WO2017122416A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2017122416A1 WO2017122416A1 PCT/JP2016/083257 JP2016083257W WO2017122416A1 WO 2017122416 A1 WO2017122416 A1 WO 2017122416A1 JP 2016083257 W JP2016083257 W JP 2016083257W WO 2017122416 A1 WO2017122416 A1 WO 2017122416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductor
- shield
- semiconductor device
- predetermined
- wiring
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 230000007423 decrease Effects 0.000 claims abstract description 16
- 239000003990 capacitor Substances 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 16
- 238000009413 insulation Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
-
- H01L21/822—
-
- H01L27/04—
Definitions
- This technology relates to a semiconductor device. Specifically, the present invention relates to a semiconductor device provided with an electromagnetic shield.
- a conductor or a magnetic body is often arranged as an electromagnetic shield around a circuit to be protected.
- a semiconductor device has been proposed in which a linear conductor is wired around an inductor as an electromagnetic shield to reduce electromagnetic noise generated in the inductor (see, for example, Patent Document 1).
- electromagnetic noise generated in the inductor may not be sufficiently reduced. This is because when wiring is used as an electromagnetic shield, electromagnetic noise due to a magnetic field from a direction parallel to the substrate can be reduced, but electromagnetic noise due to a magnetic field from a direction perpendicular to the substrate cannot be reduced. is there.
- the upper and lower surfaces of the inductor are covered with a plate-shaped electromagnetic shield, the magnetic noise in the direction perpendicular to the substrate can be blocked to sufficiently reduce the electromagnetic noise, but the vortex generated by the electromagnetic shield has been reduced. There is a possibility that the inductance of the inductor is reduced by the current.
- the present technology has been developed in view of such a situation, and aims to reduce electromagnetic noise while suppressing a decrease in inductance in a semiconductor device provided with an electromagnetic shield.
- the present technology has been made to solve the above-described problems, and a first side of the present technology is that the inductor is disposed on the substrate on which the inductor is disposed and a predetermined direction perpendicular to the substrate plane of the substrate is the upward direction. And a shield with an upper layer slit, which is an electromagnetic shield in which a slit is formed along a direction parallel to the substrate plane. Thereby, the shield with the upper layer slit has an effect of reducing electromagnetic noise.
- a circuit arrangement board on which a circuit is arranged may be further provided, and the circuit arrangement board may be laminated on the board. This brings about the effect
- the inductor includes a first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane, and the substrate.
- a second wiring wound in a counterclockwise direction from the predetermined connection point to a predetermined end point with a second central axis different from the first central axis as an axis perpendicular to the plane Also good. This brings about the effect
- the slit may be formed along a direction parallel to a straight line connecting the first central axis and the second central axis.
- the inductor is wound along a spiral path that turns a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane. And a second wiring wound along a spiral path that turns a plurality of times from the predetermined connection point to a predetermined end point about the predetermined central axis.
- the turning radius may increase each time the vehicle turns. This brings about the effect
- the inductor may include a wiring wound along a spiral path. This brings about the effect
- an outer peripheral shield that is an electromagnetic shield surrounding the outer periphery of the inductor may be further provided. This brings about the effect
- a lower shield that is an electromagnetic shield disposed below the inductor may be further provided. This brings about the effect
- the first side surface may further include a shield with a lower layer slit disposed below the inductor and having a slit formed in a direction parallel to the substrate plane. This brings about the effect
- a fixed potential may be applied to the shield with the upper layer slit. This brings about the effect
- a capacitor connected to the inductor may be further provided, and the inductor and the capacitor may resonate. This brings about the effect
- the phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating the phase difference, and the voltage signal of the voltage corresponding to the phase difference indicated by the detection signal
- a frequency divider that divides the oscillation signal generated by the resonance circuit including the inductor and the capacitor and feeds back to the phase difference detector as the feedback signal.
- the input signal may be a clock signal.
- the clock signal is multiplied.
- 1 is an example of a perspective view of a semiconductor device according to a first embodiment of the present technology.
- 1 is an example of a plan view of an inductor according to a first embodiment of the present technology. It is an example of the top view of the upper layer shield in 1st Embodiment of this technique.
- First embodiment (example in which a shield with a slit is inserted between an inductor and a circuit) 2.
- Second Embodiment (Example in which a shield with a slit is inserted between an inductor for generating a differential signal and a circuit) 3.
- Third Embodiment (Example in which a shield with a slit is inserted between a spiral inductor and a circuit) 4).
- Fourth Embodiment Example in which a shield with a slit is inserted between an inductor and a circuit, and a lower shield and an outer shield are provided)
- FIG. 1 is a block diagram illustrating a configuration example of the semiconductor device 100 according to the embodiment of the present technology.
- this semiconductor device 100 for example, a device equipped with an image sensor, an LSI (Large Scale Integration), or the like is assumed.
- the semiconductor device 100 is provided with a plurality of stacked semiconductor chips such as the upper chip 110 and the lower chip 150.
- a logic circuit 111 is arranged on the upper chip 110.
- a logic circuit 151 and a phase synchronization circuit 200 are arranged.
- the number of stacked semiconductor chips is not limited to two, and may be three or more.
- the logic circuit 111 executes a predetermined process.
- the logic circuit 111 transmits / receives data to / from the lower logic circuit 151 via the signal line 119.
- As the logic circuit 111 for example, a pixel circuit or a vertical drive circuit that drives the pixel circuit is assumed.
- Logic circuit 151 in synchronization with the clock signal CLK out from the phase synchronization circuit 200, and executes a predetermined process.
- the logic circuit 151 for example, an AD (Analog to Digital) converter or a horizontal driving circuit for driving the AD converter is assumed.
- the phase synchronization circuit 200 receives a clock signal CLK in having a predetermined period generated by an external crystal oscillator or the like.
- the phase synchronization circuit 200 multiplies the clock signal CLK in by a predetermined multiplication ratio and outputs it as a clock signal CLK out to the logic circuit 151 via the signal line 209.
- FIG. 2 is a block diagram illustrating a configuration example of the phase synchronization circuit 200 according to the first embodiment.
- the phase synchronization circuit 200 includes a phase comparator 210, a charge pump 220, a frequency divider 230, and a voltage controlled oscillator 240.
- the phase comparator 210 compares the phase of the clock signal CLK in from the crystal oscillator 152 and the clock signal CLK fb from the frequency divider 230.
- the phase comparator 210 generates detection signals UP and DN indicating the phase difference between the signals based on the comparison result, and supplies the detection signals UP and DN to the charge pump 220.
- the difference between the pulse widths of the detection signals UP and DN indicates the phase difference between the clock signal CLK in and the clock signal CLK fb .
- the charge pump 220 generates a control signal Vc having a voltage corresponding to the phase difference indicated by the detection signals UP and DN.
- the charge pump 220 supplies a control signal Vc to the voltage controlled oscillator 240.
- the voltage controlled oscillator 240 generates a clock signal CLK out having a frequency corresponding to the voltage of the control signal Vc, and supplies the clock signal CLK out to the frequency divider 230 and the logic circuit 151.
- the clock signal CLK out is, for example, a single end signal.
- Divider 230 is for dividing the clock signal CLK out from the voltage controlled oscillator 240 at a predetermined frequency division ratio.
- the frequency divider 230 feeds back the frequency- divided signal to the phase comparator 210 as the clock signal CLK fb .
- phase synchronization circuit 200 can generate a multiplied signal of the clock signal CLK in.
- FIG. 3 is a circuit diagram showing a configuration example of the voltage controlled oscillator 240 and the electromagnetic shield in the first embodiment.
- the voltage controlled oscillator 240 includes an amplifier circuit 241, an inductor 250, and a variable capacitor 242.
- the variable capacitor 242 and the inductor 250 are connected to the amplifier circuit 241 in parallel.
- the upper shield 260 is laminated above the inductor 250 with the direction from the lower chip 150 toward the upper chip 110 as the upward direction.
- the variable capacitor 242 is a capacitor whose electric capacity changes according to the voltage of the control signal Vc from the charge pump 220.
- a varicap diode is used as the variable capacitor 242.
- the variable capacitor 242 is an example of a capacitor described in the claims.
- the inductor 250 resonates with the variable capacitor 242 to generate a clock signal.
- the inductor 250 generates a magnetic field in the upward direction or the downward direction.
- Amplifier circuit 241 is for amplifying the signal generated by the LC resonance circuit composed of the variable capacitance 242 and the inductor 250, is supplied to the frequency divider 230 and the logic circuit 151 as the clock signal CLK out.
- the upper layer shield 260 is an electromagnetic shield in which slits are formed along directions parallel to the respective substrate planes of the upper chip 110 and the lower chip 150.
- the upper shield 260 is applied with a predetermined fixed potential (for example, ground potential).
- the upper shield 260 shields electromagnetic noise caused by the magnetic field generated in the upper logic circuit 111, and protects the lower inductor 250 from the electromagnetic noise.
- the upper shield 260 has a fixed potential, it may be a floating potential. In this case, the upper shield 260 functions as a magnetic field shield that shields only electromagnetic noise due to electromagnetic induction. When it is necessary to shield electromagnetic noise due to electrostatic induction, a fixed potential is applied to the upper shield 260.
- the upper shield 260 is disposed above the inductor 250 in the voltage controlled oscillator 240, it is disposed above the inductor provided in a circuit (buffer circuit, clock distribution circuit, etc.) other than the voltage controlled oscillator 240. Also good.
- FIG. 4 is an example of a perspective view of the semiconductor device according to the first embodiment.
- a in the figure is an example of a perspective view of the upper chip 110 and the lower chip 150.
- B in the figure is an example of an enlarged perspective view of the upper shield 260, and
- c in the figure is an example of an enlarged perspective view of the inductor 250.
- an inductor 250 is disposed on the lower chip 150, and an upper shield 260 is laminated thereon.
- the upper shield 260 is inserted between the inductor 250 and the upper chip 110.
- the logic circuit 111 is disposed on the upper chip 110 above the upper shield 260. In this logic circuit 111, it is assumed that an inductor having the same shape as the inductor 250 is not provided above the inductor 250.
- the upper chip 110 is an example of a circuit arrangement board described in the claims
- the lower chip 150 is an example of an inductor arrangement board described in the claims.
- the upper layer shield 260 is an example of a shield with an upper layer slit described in the claims.
- the upper layer shield 260 is inserted between the inductor 250 and the upper chip 110, the configuration is not limited to this configuration as long as the upper layer shield 260 is disposed between the inductor 250 and other circuits.
- the upper layer shield 260 may be provided on the upper chip 110, and the logic circuit 111 may be stacked thereon.
- the upper shield 260 is formed with a predetermined number of slits along a direction parallel to the substrate plane of the upper chip 110 and the lower chip 150.
- the inductor 250 includes a connected wiring 251 and a wiring 252. These wirings 251 and 252 are wound in a circle around a central axis perpendicular to the substrate plane. These wirings 251 and 252 are stacked in a plurality of layers. Note that these wirings may be a single layer instead of a plurality of layers.
- the centers of the wiring 251 and the wiring 252 are not the same, and are arranged at a certain distance.
- a direction parallel to a straight line connecting these centers is hereinafter referred to as an X direction.
- a direction parallel to the substrate plane and perpendicular to the X direction is hereinafter referred to as a Y direction.
- a direction perpendicular to the substrate plane is hereinafter referred to as a Z direction.
- the slit of the upper shield 260 described above is formed along the X direction.
- FIG. 5 is an example of a plan view of the inductor 250 according to the first embodiment.
- the inductor 250 includes a wiring 251 and a wiring 252 connected to each other.
- one end of the wiring 251 that is not connected to the wiring 252 is set as a start point 501 and the other end is set as a connection point 502.
- One end of the wiring 252 that is not connected to the wiring 251 is defined as an end point 503.
- the wiring 251 is wound clockwise from the start point 501 to the connection point 502 around the central axis parallel to the Z direction.
- the wiring 252 is wound counterclockwise from the connection point 502 to the end point 503 around the central axis parallel to the Z direction.
- the number of turns of the wirings 251 and 252 is two.
- the number of windings is not limited to two.
- the centers of the wiring 251 and the wiring 252 are not the same, and these centers are arranged on a straight line parallel to the X direction.
- a magnetic field in the opposite direction is generated between the wiring 251 and the wiring 252. For example, when an upward magnetic field is generated in the wiring 251, a downward magnetic field is generated in the wiring 252.
- FIG. 6 is an example of a plan view of the upper shield 260 in the first embodiment.
- a predetermined number of slits are formed in the upper shield 260 along the X direction. Further, a predetermined fixed potential (ground potential or the like) is applied to the upper layer shield 260.
- FIG. 7 is a diagram illustrating an example of a direction of a current flowing through the inductor 250 according to the first embodiment.
- a current flows from the start point 501 to the end point 503, a current flows clockwise in the wiring 251 and a current flows counterclockwise in the wiring 252.
- FIG. 8 is a diagram illustrating an example of the direction of the induced current in the upper shield 260 according to the first embodiment.
- a thick dotted line indicates a current flowing through the wiring 251
- a thin dotted line indicates an eddy current induced in the upper shield 260 by a magnetic field generated in the wiring 251.
- a thick solid line indicates a path of current flowing through the wiring 252, and a thin solid line indicates eddy current induced in the upper shield 260 by a magnetic field generated in the wiring 252.
- a current flows clockwise, and a downward magnetic field is generated by the current. Due to this magnetic field, a counterclockwise eddy current (dotted line) flows through the upper shield 260 in accordance with the law of electromagnetic induction.
- a current flows counterclockwise, and an upward magnetic field is generated by the current. This magnetic field causes a clockwise eddy current (solid line) to flow through the upper shield 260 in accordance with the law of electromagnetic induction.
- the slit in the upper shield 260 is formed along the X direction.
- the wirings 251 and 252 are arranged along the X direction. Therefore, with the wiring 251 side as the left side and the wiring 252 side as the right side, the eddy current induced on the right side of the upper shield 260 flows to the left along the slit, and the eddy current induced on the left side flows to the right along the slit. Come on. These eddy currents cancel each other because their directions are opposite to each other. For this reason, almost no eddy current is generated in the entire upper shield 260, and there is no possibility that a counter electromotive force is generated in the inductor 250 by the magnetic field generated by the eddy current.
