WO2017122288A1 - Coolant apparatus for machine tool - Google Patents

Coolant apparatus for machine tool Download PDF

Info

Publication number
WO2017122288A1
WO2017122288A1 PCT/JP2016/050781 JP2016050781W WO2017122288A1 WO 2017122288 A1 WO2017122288 A1 WO 2017122288A1 JP 2016050781 W JP2016050781 W JP 2016050781W WO 2017122288 A1 WO2017122288 A1 WO 2017122288A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
machine tool
cooling
coolant liquid
flow path
Prior art date
Application number
PCT/JP2016/050781
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木淳
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2016/050781 priority Critical patent/WO2017122288A1/en
Priority to JP2017561101A priority patent/JP6698106B2/en
Publication of WO2017122288A1 publication Critical patent/WO2017122288A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine

Definitions

  • the present invention relates to a coolant device for a machine tool having an in-machine cooling function for adjusting a temperature of a coolant liquid that is repeatedly used to cool a heat generation portion in the machine by using the coolant liquid.
  • coolant liquid lowers the heat of machining and is used as a cooling liquid to drain chips from the machining area.
  • the coolant liquid is returned to the coolant tank and repeatedly used, the temperature gradually increases due to processing heat, which adversely affects the processing of the machine tool.
  • thermal deformation occurs in the bed due to the temperature difference between the coolant liquid and the bed in contact with the coolant liquid, and the relative position between the workpiece mounting portion and the tool table with the cutting tool changes, and the processing accuracy is reduced. It will decline.
  • Patent Document 1 below not only the coolant liquid is supplied to the cutting area of the workpiece, but also a part of the coolant liquid is also supplied to the coolant flow passage formed in the bed. A machine is disclosed. Thereby, there is almost no temperature difference between the temperature on the bed side and the coolant liquid supplied to the cutting region.
  • the conventional example of the above publication has a problem of thermal displacement due to a temperature difference between the coolant and the base, but there are other thermal displacements in the machine tool.
  • These include a spindle portion constituting a machine tool and a drive portion for driving a tool table.
  • the spindle portion and the drive portion themselves generate heat and are thermally deformed to cause thermal displacement at the machining position, which causes the machining dimension of the workpiece to become unstable. Therefore, it is necessary to take measures against thermal displacement at each heat generation point, but if a new cooling structure is added, it is not only costly but also difficult to incorporate in a narrow internal space of a machine tool. Therefore, it is desired to stabilize the processing dimension by thermal displacement while suppressing an increase in cost without adding a new cooling structure.
  • an object of the present invention is to provide a coolant device for a machine tool that cools a heat generation portion in order to solve such a problem.
  • a coolant device for a machine tool recovers coolant liquid supplied into a workpiece processing chamber into a coolant tank and repeatedly supplies the coolant into the processing chamber by a pump.
  • the coolant liquid collected in the coolant tank is cooled by the temperature adjusting device and repeatedly sent into the processing chamber by the pump.
  • the coolant pipe extending from the pump to the processing chamber is provided with one or two or more cooling blocks made of a material with good thermal conductivity, and the cooling block is formed by coolant liquid flowing through a flow path formed inside. Chilled. For this reason, the cooling block is attached to the heat generating portion of the machine tool, so that heat is taken away by the coolant liquid that constantly flows during processing, and thermal deformation during processing is suppressed.
  • FIG. 1 is a perspective view showing a processing machine line configured by arranging a plurality of machine tools according to the present embodiment.
  • the six machine tools 5 are mounted on a base 2 serving as a base.
  • the six machine tools 5 are all NC lathes of the same type, and have the same outer shape and dimensions.
  • the machine tool 5 is covered with an exterior cover 6, and a processing chamber closed for each machine tool 5 is formed inside.
  • a front work 7 constitutes a work transfer chamber 70 (see FIG. 3) in the front, and a work transfer device for delivering the work to each machine tool 5 is installed therein.
  • FIG. 2 is a perspective view showing the internal structure of the machine tool 5 mounted on the base 2. In particular, a state in which the processing module 10 forming the main body of the machine tool 5 is placed on the carriage 100 and pulled out to the rear of the base 2 is shown.
  • FIG. 3 is a side view showing the internal structure of the machine tool 5.
