기 광원이 적외선 광원일 수도 있다.
이상에서와 같이, 본 발명에 따른 프로젝터용 렌즈 장치에 의하면 집광렌즈부, 마이크로 패턴 및 투사렌즈부로 연결되는 단일화된 구조를 취함으로써 라인패턴의 투사를 위해 최적화된 구성을 제공할 수 있으며, 이에 따라 제작비용을 크게 줄일 수 있을 뿐 아니라 종래의 패턴 투사용 프로젝터에 비해 차지하는 공간을 크게 축소시키고 무게를 감소시켜 소형화된 모듈 형태의 프로젝터용 렌즈 장치를 제공할 수 있다.
또한, 본 발명에 따른 프로젝터용 렌즈 장치에 의하면 표 1 내지 표 3의 요건을 만족하는 렌즈부 구성을 가짐으로써 상기 라인패턴의 왜곡현상을 최소화할 수 있으며, 이에 따라 정밀도가 높은 3차원 데이터를 획득할 수 있다.
여기서, 상기 마이크로 패턴을 지지하는 패턴홀더가 상기 집광렌즈부를 지지하는 집광렌즈경통에 탈착 가능하도록 하여 상기 마이크로 패턴을 교체할 수 있도록 구비함으로써 동일한 렌즈와 경통 구조를 이용하여 다양한 패턴을 투사하여 3차원 데이터를 획득할 수 있으므로 종래기술의 경우와 달리 마이크로 패턴마다 렌즈 장치를 구비할 필요가 없다.
또한, 광원의 파장 대역에 따라 적외선 필터를 사용하지 않거나 적외선 필터를 사용하는 경우에도 파장 대역을 달리하여 이를 구비할 수 있으므로 상기 광원의 파장 대역이 변경되더라도 프로젝터용 렌즈 장치 또는 이미지 캡쳐용 렌즈 장치를 그대로 사용할 수 있을 뿐 아니라, 상기 적외선 필터를 구비함으로써 불필요한 파장대역의 이미지를 차단함으로써 이미지의 노이즈 발생을 최소화할 수 있다.
또한, 이상과 같은 프로젝터용 렌즈 장치와 이미지 캡쳐용 렌즈 장치를 구비한 3차원 스캐닝 시스템에 의하면, 상기 프로젝터용 렌즈 장치와 상기 이미지 캡쳐용 렌즈 장치 간에 초점이 서로 동일하게 조절된 렌즈 구조를 가질 수 있으므로 선명도가 높은 라인패턴을 투사 및 캡쳐할 수 있으므로 정밀한 3차원 이미지를 구현할 수 있다.
또한, 본 발명에 따른 3차원 스캐닝 시스템에 의하면, 프로젝터용 렌즈 장치와 이미지 캡쳐용 렌즈 장치를 서로 동일한 것으로 사용함으로써 피사체에 투사 및 촬영되는 라인패턴의 면적을 조절하기가 매우 편리하며 종래기술에서와 달리 줌 조절을 위해 필요한 시간 및 비용을 절감할 수 있다.
도 1 및 도 2는 본 발명의 실시예에 따른 프로젝터용 렌즈 장치의 단면도,
도 3 및 도 4는 본 발명의 실시예에 따른 이미지 캡쳐용 렌즈 장치의 단면도,
도 5는 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 사용 상태를 도시한 개략도,
도 6 및 도 7은 각각 도 5의 3차원 스캐닝 시스템을 사용하여 라인패턴을 피사체에 투사 및 수광하여 얻은 이미지를 보여주는 사진,
도 8은 종래기술에 따른 3차원 스캐닝 시스템을 통해 라인패턴을 평면에 투사 및 수광하여 얻은 이미지를 보여주는 사진이다.
본 발명의 실시예에 따른 프로젝터용 렌즈 장치(100)는, 도 1 및 도 2에 도시된 바와 같이, 광원(110), 집광렌즈부(120), 마이크로 패턴(130), 적외선 필터(140), 투사렌즈부(150)를 포함한다.
광원(110)은 점광원으로서 빛을 발생시켜 방사상으로 조사한다. 이때, 후술하는 적외선 필터(140)가 없는 경우에는 상기 광원(110)으로서 적외선을 발생시키는 것을 사용할 수 있다.
집광렌즈부(120)는 광원(110)으로부터 방사상으로 조사되는 빛을 집광한 후 이를 적외선 필터(140)를 향해 균일하게 직선적으로 투사하도록 기능한다.