- the Q value is represented by the following equation, for example.
- Q 2 ⁇ fL / R
- L represents the inductance of the inductor 250, and the unit is, for example, Henry (H).
- f indicates an oscillation frequency when the inductor 250 resonates with the variable capacitor 242 or the like, and the unit is, for example, hertz (Hz).
- R represents the internal resistance of the inductance 250, and its unit is, for example, ohm ( ⁇ ).
- An eddy current is also generated in the upper shield 260 by a magnetic field generated in the logic circuit 111 above the inductor 250.
- no element having the same shape as the inductor 250 is provided above the inductor 250.
- the eddy current generated by the magnetic field from the logic circuit 111 is not canceled, and the magnetic field from the logic circuit 111 is canceled by the reverse magnetic field generated by the eddy current.
- electromagnetic noise from above is shielded. Therefore, it is possible to protect the inductor 250 from the electromagnetic noise by reducing the electromagnetic noise caused by the magnetic field generated in the circuit other than the inductor 250 while suppressing the decrease in the inductance of the inductor 250.
- an upper layer shield 260 of a comparative example in which slits are formed not in the X direction but in the Y direction is assumed.
- an eddy current flows in the Y direction along the slit.
- the wirings 251 and 252 are arranged in the X direction, the eddy current induced on the right side of the upper shield 260 does not flow to the left side, and the eddy current induced on the left side does not flow to the right side. Therefore, the eddy current is not canceled except in the vicinity of the center, and the inductance of the inductor 250 may be reduced by the magnetic field generated by the eddy current.
- the direction of the eddy current is not limited by the slit, so the total current value of the eddy current is more than that when the slit is provided. Also grows. For this reason, compared with the case where a slit is provided, the fall amount of an inductance will become large.
- FIG. 9 is a diagram for explaining a method of measuring an insulation level in the first embodiment.
- An inductor 302 having a shape (such as a spiral shape) different from that of the inductor 250 is disposed above the upper layer shield 260, and the AC power supply 301 is connected to the inductor 302.
- the supply current of the AC power supply 301 when the frequency of the AC signal from the AC power supply 301 is f is measured as i in (f).
- the unit of the frequency f is, for example, hertz (Hz). Further, both ends of the inductance 250 are grounded.
- the current of the positive phase signal induced in the inductor 250 by the magnetic field generated by the inductor 302 is measured as i p (f), and the current of the negative phase signal is measured as i n (f).
- the unit of these currents is, for example, ampere (A).
- the insulation level LV ISO indicates a high effect of shielding electromagnetic noise generated in a circuit above the inductor 250 (such as the inductor 302). It means that the smaller the value of the insulation level LV ISO, the higher the electromagnetic noise shielding effect.
- the unit of the insulation level LV ISO is decibel (dB).
- FIG. 10 is a graph showing the insulation level for each frequency in the first embodiment.
- the vertical axis represents the insulation level LV ISO (dB)
- the horizontal axis represents the frequency f (Hz) of the AC signal.
- the dotted curve indicates the characteristic of the insulation level LV ISO when the upper shield 260 is not provided
- the solid curve indicates the characteristic of the insulation level LV ISO when the upper shield 260 is provided.
- the insulation level LV ISO can be made lower than when the upper shield 260 is not provided. In other words, the shielding effect of electromagnetic noise from circuits other than the inductor 250 can be improved.
- FIG. 11 is a graph showing the inductance for each frequency in the first embodiment.
- the vertical axis represents the inductance L (H) of the inductor 250
- the horizontal axis represents the frequency f (Hz) of the AC signal.
- the dotted curve indicates the characteristic of the inductance L when the upper layer shield 260 is not provided
- the solid line curve indicates the characteristic of the inductance L when the upper layer shield 260 is provided.
- the value of the inductance L hardly decreases (deteriorates) as compared to the case where the upper shield 260 is not provided.
- FIG. 12 is a graph showing the Q value for each frequency in the first embodiment.
- the vertical axis indicates the Q value of the inductor 250
- the horizontal axis indicates the frequency f (Hz) of the AC signal.
- a dotted curve indicates the Q value characteristic when the upper shield 260 is not provided
- a solid curve indicates the Q value characteristic when the upper shield 260 is provided.
- the Q value hardly decreases (deteriorates) compared to the case where the upper shield 260 is not provided.
- the upper shield 260 having the slit is inserted between the inductor 250 and the logic circuit 111, electromagnetic noise due to the magnetic field generated in the logic circuit 111 is reduced. can do.
- the eddy current is reduced by the slit of the upper shield 260, a decrease in the inductance of the inductor 250 can be suppressed.
- the upper layer shield 260 is arranged above the 8-shaped inductor 250 to protect the inductor 250 from electromagnetic noise.
- an inductor having a shape other than the 8-shaped inductor 250 is used. It can also be protected.
- a clock signal is a differential signal
- an inductor having a special shape in which two spiral wires having the same center are connected is used.
- the semiconductor device 100 of the second embodiment is different from the first embodiment in that the inductor 265 composed of two spiral wires having the same center is the protection target.
- FIG. 13 is an example of a plan view of the inductor 265 according to the second embodiment.
- An upper shield 260 is disposed above the inductor 265.
- the slit direction of the upper shield 260 may be a direction parallel to the substrate plane, and is not limited to the X direction.
- the inductor 265 includes a connected wiring 266 and a wiring 267.
- one end of the wiring 266 that is not connected to the wiring 267 is set as a start point 511 and the other end is set as a connection point 512.
- One end of the wiring 267 that is not connected to the wiring 266 is set as an end point 513.
- the wiring 266 is wound along a spiral path that turns clockwise a plurality of times from the start point 511 to the connection point 512 around the central axis parallel to the Z-axis direction.
- the wiring 267 is wound along a spiral path that turns clockwise a plurality of times from the connection point 512 to the end point 513 around the same central axis as the wiring 266.
- the wiring 266 has a smaller turning radius each time it turns from the start point 511 to the connection point 512, and the wiring 267 has a larger turning radius every time it turns from the connection point 512 to the end point 513.
- a normal phase signal is input / output at the start point 511, and a negative phase signal is input / output at the end point 513.
- the wiring 266 and the wiring 267 have a contrasting shape, the duty ratios of the normal-phase signal and the negative-phase signal can be made approximately the same.
- the direction of the current flowing through the wiring 266 and the wiring 267 is the same as that of the 8-shaped inductor 250 of the first embodiment.
- the eddy current generated at 260 is not canceled out.
- the magnetic field generated in the inductor 265 due to the eddy current can be canceled, so that electromagnetic noise generated in the upper logic circuit 111 can be reduced. That is, the upper layer shield 260 can protect the logic circuit 111 from electromagnetic noise in addition to the inductor 265.
- the upper layer shield 260 is inserted between the inductor 265 including the two spiral wires having the same center and the logic circuit 111.
- the logic circuit 111 can also be protected from electromagnetic noise.
- the inductor 265 composed of two spiral wires when the differential signal is output, the respective duty ratios of the positive phase signal and the negative phase signal in the differential signal are made equal. Can do.
- the upper layer shield 260 is arranged above the 8-shaped inductor 250 to protect the inductor 250 from electromagnetic noise.
- an inductor having a shape other than the 8-shaped inductor 250 is used. It can also be protected.
- a spiral inductor can be used instead of the figure eight shape.
- the semiconductor device 100 according to the third embodiment is different from the first embodiment in that a spiral inductor 270 is to be protected.
- FIG. 14 is an example of a plan view of the inductor 270 according to the third embodiment.
- An upper shield 260 is disposed above the inductor 270.
- the slit direction of the upper shield 260 may be a direction parallel to the substrate plane, and is not limited to the X direction.
- the inductor 270 is composed of a wire wound in a spiral shape from a start point 521 to an end point 522 around a central axis parallel to the Z direction.
- the effect of suppressing the decrease in inductance is higher than that of the plate-shaped electromagnetic shield without slits, but is lower than that of the first embodiment.
- the upper layer shield 260 can shield electromagnetic noise generated in the upper logic circuit 111.
- the logic circuit 111 is also protected from electromagnetic noise in addition to the inductor 270. can do.
- a single-ended signal can be output by a simple spiral inductor 270 as compared with the figure 8 shape.
- the electromagnetic shield (upper layer shield 260) is disposed only above the inductor 250, but a magnetic field generated in a circuit below the inductor 250 or on the same substrate (lower chip 150). May cause electromagnetic noise. It is difficult to reduce such electromagnetic noise only with the upper shield 260.
- the semiconductor device 100 according to the fourth embodiment is different from that according to the first embodiment in that electromagnetic noise caused by circuits below the inductor 250 or on the same substrate is reduced.
- FIG. 15 is a circuit diagram showing a configuration example of the voltage controlled oscillator 240 and the electromagnetic shield in the fourth embodiment.
- an outer peripheral shield 280 and a lower layer shield 290 are further provided as electromagnetic shields.
- the outer periphery shield 280 is an electromagnetic shield that surrounds the outer periphery of the inductor 250 in the lower chip 150.
- conductive wiring surrounding the inductor 250 is used as the outer peripheral shield 280.
- the potential of the outer shield 280 is, for example, a floating potential. Note that the potential of the outer shield 280 may be a fixed potential.
- the lower layer shield 290 is an electromagnetic shield disposed below the inductor 250.
- the lower layer shield 290 is inserted between the lower chip 150 and the inductor 250, for example.
- a fixed potential (such as a ground potential) is applied to the lower shield 290.
- the potential of the lower shield 290 may be a floating potential.
- FIG. 16 is an example of a perspective view of the inductor 250 and the electromagnetic shield in the fourth embodiment.
- “a” is an example of a perspective view of the upper shield 260
- “b” in the figure is an example of a perspective view of the inductor 250.
- c in the figure is an example of a perspective view of the outer periphery shield 280.
- This outer peripheral shield 280 is laminated according to the height of the inductor 250.
- d is an example of a perspective view of the lower layer shield 290.
- the lower layer shield 290 for example, a PGS (patterned ground shield) having a certain pattern (a shape similar to X or the like) is used. Instead of PGS, a shield having the same shape as the upper layer shield 260 may be disposed as the lower layer shield 290.
- both the outer periphery shield 280 and the lower layer shield 290 are arrange
- FIG. 17 is an example of a cross-sectional view of the inductor 250 and the electromagnetic shield in the fourth embodiment.
- the side surface of the inductor 250 is covered with the outer shield 280
- the upper surface is covered with the upper layer shield 260
- the lower surface is covered with the lower layer shield 290.
- the inductor 250 can be protected from electromagnetic noise due to a magnetic field generated in a circuit above, below and below the inductor 250.
- the circuit below the inductor 250 and the circuit on the lower chip 150 can be protected from electromagnetic noise caused by the magnetic field generated in the inductor 250.
- the outer peripheral shield 280 and the lower shield 290 are further arranged on the outer periphery and the lower side of the inductor 250, the magnetic field from the circuits on the same substrate and the lower side as the inductor 250 Electromagnetic noise can be reduced.
- this technique can also take the following structures.
- a substrate on which an inductor is disposed A shield with an upper layer slit, which is an electromagnetic shield that is disposed above the inductor with a predetermined direction perpendicular to the substrate plane of the substrate as an upward direction, and in which a slit is formed along a direction parallel to the substrate plane.
- Semiconductor device. (2) further comprising a circuit arrangement board on which the circuit is arranged; The semiconductor device according to (1), wherein the circuit arrangement substrate is stacked on the substrate.
- the inductor is A first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane; A second wire wound counterclockwise from the predetermined connection point to a predetermined end point about a second central axis that is perpendicular to the substrate plane and is different from the first central axis
- the semiconductor device according to (1) comprising: (4) The semiconductor device according to (3), wherein the slit is formed along a direction parallel to a straight line connecting the first central axis and the second central axis.
- the inductor is A first wiring wound along a spiral path that is swung a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane; A second wiring wound along a spiral path that swivels a plurality of times from the predetermined connection point to a predetermined end point around the predetermined central axis; The turning radius of the first wiring decreases each time it turns from the predetermined starting point to the predetermined connecting point, 2.
- the second wiring has a turning radius that increases each time the second wiring turns from the predetermined connection point to the predetermined end point.
- the semiconductor device according to (1) wherein the inductor includes a wiring wound along a spiral path.
- Semiconductor device. (10) The semiconductor device according to any one of (1) to (9), wherein a fixed potential is applied to the shield with the upper layer slit.
- (11) further comprising a capacitor connected to the inductor;
- the semiconductor device according to any one of (1) to (10), wherein the inductor and the capacitor resonate.
- (12) a phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating a phase difference;
- a charge pump that generates a voltage signal of a voltage corresponding to the phase difference indicated by the detection signal;
- a frequency divider that divides an oscillation signal generated by a resonance circuit including the inductor and the capacitor and feeds back as a feedback signal to the phase difference detector;
- the semiconductor device according to (11), wherein the capacitor is a variable capacitor whose capacitance value changes according to the voltage signal.
- (13) The semiconductor device according to (12), wherein the input signal is a clock signal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
A semiconductor device provided with an electromagnetic shield, wherein electromagnetic noise is decreased while a decrease in inductance is limited.
The semiconductor device is provided with a substrate, an inductor, and a shield with upper layer slits. In the semiconductor device, the inductor is disposed on the substrate. In addition, in the semiconductor device, the shield with the upper layer slits is disposed over the inductor with respect to an upper direction corresponding to a predetermined direction perpendicular to a substrate plane of the substrate, and the slits are formed extending in a direction parallel to the substrate plane.
Description
本技術は、半導体装置に関する。詳しくは、電磁シールドを設けた半導体装置に関する。
This technology relates to a semiconductor device. Specifically, the present invention relates to a semiconductor device provided with an electromagnetic shield.
従来より、半導体装置においては、静電誘導や電磁誘導による電磁ノイズを低減するために、保護対象の回路の周囲に導電体または磁性体が電磁シールドとして配置されることが多い。例えば、インダクタの周囲に、線状の導体を電磁シールドとして配線して、そのインダクタに生じる電磁ノイズを低減する半導体装置が提案されている(例えば、特許文献1参照。)。
Conventionally, in a semiconductor device, in order to reduce electromagnetic noise due to electrostatic induction or electromagnetic induction, a conductor or a magnetic body is often arranged as an electromagnetic shield around a circuit to be protected. For example, a semiconductor device has been proposed in which a linear conductor is wired around an inductor as an electromagnetic shield to reduce electromagnetic noise generated in the inductor (see, for example, Patent Document 1).