  • the machine tool 5 has a machining module 10 mounted on the base 2 and is covered with an exterior cover 6 as shown in FIG. Although only one processing module 10 is shown in FIG. 2, two processing modules 10 can be mounted on the base 2. Accordingly, the base 2 is provided with two rails 201 in accordance with the width of the processing module 10.
  • the processing module 10 is provided on a movable bed 11 having wheels, and is configured to be movable in the front-rear direction on the base 2 along the rail 201.
  • the processing module 10 is a turret lathe including a tool base 15 on which a rotary tool such as an end mill or a drill or a cutting tool such as a cutting tool is mounted. Therefore, the machining module 10 includes a headstock 12 having a chuck 13 for gripping and holding a workpiece, a turret device 14 having a tool table 15, and an X axis for moving the turret device 14 along the X axis and the Z axis. A driving device 16, a Z-axis driving device 17, and a machining control device 18 for controlling each driving device are provided.
  • the Z-axis is a horizontal axis parallel to the rotation axis (main axis) of the headstock 12 that rotates the workpiece, and is in the front-rear direction of the processing module 10.
  • the X axis is a movement axis that is orthogonal to the Z axis and moves the tool of the turret device 14 forward and backward with respect to the Z axis, and is a vertical vertical direction in this embodiment.
  • the left-right width direction of the processing module 10 orthogonal to the main axis is the Y-axis direction.
  • the front-rear direction of the processing machine line 1 is the Z-axis direction
  • the width direction in which a plurality of machine tools 5 are arranged is the Y-axis direction.
  • the vertical vertical direction is the X-axis direction.
  • the machining module 10 has a headstock 12 fixed on a movable bed 11.
  • a main spindle 12 is rotatably assembled with a main spindle arranged in the front-rear direction, a chuck mechanism including a chuck 13 is formed in the front, and a rotation transmission mechanism 20 that transmits the rotation of the servo motor 19 to the main spindle is provided in the rear. It is configured.
  • a column 21 is fixed adjacent to the headstock 12, and an X-axis drive device 16 that moves the turret device 14 in the X-axis direction relative to the column 21 and a Z-axis drive that moves the column 21 in the Z-axis direction.
  • the device 17 is assembled.
  • an X-axis slider 22 is slidably attached to a vertical guide rail formed on the column 21.
  • the X-axis slider 22 is disposed above the headstock 12 in order to suppress the width dimension of the processing module 10.
  • a servo motor 23 for raising and lowering the X-axis slider 22 is fixed to the upper part of the column 21, and a screw shaft 25 that rotates in response to the output is arranged in the vertical direction.
  • a nut is provided inside the X-axis slider 22, and a screw shaft 25 is screwed to the nut to constitute a ball screw mechanism.
  • a Z-axis slider 27 is attached to the X-axis slider 22 so as to be slidable in the horizontal direction, and the turret device 14 is integrally formed at the front end thereof.
  • a support frame 31 is fixed to the X-axis slider 22 on the rear side of the Z-axis slider 27, and a servo motor 32 is attached thereto. Further, a screw shaft 33 that is rotated by a servo motor 32 is rotatably supported on the support frame 31, and a ball screw mechanism is configured by being screwed into a nut inside the Z-axis slider 27.
  • the spindle is rotated by driving the servo motor 19 for the spindle, and the workpiece held by the chuck 13 is rotated.
  • the turret device 14 selects a predetermined tool from a plurality of tools attached to the tool table 15 by turning indexing.
  • the X-axis servomotor 23 is driven to rotate the screw shaft 25, and the X-axis slider 22 is moved up and down to adjust the height of the tool with respect to the workpiece.
  • the Z-axis servomotor 32 is driven, and the Z-axis slider 27 is moved in the horizontal direction by the rotation of the screw shaft 25, so that, for example, cutting or boring processing is performed on a workpiece rotated by a cutting tool. Is done.
  • coolant liquid is sprayed onto the processing point, and lubrication for the processing, washing of chips, and the like are performed.
  • the coolant liquid is sprayed on the cutting portion of the cutting tool, which is a processing point for the workpiece, and is also supplied to a storage tank inlet 35 formed immediately below the processing chamber 8. That is, the machine tool 5 is provided with a storage tank in which chips and coolant can be stored inside the base 2, and an inlet 35 to the inside of the storage tank is formed directly under the processing chamber 8. Therefore, the chips and the like that have fallen around the charging port 35 are poured into the storage tank by the coolant liquid so that the chips and the like do not remain around the charging port 35 corresponding to the bottom of the processing chamber 8. .