본 실시예에서 집광렌즈부(120)는 도시된 바와 같이 제1렌즈(121) 내지 제3렌즈(123)의 3개로 이루어져 있다.
광원(110)을 기준으로 한 상기 제1렌즈(121) 내지 제3렌즈(123)의 규격은 아래의 표 4과 같다.
표 4 집광렌즈부의 렌즈 규격
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈(121) R11= 54.887 D11= 2.5
R12= ∞ D12= 0.977
제2렌즈(122) R13= 12.283 D13= 2.36
R14= 6.921 D14= 0
제3렌즈(123) R15= ∞ D15= 2.53
R16= 15.492 -
여기서, R11, R13, R15는 각 렌즈의 입사면의 곡률반경이고, R12, R14, R16는 각 렌즈의 출사면의 곡률반경이다. 또한, D11, D13, D15는 각 렌즈의 광축상의 두께이며, D12는 제1렌즈(121)와 제2렌즈(122) 사이의 간격이고 D14는 제2렌즈(122)와 제3렌즈(123) 사이의 간격이다.
이들 제1 내지 제3렌즈(121, 122, 123)는 집광렌즈경통(124)의 내측에 차례대로 수용 및 지지된다.
마이크로 패턴(130)은 집광렌즈부(120)의 우측 전방에 배치된다.
마이크로 패턴(130)은 패턴홀더(131)의 내측에 수용 및 지지되며, 이 패턴홀더(131)는 테두리 부분이 집광렌즈경통(124)에 나사 결합된다.
마이크로 패턴(130)에 형성되는 패턴은 라인패턴으로서 다수의 슬릿이 일정 간격으로 이격 배치된 형태를 갖는다. 도 5는 마이크로 패턴(130)을 통과하여 투사된 라인패턴(1)의 형태를 예시하고 있다.
상기한 바와 같이 집광렌즈부(120)에 의해 직선적으로 투사되는 빛은 마이크로 패턴(130)을 통과하면서 상기 라인패턴(1)을 형성한다.
한편, 마이크로 패턴(130)은 상에서와 같이 패턴홀더(131)에 의해 집광렌즈부(120)와 결합 및 분리가 용이하게 이루어질 수 있는 구조를 갖는다.
따라서, 사용자는 피사체의 형상 등 요구되는 조건에 따라 라인패턴(1)을 적절히 선택하여 그에 해당하는 마이크로 패턴(130)으로 교체하여 상기 집광렌즈부(120)와 결합시킬 수 있다.
적외선 필터(140)는 상기한 마이크로 패턴(130)과 투사렌즈부(150) 사이에 개재된다.
광원(110)으로부터 투사되어 온 빛은 이 적외선 필터(140)에 의해 필터링되어 특정 파장의 적외선만이 통과되도록 한다.
적외선의 파장은 인체에 투사되는 경우까지 고려하여 유해성이 없는 720 내지 950[㎛]의 근적외선으로 선택할 수 있다.
이와 같이 프로젝터용 렌즈 장치(100)로부터 적외선이 투사되도록 할 경우에는, 종래 가시광선이나 레이저를 사용하는 경우와 달리 투사된 빛의 캡쳐를 위해 암실에서 작업할 필요가 없다는 점에서 유리하며, 인체에 투사될 때 직사광선이 눈에 조사되는 경우에도 감지되지 않으므로 거부감을 느끼지 못한다는 이점이 있다.
또한, 후술하는 바와 같이 적외선 필터를 채용하는 이미지 캡쳐용 렌즈 장치(200)와 함께 사용함으로써 불필요한 파장대역의 이미지가 수집되는 것을 차단함으로써 노이즈의 발생을 최소화할 수 있다.
한편, 상기한 바와 같이, 상기 적외선 필터(140)가 구비되지 않는 경우, 광원(110)으로 하여금 특정 파장의 적외선만을 투사하도록 하여 상기 특정 파장의 적외선을 제외한 다른 파장의 빛이 피사체에 투사되지 못하도록 할 수 있다.