しかしながら、上述の半導体装置では、積層した複数の半導体チップに回路を分散して配置した場合には、インダクタに生じる電磁ノイズを十分に低減することができないおそれがある。これは、配線を電磁シールドとして用いた場合、基板に平行な方向からの磁界による電磁ノイズを低減することができるが、基板に垂直な方向からの磁界による電磁ノイズを低減することができないためである。一方、インダクタの上面や下面を板状の電磁シールドで覆った場合には、基板に垂直な方向の磁界を遮断して電磁ノイズを十分に低減することができるものの、その電磁シールドで発生した渦電流により、インダクタのインダクタンスが低下するおそれがある。これは、渦電流によって、インダクタが生成した磁界の方向と逆方向の磁界が生成され、その磁界によりインダクタに逆起電力が生じてしまうためである。インダクタンスが低下すると、インダクタのQ値が劣化してしまい、信号品質の低下を招いてしまう。また、例えば、LC共振回路でインダクタを用いている場合、発振周波数の変化を引き起こしてしまう。このため、インダクタンスの低下量は少ないことが望ましい。このように、上述の線状や板状の電磁シールドでは、インダクタンスの低下を抑制しつつ電磁ノイズを低減することが困難である。
However, in the semiconductor device described above, when a circuit is distributed and arranged in a plurality of stacked semiconductor chips, electromagnetic noise generated in the inductor may not be sufficiently reduced. This is because when wiring is used as an electromagnetic shield, electromagnetic noise due to a magnetic field from a direction parallel to the substrate can be reduced, but electromagnetic noise due to a magnetic field from a direction perpendicular to the substrate cannot be reduced. is there. On the other hand, when the upper and lower surfaces of the inductor are covered with a plate-shaped electromagnetic shield, the magnetic noise in the direction perpendicular to the substrate can be blocked to sufficiently reduce the electromagnetic noise, but the vortex generated by the electromagnetic shield has been reduced. There is a possibility that the inductance of the inductor is reduced by the current. This is because an eddy current generates a magnetic field in a direction opposite to the direction of the magnetic field generated by the inductor, and a back electromotive force is generated in the inductor by the magnetic field. When the inductance decreases, the Q value of the inductor deteriorates, leading to a decrease in signal quality. For example, when an inductor is used in the LC resonance circuit, the oscillation frequency is changed. For this reason, it is desirable that the amount of decrease in inductance is small. As described above, it is difficult for the above-described linear or plate-shaped electromagnetic shield to reduce electromagnetic noise while suppressing a decrease in inductance.
本技術はこのような状況に鑑みて生み出されたものであり、電磁シールドを設けた半導体装置において、インダクタンスの低下を抑制しつつ電磁ノイズを低減することを目的とする。
The present technology has been developed in view of such a situation, and aims to reduce electromagnetic noise while suppressing a decrease in inductance in a semiconductor device provided with an electromagnetic shield.
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、インダクタが配置された基板と、上記基板の基板平面に垂直な所定方向を上方向として上記インダクタの上方に配置され、上記基板平面に対して平行な方向に沿ってスリットが形成された電磁シールドである上層スリット付きシールドとを具備する半導体装置である。これにより、上層スリット付きシールドが電磁ノイズを低減するという作用をもたらす。
The present technology has been made to solve the above-described problems, and a first side of the present technology is that the inductor is disposed on the substrate on which the inductor is disposed and a predetermined direction perpendicular to the substrate plane of the substrate is the upward direction. And a shield with an upper layer slit, which is an electromagnetic shield in which a slit is formed along a direction parallel to the substrate plane. Thereby, the shield with the upper layer slit has an effect of reducing electromagnetic noise.
また、この第1の側面において、回路が配置された回路配置基板をさらに備え、上記回路配置基板は、上記基板に積層されてもよい。これにより、回路配置基板が積層された半導体装置において電磁ノイズが低減するという作用をもたらす。
Further, in the first aspect, a circuit arrangement board on which a circuit is arranged may be further provided, and the circuit arrangement board may be laminated on the board. This brings about the effect | action that electromagnetic noise reduces in the semiconductor device with which the circuit arrangement substrate was laminated | stacked.
また、この第1の側面において、上記インダクタは、上記基板平面に垂直な第1の中心軸を中心として所定の始点から所定の接続点まで時計回りに巻かれた第1の配線と、上記基板平面に垂直な軸であって上記第1の中心軸とは異なる第2の中心軸を中心として上記所定の接続点から所定の終点まで反時計回りに巻かれた第2の配線とを備えてもよい。これにより、第1および第2の配線のそれぞれで逆方向の磁界が生じるという作用をもたらす。
In the first aspect, the inductor includes a first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane, and the substrate. A second wiring wound in a counterclockwise direction from the predetermined connection point to a predetermined end point with a second central axis different from the first central axis as an axis perpendicular to the plane Also good. This brings about the effect | action that the magnetic field of a reverse direction arises in each of the 1st and 2nd wiring.
また、この第1の側面において、上記スリットは、上記第1の中心軸と上記第2の中心軸とを結ぶ直線に平行な方向に沿って形成されてもよい。これにより、挿入シールドにおける渦電流の発生が抑制されるという作用をもたらす。
Further, in the first aspect, the slit may be formed along a direction parallel to a straight line connecting the first central axis and the second central axis. Thereby, the effect | action that generation | occurrence | production of the eddy current in an insertion shield is suppressed is brought about.
また、この第1の側面において、上記インダクタは、上記基板平面に垂直な所定の中心軸を中心として所定の始点から所定の接続点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第1の配線と、上記所定の中心軸を中心として上記所定の接続点から所定の終点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第2の配線とを備え、上記第1の配線は、上記所定の始点から上記所定の接続点に対して旋回するたびに旋回半径が小さくなり、上記第2の配線は、上記所定の接続点から上記所定の終点に対して旋回するたびに旋回半径が大きくなってもよい。これにより、差動信号を出力するインダクタに生じる電磁ノイズを低減するという作用をもたらす。
In the first aspect, the inductor is wound along a spiral path that turns a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane. And a second wiring wound along a spiral path that turns a plurality of times from the predetermined connection point to a predetermined end point about the predetermined central axis. Each time the first wiring turns from the predetermined start point to the predetermined connection point, the turning radius decreases, and the second wiring extends from the predetermined connection point to the predetermined end point. The turning radius may increase each time the vehicle turns. This brings about the effect | action of reducing the electromagnetic noise which arises in the inductor which outputs a differential signal.
また、この第1の側面において、上記インダクタは、渦巻き状の経路に沿って巻かれた配線を備えてもよい。これにより、渦巻き状のインダクタに生じる電磁ノイズを低減するという作用をもたらす。
Also, in this first aspect, the inductor may include a wiring wound along a spiral path. This brings about the effect | action of reducing the electromagnetic noise which arises in a spiral inductor.
また、この第1の側面において、上記インダクタの外周を囲む電磁シールドである外周シールドをさらに具備してもよい。これにより、インダクタの外周の回路で生じた磁界による電磁ノイズを低減するという作用をもたらす。
Further, in the first aspect, an outer peripheral shield that is an electromagnetic shield surrounding the outer periphery of the inductor may be further provided. This brings about the effect | action of reducing the electromagnetic noise by the magnetic field produced in the circuit of the outer periphery of an inductor.
また、この第1の側面において、上記インダクタの下方に配置された電磁シールドである下層シールドをさらに具備してもよい。これにより、インダクタの下方の回路で生じた磁界による電磁ノイズを低減するという作用をもたらす。
Further, in the first aspect, a lower shield that is an electromagnetic shield disposed below the inductor may be further provided. This brings about the effect | action of reducing the electromagnetic noise by the magnetic field produced in the circuit under an inductor.
また、この第1の側面において、上記インダクタの下方に配置され、上記基板平面に対して平行な方向に沿ってスリットが形成された下層スリット付きシールドをさらに具備してもよい。これにより、インダクタの下方の回路で生じた磁界による電磁ノイズを低減するという作用をもたらす。
The first side surface may further include a shield with a lower layer slit disposed below the inductor and having a slit formed in a direction parallel to the substrate plane. This brings about the effect | action of reducing the electromagnetic noise by the magnetic field produced in the circuit under an inductor.
また、この第1の側面において、上記上層スリット付きシールドには固定電位が印加されてもよい。これにより、静電誘導による電磁ノイズを低減するという作用をもたらす。
Also, in this first aspect, a fixed potential may be applied to the shield with the upper layer slit. This brings about the effect | action of reducing the electromagnetic noise by electrostatic induction.
また、この第1の側面において、上記インダクタに接続された容量をさらに具備し、、上記インダクタおよび上記容量は共振してもよい。これにより、共振回路において電磁ノイズを低減するという作用をもたらす。
Further, in the first aspect, a capacitor connected to the inductor may be further provided, and the inductor and the capacitor may resonate. This brings about the effect | action of reducing electromagnetic noise in a resonance circuit.
また、この第1の側面において、入力信号と帰還信号との位相を比較して位相差を示す検出信号を出力する位相比較器と、上記検出信号の示す上記位相差に応じた電圧の電圧信号を生成するチャージポンプと、上記インダクタおよび上記容量を含む共振回路により生成された発振信号を分周して上記帰還信号として上記位相差検出器に帰還させる分周器と
をさらに具備し、上記容量は、上記電圧信号に応じて容量値が変化する可変容量であってもよい。これにより、入力信号の周期が逓倍されるという作用をもたらす。 Further, according to the first aspect, the phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating the phase difference, and the voltage signal of the voltage corresponding to the phase difference indicated by the detection signal And a frequency divider that divides the oscillation signal generated by the resonance circuit including the inductor and the capacitor and feeds back to the phase difference detector as the feedback signal. May be a variable capacitor whose capacitance value changes according to the voltage signal. This brings about the effect that the cycle of the input signal is multiplied.
をさらに具備し、上記容量は、上記電圧信号に応じて容量値が変化する可変容量であってもよい。これにより、入力信号の周期が逓倍されるという作用をもたらす。 Further, according to the first aspect, the phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating the phase difference, and the voltage signal of the voltage corresponding to the phase difference indicated by the detection signal And a frequency divider that divides the oscillation signal generated by the resonance circuit including the inductor and the capacitor and feeds back to the phase difference detector as the feedback signal. May be a variable capacitor whose capacitance value changes according to the voltage signal. This brings about the effect that the cycle of the input signal is multiplied.
また、この第1の側面において、上記入力信号は、クロック信号であってもよい。これにより、クロック信号が逓倍されるという作用をもたらす。
In this first aspect, the input signal may be a clock signal. As a result, the clock signal is multiplied.
本技術によれば、電磁シールドを設けた半導体装置において、インダクタンスの低下を抑制しつつ電磁ノイズを低減することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
According to the present technology, in a semiconductor device provided with an electromagnetic shield, it is possible to achieve an excellent effect that electromagnetic noise can be reduced while suppressing a decrease in inductance. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(インダクタと回路との間にスリット付きのシールドを挿入した例)
2.第2の実施の形態(差動信号を生成するインダクタと回路との間にスリット付きのシールドを挿入した例)
3.第3の実施の形態(渦巻き状のインダクタと回路との間にスリット付きのシールドを挿入した例)
4.第4の実施の形態(インダクタと回路との間にスリット付きのシールドを挿入し、下層シールドおよび外周シールドを設けた例) Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (example in which a shield with a slit is inserted between an inductor and a circuit)
2. Second Embodiment (Example in which a shield with a slit is inserted between an inductor for generating a differential signal and a circuit)
3. Third Embodiment (Example in which a shield with a slit is inserted between a spiral inductor and a circuit)
4). Fourth Embodiment (Example in which a shield with a slit is inserted between an inductor and a circuit, and a lower shield and an outer shield are provided)
1.第1の実施の形態(インダクタと回路との間にスリット付きのシールドを挿入した例)
2.第2の実施の形態(差動信号を生成するインダクタと回路との間にスリット付きのシールドを挿入した例)
3.第3の実施の形態(渦巻き状のインダクタと回路との間にスリット付きのシールドを挿入した例)
4.第4の実施の形態(インダクタと回路との間にスリット付きのシールドを挿入し、下層シールドおよび外周シールドを設けた例) Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (example in which a shield with a slit is inserted between an inductor and a circuit)
2. Second Embodiment (Example in which a shield with a slit is inserted between an inductor for generating a differential signal and a circuit)
3. Third Embodiment (Example in which a shield with a slit is inserted between a spiral inductor and a circuit)
4). Fourth Embodiment (Example in which a shield with a slit is inserted between an inductor and a circuit, and a lower shield and an outer shield are provided)
<1.第1の実施の形態>
[半導体装置の構成例]
図1は、本技術の実施の形態における半導体装置100の一構成例を示すブロック図である。この半導体装置100として、例えば、撮像素子やLSI(Large Scale Integration)などを搭載した装置が想定される。半導体装置100には、上側チップ110および下側チップ150などの、積層された複数の半導体チップが設けられる。この上側チップ110には、論理回路111が配置される。また、下側チップ150には、論理回路151および位相同期回路200が配置される。 <1. First Embodiment>
[Configuration example of semiconductor device]
FIG. 1 is a block diagram illustrating a configuration example of thesemiconductor device 100 according to the embodiment of the present technology. As this semiconductor device 100, for example, a device equipped with an image sensor, an LSI (Large Scale Integration), or the like is assumed. The semiconductor device 100 is provided with a plurality of stacked semiconductor chips such as the upper chip 110 and the lower chip 150. A logic circuit 111 is arranged on the upper chip 110. In the lower chip 150, a logic circuit 151 and a phase synchronization circuit 200 are arranged.