  • a screw conveyor is incorporated in a storage tank, and chips are scraped and collected by rotation of the screw, while coolant liquid flows out to the coolant tank 37 outside the storage tank and is collected. . Then, the coolant liquid that has returned to the coolant tank 37 is regenerated through the filter and is repeatedly used by being supplied again to the processing point by the pump 42.
  • ⁇ Coolant liquid is used for lubrication at the processing point and washing of chips, etc. In addition to such applications, it also has the use of reducing heat generated by processing to prevent thermal deformation.
  • the coolant liquid although the cooling effect can be obtained at the portion where the coolant liquid is directly sprayed or the vicinity thereof, the coolant liquid cannot be sprayed on all the heat generating portions in the machine.
  • the coolant since the temperature of the coolant rises due to repeated use, the coolant is sprayed on the bed, which causes thermal deformation.
  • FIG. 4 is a side view showing the internal structure of the machine tool 5, particularly a view showing a coolant device. In particular, a flow path for injecting the coolant liquid to the charging port 35 portion of the storage tank is shown.
  • the coolant device of the present embodiment is provided with a temperature adjusting device 41 for adjusting the temperature of the coolant liquid that is repeatedly used.
  • a coolant tank 37 provided in the base 2 is formed with a temperature adjustment tank 38 for storing coolant liquid from which chips and the like are removed through a filter.
  • a temperature adjustment device 41 is provided for the temperature adjustment tank 38. Is connected.
  • the temperature adjustment device 41 is configured to function as a refrigerant by suppressing the temperature rise of the coolant liquid, and circulates the cooled coolant liquid between the temperature adjustment tank 38.
  • a pump 42 is connected to the temperature adjustment tank 38, and coolant pipes 431 to 433 for sending the coolant liquid to the processing chamber 8 are connected to the output port of the pump 42.
  • the coolant pipes 431 to 433 are configured to be provided with one or more cooling blocks that function as heat sinks.
  • two cooling blocks 45 and 46 are provided.
  • the cooling blocks 45 and 46 are attached to the heat generating part of the machine tool 5, they are attached to two parts of the headstock 12 and the X-axis drive device 16 in this embodiment.
  • the headstock 12 has a cooling block 45 attached to the bearing portion 51 of the main shaft
  • the X-axis drive device 16 has a cooling block 46 attached to the bearing portion 52 of the screw shaft 25.
  • the cooling blocks 45 and 46 are configured to enhance the cooling effect.
  • the cooling blocks 45 and 46 are block bodies made of aluminum having excellent thermal conductivity, and a flow path through which a coolant liquid whose temperature is adjusted is formed. The flow path is formed so that the coolant liquid flows through the cooling blocks 45 and 46 for a long distance, and is formed so that the flow direction changes depending on the folded portion.
  • the cooling blocks 45 and 46 are formed so as to be in close contact with the mounting surface of the mounting location and to contact in a wide area.
  • FIG. 5 is a perspective view showing the cooling block 45, and in particular, a cross section in which the internal flow path is seen is shown.
  • the side surface of the bearing portion 51 is a circumferential surface. Therefore, the cooling block 45 is formed by a curved surface 451 that matches the mounting surface of the headstock 12 and other flat surfaces.
  • the bearing portion 52 of the X-axis drive device 16 that is the attachment location of the cooling block 46 is a flat surface. Therefore, the cooling block 46 has a simple rectangular parallelepiped shape.
  • Each of the cooling blocks 45 and 46 has an input port and an output port, and a flow path connecting the two ports is formed inside. Since the cooling blocks 45 and 46 are cooled by the coolant liquid flowing inside, the folded flow path is formed with a longer flow distance so that the contact surface with the coolant liquid becomes larger.
  • an input port 452 and an output port 453 are formed on the same side surface, and a flow path 458 having three turns is formed.
  • the flow path 458 is formed by drilling, and therefore the cooling block 45 is divided into two blocks, an upper block 455 and a lower block 456.
  • unnecessary openings are closed by plug members after drilling, and the flow path 458 is a single flow path.
  • the upper block 455 and the lower block 456 are combined together by bolting or the like, and a sealing process using an O-ring 48 is performed on a connection portion of the flow path 458.
  • the cooling block 46 since the cooling block 46 has a small volume, a flow path 458 having one turn is formed. In this case, after opening a hole in one block, an unnecessary opening is closed by the plug member 49 to form one flow path 458.