투사렌즈부(150)는 마이크로 패턴(130)을 통과하여 형성된 라인패턴이 적외선 필터(140)를 통과한 것을 수광하여, 이의 초점을 조절한 후 소정 거리 이격된 투사범위 영역으로 투사하는 기능을 한다.
이를 위해, 본 실시예에 따른 투사렌즈부(150)는, 도 1 및 도 2에 도시된 바와 같이, 제1렌즈(151) 내지 제6렌즈(156)의 6개로 이루어져 있다.
제1렌즈(151)의 입사면의 광축은 좌측 전방의 적외선 필터(140)에 접촉되어 있으며, 이를 기준으로 한 각 렌즈의 규격은 아래의 표 5와 같다.
표 5 투사렌즈부의 렌즈 규격
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈(151) R21= 40 D21= 0.5
R22= 5.3 D22= 0
제2렌즈(152) R23= 5.3 D23= 3.2
R24= -13.9 D24= 0
제3렌즈(153) R25= 8.3 D25= 1.5
R26= 21.7 D26= 8.566126
제4렌즈(154) R27= 15.498 D27= 1.35
R28= 115 D28= 1.768410
제5렌즈(155) R29= -4.86 D29= 0.5
R210= ∞ D210= 6.148415
제6렌즈(156) R211= 166 D211= 3.0
R212= -40 -
여기서, R21, R23, R25, R27, R29, R211은 각 렌즈의 입사면의 곡률반경이고, R22, R24, R26, R28, R210, R212는 각 렌즈의 출사면의 곡률반경이다.
그리고, D21, D23, D25, D27, D29, D211은 각 렌즈의 광축상의 두께이다.
또한, D22는 제1렌즈(151)와 제2렌즈(152) 사이의 간격이고, D24는 제2렌즈(152)와 제3렌즈(153) 사이의 간격이고, D26은 제3렌즈(153)와 제4렌즈(154) 사이의 간격이며, D28은 제4렌즈(154)와 제5렌즈(155) 사이의 간격이며, D210은 제5렌즈(155)와 제6렌즈(156) 사이의 간격이다.
이들 제1 내지 제6렌즈(151 내지 156)는 투사렌즈경통(157)의 내측에 차례대로 수용 및 지지된다.
그리고, 이 투사렌즈경통(157)은 연장경통(158)을 매개로 하여 상기한 집광렌즈경통(124)과 결합한다.
한편, 투사렌즈경통(157)은 내부경통(159)을 더 구비한다.
내부경통(159)은 투사렌즈부(150)의 제3렌즈(153)와 제4렌즈(154) 사이의 경로를 수용하며, 그 내주면으로는 축방향으로 연장 형성되는 V형 다중홈이 형성되어 광반사를 차단하는 기능을 한다.
투사렌즈부(150)를 통과한 라인패턴은 도 5에 도시된 바와 같은 형태로 피사체에 투사된다.
라인패턴이 피사체에 투사된 모습은 도 6 및 도 7에 예시된 바와 같다. 도 6 및 도 7은 인체인 피사체(2)에 라인패턴이 투사된 모습을 도시한 사진들이다.
도 6은 가시광선 형태의 라인패턴을 투사한 경우이고, 도 7은 적외선 형태의 라인패턴을 투사한 경우를 나타낸다(엄밀하게는, 도 6 및 도 7은 투사된 라인패턴이 피사체로부터 반사되어 이미지 캡쳐용 렌즈 장치(200)를 통해 수광된 이미지를 나타낸다.)
이와 같이 피사체에 투사된 라인패턴(1)은, 도 5에 도시된 바와 같이, 이미지 캡쳐용 렌즈 장치(200)에 수광된다.
본 발명의 실시예에 따른 이미지 캡쳐용 렌즈 장치(200)는, 도 3 및 도 4에 도시된 바와 같이, 수광렌즈부(210), 적외선 필터(220), CCD 어레이(230)를 포함한다.
수광렌즈부(210)는 상기한 바와 같이 피사체로부터 반사된 빛을 수광하여 초점을 조절하는 기능을 한다.