[半導体装置の構成例]
図1は、本技術の実施の形態における半導体装置100の一構成例を示すブロック図である。この半導体装置100として、例えば、撮像素子やLSI(Large Scale Integration)などを搭載した装置が想定される。半導体装置100には、上側チップ110および下側チップ150などの、積層された複数の半導体チップが設けられる。この上側チップ110には、論理回路111が配置される。また、下側チップ150には、論理回路151および位相同期回路200が配置される。 <1. First Embodiment>
[Configuration example of semiconductor device]
FIG. 1 is a block diagram illustrating a configuration example of the
なお、2枚の半導体チップを積層しているが、積層する半導体チップの枚数は2枚に限定されず、3枚以上であってもよい。
Although two semiconductor chips are stacked, the number of stacked semiconductor chips is not limited to two, and may be three or more.
論理回路111は、所定の処理を実行するものである。この論理回路111は、下側の論理回路151との間で信号線119を介してデータを送受信する。論理回路111としては、例えば、画素回路や、その画素回路を駆動する垂直駆動回路が想定される。
The logic circuit 111 executes a predetermined process. The logic circuit 111 transmits / receives data to / from the lower logic circuit 151 via the signal line 119. As the logic circuit 111, for example, a pixel circuit or a vertical drive circuit that drives the pixel circuit is assumed.
論理回路151は、位相同期回路200からのクロック信号CLKoutに同期して、所定の処理を実行するものである。論理回路151としては、例えば、AD(Analog to Digital)変換器や、そのAD変換器を駆動する水平駆動回路が想定される。
Logic circuit 151, in synchronization with the clock signal CLK out from the phase synchronization circuit 200, and executes a predetermined process. As the logic circuit 151, for example, an AD (Analog to Digital) converter or a horizontal driving circuit for driving the AD converter is assumed.
位相同期回路200には、外部の水晶発振器などにより生成された所定の周期のクロック信号CLKinが入力される。位相同期回路200は、そのクロック信号CLKinを所定の逓倍比で逓倍してクロック信号CLKoutとして論理回路151に信号線209を介して出力する。
The phase synchronization circuit 200 receives a clock signal CLK in having a predetermined period generated by an external crystal oscillator or the like. The phase synchronization circuit 200 multiplies the clock signal CLK in by a predetermined multiplication ratio and outputs it as a clock signal CLK out to the logic circuit 151 via the signal line 209.
[位相同期回路の構成例]
図2は、第1の実施の形態における位相同期回路200の一構成例を示すブロック図である。この位相同期回路200は、位相比較器210、チャージポンプ220、分周器230および電圧制御発振器240を備える。 [Configuration example of phase synchronization circuit]
FIG. 2 is a block diagram illustrating a configuration example of thephase synchronization circuit 200 according to the first embodiment. The phase synchronization circuit 200 includes a phase comparator 210, a charge pump 220, a frequency divider 230, and a voltage controlled oscillator 240.
図2は、第1の実施の形態における位相同期回路200の一構成例を示すブロック図である。この位相同期回路200は、位相比較器210、チャージポンプ220、分周器230および電圧制御発振器240を備える。 [Configuration example of phase synchronization circuit]
FIG. 2 is a block diagram illustrating a configuration example of the
位相比較器210は、水晶発振器152からのクロック信号CLKinと、分周器230からのクロック信号CLKfbとの位相を比較するものである。この位相比較器210は、比較結果に基づいて、それらの信号の位相差を示す検出信号UPおよびDNを生成してチャージポンプ220に供給する。例えば、検出信号UPおよびDNのパルス幅の差が、クロック信号CLKinとクロック信号CLKfbとの位相差を示す。
The phase comparator 210 compares the phase of the clock signal CLK in from the crystal oscillator 152 and the clock signal CLK fb from the frequency divider 230. The phase comparator 210 generates detection signals UP and DN indicating the phase difference between the signals based on the comparison result, and supplies the detection signals UP and DN to the charge pump 220. For example, the difference between the pulse widths of the detection signals UP and DN indicates the phase difference between the clock signal CLK in and the clock signal CLK fb .
チャージポンプ220は、検出信号UPおよびDNの示す位相差に応じた電圧の制御信号Vcを生成するものである。このチャージポンプ220は、制御信号Vcを電圧制御発振器240に供給する。
The charge pump 220 generates a control signal Vc having a voltage corresponding to the phase difference indicated by the detection signals UP and DN. The charge pump 220 supplies a control signal Vc to the voltage controlled oscillator 240.
電圧制御発振器240は、制御信号Vcの電圧に応じた周波数のクロック信号CLKoutを生成し、分周器230および論理回路151に供給するものである。このクロック信号CLKoutは、例えば、シングルエンド信号である。
The voltage controlled oscillator 240 generates a clock signal CLK out having a frequency corresponding to the voltage of the control signal Vc, and supplies the clock signal CLK out to the frequency divider 230 and the logic circuit 151. The clock signal CLK out is, for example, a single end signal.
分周器230は、電圧制御発振器240からのクロック信号CLKoutを所定の分周比で分周するものである。この分周器230は、分周した信号をクロック信号CLKfbとして位相比較器210に帰還させる。このように電圧制御発振器240からのクロック信号CLKoutを分周した信号を帰還させることにより、位相同期回路200は、クロック信号CLKinを逓倍した信号を生成することができる。
Divider 230 is for dividing the clock signal CLK out from the voltage controlled oscillator 240 at a predetermined frequency division ratio. The frequency divider 230 feeds back the frequency- divided signal to the phase comparator 210 as the clock signal CLK fb . By thus feeding back a divided signal of the clock signal CLK out from the voltage controlled oscillator 240, phase synchronization circuit 200 can generate a multiplied signal of the clock signal CLK in.
[電圧制御発振器の構成例]
図3は、第1の実施の形態における電圧制御発振器240および電磁シールドの一構成例を示す回路図である。この電圧制御発振器240は、増幅回路241、インダクタ250および可変容量242を備える。可変容量242およびインダクタ250は、増幅回路241に並列に接続される。また、下側チップ150から上側チップ110に向かう方向を上方向として、インダクタ250の上方に上層シールド260が積層される。 [Configuration example of voltage controlled oscillator]
FIG. 3 is a circuit diagram showing a configuration example of the voltage controlledoscillator 240 and the electromagnetic shield in the first embodiment. The voltage controlled oscillator 240 includes an amplifier circuit 241, an inductor 250, and a variable capacitor 242. The variable capacitor 242 and the inductor 250 are connected to the amplifier circuit 241 in parallel. Further, the upper shield 260 is laminated above the inductor 250 with the direction from the lower chip 150 toward the upper chip 110 as the upward direction.
図3は、第1の実施の形態における電圧制御発振器240および電磁シールドの一構成例を示す回路図である。この電圧制御発振器240は、増幅回路241、インダクタ250および可変容量242を備える。可変容量242およびインダクタ250は、増幅回路241に並列に接続される。また、下側チップ150から上側チップ110に向かう方向を上方向として、インダクタ250の上方に上層シールド260が積層される。 [Configuration example of voltage controlled oscillator]
FIG. 3 is a circuit diagram showing a configuration example of the voltage controlled
可変容量242は、チャージポンプ220からの制御信号Vcの電圧に応じて電気容量が変化するキャパシタである。例えば、バリキャップダイオードが、可変容量242として用いられる。なお、可変容量242は、特許請求の範囲に記載の容量の一例である。
The variable capacitor 242 is a capacitor whose electric capacity changes according to the voltage of the control signal Vc from the charge pump 220. For example, a varicap diode is used as the variable capacitor 242. The variable capacitor 242 is an example of a capacitor described in the claims.
インダクタ250は、可変容量242と共振してクロック信号を生成するものである。また、このインダクタ250は、上方向または下方向への磁界を生成する。
The inductor 250 resonates with the variable capacitor 242 to generate a clock signal. The inductor 250 generates a magnetic field in the upward direction or the downward direction.
増幅回路241は、可変容量242およびインダクタ250からなるLC共振回路により生成された信号を増幅し、クロック信号CLKoutとして分周器230および論理回路151に供給するものである。
Amplifier circuit 241 is for amplifying the signal generated by the LC resonance circuit composed of the variable capacitance 242 and the inductor 250, is supplied to the frequency divider 230 and the logic circuit 151 as the clock signal CLK out.
上層シールド260は、上側チップ110および下側チップ150のそれぞれの基板平面に対して平行な方向に沿ってスリットが形成された電磁シールドである。また、上層シールド260には、所定の固定電位(例えば、グランド電位)が印加される。この上層シールド260により、上側の論理回路111で発生した磁界による電磁ノイズが遮蔽され、その電磁ノイズから下側のインダクタ250が保護される。
The upper layer shield 260 is an electromagnetic shield in which slits are formed along directions parallel to the respective substrate planes of the upper chip 110 and the lower chip 150. The upper shield 260 is applied with a predetermined fixed potential (for example, ground potential). The upper shield 260 shields electromagnetic noise caused by the magnetic field generated in the upper logic circuit 111, and protects the lower inductor 250 from the electromagnetic noise.
なお、上層シールド260の電位を固定電位としているが、浮動電位としてもよい。この場合には、上層シールド260は、電磁誘導による電磁ノイズのみを遮蔽する磁界シールドとして機能する。静電誘導による電磁ノイズも遮蔽する必要がある場合には、上層シールド260に固定電位が印加される。
Although the upper shield 260 has a fixed potential, it may be a floating potential. In this case, the upper shield 260 functions as a magnetic field shield that shields only electromagnetic noise due to electromagnetic induction. When it is necessary to shield electromagnetic noise due to electrostatic induction, a fixed potential is applied to the upper shield 260.
また、上層シールド260を電圧制御発振器240内のインダクタ250の上方に配置しているが、電圧制御発振器240以外の回路(バッファ回路やクロック分配回路など)に設けられたインダクタの上方に配置してもよい。
Further, although the upper shield 260 is disposed above the inductor 250 in the voltage controlled oscillator 240, it is disposed above the inductor provided in a circuit (buffer circuit, clock distribution circuit, etc.) other than the voltage controlled oscillator 240. Also good.
図4は、第1の実施の形態における半導体装置の斜視図の一例である。同図におけるaは、上側チップ110および下側チップ150の斜視図の一例である。同図におけるbは、上層シールド260を拡大した斜視図の一例であり、同図におけるcは、インダクタ250を拡大した斜視図の一例である。
FIG. 4 is an example of a perspective view of the semiconductor device according to the first embodiment. A in the figure is an example of a perspective view of the upper chip 110 and the lower chip 150. B in the figure is an example of an enlarged perspective view of the upper shield 260, and c in the figure is an example of an enlarged perspective view of the inductor 250.
図4におけるaに例示するように、下側チップ150にインダクタ250が配置され、その上方に、上層シールド260が積層される。言い換えれば、上層シールド260は、インダクタ250と上側チップ110との間に挿入される。そして、上層シールド260の上方の上側チップ110に論理回路111が配置される。この論理回路111において、インダクタ250の上方には、インダクタ250と同じ形状のインダクタが設けられないものとする。
As illustrated in FIG. 4a, an inductor 250 is disposed on the lower chip 150, and an upper shield 260 is laminated thereon. In other words, the upper shield 260 is inserted between the inductor 250 and the upper chip 110. Then, the logic circuit 111 is disposed on the upper chip 110 above the upper shield 260. In this logic circuit 111, it is assumed that an inductor having the same shape as the inductor 250 is not provided above the inductor 250.
なお、上側チップ110は、特許請求の範囲に記載の回路配置基板の一例であり、下側チップ150は、特許請求の範囲に記載のインダクタ配置基板の一例である。また、上層シールド260は、特許請求の範囲に記載の上層スリット付きシールドの一例である。
The upper chip 110 is an example of a circuit arrangement board described in the claims, and the lower chip 150 is an example of an inductor arrangement board described in the claims. The upper layer shield 260 is an example of a shield with an upper layer slit described in the claims.
また、上層シールド260をインダクタ250と上側チップ110との間に挿入しているが、インダクタ250と、それ以外の回路との間に上層シールド260が配置されるのであれば、この構成に限定されない。例えば、上層シールド260を上側チップ110に設け、その上方に論理回路111を積層してもよい。
Further, although the upper layer shield 260 is inserted between the inductor 250 and the upper chip 110, the configuration is not limited to this configuration as long as the upper layer shield 260 is disposed between the inductor 250 and other circuits. . For example, the upper layer shield 260 may be provided on the upper chip 110, and the logic circuit 111 may be stacked thereon.
また、図4におけるbに例示するように、上層シールド260には、上側チップ110および下側チップ150の基板平面に対して平行な方向に沿って、所定数のスリットが形成される。
Also, as illustrated in FIG. 4b, the upper shield 260 is formed with a predetermined number of slits along a direction parallel to the substrate plane of the upper chip 110 and the lower chip 150.
また、図4におけるcに例示するように、インダクタ250は、接続された配線251および配線252から構成される。これらの配線251および配線252は、基板平面に垂直な中心軸を中心として円形に巻かれている。また、これらの配線251および252は、複数層に積層されている。なお、これらの配線を複数層とせずに単層としてもよい。
Further, as illustrated in c in FIG. 4, the inductor 250 includes a connected wiring 251 and a wiring 252. These wirings 251 and 252 are wound in a circle around a central axis perpendicular to the substrate plane. These wirings 251 and 252 are stacked in a plurality of layers. Note that these wirings may be a single layer instead of a plurality of layers.
そして、配線251および配線252のそれぞれの中心は同一でなく、一定の距離を空けて配置されている。これらの中心を結ぶ直線に平行な方向を以下、X方向とする。また、基板平面に対して平行で、X方向に垂直な方向を以下、Y方向とする。基板平面に垂直な方向を以下、Z方向とする。上述の上層シールド260のスリットは、X方向に沿って形成される。
The centers of the wiring 251 and the wiring 252 are not the same, and are arranged at a certain distance. A direction parallel to a straight line connecting these centers is hereinafter referred to as an X direction. A direction parallel to the substrate plane and perpendicular to the X direction is hereinafter referred to as a Y direction. A direction perpendicular to the substrate plane is hereinafter referred to as a Z direction. The slit of the upper shield 260 described above is formed along the X direction.