  • the heat generation amount of the bearing portion 51 of the headstock 12 is larger than that of the bearing portion 52 of the X-axis drive device 16, and the bearing portion 51 of the headstock 12 is closer to the machining point. Is big. Therefore, the cooling block 45 is directly connected to the pump 42 by the coolant pipe 431 so that the low-temperature coolant liquid whose temperature is adjusted flows.
  • a cooling block 46 is provided downstream of the cooling block 45 and is connected by a coolant pipe 432. Further, a coolant pipe 433 is connected to the output port of the cooling block 46, and the coolant pipe 433 extends to the processing chamber 8.
  • the cutting tool is applied to the rotating workpiece and predetermined processing is performed.
  • the coolant liquid sent out by driving the pump 42 is sprayed to the processing point, and also sprayed to the inlet 35 of the storage tank as shown in FIG.
  • the coolant liquid that is used repeatedly increases its own temperature by taking heat away from the processing point.
  • the coolant liquid that has flowed down to the storage tank is sent from the coolant tank 37 to the temperature adjustment tank 38, and is cooled by being circulated between the temperature adjustment device 41. The temperature of the coolant is adjusted so that the temperature does not rise in this way.
  • the cooled coolant liquid is sent out from the temperature adjustment tank 38 by the pump 42 and flows from the coolant pipe 431 to the cooling block 45. Then, it passes through the folded flow path 458 formed in the cooling block 45 and flows from the coolant pipe 432 to the second cooling block 46. Also in the cooling block 46, it passes through the return flow path and flows to the coolant pipe 433, and is ejected into the processing chamber 8 and flows down to the charging port 35 of the storage tank.
  • the bearing portions 51 and 52 such as the headstock 12 generate heat by rotation. However, the heat is transmitted to the cooling blocks 45 and 46 that are in contact with the bearing portions 51 and 52, and heat exchange is performed between the cooling blocks 45 and 46 and the coolant flowing through the flow path 458 and the like.
  • the machine tool 5 of the present embodiment by mounting the coolant device provided with the cooling blocks 45 and 46, the heat generated in the bearing portion 51 of the bearing base 12 and the like is taken away by the coolant liquid, so that the machining tool 5 The thermal deformation of is suppressed. Therefore, it is possible to stabilize the machining dimension of the workpiece as compared with the conventional machine tool.
  • the coolant apparatus is only slightly improved without significantly changing the configuration from the conventional machine tool, the above-described effects can be achieved with reduced costs.
  • the inside of the exterior cover 6 of the machine tool 5 has a configuration in which only the cooling blocks 45 and 46 and the coolant pipe 432 connecting the cooling blocks 45 and 46 are added compared to the conventional configuration. Can be installed in space.
  • the coolant apparatus of this embodiment can make the coolant liquid sent out from the pump 42 stably to a predetermined temperature by circulating the coolant liquid between the temperature adjustment tank 38 and the temperature adjustment apparatus 41. it can. For example, if a temperature sensor is installed at a heat generation location and the drive of the temperature adjustment device 41 is controlled based on the measured value, the coolant liquid can be sent out at an appropriate temperature.
  • the cooling block 45 is formed in a shape matching the mounting surface of the headstock 12 and is in contact with a wide surface, more heat can be taken from the heat generating portion.
  • the cooling blocks 45 and 46 are made of aluminum having excellent thermal conductivity and are formed with a long channel 458, efficient heat exchange with the coolant liquid can be performed.
  • the bearing portion 53 of the screw shaft 33 serves as a heat generating portion, but the Z-axis drive device 17 is mounted on the X-axis slider 22 and moves up and down. is not.
  • a cooling block may also be attached to the bearing portion 53 and connected by a flexible tube so that the bearing portion 53 is deformed so as not to obstruct the up and down.
  • the two cooling blocks 45 and 46 are connected by a single flow path, but may be configured such that a coolant liquid flows through different flow paths by connecting separate coolant pipes.
  • the cooling block that functions as a heat sink uses aluminum having good heat transfer characteristics as a material, but may be other metal such as iron or copper.