이를 위해, 본 실시예에 따른 수광렌즈부(210)는, 도 3 및 도 4에 도시된 바와 같이, 제1렌즈(211) 내지 제6렌즈(216)의 6개로 이루어져 있다.
제1렌즈(211)를 기준으로 한 각 렌즈의 규격은 아래의 표 6과 같다.
표 6 수광렌즈부의 렌즈 규격
렌즈 곡률반경[mm] 렌즈면 사이 간격[mm]
제1렌즈(211) R31= 40 D31= 3.0
R32= -166 D32= 6.148415
제2렌즈(212) R33= ∞ D33= 0.5
R34= 4.86 D34= 1.768410
제3렌즈(213) R35= -115 D35= 1.35
R36= -15.498 D36= 8.566126
제4렌즈(214) R37= -21.7 D37= 1.5
R38= -8.3 D38= 0
제5렌즈(215) R39= 13.9 D39= 3.2
R310= -5.3 D310= 0
제6렌즈(216) R311= -5.3 D311= 0.5
R312= -40 -
이상과 같은 수광렌즈부(210)의 렌즈 규격은 상기한 프로젝터용 렌즈 장치(100)의 투사렌즈부(150)의 렌즈 규격과 역순으로서 실질적으로는 서로 동일한 구조를 갖는다.
수광렌즈부(210)를 구성하는 제1 내지 제6렌즈(211 내지 216)는 수광렌즈경통(217)의 내측에 차례대로 수용 및 지지된다.
그리고, 이 수광렌즈경통(217)은 연장경통(218)을 매개로 하여 CCD 어레이(230)가 구비된 측과 결합한다.
또한, 여기에서도 상기한 투사렌즈부(150)의 경우와 마찬가지로 상기 수광렌즈경통(217)은 내부경통(219)을 더 구비한다.
내부경통(219)은 수광렌즈부(210)의 제3렌즈(213)와 제4렌즈(214) 사이의 경로를 수용하며, 그 내주면으로는 축방향으로 연장 형성되는 V형 다중홈이 형성되어 광반사를 차단하는 기능을 한다.
수광렌즈부(210)를 통과한 빛, 즉 라인패턴은 상기 수광렌즈부(210)에 의해 초점이 조절되어 적외선 필터(220)를 통과한다.
라인패턴은 이 적외선 필터(220)에 의해 필터링되어 특정 파장의 적외선 형태로 통과된다. 상기 프로젝터 렌즈 장치(100)의 경우와 마찬가지로, 이때의 적외선의 파장은 인체에 투사되는 경우까지 고려하여 유해성이 없는 720 내지 950[㎛]의 근적외선으로 선택할 수 있다.
이때에도, 프로젝터 렌즈 장치(100)의 광원(110)이 적외선 광원인 경우에는 상기 적외선 필터(220)를 구비하지 않을 수 있다.
적외선 필터(220)를 통과한 라인패턴은 CCD 어레이(230)로 수신된다.
한편, 본 발명의 실시예에 따른 3차원 스캐닝 시스템은 상기에서 설명한 프로젝터 렌즈 장치(100)와 이미지 캡쳐용 렌즈 장치(200)를 포함하여 구비된다.
즉, 상기에서 설명한 바와 같이, 프로젝터 렌즈 장치(100)의 투사렌즈부(150)와 이미지 캡쳐용 렌즈 장치(200)의 수광렌즈부(210)는 서로 동일한 구성을 갖는다.
또한, 프로젝터 렌즈 장치(도 1의 100)에 있어서 마이크로 패턴(130)과 투사렌즈부(150) 간의 초점거리는 이미지 캡쳐용 렌즈 장치(도 3의 200)에 있어서의 수광렌즈부(210)와 CCD 어레이(230) 간의 초점거리와 동일하게 구비된다.
이상에서 설명된 프로젝터 렌즈 장치(100), 이미지 캡쳐용 렌즈 장치(200) 및 이들을 구비한 3차원 스캐닝 시스템 등은 본 발명의 이해를 돕기 위한 실시예에 불과할 뿐 본 발명의 권리범위 내지 기술적 범위가 이들에 한정되는 것으로 이해되어서는 안 된다.
본 발명의 권리범위 내지 기술적 범위는 후술하는 특허청구범위 및 그 균등범위에 의해 정하여진다.