[インダクタの構成例]
図5は、第1の実施の形態におけるインダクタ250の平面図の一例である。このインダクタ250は、接続された配線251および配線252から構成される。ここで、配線251の両端のうち配線252と接続されていない方の一端を始点501とし、他端を接続点502とする。また、配線252の両端のうち配線251と接続されていない方の一端を終点503とする。 [Inductor configuration example]
FIG. 5 is an example of a plan view of theinductor 250 according to the first embodiment. The inductor 250 includes a wiring 251 and a wiring 252 connected to each other. Here, one end of the wiring 251 that is not connected to the wiring 252 is set as a start point 501 and the other end is set as a connection point 502. One end of the wiring 252 that is not connected to the wiring 251 is defined as an end point 503.
図5は、第1の実施の形態におけるインダクタ250の平面図の一例である。このインダクタ250は、接続された配線251および配線252から構成される。ここで、配線251の両端のうち配線252と接続されていない方の一端を始点501とし、他端を接続点502とする。また、配線252の両端のうち配線251と接続されていない方の一端を終点503とする。 [Inductor configuration example]
FIG. 5 is an example of a plan view of the
配線251は、Z方向に平行な中心軸を中心として始点501から接続点502まで時計回りに巻かれている。一方、配線252は、Z方向に平行な中心軸を中心として接続点502から終点503まで反時計回りに巻かれている。配線251および252のそれぞれの巻き数は例えば、2回である。なお、巻き数は2回に限定されない。
The wiring 251 is wound clockwise from the start point 501 to the connection point 502 around the central axis parallel to the Z direction. On the other hand, the wiring 252 is wound counterclockwise from the connection point 502 to the end point 503 around the central axis parallel to the Z direction. For example, the number of turns of the wirings 251 and 252 is two. The number of windings is not limited to two.
そして、配線251および配線252のそれぞれの中心は同一でなく、これらの中心は、X方向に平行な直線上に配置されている。このような8の字型のインダクタ250において、始点501および終点503の一方から他方へ電流を流すと、配線251と、配線252とで互いに逆方向の磁界が生じる。例えば、配線251で上方向の磁界が生じるときには、配線252で下方向の磁界が生じる。
The centers of the wiring 251 and the wiring 252 are not the same, and these centers are arranged on a straight line parallel to the X direction. In such an 8-shaped inductor 250, when a current is passed from one of the start point 501 and the end point 503 to the other, a magnetic field in the opposite direction is generated between the wiring 251 and the wiring 252. For example, when an upward magnetic field is generated in the wiring 251, a downward magnetic field is generated in the wiring 252.
[上層シールドの構成例]
図6は、第1の実施の形態における上層シールド260の平面図の一例である。この上層シールド260には、X方向に沿って所定数のスリットが形成されている。また、上層シールド260には、所定の固定電位(グランド電位など)が印加される。 [Configuration example of upper shield]
FIG. 6 is an example of a plan view of theupper shield 260 in the first embodiment. A predetermined number of slits are formed in the upper shield 260 along the X direction. Further, a predetermined fixed potential (ground potential or the like) is applied to the upper layer shield 260.
図6は、第1の実施の形態における上層シールド260の平面図の一例である。この上層シールド260には、X方向に沿って所定数のスリットが形成されている。また、上層シールド260には、所定の固定電位(グランド電位など)が印加される。 [Configuration example of upper shield]
FIG. 6 is an example of a plan view of the
図7は、第1の実施の形態におけるインダクタ250に流れる電流の方向の一例を示す図である。始点501から終点503の方向に電流を流すと、配線251において、時計回りに電流が流れ、配線252において反時計回りに電流が流れる。
FIG. 7 is a diagram illustrating an example of a direction of a current flowing through the inductor 250 according to the first embodiment. When a current flows from the start point 501 to the end point 503, a current flows clockwise in the wiring 251 and a current flows counterclockwise in the wiring 252.
図8は、第1の実施の形態における上層シールド260内の誘導電流の方向の一例を示す図である。同図において、太い点線は、配線251に流れる電流を示し、細い点線は、配線251で生じた磁界により上層シールド260に誘導される渦電流を示す。また、太い実線は、配線252に流れる電流の経路を示し、細い実線は、配線252で生じた磁界により上層シールド260に誘導される渦電流を示す。
FIG. 8 is a diagram illustrating an example of the direction of the induced current in the upper shield 260 according to the first embodiment. In the figure, a thick dotted line indicates a current flowing through the wiring 251, and a thin dotted line indicates an eddy current induced in the upper shield 260 by a magnetic field generated in the wiring 251. A thick solid line indicates a path of current flowing through the wiring 252, and a thin solid line indicates eddy current induced in the upper shield 260 by a magnetic field generated in the wiring 252.
配線251では時計回りに電流が流れて、その電流により下方向の磁界が生じる。この磁界により、電磁誘導の法則に従って、上層シールド260に反時計回りの渦電流(点線)が流れる。一方、配線252では、反時計回りに電流が流れて、その電流により上方向の磁界が生じる。この磁界により、電磁誘導の法則に従って、上層シールド260に時計回りの渦電流(実線)が流れる。
In the wiring 251, a current flows clockwise, and a downward magnetic field is generated by the current. Due to this magnetic field, a counterclockwise eddy current (dotted line) flows through the upper shield 260 in accordance with the law of electromagnetic induction. On the other hand, in the wiring 252, a current flows counterclockwise, and an upward magnetic field is generated by the current. This magnetic field causes a clockwise eddy current (solid line) to flow through the upper shield 260 in accordance with the law of electromagnetic induction.
前述したように上層シールド260においてスリットは、X方向に沿って形成されている。また、インダクタ250において配線251および252はX方向に沿って並んでいる。したがって、配線251側を左側、配線252側を右側として、上層シールド260の右側で誘導された渦電流がスリットに沿って左側に流れ、左側で誘導された渦電流はスリットに沿って右側に流れこむ。これらの渦電流は、互いに向きが逆であるため、打ち消しあう。このため、上層シールド260全体では渦電流がほとんど生じず、その渦電流により生成された磁界によってインダクタ250に逆起電力が生じるおそれが無くなる。したがって、その逆起電力によるインダクタ250のインダクタンスの低下を抑制することができる。また、インダクタンスの低下を抑制することにより、インダクタ250のQ値の低下を抑制することができる。ここで、Q値は、例えば、次の式により表される。
Q=2πfL/R
上式において、Lは、インダクタ250のインダクタンスを示し、単位は例えば、ヘンリー(H)である。fは、インダクタ250が可変容量242などと共振する際の発振周波数を示し、単位は例えば、ヘルツ(Hz)である。Rは、インダクタンス250の内部抵抗を示し、単位は例えば、オーム(Ω)である。 As described above, the slit in theupper shield 260 is formed along the X direction. In the inductor 250, the wirings 251 and 252 are arranged along the X direction. Therefore, with the wiring 251 side as the left side and the wiring 252 side as the right side, the eddy current induced on the right side of the upper shield 260 flows to the left along the slit, and the eddy current induced on the left side flows to the right along the slit. Come on. These eddy currents cancel each other because their directions are opposite to each other. For this reason, almost no eddy current is generated in the entire upper shield 260, and there is no possibility that a counter electromotive force is generated in the inductor 250 by the magnetic field generated by the eddy current. Therefore, a decrease in the inductance of inductor 250 due to the counter electromotive force can be suppressed. Moreover, the fall of Q value of the inductor 250 can be suppressed by suppressing the fall of an inductance. Here, the Q value is represented by the following equation, for example.
Q = 2πfL / R
In the above equation, L represents the inductance of theinductor 250, and the unit is, for example, Henry (H). f indicates an oscillation frequency when the inductor 250 resonates with the variable capacitor 242 or the like, and the unit is, for example, hertz (Hz). R represents the internal resistance of the inductance 250, and its unit is, for example, ohm (Ω).
Q=2πfL/R
上式において、Lは、インダクタ250のインダクタンスを示し、単位は例えば、ヘンリー(H)である。fは、インダクタ250が可変容量242などと共振する際の発振周波数を示し、単位は例えば、ヘルツ(Hz)である。Rは、インダクタンス250の内部抵抗を示し、単位は例えば、オーム(Ω)である。 As described above, the slit in the
Q = 2πfL / R
In the above equation, L represents the inductance of the
また、インダクタ250の上方の論理回路111で生じた磁界によっても上層シールド260に渦電流が生じるが、前述したように、インダクタ250の上方には、インダクタ250と同じ形状の素子は設けられていない。このため、論理回路111からの磁界により生じた渦電流は打ち消されることが無く、その渦電流により生じた逆方向の磁界により、論理回路111からの磁界が打ち消される。これにより、上方からの電磁ノイズが遮蔽される。したがって、インダクタ250のインダクタンスの低下を抑制しつつ、インダクタ250以外の回路で生じた磁界による電磁ノイズを低減して、その電磁ノイズからインダクタ250を保護することができる。
An eddy current is also generated in the upper shield 260 by a magnetic field generated in the logic circuit 111 above the inductor 250. However, as described above, no element having the same shape as the inductor 250 is provided above the inductor 250. . For this reason, the eddy current generated by the magnetic field from the logic circuit 111 is not canceled, and the magnetic field from the logic circuit 111 is canceled by the reverse magnetic field generated by the eddy current. Thereby, electromagnetic noise from above is shielded. Therefore, it is possible to protect the inductor 250 from the electromagnetic noise by reducing the electromagnetic noise caused by the magnetic field generated in the circuit other than the inductor 250 while suppressing the decrease in the inductance of the inductor 250.
ここで、X方向で無く、Y方向に沿ってスリットが形成された比較例の上層シールド260を仮定する。この比較例では、スリットに沿ってY方向に渦電流が流れる。しかし、配線251および252はX方向に配置されているため、上層シールド260の右側で誘導された渦電流が左側に流れず、左側で誘導された渦電流が右側に流れることもなくなる。したがって、中央付近を除いて、渦電流が打ち消されず、その渦電流により生じた磁界により、インダクタ250のインダクタンスが低下するおそれがある。
Here, an upper layer shield 260 of a comparative example in which slits are formed not in the X direction but in the Y direction is assumed. In this comparative example, an eddy current flows in the Y direction along the slit. However, since the wirings 251 and 252 are arranged in the X direction, the eddy current induced on the right side of the upper shield 260 does not flow to the left side, and the eddy current induced on the left side does not flow to the right side. Therefore, the eddy current is not canceled except in the vicinity of the center, and the inductance of the inductor 250 may be reduced by the magnetic field generated by the eddy current.
また、方向に関わらず、スリット自体を上層シールド260に設けない場合には、スリットにより渦電流の方向が制限されることが無いため、渦電流の電流値の合計が、スリットを設けた場合よりも大きくなる。このため、スリットを設けた場合と比較して、インダクタンスの低下量が大きくなってしまう。
In addition, when the slit itself is not provided in the upper layer shield 260 regardless of the direction, the direction of the eddy current is not limited by the slit, so the total current value of the eddy current is more than that when the slit is provided. Also grows. For this reason, compared with the case where a slit is provided, the fall amount of an inductance will become large.
図9は、第1の実施の形態における絶縁レベルの測定方法を説明するための図である。上層シールド260の上方に、インダクタ250と異なる形状(渦巻き形状など)のインダクタ302を配置し、そのインダクタ302に、交流電源301を接続する。交流電源301からの交流信号の周波数がfであるときの交流電源301の供給電流は、iin(f)として測定される。周波数fの単位は、例えば、ヘルツ(Hz)である。また、インダクタンス250の両端は接地される。インダクタ302が生成した磁界により、インダクタ250に誘導される正相信号の電流は、ip(f)として測定され、逆相信号の電流は、in(f)として測定される。これらの電流の単位は、例えば、アンペア(A)である。そして、これらの測定値に基づいて次の式により、絶縁レベルLVISOが算出される。
FIG. 9 is a diagram for explaining a method of measuring an insulation level in the first embodiment. An inductor 302 having a shape (such as a spiral shape) different from that of the inductor 250 is disposed above the upper layer shield 260, and the AC power supply 301 is connected to the inductor 302. The supply current of the AC power supply 301 when the frequency of the AC signal from the AC power supply 301 is f is measured as i in (f). The unit of the frequency f is, for example, hertz (Hz). Further, both ends of the inductance 250 are grounded. The current of the positive phase signal induced in the inductor 250 by the magnetic field generated by the inductor 302 is measured as i p (f), and the current of the negative phase signal is measured as i n (f). The unit of these currents is, for example, ampere (A). Based on these measured values, the insulation level LV ISO is calculated by the following equation.
この絶縁レベルLVISOは、インダクタ250の上方の回路(インダクタ302など)で生じた電磁ノイズを遮蔽する効果の高さを示す。絶縁レベルLVISOの値が小さいほど、電磁ノイズの遮蔽効果が高いことを意味する。絶縁レベルLVISOの単位は、デシベル(dB)である。
The insulation level LV ISO indicates a high effect of shielding electromagnetic noise generated in a circuit above the inductor 250 (such as the inductor 302). It means that the smaller the value of the insulation level LV ISO, the higher the electromagnetic noise shielding effect. The unit of the insulation level LV ISO is decibel (dB).
図10は、第1の実施の形態における周波数毎の絶縁レベルを示すグラフである。同図において縦軸は、絶縁レベルLVISO(dB)を示し、横軸は交流信号の周波数f(Hz)を示す。また、同図において点線の曲線は、上層シールド260を設けない場合の絶縁レベルLVISOの特性を示し、実線の曲線は、上層シールド260を設けた場合の絶縁レベルLVISOの特性を示す。
FIG. 10 is a graph showing the insulation level for each frequency in the first embodiment. In the figure, the vertical axis represents the insulation level LV ISO (dB), and the horizontal axis represents the frequency f (Hz) of the AC signal. In the figure, the dotted curve indicates the characteristic of the insulation level LV ISO when the upper shield 260 is not provided, and the solid curve indicates the characteristic of the insulation level LV ISO when the upper shield 260 is provided.
図10に例示するように、上層シールド260を設けることにより、上層シールド260を設けない場合よりも絶縁レベルLVISOを小さくすることができる。すなわち、インダクタ250以外の回路からの電磁ノイズの遮蔽効果を向上させることができる。
As illustrated in FIG. 10, by providing the upper shield 260, the insulation level LV ISO can be made lower than when the upper shield 260 is not provided. In other words, the shielding effect of electromagnetic noise from circuits other than the inductor 250 can be improved.