Abstract

A coolant apparatus of a machine tool (5) for cooling heat-generating sites, wherein the apparatus repeatedly recovers coolant liquid, which has been supplied into a workpiece machining chamber (8), in a coolant tank (37), and supplies same into the machining chamber (8) using a pump (42). The apparatus comprises: coolant pipes (431-433) configuring a coolant flow channel for delivering coolant liquid in the coolant tank (37) to a supply position in the machining chamber (8); one or more cooling blocks (45, 46), which are disposed on the coolant pipes (431-433), in which a flow channel (458) configuring a portion of the coolant flow channel is formed, and which are formed from a material with good thermal conductivity; and a temperature-adjusting device (41) for cooling the coolant liquid to be supplied into the machining chamber (8).

Description

工作機械のクーラント装置Coolant equipment for machine tools
 本発明は、繰り返し使用されるクーラント液の温度を調整することにより、そのクーラント液を利用して機内の発熱箇所に対する冷却を行う機内冷却機能を持った工作機械のクーラント装置に関する。 The present invention relates to a coolant device for a machine tool having an in-machine cooling function for adjusting a temperature of a coolant liquid that is repeatedly used to cool a heat generation portion in the machine by using the coolant liquid.
 工作機械では、クーラント液が加工熱を下げるほか、切り屑を加工個所などから流し出すための冷却液として使用されている。しかし、そのクーラント液は、クーラントタンクに戻されて繰り返し使用されるため、次第に加工熱によって温度が上昇してしまい、工作機械の加工に悪影響を与えてしまう。例えば、クーラント液とそのクーラント液が接するベッドとの温度差によってベッドに熱変形が生じ、ワークの取付部分と切削工具を備えた工具台との相対的な位置が変化してしまい、加工精度が低下してしまう。この点について下記特許文献1では、クーラント液がワークの切削領域に供給されるだけではなく、その一部がベッドに形成されたクーラント液の通過流路にも供給されるように構成された工作機械が開示されている。これにより、ベッド側の温度と切削領域に供給されるクーラント液との温度差がほとんどなくなるというものである。 In machine tools, coolant liquid lowers the heat of machining and is used as a cooling liquid to drain chips from the machining area. However, since the coolant liquid is returned to the coolant tank and repeatedly used, the temperature gradually increases due to processing heat, which adversely affects the processing of the machine tool. For example, thermal deformation occurs in the bed due to the temperature difference between the coolant liquid and the bed in contact with the coolant liquid, and the relative position between the workpiece mounting portion and the tool table with the cutting tool changes, and the processing accuracy is reduced. It will decline. With respect to this point, in Patent Document 1 below, not only the coolant liquid is supplied to the cutting area of the workpiece, but also a part of the coolant liquid is also supplied to the coolant flow passage formed in the bed. A machine is disclosed. Thereby, there is almost no temperature difference between the temperature on the bed side and the coolant liquid supplied to the cutting region.
特開2000-135640号公報JP 2000-135640 A
 しかし、前記公報の従来例では、クーラント液とベースとの温度差による熱変位を問題としているが、工作機械における熱変位はその他にも存在する。工作機械を構成する主軸部分や工具台を駆動するための駆動部分などである。主軸部分や駆動部分は、自らが発熱して熱変形することにより加工位置の熱変位を生じさせてしまい、ワークの加工寸法が安定しない原因となっている。そこで、各発熱箇所の熱変位対策が必要になるが、新たな冷却構造を加えるとすればコストがかかるだけではなく、狭小な工作機械の内部空間に組み込むことも困難である。よって、新たな冷却構造を追加することなく、コストアップを抑えながらも熱変位による加工寸法の安定を図ることが望まれる。 However, the conventional example of the above publication has a problem of thermal displacement due to a temperature difference between the coolant and the base, but there are other thermal displacements in the machine tool. These include a spindle portion constituting a machine tool and a drive portion for driving a tool table. The spindle portion and the drive portion themselves generate heat and are thermally deformed to cause thermal displacement at the machining position, which causes the machining dimension of the workpiece to become unstable. Therefore, it is necessary to take measures against thermal displacement at each heat generation point, but if a new cooling structure is added, it is not only costly but also difficult to incorporate in a narrow internal space of a machine tool. Therefore, it is desired to stabilize the processing dimension by thermal displacement while suppressing an increase in cost without adding a new cooling structure.
 そこで、本発明は、かかる課題を解決すべく、発熱箇所の冷却を行う工作機械のクーラント装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a coolant device for a machine tool that cools a heat generation portion in order to solve such a problem.