Claims (17)

  1. 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치에 있어서,
    광원과;
    상기 광원으로부터 조사되는 광경로를 따라 순차적으로 배치되되 상기 광원으로부터 조사되는 빛을 집광하는 집광부 제1렌즈와, 상기 집광된 빛을 소정 범위 내에서 투사면적를 확대하는 집광부 제2렌즈와, 상기 확대된 빛을 균일하게 직선적으로 투사하는 집광부 제3렌즈를 구비한 집광렌즈부와;
    상기 집광렌즈로부터 투사된 빛을 통과시켜 상기 빛에 의한 소정의 라인패턴광을 형성하도록 하는 마이크로 패턴; 및
    상기 라인패턴광의 초점을 조절하여 소정 거리의 투사범위를 향해 투사하는 투사렌즈부를 포함하는 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
  2. 제1항에 있어서,
    상기 투사렌즈부는,
    상기 라인패턴광을 수광하는 투사부 제1렌즈와, 수광된 라인패턴광을 집중시키는 투사부 제2렌즈와, 집중된 라인패턴광의 밝기를 조절하는 투사부 제3렌즈와, 밝기가 조절된 라인패턴광의 포커스를 조절하는 투사부 제4 및 제5렌즈와, 포커스가 조절된 라인패턴광을 투사하는 투사부 제6렌즈를 포함하며,
    상기 투사부 제1 내지 제6렌즈는 아래의 표 7의 요건을 만족하는 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
    표 7 렌즈 곡률반경[mm] 렌즈면 사이 간격[mm] 투사부 제1렌즈 R1= 40 D1= 0.5 R2= 5.3 D2= 0 투사부 제2렌즈 R3= 5.3 D3= 3.2 R4= -13.9 D4= 0 투사부 제3렌즈 R5= 8.3 D5= 1.5 R6= 21.7 D6= 8.566126 투사부 제4렌즈 R7= 15.498 D7= 1.35 R8= 115 D8= 1.768410 투사부 제5렌즈 R9= -4.86 D9= 0.5 R10= ∞ D10= 6.148415 투사부 제6렌즈 R11= 166 D11= 3.0 R12= -40 -
  3. 제2항에 있어서,
    상기 투사렌즈부는 경통을 포함하되, 상기 투사부 제3렌즈와 상기 투사부 제4렌즈는 상기 경통의 양단부에 각각 서로 대면하도록 지지되며, 상기 경통은 광반사 차단을 위해 상기 투사부 제3렌즈와 상기 투사부 제4렌즈 사이의 내주면에 V형 다중홈이 형성된 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
  4. 제1항에 있어서,
    상기 집광렌즈부의 집광부 제1렌즈 내지 집광부 제3렌즈는 아래의 표 8의 요건을 만족하는 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
    표 8 렌즈 곡률반경[mm] 렌즈면 사이 간격[mm] 집광부 제1렌즈 R1= 54.887 D1= 2.5 R2= ∞ D2= 0.977 집광부 제2렌즈 R3= 12.283 D3= 2.36 R4= 6.921 D4= 0 집광부 제3렌즈 R5= ∞ D5= 2.53 R6= 15.492 -
  5. 제1항에 있어서,
    상기 마이크로 패턴과 상기 투사렌즈부 사이에 개재되는 적외선 필터를 더 포함하는 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
  6. 제5항에 있어서,
    상기 광원은 파장이 720 내지 950 [㎛]인 근적외선인 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
  7. 제1항에 있어서,
    상기 광원은 적외선 광원인 것을 특징으로 하는 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치.
  8. 제1항에 있어서,
    내측에 상기 집광렌즈부를 수용 및 지지하는 집광렌즈경통과;
    내측에 상기 마이크로 패턴을 수용 및 지지하고 상기 집광렌즈경통의 전방에 탈착 가능하도록 결합하는 패턴홀더; 및
    내측에 상기 투사렌즈부를 수용 및 지지하고, 일측 단부를 통해 상기 패턴홀더가 개재된 상태에서 상기 집광렌즈경통과 탈착 가능하도록 결합하는 투사렌즈경통를 더 포함하는 것을 특징으로 하는 프로젝터용 렌즈 장치.
  9. 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치에 있어서,
    피사체로부터 반사되는 빛을 수광하여 초점을 조절하는 수광렌즈부와, 상기 수광렌즈부에 의해 초점이 조절된 빛을 수신하는 CCD 어레이를 포함하되,