図11は、第1の実施の形態における周波数毎のインダクタンスを示すグラフである。同図における縦軸は、インダクタ250のインダクタンスL(H)を示し、横軸は交流信号の周波数f(Hz)を示す。また、同図において点線の曲線は、上層シールド260を設けない場合のインダクタンスLの特性を示し、実線の曲線は、上層シールド260を設けた場合のインダクタンスLの特性を示す。
FIG. 11 is a graph showing the inductance for each frequency in the first embodiment. In the drawing, the vertical axis represents the inductance L (H) of the inductor 250, and the horizontal axis represents the frequency f (Hz) of the AC signal. In the figure, the dotted curve indicates the characteristic of the inductance L when the upper layer shield 260 is not provided, and the solid line curve indicates the characteristic of the inductance L when the upper layer shield 260 is provided.
図11に例示するように、上層シールド260を設けても上層シールド260を設けない場合と比較してインダクタンスLの値はほとんど低下(劣化)しない。
As illustrated in FIG. 11, even if the upper shield 260 is provided, the value of the inductance L hardly decreases (deteriorates) as compared to the case where the upper shield 260 is not provided.
図12は、第1の実施の形態における周波数毎のQ値を示すグラフである。同図における縦軸は、インダクタ250のQ値を示し、横軸は交流信号の周波数f(Hz)を示す。また、同図において点線の曲線は、上層シールド260を設けない場合のQ値の特性を示し、実線の曲線は、上層シールド260を設けた場合のQ値の特性を示す。
FIG. 12 is a graph showing the Q value for each frequency in the first embodiment. In the drawing, the vertical axis indicates the Q value of the inductor 250, and the horizontal axis indicates the frequency f (Hz) of the AC signal. In the figure, a dotted curve indicates the Q value characteristic when the upper shield 260 is not provided, and a solid curve indicates the Q value characteristic when the upper shield 260 is provided.
図12に例示するように、上層シールド260を設けても上層シールド260を設けない場合と比較してQ値はほとんど低下(劣化)しない。
As illustrated in FIG. 12, even if the upper shield 260 is provided, the Q value hardly decreases (deteriorates) compared to the case where the upper shield 260 is not provided.
図10乃至12に例示したように、上層シールド260を設けることにより、インダクタンスLおよびQ値の劣化を抑制しつつ、電磁ノイズを低減することができる。
As illustrated in FIGS. 10 to 12, by providing the upper shield 260, it is possible to reduce electromagnetic noise while suppressing deterioration of the inductance L and Q value.
このように、本技術の第1の実施の形態によれば、スリットを形成した上層シールド260をインダクタ250と論理回路111との間に挿入したため、論理回路111で生じた磁界による電磁ノイズを低減することができる。また、上層シールド260のスリットにより、渦電流が低減するため、インダクタ250のインダクタンスの低下を抑制することができる。
As described above, according to the first embodiment of the present technology, since the upper shield 260 having the slit is inserted between the inductor 250 and the logic circuit 111, electromagnetic noise due to the magnetic field generated in the logic circuit 111 is reduced. can do. In addition, since the eddy current is reduced by the slit of the upper shield 260, a decrease in the inductance of the inductor 250 can be suppressed.
<2.第2の実施の形態>
上述の第1の実施の形態では、8の字型のインダクタ250の上方に上層シールド260を配置して、インダクタ250を電磁ノイズから保護していたが、8の字型以外の形状のインダクタを保護対象とすることもできる。例えば、クロック信号を差動信号とする場合には、中心が同一の渦巻き状の2つの配線を接続した、特殊な形状のインダクタが用いられる。この第2の実施の形態の半導体装置100は、中心が同一の渦巻き状の2つの配線からなるインダクタ265を保護対象とする点において第1の実施の形態と異なる。 <2. Second Embodiment>
In the first embodiment described above, theupper layer shield 260 is arranged above the 8-shaped inductor 250 to protect the inductor 250 from electromagnetic noise. However, an inductor having a shape other than the 8-shaped inductor 250 is used. It can also be protected. For example, when a clock signal is a differential signal, an inductor having a special shape in which two spiral wires having the same center are connected is used. The semiconductor device 100 of the second embodiment is different from the first embodiment in that the inductor 265 composed of two spiral wires having the same center is the protection target.
上述の第1の実施の形態では、8の字型のインダクタ250の上方に上層シールド260を配置して、インダクタ250を電磁ノイズから保護していたが、8の字型以外の形状のインダクタを保護対象とすることもできる。例えば、クロック信号を差動信号とする場合には、中心が同一の渦巻き状の2つの配線を接続した、特殊な形状のインダクタが用いられる。この第2の実施の形態の半導体装置100は、中心が同一の渦巻き状の2つの配線からなるインダクタ265を保護対象とする点において第1の実施の形態と異なる。 <2. Second Embodiment>
In the first embodiment described above, the
図13は、第2の実施の形態におけるインダクタ265の平面図の一例である。このインダクタ265の上方に上層シールド260が配置される。第2の実施の形態では、上層シールド260のスリットの方向は基板平面に対して平行な方向であればよく、X方向に限定されない。
FIG. 13 is an example of a plan view of the inductor 265 according to the second embodiment. An upper shield 260 is disposed above the inductor 265. In the second embodiment, the slit direction of the upper shield 260 may be a direction parallel to the substrate plane, and is not limited to the X direction.
インダクタ265は、接続された配線266および配線267から構成される。ここで、配線266の両端のうち配線267と接続されていない方の一端を始点511とし、他端を接続点512とする。また、配線267の両端のうち配線266と接続されていない方の一端を終点513とする。
The inductor 265 includes a connected wiring 266 and a wiring 267. Here, one end of the wiring 266 that is not connected to the wiring 267 is set as a start point 511 and the other end is set as a connection point 512. One end of the wiring 267 that is not connected to the wiring 266 is set as an end point 513.
配線266は、Z軸方向に平行な中心軸を中心として、始点511から接続点512まで複数回に亘って時計回りに旋回する渦巻き状の経路に沿って巻かれている。一方、配線267は、配線266と同一の中心軸を中心として、接続点512から終点513まで複数回に亘って時計回りに旋回する渦巻き状の経路に沿って巻かれている。また、配線266は、始点511から接続点512に対して旋回するたびに旋回半径が小さくなり、配線267は、接続点512から終点513に対して旋回するたびに旋回半径が大きくなる。始点511には正相信号が入出力され、終点513には逆相信号が入出力される。このように、配線266と配線267とは対照的な形状を有するため、正相信号と逆相信号とのそれぞれのデューティ比を同程度にすることできる。
The wiring 266 is wound along a spiral path that turns clockwise a plurality of times from the start point 511 to the connection point 512 around the central axis parallel to the Z-axis direction. On the other hand, the wiring 267 is wound along a spiral path that turns clockwise a plurality of times from the connection point 512 to the end point 513 around the same central axis as the wiring 266. Further, the wiring 266 has a smaller turning radius each time it turns from the start point 511 to the connection point 512, and the wiring 267 has a larger turning radius every time it turns from the connection point 512 to the end point 513. A normal phase signal is input / output at the start point 511, and a negative phase signal is input / output at the end point 513. Thus, since the wiring 266 and the wiring 267 have a contrasting shape, the duty ratios of the normal-phase signal and the negative-phase signal can be made approximately the same.
上述の形状のインダクタ265を上層シールド260で保護する場合、第1の実施の形態の8の字型のインダクタ250と異なり、配線266および配線267で流れる電流の方向が同一であるため、上層シールド260で発生する渦電流が打ち消されない。このため、インダクタンスの低下を抑制する効果はスリットのない板状の電磁シールドよりは高いものの、第1の実施の形態と比較して低くなる。しかし、その代わりに、その渦電流によりインダクタ265で生じた磁界を打ち消すことができるため、上方の論理回路111に生じる電磁ノイズを低減することができる。すなわち、上層シールド260は、インダクタ265に加えて、論理回路111も電磁ノイズから保護することができる。
When the inductor 265 having the above-described shape is protected by the upper layer shield 260, the direction of the current flowing through the wiring 266 and the wiring 267 is the same as that of the 8-shaped inductor 250 of the first embodiment. The eddy current generated at 260 is not canceled out. For this reason, although the effect which suppresses the fall of an inductance is higher than the plate-shaped electromagnetic shield without a slit, it becomes low compared with 1st Embodiment. However, instead, the magnetic field generated in the inductor 265 due to the eddy current can be canceled, so that electromagnetic noise generated in the upper logic circuit 111 can be reduced. That is, the upper layer shield 260 can protect the logic circuit 111 from electromagnetic noise in addition to the inductor 265.
このように、本技術の第2の実施の形態によれば、中心が同一の渦巻き状の2つの配線からなるインダクタ265と論理回路111との間に上層シールド260を挿入したため、インダクタ265に加えて論理回路111も電磁ノイズから保護することができる。また、渦巻き状の2つの配線からなるインダクタ265を用いることにより、差動信号を出力する際に、その差動信号内の正相信号および逆相信号のそれぞれのデューティ比を同程度に揃えることができる。
As described above, according to the second embodiment of the present technology, the upper layer shield 260 is inserted between the inductor 265 including the two spiral wires having the same center and the logic circuit 111. Thus, the logic circuit 111 can also be protected from electromagnetic noise. Further, by using the inductor 265 composed of two spiral wires, when the differential signal is output, the respective duty ratios of the positive phase signal and the negative phase signal in the differential signal are made equal. Can do.
<3.第3の実施の形態>
上述の第1の実施の形態では、8の字型のインダクタ250の上方に上層シールド260を配置して、インダクタ250を電磁ノイズから保護していたが、8の字型以外の形状のインダクタを保護対象とすることもできる。例えば、クロック信号をシングルエンド信号とする場合には、8の字型の代わりに渦巻き状のインダクタを用いることもできる。この第3の実施の形態の半導体装置100は、渦巻き状のインダクタ270を保護対象とする点において第1の実施の形態と異なる。 <3. Third Embodiment>
In the first embodiment described above, theupper layer shield 260 is arranged above the 8-shaped inductor 250 to protect the inductor 250 from electromagnetic noise. However, an inductor having a shape other than the 8-shaped inductor 250 is used. It can also be protected. For example, when the clock signal is a single-ended signal, a spiral inductor can be used instead of the figure eight shape. The semiconductor device 100 according to the third embodiment is different from the first embodiment in that a spiral inductor 270 is to be protected.
上述の第1の実施の形態では、8の字型のインダクタ250の上方に上層シールド260を配置して、インダクタ250を電磁ノイズから保護していたが、8の字型以外の形状のインダクタを保護対象とすることもできる。例えば、クロック信号をシングルエンド信号とする場合には、8の字型の代わりに渦巻き状のインダクタを用いることもできる。この第3の実施の形態の半導体装置100は、渦巻き状のインダクタ270を保護対象とする点において第1の実施の形態と異なる。 <3. Third Embodiment>
In the first embodiment described above, the
図14は、第3の実施の形態におけるインダクタ270の平面図の一例である。このインダクタ270の上方に上層シールド260が配置される。第3の実施の形態では、上層シールド260のスリットの方向は基板平面に対して平行な方向であればよく、X方向に限定されない。
FIG. 14 is an example of a plan view of the inductor 270 according to the third embodiment. An upper shield 260 is disposed above the inductor 270. In the third embodiment, the slit direction of the upper shield 260 may be a direction parallel to the substrate plane, and is not limited to the X direction.
インダクタ270は、Z方向に平行な中心軸を中心として、始点521から終点522へ渦巻き状に巻かれた配線から構成される。
The inductor 270 is composed of a wire wound in a spiral shape from a start point 521 to an end point 522 around a central axis parallel to the Z direction.
上述の形状のインダクタ270を上層シールド260で保護する場合、インダクタンスの低下を抑制する効果はスリットのない板状の電磁シールドよりは高いものの、第1の実施の形態と比較して低くなる。しかし、その代わりに、上方の論理回路111に生じる電磁ノイズを上層シールド260が遮蔽することができる。
When the inductor 270 having the above-described shape is protected by the upper shield 260, the effect of suppressing the decrease in inductance is higher than that of the plate-shaped electromagnetic shield without slits, but is lower than that of the first embodiment. However, instead, the upper layer shield 260 can shield electromagnetic noise generated in the upper logic circuit 111.
このように、本技術の第3の実施の形態によれば、渦巻き状のインダクタ270と論理回路111との間に上層シールド260を挿入したため、インダクタ270に加えて論理回路111も電磁ノイズから保護することができる。また、8の字形状と比較して単純な渦巻き状のインダクタ270により、シングルエンド信号を出力することができる。
Thus, according to the third embodiment of the present technology, since the upper shield 260 is inserted between the spiral inductor 270 and the logic circuit 111, the logic circuit 111 is also protected from electromagnetic noise in addition to the inductor 270. can do. In addition, a single-ended signal can be output by a simple spiral inductor 270 as compared with the figure 8 shape.
<4.第4の実施の形態>
上述の第1の実施の形態では、インダクタ250の上方にのみ電磁シールド(上層シールド260)を配置していたが、インダクタ250の下方や同一基板(下側チップ150)上の回路で生じた磁界により電磁ノイズが発生することもある。このような電磁ノイズを上層シールド260のみでは低減することが困難である。この第4の実施の形態の半導体装置100は、インダクタ250の下方や同一基板上の回路による電磁ノイズを低減する点において第1の実施の形態と異なる。 <4. Fourth Embodiment>
In the first embodiment described above, the electromagnetic shield (upper layer shield 260) is disposed only above theinductor 250, but a magnetic field generated in a circuit below the inductor 250 or on the same substrate (lower chip 150). May cause electromagnetic noise. It is difficult to reduce such electromagnetic noise only with the upper shield 260. The semiconductor device 100 according to the fourth embodiment is different from that according to the first embodiment in that electromagnetic noise caused by circuits below the inductor 250 or on the same substrate is reduced.