 本発明の一態様における工作機械のクーラント装置は、ワークの加工室内に供給したクーラント液をクーラントタンクへと回収し、ポンプにより前記加工室内への供給を繰り返すものであって、前記クーラントタンク内のクーラント液を前記加工室内の供給位置に送るためのクーラント流路を構成するクーラント管と、前記クーラント管に配管され、前記クーラント流路の一部を構成する流路が形成された、熱伝導性の良い材料からなる一又は二以上の冷却ブロックと、前記加工室内へ供給するクーラント液を冷却するための温度調整装置とを有するものである。 A coolant device for a machine tool according to an aspect of the present invention recovers coolant liquid supplied into a workpiece processing chamber into a coolant tank and repeatedly supplies the coolant into the processing chamber by a pump. A coolant pipe for forming a coolant flow path for sending a coolant liquid to a supply position in the processing chamber, and a heat pipe that is connected to the coolant pipe and has a flow path that forms part of the coolant flow path. One or two or more cooling blocks made of a good material, and a temperature adjusting device for cooling the coolant liquid supplied into the processing chamber.
 本発明によれば、クーラントタンクに回収されたクーラント液が温度調節装置によって冷却され、ポンプによって繰り返し加工室内へと送られる。そのポンプから加工室にまで延びたクーラント管には、熱伝導性の良い材料からなる一又は二以上の冷却ブロックが配管され、その冷却ブロックが、内部に形成された流路を流れるクーラント液によって冷やされる。そのため、工作機械における発熱箇所に冷却ブロックが取り付けられることにより、加工中に絶えず流れるクーラント液によって熱が奪われ、加工時の熱変形が抑えられる。 According to the present invention, the coolant liquid collected in the coolant tank is cooled by the temperature adjusting device and repeatedly sent into the processing chamber by the pump. The coolant pipe extending from the pump to the processing chamber is provided with one or two or more cooling blocks made of a material with good thermal conductivity, and the cooling block is formed by coolant liquid flowing through a flow path formed inside. Chilled. For this reason, the cooling block is attached to the heat generating portion of the machine tool, so that heat is taken away by the coolant liquid that constantly flows during processing, and thermal deformation during processing is suppressed.
工作機械を複数並べて構成された加工機械ラインを示した斜視図である。It is the perspective view which showed the processing machine line comprised by arranging a plurality of machine tools. ベースに搭載された工作機械の内部構造を示した斜視図である。It is the perspective view which showed the internal structure of the machine tool mounted in the base. 工作機械の内部構造を示した側面図である。It is the side view which showed the internal structure of the machine tool. 工作機械のクーラント装置の一実施形態を示した図である。It is the figure which showed one Embodiment of the coolant apparatus of a machine tool. 冷却ブロックを示した断面斜視図である。It is the cross-sectional perspective view which showed the cooling block.
 次に、本発明に係る工作機械のクーラント装置に関する一実施形態について図面を参照しながら以下に説明する。図1は、本実施形態の工作機械を複数並べて構成された加工機械ラインを示した斜視図である。加工機械ライン1は、基礎となるベース2の上に6台の工作機械5が搭載されている。6台の工作機械5は、いずれも同じ型のNC旋盤であり、外形形状や寸法が揃えられている。その工作機械5は、外装カバー6によって覆われ、内部には工作機械5ごとに閉じられた加工室が構成されている。そして前方には前カバー7によって一つのワーク搬送室70(図3参照)が構成され、その中には各工作機械5に対してワークの受渡しを行うワーク搬送装置が設置されている。 Next, an embodiment relating to a coolant device for a machine tool according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a processing machine line configured by arranging a plurality of machine tools according to the present embodiment. In the processing machine line 1, six machine tools 5 are mounted on a base 2 serving as a base. The six machine tools 5 are all NC lathes of the same type, and have the same outer shape and dimensions. The machine tool 5 is covered with an exterior cover 6, and a processing chamber closed for each machine tool 5 is formed inside. A front work 7 constitutes a work transfer chamber 70 (see FIG. 3) in the front, and a work transfer device for delivering the work to each machine tool 5 is installed therein.