    상기 수광렌즈부는,
    상기 피사체로부터 빛을 수광하는 수광부 제1렌즈와, 수광된 빛의 포커스를 조절하는 수광부 제2 및 제3렌즈와, 포커스가 조절된 빛의 밝기를 조절하는 수광부 제4렌즈와, 밝기가 조절된 빛을 집중시키는 수광부 제5렌즈와, 집중된 빛을 투사하는 수광부 제6렌즈가 상기 빛의 광경로를 따라 순차적으로 배치되며,
    상기 수광부 제1렌즈 내지 제6렌즈는 아래의 표 9의 요건을 만족하는 것을 특징으로 하는 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치.
    표 9 렌즈 곡률반경[mm] 렌즈면 사이 간격[mm] 수광부 제1렌즈 R1= 40 D1= 3.0 R2= -166 D2= 6.148415 수광부 제2렌즈 R3= ∞ D3= 0.5 R4= 4.86 D4= 1.768410 수광부 제3렌즈 R5= -115 D5= 1.35 R6= -15.498 D6= 8.566126 수광부 제4렌즈 R7= -21.7 D7= 1.5 R8= -8.3 D8= 0 수광부 제5렌즈 R9= 13.9 D9= 3.2 R10= -5.3 D10= 0 수광부 제6렌즈 R11= -5.3 D11= 0.5 R12= -40 -
  10. 제9항에 있어서,
    상기 수광렌즈부는 경통을 포함하되, 상기 수광부 제3렌즈와 상기 수광부 제4렌즈는 상기 경통의 양단부에 각각 서로 대면하도록 지지되며, 상기 경통은 광반사 차단을 위해 상기 수광부 제3렌즈와 상기 수광부 제4렌즈 사이의 내주면에 V형 다중홈이 형성된 것을 특징으로 하는 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치.
  11. 제9항에 있어서,
    상기 수광렌즈부와 상기 CCD 어레이 사이에 개재되는 적외선 필터를 더 포함하는 것을 특징으로 하는 3차원 데이터 생성을 위한 이미지 캡쳐용 렌즈 장치.
  12. 3차원 데이터 생성을 위한 3차원 스캐닝 시스템에 있어서,
    광원과, 상기 광원으로부터 조사되는 빛을 집광하는 집광부 제1렌즈와 상기 집광된 빛을 소정 범위 내에서 투사면적를 확대하는 집광부 제2렌즈와 상기 확대된 빛을 균일하게 직선적으로 투사하는 집광부 제3렌즈를 구비한 집광렌즈부와, 상기 집광렌즈부로부터 투사된 빛을 통과시켜 상기 빛에 의한 소정의 라인패턴광을 형성하도록 하는 마이크로 패턴, 및 상기 라인패턴광의 초점을 조절하여 소정 거리의 투사범위를 향해 투사하는 투사렌즈부를 구비하는 프로젝터용 렌즈 장치와;
    피사체로부터 반사되는 빛을 수광하여 초점을 조절하는 수광렌즈부와, 상기 수광렌즈부에 의해 초점이 조절된 빛을 수신하는 CCD 어레이를 구비하는 이미지 캡쳐용 렌즈 장치를 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템.
  13. 제12항에 있어서,
    상기 투사렌즈부와 상기 수광렌즈부는 서로 동일한 구성을 갖는 것을 특징으로 하는 3차원 스캐닝 시스템.
  14. 제12항 또는 제13항에 있어서,
    상기 마이크로 패턴과 상기 투사렌즈부 간의 초점거리는 상기 수광렌즈부와 상기 CCD 어레이 간의 초점거리와 동일한 것을 특징으로 하는 3차원 스캐닝 시스템.
  15. 제12항에 있어서,
    상기 마이크로 패턴과 상기 투사렌즈부 사이에 개재되는 적외선 필터를 더 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템.
  16. 제12항 또는 제15항에 있어서,
    상기 수광렌즈부와 상기 CCD 어레이 사이에 개재되는 적외선 필터를 더 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템.
  17. 제12항에 있어서,
    상기 광원은 적외선 광원인 것을 특징으로 하는 3차원 스캐닝 시스템.
PCT/KR2009/007074 2008-12-05 2009-11-30 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템 WO2010064816A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0122905 2008-12-05
KR1020080122905A KR100933926B1 (ko) 2008-12-05 2008-12-05 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템