上述の第1の実施の形態では、インダクタ250の上方にのみ電磁シールド(上層シールド260)を配置していたが、インダクタ250の下方や同一基板(下側チップ150)上の回路で生じた磁界により電磁ノイズが発生することもある。このような電磁ノイズを上層シールド260のみでは低減することが困難である。この第4の実施の形態の半導体装置100は、インダクタ250の下方や同一基板上の回路による電磁ノイズを低減する点において第1の実施の形態と異なる。 <4. Fourth Embodiment>
In the first embodiment described above, the electromagnetic shield (upper layer shield 260) is disposed only above the
図15は、第4の実施の形態における電圧制御発振器240および電磁シールドの一構成例を示す回路図である。この第4の実施の形態では、電磁シールドとして、上層シールド260に加えて、外周シールド280および下層シールド290がさらに設けられる。
FIG. 15 is a circuit diagram showing a configuration example of the voltage controlled oscillator 240 and the electromagnetic shield in the fourth embodiment. In the fourth embodiment, in addition to the upper layer shield 260, an outer peripheral shield 280 and a lower layer shield 290 are further provided as electromagnetic shields.
外周シールド280は、下側チップ150において、インダクタ250の外周を囲む電磁シールドである。例えば、インダクタ250を囲む導電性の配線が外周シールド280として用いられる。この外周シールド280の電位は例えば、浮動電位である。なお、外周シールド280の電位を固定電位としてもよい。
The outer periphery shield 280 is an electromagnetic shield that surrounds the outer periphery of the inductor 250 in the lower chip 150. For example, conductive wiring surrounding the inductor 250 is used as the outer peripheral shield 280. The potential of the outer shield 280 is, for example, a floating potential. Note that the potential of the outer shield 280 may be a fixed potential.
下層シールド290は、インダクタ250の下方に配置された電磁シールドである。この下層シールド290は、例えば、下側チップ150とインダクタ250との間に挿入される。また、下層シールド290には、固定電位(グランド電位など)が印加される。なお、下層シールド290の電位を浮動電位としてもよい。
The lower layer shield 290 is an electromagnetic shield disposed below the inductor 250. The lower layer shield 290 is inserted between the lower chip 150 and the inductor 250, for example. A fixed potential (such as a ground potential) is applied to the lower shield 290. Note that the potential of the lower shield 290 may be a floating potential.
図16は、第4の実施の形態におけるインダクタ250および電磁シールドの斜視図の一例である。同図におけるaは、上層シールド260の斜視図の一例であり、同図におけるbは、インダクタ250の斜視図の一例である。また、同図におけるcは、外周シールド280の斜視図の一例である。この外周シールド280は、インダクタ250の高さに合わせて積層されている。同図におけるdは、下層シールド290の斜視図の一例である。下層シールド290として、例えば、一定のパターン(Xに類似した形状など)を有するPGS(patterned ground shield)などが用いられる。なお、PGSの代わりに、上層シールド260と同じ形状のシールドを下層シールド290として配置してもよい。
FIG. 16 is an example of a perspective view of the inductor 250 and the electromagnetic shield in the fourth embodiment. In the figure, “a” is an example of a perspective view of the upper shield 260, and “b” in the figure is an example of a perspective view of the inductor 250. Further, c in the figure is an example of a perspective view of the outer periphery shield 280. This outer peripheral shield 280 is laminated according to the height of the inductor 250. In the drawing, d is an example of a perspective view of the lower layer shield 290. As the lower layer shield 290, for example, a PGS (patterned ground shield) having a certain pattern (a shape similar to X or the like) is used. Instead of PGS, a shield having the same shape as the upper layer shield 260 may be disposed as the lower layer shield 290.
なお、外周シールド280および下層シールド290の両方を配置しているが、これらの一方のみを配置してもよい。
In addition, although both the outer periphery shield 280 and the lower layer shield 290 are arrange | positioned, you may arrange | position only one of these.
図17は、第4の実施の形態におけるインダクタ250および電磁シールドの断面図の一例である。同図に例示するように、インダクタ250の側面は、外周シールド280で覆われ、上面は上層シールド260で覆われ、下面は下層シールド290で覆われる。このため、インダクタ250の上方、下方および下側チップ150上の回路で生じた磁界による電磁ノイズから、インダクタ250を保護することができる。また、インダクタ250で生じた磁界による電磁ノイズから、インダクタ250の下方の回路と下側チップ150上の回路とを保護することができる。
FIG. 17 is an example of a cross-sectional view of the inductor 250 and the electromagnetic shield in the fourth embodiment. As illustrated in the figure, the side surface of the inductor 250 is covered with the outer shield 280, the upper surface is covered with the upper layer shield 260, and the lower surface is covered with the lower layer shield 290. For this reason, the inductor 250 can be protected from electromagnetic noise due to a magnetic field generated in a circuit above, below and below the inductor 250. In addition, the circuit below the inductor 250 and the circuit on the lower chip 150 can be protected from electromagnetic noise caused by the magnetic field generated in the inductor 250.
このように、本技術の第4の実施の形態によれば、インダクタ250の外周および下方に外周シールド280および下層シールド290をさらに配置したため、インダクタ250と同一基板上および下方の回路からの磁界による電磁ノイズを低減することができる。
As described above, according to the fourth embodiment of the present technology, since the outer peripheral shield 280 and the lower shield 290 are further arranged on the outer periphery and the lower side of the inductor 250, the magnetic field from the circuits on the same substrate and the lower side as the inductor 250 Electromagnetic noise can be reduced.
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
It should be noted that the effects described in this specification are merely examples, and are not limited, and other effects may be obtained.
なお、本技術は以下のような構成もとることができる。
(1)インダクタが配置された基板と、
前記基板の基板平面に垂直な所定方向を上方向として前記インダクタの上方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された電磁シールドである上層スリット付きシールドと
を具備する半導体装置。
(2)回路が配置された回路配置基板をさらに備え、
前記回路配置基板は、前記基板に積層される
前記(1)記載の半導体装置。
(3)前記インダクタは、
前記基板平面に垂直な第1の中心軸を中心として所定の始点から所定の接続点まで時計回りに巻かれた第1の配線と、
前記基板平面に垂直な軸であって前記第1の中心軸とは異なる第2の中心軸を中心として前記所定の接続点から所定の終点まで反時計回りに巻かれた第2の配線と
を備える
前記(1)記載の半導体装置。
(4)前記スリットは、前記第1の中心軸と前記第2の中心軸とを結ぶ直線に平行な方向に沿って形成される
前記(3)記載の半導体装置。
(5)前記インダクタは、
前記基板平面に垂直な所定の中心軸を中心として所定の始点から所定の接続点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第1の配線と、
前記所定の中心軸を中心として前記所定の接続点から所定の終点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第2の配線と
を備え、
前記第1の配線は、前記所定の始点から前記所定の接続点に対して旋回するたびに旋回半径が小さくなり、
前記第2の配線は、前記所定の接続点から前記所定の終点に対して旋回するたびに旋回半径が大きくなる
請求項1記載の半導体装置。前記(1)記載の半導体装置。
(6)前記インダクタは、渦巻き状の経路に沿って巻かれた配線を備える
前記(1)記載の半導体装置。
(7)前記インダクタの外周を囲む電磁シールドである外周シールドをさらに具備する
前記(1)から(6)のいずれかに記載の半導体装置。
(8)前記インダクタの下方に配置された電磁シールドである下層シールドをさらに具備する前記(1)から(7)のいずれかに記載の半導体装置。
(9)前記インダクタの下方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された下層スリット付きシールドをさらに具備する前記(1)から(8)のいずれかに記載の半導体装置。
(10)前記上層スリット付きシールドには固定電位が印加される
前記(1)から(9)のいずれかに記載の半導体装置。
(11)前記インダクタに接続された容量をさらに具備し、
前記インダクタおよび前記容量は共振する
前記(1)から(10)のいずれかに記載の半導体装置。
(12)入力信号と帰還信号との位相を比較して位相差を示す検出信号を出力する位相比較器と、
前記検出信号の示す前記位相差に応じた電圧の電圧信号を生成するチャージポンプと、
前記インダクタおよび前記容量を含む共振回路により生成された発振信号を分周して前記帰還信号として前記位相差検出器に帰還させる分周器と
をさらに具備し、
前記容量は、前記電圧信号に応じて容量値が変化する可変容量である
前記(11)記載の半導体装置。
(13)前記入力信号は、クロック信号である
前記(12)記載の半導体装置。 In addition, this technique can also take the following structures.
(1) a substrate on which an inductor is disposed;
A shield with an upper layer slit, which is an electromagnetic shield that is disposed above the inductor with a predetermined direction perpendicular to the substrate plane of the substrate as an upward direction, and in which a slit is formed along a direction parallel to the substrate plane. Semiconductor device.
(2) further comprising a circuit arrangement board on which the circuit is arranged;
The semiconductor device according to (1), wherein the circuit arrangement substrate is stacked on the substrate.
(3) The inductor is
A first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane;
A second wire wound counterclockwise from the predetermined connection point to a predetermined end point about a second central axis that is perpendicular to the substrate plane and is different from the first central axis The semiconductor device according to (1), comprising:
(4) The semiconductor device according to (3), wherein the slit is formed along a direction parallel to a straight line connecting the first central axis and the second central axis.
(5) The inductor is
A first wiring wound along a spiral path that is swung a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane;
A second wiring wound along a spiral path that swivels a plurality of times from the predetermined connection point to a predetermined end point around the predetermined central axis;
The turning radius of the first wiring decreases each time it turns from the predetermined starting point to the predetermined connecting point,
2. The semiconductor device according toclaim 1, wherein the second wiring has a turning radius that increases each time the second wiring turns from the predetermined connection point to the predetermined end point. The semiconductor device according to (1).
(6) The semiconductor device according to (1), wherein the inductor includes a wiring wound along a spiral path.
(7) The semiconductor device according to any one of (1) to (6), further including an outer peripheral shield that is an electromagnetic shield surrounding an outer periphery of the inductor.
(8) The semiconductor device according to any one of (1) to (7), further including a lower shield that is an electromagnetic shield disposed below the inductor.
(9) The shield according to any one of (1) to (8), further including a shield with a lower layer slit disposed below the inductor and having a slit formed in a direction parallel to the plane of the substrate. Semiconductor device.
(10) The semiconductor device according to any one of (1) to (9), wherein a fixed potential is applied to the shield with the upper layer slit.
(11) further comprising a capacitor connected to the inductor;
The semiconductor device according to any one of (1) to (10), wherein the inductor and the capacitor resonate.
(12) a phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating a phase difference;
A charge pump that generates a voltage signal of a voltage corresponding to the phase difference indicated by the detection signal;
A frequency divider that divides an oscillation signal generated by a resonance circuit including the inductor and the capacitor and feeds back as a feedback signal to the phase difference detector;
The semiconductor device according to (11), wherein the capacitor is a variable capacitor whose capacitance value changes according to the voltage signal.
(13) The semiconductor device according to (12), wherein the input signal is a clock signal.
(1)インダクタが配置された基板と、
前記基板の基板平面に垂直な所定方向を上方向として前記インダクタの上方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された電磁シールドである上層スリット付きシールドと
を具備する半導体装置。
(2)回路が配置された回路配置基板をさらに備え、
前記回路配置基板は、前記基板に積層される
前記(1)記載の半導体装置。
(3)前記インダクタは、
前記基板平面に垂直な第1の中心軸を中心として所定の始点から所定の接続点まで時計回りに巻かれた第1の配線と、
前記基板平面に垂直な軸であって前記第1の中心軸とは異なる第2の中心軸を中心として前記所定の接続点から所定の終点まで反時計回りに巻かれた第2の配線と
を備える
前記(1)記載の半導体装置。
(4)前記スリットは、前記第1の中心軸と前記第2の中心軸とを結ぶ直線に平行な方向に沿って形成される
前記(3)記載の半導体装置。
(5)前記インダクタは、
前記基板平面に垂直な所定の中心軸を中心として所定の始点から所定の接続点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第1の配線と、
前記所定の中心軸を中心として前記所定の接続点から所定の終点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第2の配線と
を備え、
前記第1の配線は、前記所定の始点から前記所定の接続点に対して旋回するたびに旋回半径が小さくなり、
前記第2の配線は、前記所定の接続点から前記所定の終点に対して旋回するたびに旋回半径が大きくなる
請求項1記載の半導体装置。前記(1)記載の半導体装置。
(6)前記インダクタは、渦巻き状の経路に沿って巻かれた配線を備える
前記(1)記載の半導体装置。
(7)前記インダクタの外周を囲む電磁シールドである外周シールドをさらに具備する
前記(1)から(6)のいずれかに記載の半導体装置。
(8)前記インダクタの下方に配置された電磁シールドである下層シールドをさらに具備する前記(1)から(7)のいずれかに記載の半導体装置。
(9)前記インダクタの下方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された下層スリット付きシールドをさらに具備する前記(1)から(8)のいずれかに記載の半導体装置。
(10)前記上層スリット付きシールドには固定電位が印加される
前記(1)から(9)のいずれかに記載の半導体装置。
(11)前記インダクタに接続された容量をさらに具備し、
前記インダクタおよび前記容量は共振する
前記(1)から(10)のいずれかに記載の半導体装置。
(12)入力信号と帰還信号との位相を比較して位相差を示す検出信号を出力する位相比較器と、
前記検出信号の示す前記位相差に応じた電圧の電圧信号を生成するチャージポンプと、
前記インダクタおよび前記容量を含む共振回路により生成された発振信号を分周して前記帰還信号として前記位相差検出器に帰還させる分周器と
をさらに具備し、
前記容量は、前記電圧信号に応じて容量値が変化する可変容量である
前記(11)記載の半導体装置。
(13)前記入力信号は、クロック信号である
前記(12)記載の半導体装置。 In addition, this technique can also take the following structures.
(1) a substrate on which an inductor is disposed;
A shield with an upper layer slit, which is an electromagnetic shield that is disposed above the inductor with a predetermined direction perpendicular to the substrate plane of the substrate as an upward direction, and in which a slit is formed along a direction parallel to the substrate plane. Semiconductor device.
(2) further comprising a circuit arrangement board on which the circuit is arranged;
The semiconductor device according to (1), wherein the circuit arrangement substrate is stacked on the substrate.
(3) The inductor is
A first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane;
A second wire wound counterclockwise from the predetermined connection point to a predetermined end point about a second central axis that is perpendicular to the substrate plane and is different from the first central axis The semiconductor device according to (1), comprising:
(4) The semiconductor device according to (3), wherein the slit is formed along a direction parallel to a straight line connecting the first central axis and the second central axis.