 加工機械ライン1は、3台のベース2が幅方向に近接して並べられ、ベース2の上に2台ずつ搭載された工作機械5も隣同士が極めて近接して配置されている。本実施形態の加工機械ライン1は、全体が非常にコンパクトになるように設計され、加えて各工作機械5も幅寸法の抑えられたコンパクトな構成になっている。図2は、ベース2に搭載された工作機械5の内部構造を示した斜視図である。特に、工作機械5の本体をなす加工モジュール10が台車100に載せられ、ベース2の後方へ引き出された状態が示されている。更に図3は、工作機械5の内部構造を示した側面図である。 In the processing machine line 1, three bases 2 are arranged close to each other in the width direction, and machine tools 5 mounted on the base 2 two by two are arranged in close proximity to each other. The processing machine line 1 of the present embodiment is designed to be very compact as a whole, and each machine tool 5 has a compact configuration with a reduced width dimension. FIG. 2 is a perspective view showing the internal structure of the machine tool 5 mounted on the base 2. In particular, a state in which the processing module 10 forming the main body of the machine tool 5 is placed on the carriage 100 and pulled out to the rear of the base 2 is shown. FIG. 3 is a side view showing the internal structure of the machine tool 5.
 工作機械5は、ベース2の上に加工モジュール10が搭載され、図1に示すように外装カバー6によって覆われている。図2では、1台の加工モジュール10しか示されていないが、ベース2には2台の加工モジュール10が搭載可能である。従って、ベース2は、加工モジュール10の幅に合わせてレール201が2本ずつ設けられている。加工モジュール10は、車輪を備えた可動ベッド11の上に設けられ、レール201に沿ってベース2の上を前後方向に移動可能な構成になっている。 The machine tool 5 has a machining module 10 mounted on the base 2 and is covered with an exterior cover 6 as shown in FIG. Although only one processing module 10 is shown in FIG. 2, two processing modules 10 can be mounted on the base 2. Accordingly, the base 2 is provided with two rails 201 in accordance with the width of the processing module 10. The processing module 10 is provided on a movable bed 11 having wheels, and is configured to be movable in the front-rear direction on the base 2 along the rail 201.
 加工モジュール10は、エンドミルやドリルなどの回転工具、或いはバイトなどの切削工具を装着した工具台15を備えるタレット旋盤である。そのため、加工モジュール10は、ワークを掴んで保持するチャック13を備えた主軸台12、工具台15を備えたタレット装置14および、そのタレット装置14をX軸やZ軸に沿って移動させるX軸駆動装置16やZ軸駆動装置17、さらには各駆動装置を制御するための加工制御装置18などが設けられている。 The processing module 10 is a turret lathe including a tool base 15 on which a rotary tool such as an end mill or a drill or a cutting tool such as a cutting tool is mounted. Therefore, the machining module 10 includes a headstock 12 having a chuck 13 for gripping and holding a workpiece, a turret device 14 having a tool table 15, and an X axis for moving the turret device 14 along the X axis and the Z axis. A driving device 16, a Z-axis driving device 17, and a machining control device 18 for controlling each driving device are provided.
 ここで、Z軸は、ワークを回転させる主軸台12の回転軸(主軸)と平行な水平軸であり、加工モジュール10の前後方向になる。また、X軸は、Z軸に対して直交し、タレット装置14の工具をZ軸に対して進退させる移動軸であり、本実施形態では鉛直な上下方向である。そして、主軸に直交する加工モジュール10の左右幅方向がY軸方向である。図1に対応させてみれば、加工機械ライン1の前後方向がZ軸方向であり、工作機械5が複数並んだ幅方向がY軸方向である。そして鉛直な上下方向がX軸方向である。 Here, the Z-axis is a horizontal axis parallel to the rotation axis (main axis) of the headstock 12 that rotates the workpiece, and is in the front-rear direction of the processing module 10. The X axis is a movement axis that is orthogonal to the Z axis and moves the tool of the turret device 14 forward and backward with respect to the Z axis, and is a vertical vertical direction in this embodiment. And the left-right width direction of the processing module 10 orthogonal to the main axis is the Y-axis direction. In correspondence with FIG. 1, the front-rear direction of the processing machine line 1 is the Z-axis direction, and the width direction in which a plurality of machine tools 5 are arranged is the Y-axis direction. The vertical vertical direction is the X-axis direction.