Publications (2)

Publication Number Publication Date
WO2010064816A2 true WO2010064816A2 (ko) 2010-06-10
WO2010064816A3 WO2010064816A3 (ko) 2010-08-26

Family

ID=41684731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007074 WO2010064816A2 (ko) 2008-12-05 2009-11-30 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템

Country Status (2)

Country Link
KR (1) KR100933926B1 (ko)
WO (1) WO2010064816A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167096A (zh) * 2017-06-05 2017-09-15 广东奥普特科技股份有限公司 一种栅格投影测量装置
CN112729128A (zh) * 2019-10-28 2021-04-30 阿丹电子企业股份有限公司 光学式体积测定装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076083A1 (de) * 2011-05-18 2012-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und Verfahren zum Anzeigen eines Gesamtbildes für Projektionsfreiformflächen oder verkippte Projektionsflächen
KR101415980B1 (ko) * 2012-11-26 2014-07-04 김도현 3차원 스캐너 장치
KR101792343B1 (ko) * 2015-10-15 2017-11-01 한국광기술원 마이크로 렌즈 어레이를 이용한 매트릭스 광원 패턴 조사 적외선 프로젝터 모듈 및 이를 이용한 3차원 스캐너

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172974A (ja) * 2001-12-05 2003-06-20 Sony Corp プロジェクタ装置
JP2003233122A (ja) * 2002-02-08 2003-08-22 Seiko Epson Corp プロジェクタ
JP2004157348A (ja) * 2002-11-07 2004-06-03 Chinontec Kk 投射レンズ装置及びプロジェクタ装置
JP2004184932A (ja) * 2002-12-06 2004-07-02 Seiko Epson Corp 投射レンズ及びこれを備えたプロジェクター
JP2005215356A (ja) * 2004-01-29 2005-08-11 Seiko Epson Corp プロジェクタ及び光源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0817157A3 (en) * 1996-06-28 1998-08-12 Texas Instruments Incorporated Improvements in or relating to image display system
US20060123381A1 (en) * 2004-12-07 2006-06-08 Dainippon Screen Mfg. Co., Ltd. Data generating system, patterning data generating apparatus, method of generating patterning data and storage medium carrying patterning data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172974A (ja) * 2001-12-05 2003-06-20 Sony Corp プロジェクタ装置
JP2003233122A (ja) * 2002-02-08 2003-08-22 Seiko Epson Corp プロジェクタ
JP2004157348A (ja) * 2002-11-07 2004-06-03 Chinontec Kk 投射レンズ装置及びプロジェクタ装置