(5) The inductor is
A first wiring wound along a spiral path that is swung a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane;
A second wiring wound along a spiral path that swivels a plurality of times from the predetermined connection point to a predetermined end point around the predetermined central axis;
The turning radius of the first wiring decreases each time it turns from the predetermined starting point to the predetermined connecting point,
2. The semiconductor device according to
(6) The semiconductor device according to (1), wherein the inductor includes a wiring wound along a spiral path.
(7) The semiconductor device according to any one of (1) to (6), further including an outer peripheral shield that is an electromagnetic shield surrounding an outer periphery of the inductor.
(8) The semiconductor device according to any one of (1) to (7), further including a lower shield that is an electromagnetic shield disposed below the inductor.
(9) The shield according to any one of (1) to (8), further including a shield with a lower layer slit disposed below the inductor and having a slit formed in a direction parallel to the plane of the substrate. Semiconductor device.
(10) The semiconductor device according to any one of (1) to (9), wherein a fixed potential is applied to the shield with the upper layer slit.
(11) further comprising a capacitor connected to the inductor;
The semiconductor device according to any one of (1) to (10), wherein the inductor and the capacitor resonate.
(12) a phase comparator that compares the phases of the input signal and the feedback signal and outputs a detection signal indicating a phase difference;
A charge pump that generates a voltage signal of a voltage corresponding to the phase difference indicated by the detection signal;
A frequency divider that divides an oscillation signal generated by a resonance circuit including the inductor and the capacitor and feeds back as a feedback signal to the phase difference detector;
The semiconductor device according to (11), wherein the capacitor is a variable capacitor whose capacitance value changes according to the voltage signal.
(13) The semiconductor device according to (12), wherein the input signal is a clock signal.
100 半導体装置
110 上側チップ
111、151 論理回路
150 下側チップ
200 位相同期回路
210 位相比較器
220 チャージポンプ
230 分周器
240 電圧制御発振器
241 増幅回路
242 可変容量
250、265、270、302 インダクタ
260 上層シールド
280 外周シールド
290 下層シールド
301 交流電源 DESCRIPTION OFSYMBOLS 100 Semiconductor device 110 Upper chip | tip 111,151 Logic circuit 150 Lower chip | tip 200 Phase synchronous circuit 210 Phase comparator 220 Charge pump 230 Frequency divider 240 Voltage control oscillator 241 Amplifier circuit 242 Variable capacity 250, 265, 270, 302 Inductor 260 Upper layer Shield 280 Outer shield 290 Lower shield 301 AC power supply
110 上側チップ
111、151 論理回路
150 下側チップ
200 位相同期回路
210 位相比較器
220 チャージポンプ
230 分周器
240 電圧制御発振器
241 増幅回路
242 可変容量
250、265、270、302 インダクタ
260 上層シールド
280 外周シールド
290 下層シールド
301 交流電源 DESCRIPTION OF
Claims (13)
- インダクタが配置された基板と、
前記基板の基板平面に垂直な所定方向を上方向として前記インダクタの上方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された電磁シールドである上層スリット付きシールドと
を具備する半導体装置。 A substrate on which an inductor is disposed;
A shield with an upper layer slit, which is an electromagnetic shield that is disposed above the inductor with a predetermined direction perpendicular to the substrate plane of the substrate as an upward direction, and in which a slit is formed along a direction parallel to the substrate plane. Semiconductor device. - 回路が配置された回路配置基板をさらに備え、
前記回路配置基板は、前記基板に積層される
請求項1記載の半導体装置。 A circuit arrangement board on which the circuit is arranged;
The semiconductor device according to claim 1, wherein the circuit arrangement substrate is stacked on the substrate. - 前記インダクタは、
前記基板平面に垂直な第1の中心軸を中心として所定の始点から所定の接続点まで時計回りに巻かれた第1の配線と、
前記基板平面に垂直な軸であって前記第1の中心軸とは異なる第2の中心軸を中心として前記所定の接続点から所定の終点まで反時計回りに巻かれた第2の配線と
を備える
請求項1記載の半導体装置。 The inductor is
A first wire wound clockwise from a predetermined start point to a predetermined connection point about a first central axis perpendicular to the substrate plane;
A second wire wound counterclockwise from the predetermined connection point to a predetermined end point about a second central axis that is perpendicular to the substrate plane and is different from the first central axis The semiconductor device according to claim 1, further comprising: - 前記スリットは、前記第1の中心軸と前記第2の中心軸とを結ぶ直線に平行な方向に沿って形成される
請求項3記載の半導体装置。 The semiconductor device according to claim 3, wherein the slit is formed along a direction parallel to a straight line connecting the first central axis and the second central axis. - 前記インダクタは、
前記基板平面に垂直な所定の中心軸を中心として所定の始点から所定の接続点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第1の配線と、
前記所定の中心軸を中心として前記所定の接続点から所定の終点まで複数回に亘って旋回する渦巻き状の経路に沿って巻かれた第2の配線と
を備え、
前記第1の配線は、前記所定の始点から前記所定の接続点に対して旋回するたびに旋回半径が小さくなり、
前記第2の配線は、前記所定の接続点から前記所定の終点に対して旋回するたびに旋回半径が大きくなる
請求項1記載の半導体装置。 The inductor is
A first wiring wound along a spiral path that is swung a plurality of times from a predetermined start point to a predetermined connection point about a predetermined central axis perpendicular to the substrate plane;
A second wiring wound along a spiral path that swivels a plurality of times from the predetermined connection point to a predetermined end point around the predetermined central axis;
The turning radius of the first wiring decreases each time it turns from the predetermined starting point to the predetermined connecting point,
2. The semiconductor device according to claim 1, wherein the second wiring has a turning radius that increases each time the second wiring turns from the predetermined connection point to the predetermined end point. - 前記インダクタは、渦巻き状の経路に沿って巻かれた配線を備える
請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein the inductor includes a wiring wound along a spiral path. - 前記インダクタの外周を囲む電磁シールドである外周シールドをさらに具備する
請求項1記載の半導体装置。 The semiconductor device according to claim 1, further comprising an outer peripheral shield that is an electromagnetic shield surrounding an outer periphery of the inductor. - 前記インダクタの下方に配置された電磁シールドである下層シールドをさらに具備する請求項1記載の半導体装置。 The semiconductor device according to claim 1, further comprising a lower shield that is an electromagnetic shield disposed below the inductor.
- 前記インダクタの下方に配置され、前記基板平面に対して平行な方向に沿ってスリットが形成された下層スリット付きシールドをさらに具備する請求項1記載の半導体装置。 The semiconductor device according to claim 1, further comprising a shield with a lower layer slit disposed below the inductor and having a slit formed in a direction parallel to the plane of the substrate.
- 前記上層スリット付きシールドには固定電位が印加される
請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein a fixed potential is applied to the shield with the upper layer slit. - 前記インダクタに接続された容量をさらに具備し、
前記インダクタおよび前記容量は共振する
請求項1記載の半導体装置。 Further comprising a capacitor connected to the inductor;
The semiconductor device according to claim 1, wherein the inductor and the capacitor resonate. - 入力信号と帰還信号との位相を比較して位相差を示す検出信号を出力する位相比較器と、
前記検出信号の示す前記位相差に応じた電圧の電圧信号を生成するチャージポンプと、
前記インダクタおよび前記容量を含む共振回路により生成された発振信号を分周して前記帰還信号として前記位相差検出器に帰還させる分周器と
をさらに具備し、
前記容量は、前記電圧信号に応じて容量値が変化する可変容量である
請求項11記載の半導体装置。 A phase comparator that compares the phase of the input signal and the feedback signal and outputs a detection signal indicating a phase difference;
A charge pump that generates a voltage signal of a voltage corresponding to the phase difference indicated by the detection signal;
A frequency divider that divides an oscillation signal generated by a resonance circuit including the inductor and the capacitor and feeds back as a feedback signal to the phase difference detector;
The semiconductor device according to claim 11, wherein the capacitor is a variable capacitor whose capacitance value changes in accordance with the voltage signal. - 前記入力信号は、クロック信号である
請求項12記載の半導体装置。 The semiconductor device according to claim 12, wherein the input signal is a clock signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017561523A JP6930427B2 (en) | 2016-01-14 | 2016-11-09 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004935 | 2016-01-14 | ||
JP2016-004935 | 2016-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017122416A1 true WO2017122416A1 (en) | 2017-07-20 |
Family
ID=59311294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083257 WO2017122416A1 (en) | 2016-01-14 | 2016-11-09 | Semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6930427B2 (en) |
WO (1) | WO2017122416A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019123777A1 (en) * | 2017-12-20 | 2019-06-27 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
WO2020196522A1 (en) * | 2019-03-26 | 2020-10-01 | 株式会社村田製作所 | Module |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09307468A (en) * | 1996-05-14 | 1997-11-28 | T I F:Kk | Fm receiver |
JP2002198490A (en) * | 2000-12-26 | 2002-07-12 | Toshiba Corp | Semiconductor device |
JP2006173145A (en) * | 2004-12-10 | 2006-06-29 | Sharp Corp | Inductor, resonant circuit, semiconductor integrated circuit, oscillator, and communication system |
JP2006339257A (en) * | 2005-05-31 | 2006-12-14 | Sharp Corp | Magnetic coupling element and transceiver |
JP2009260080A (en) * | 2008-04-17 | 2009-11-05 | Fujitsu Ltd | Inductor device |
JP2010016142A (en) * | 2008-07-03 | 2010-01-21 | Nec Electronics Corp | Circuit device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3287009B2 (en) * | 1992-05-14 | 2002-05-27 | ダイキン工業株式会社 | Voltage source switching element control method and device |
US6927664B2 (en) * | 2003-05-16 | 2005-08-09 | Matsushita Electric Industrial Co., Ltd. | Mutual induction circuit |
JP2006059959A (en) * | 2004-08-19 | 2006-03-02 | Oki Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
JP2006186034A (en) * | 2004-12-27 | 2006-07-13 | Toshiba Corp | Semiconductor device |
US7427801B2 (en) * | 2005-04-08 | 2008-09-23 | International Business Machines Corporation | Integrated circuit transformer devices for on-chip millimeter-wave applications |
JP2009021495A (en) * | 2007-07-13 | 2009-01-29 | Fujikura Ltd | Semiconductor device and its manufacturing method |
JP2011182107A (en) * | 2010-02-26 | 2011-09-15 | Renesas Electronics Corp | Power amplifier device |
JP5551480B2 (en) * | 2010-03-24 | 2014-07-16 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method of semiconductor device |
-
2016
- 2016-11-09 JP JP2017561523A patent/JP6930427B2/en active Active
- 2016-11-09 WO PCT/JP2016/083257 patent/WO2017122416A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09307468A (en) * | 1996-05-14 | 1997-11-28 | T I F:Kk | Fm receiver |
JP2002198490A (en) * | 2000-12-26 | 2002-07-12 | Toshiba Corp | Semiconductor device |
JP2006173145A (en) * | 2004-12-10 | 2006-06-29 | Sharp Corp | Inductor, resonant circuit, semiconductor integrated circuit, oscillator, and communication system |
JP2006339257A (en) * | 2005-05-31 | 2006-12-14 | Sharp Corp | Magnetic coupling element and transceiver |
JP2009260080A (en) * | 2008-04-17 | 2009-11-05 | Fujitsu Ltd | Inductor device |
JP2010016142A (en) * | 2008-07-03 | 2010-01-21 | Nec Electronics Corp | Circuit device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019123777A1 (en) * | 2017-12-20 | 2019-06-27 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
JPWO2019123777A1 (en) * | 2017-12-20 | 2021-01-21 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device |
JP7179019B2 (en) | 2017-12-20 | 2022-11-28 | ソニーセミコンダクタソリューションズ株式会社 | semiconductor equipment |
US11594519B2 (en) | 2017-12-20 | 2023-02-28 | Sony Semiconductor Solutions Corporation | Semiconductor device |
WO2020196522A1 (en) * | 2019-03-26 | 2020-10-01 | 株式会社村田製作所 | Module |
US20220005644A1 (en) * | 2019-03-26 | 2022-01-06 | Murata Manufacturing Co., Ltd. | Module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017122416A1 (en) | 2018-11-01 |
JP6930427B2 (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100294956B1 (en) | Reducing electromagnetic noise radiated from a printed board | |
US11921251B2 (en) | Position sensing apparatus and method | |
CN101566642B (en) | Orthogonal radio frequency voltage/current sensor with high dynamic range | |
US20150364243A1 (en) | Electronic device with two planar inductors | |
JP2007225588A (en) | Current detecting printed board, voltage detecting printed board, and current/voltage detector as well as current detector and voltage detector using the printed boards | |
US7378900B2 (en) | EMI filter | |
JP2007225588A5 (en) | ||
JP2007292716A (en) | Printed board for current detection, printed board for voltage detection, printed board for current/voltage detection, current/voltage detector, current detector and voltage detector | |
JP2006280127A (en) | Micro power conversion apparatus | |
TWM485601U (en) | Control signal disturbed circuit structure | |
US20130082793A1 (en) | Mutual Inductance Circuits | |
JP6286157B2 (en) | Sensor device | |
WO2017122416A1 (en) | Semiconductor device | |
JP2009036553A (en) | Detector of current and voltage | |
WO2017141505A1 (en) | Semiconductor device, semiconductor chip, and system | |
CN106206537B (en) | Comb terminal of planar integrated circuit inductor | |
JP6547572B2 (en) | Power supply device | |
WO2011140031A1 (en) | Magnetically shielded inductor structure | |
CN108269799A (en) | Physical design in magnetic environment | |
US7375411B2 (en) | Method and structure for forming relatively dense conductive layers | |
US8988852B2 (en) | Ground shield capacitor | |
JP2009135815A (en) | Noise filter and semiconductor device | |
JP2004095777A (en) | Inductor element | |
JP2003283177A (en) | Radiation noise reduction apparatus for electronic device | |
JP6399969B2 (en) | Printed board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16885019 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017561523 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16885019 Country of ref document: EP Kind code of ref document: A1 |