JP2004184932A (ja) * 2002-12-06 2004-07-02 Seiko Epson Corp 投射レンズ及びこれを備えたプロジェクター
JP2005215356A (ja) * 2004-01-29 2005-08-11 Seiko Epson Corp プロジェクタ及び光源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167096A (zh) * 2017-06-05 2017-09-15 广东奥普特科技股份有限公司 一种栅格投影测量装置
CN112729128A (zh) * 2019-10-28 2021-04-30 阿丹电子企业股份有限公司 光学式体积测定装置

Also Published As

Publication number Publication date
KR100933926B1 (ko) 2009-12-28
WO2010064816A3 (ko) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2017183749A1 (ko) 카메라가 장착된 휴대 단말기에 외장하는 확대용 외장 광학모듈과 그 모듈을 구비한 확대촬영장치
WO2010064816A2 (ko) 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템
WO2016036210A1 (en) Inner foucing telephoto lens system and photographing apparatus including the same
WO2013133660A1 (en) Zoom lens and photographing apparatus including the same
WO2013051744A1 (ko) 단일렌즈로 전방위를 촬영하는 동기식 카메라 렌즈모듈
WO2014051196A1 (ko) 구강 스캐너
WO2011087337A2 (ko) 기판 검사장치
TW200508771A (en) Multifocal lens system for digital cameras
CA2351086A1 (en) High contrast, low distortion optical acquisition system for image capturing
WO2013089385A1 (en) Imaging lens
WO2015130094A1 (ko) 카메라가 장착된 휴대 단말기를 이용한 지문입력장치 및 그 지문입력용 외장 광학기기
TW201928502A (zh) 成像鏡頭、相機模組、電子裝置及用於製造成像鏡頭的外部調整治具
WO2011078615A2 (en) Distance adaptive 3d camera
WO2018093102A1 (ko) 단일 카메라를 이용한 양안 촬영 장치
WO2021187775A1 (ko) 이동 통신 단말기
SE457311B (sv) Kamera foer optoelektronisk avkaenning av en godtycklig scen
JP2001159733A (ja) 撮像補助レンズおよびこれを用いた撮像装置
WO2017111274A1 (ko) 입체 이미지를 촬영하기 위한 단안식 현미경
KR20080038445A (ko) 버너 조립체 형성 방법 및 시스템
WO2017026747A1 (ko) 레이저 가공장치
WO2022154622A1 (ko) 3차원 스캐너
WO2022139472A1 (ko) 광학계
JP2007010579A (ja) ピント測定装置
WO2022139473A1 (ko) 광학계
WO2022124835A1 (ko) 광학계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830554

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS URSUANT TO RULE 112(1) EPC / E.P.O. FORM 1205A DATED 17-10-2011

122 Ep: pct application non-entry in european phase

Ref document number: 09830554

Country of ref document: EP

Kind code of ref document: A2