 加工モジュール10は、可動ベッド11上に主軸台12が固定されている。主軸台12は、前後方向に配置された主軸が回転自在に組み付けられ、前方にはチャック13を備えたチャック機構が構成され、後方にはサーボモータ19の回転を主軸に伝える回転伝達機構20が構成されている。そして、主軸台12の隣にはコラム21が近接して固定され、そのコラム21に対してタレット装置14をX軸方向に移動させるX軸駆動装置16と、Z軸方向に移動させるZ軸駆動装置17とが組み付けられている。具体的には、コラム21に形成された上下方向のガイドレールに対してX軸スライダ22が摺動自在に取り付けられている。特に、加工モジュール10の幅寸法を抑えるため、X軸スライダ22は主軸台12の上方に配置されている。 The machining module 10 has a headstock 12 fixed on a movable bed 11. A main spindle 12 is rotatably assembled with a main spindle arranged in the front-rear direction, a chuck mechanism including a chuck 13 is formed in the front, and a rotation transmission mechanism 20 that transmits the rotation of the servo motor 19 to the main spindle is provided in the rear. It is configured. A column 21 is fixed adjacent to the headstock 12, and an X-axis drive device 16 that moves the turret device 14 in the X-axis direction relative to the column 21 and a Z-axis drive that moves the column 21 in the Z-axis direction. The device 17 is assembled. Specifically, an X-axis slider 22 is slidably attached to a vertical guide rail formed on the column 21. In particular, the X-axis slider 22 is disposed above the headstock 12 in order to suppress the width dimension of the processing module 10.
 コラム21の上部には、X軸スライダ22を昇降させるためのサーボモータ23が固定され、その出力を受けて回転するネジ軸25が鉛直方向に配置されている。X軸スライダ22の内部にはナットが設けられ、そのナットにネジ軸25が螺合することによりボールネジ機構が構成されている。そして、そのX軸スライダ22にはZ軸スライダ27が水平方向に摺動自在に取り付けられ、その前方側端部にタレット装置14が一体的に構成されている。Z軸スライダ27の後方側にはX軸スライダ22に支持フレーム31が固定され、そこにサーボモータ32が取り付けられている。また、支持フレーム31には、サーボモータ32によって回転するネジ軸33が回転支持され、Z軸スライダ27内部のナットに螺合することにより、ボールネジ機構が構成されている。 A servo motor 23 for raising and lowering the X-axis slider 22 is fixed to the upper part of the column 21, and a screw shaft 25 that rotates in response to the output is arranged in the vertical direction. A nut is provided inside the X-axis slider 22, and a screw shaft 25 is screwed to the nut to constitute a ball screw mechanism. A Z-axis slider 27 is attached to the X-axis slider 22 so as to be slidable in the horizontal direction, and the turret device 14 is integrally formed at the front end thereof. A support frame 31 is fixed to the X-axis slider 22 on the rear side of the Z-axis slider 27, and a servo motor 32 is attached thereto. Further, a screw shaft 33 that is rotated by a servo motor 32 is rotatably supported on the support frame 31, and a ball screw mechanism is configured by being screwed into a nut inside the Z-axis slider 27.
 工作機械5は、主軸用のサーボモータ19の駆動により主軸が回転し、チャック13に保持されたワークに回転が与えられる。タレット装置14は、旋回割出しによって工具台15に取り付けられた複数の工具のうち所定に工具が選択される。そして、X軸用のサーボモータ23が駆動してネジ軸25が回転し、X軸スライダ22が昇降してワークに対する工具の高さ調整が行われる。続いて、Z軸用のサーボモータ32が駆動し、ネジ軸25の回転によるZ軸スライダ27が水平方向に移動することにより、例えば切削工具によって回転するワークに対して切削加工や中ぐり加工などが行われる。その際、工作機械5の加工室8内では加工点にクーラント液が吹きかけられ、加工に対する潤滑や切屑の洗い流しなどが行われる。 In the machine tool 5, the spindle is rotated by driving the servo motor 19 for the spindle, and the workpiece held by the chuck 13 is rotated. The turret device 14 selects a predetermined tool from a plurality of tools attached to the tool table 15 by turning indexing. Then, the X-axis servomotor 23 is driven to rotate the screw shaft 25, and the X-axis slider 22 is moved up and down to adjust the height of the tool with respect to the workpiece. Subsequently, the Z-axis servomotor 32 is driven, and the Z-axis slider 27 is moved in the horizontal direction by the rotation of the screw shaft 25, so that, for example, cutting or boring processing is performed on a workpiece rotated by a cutting tool. Is done. At that time, in the processing chamber 8 of the machine tool 5, coolant liquid is sprayed onto the processing point, and lubrication for the processing, washing of chips, and the like are performed.
 そのクーラント液は、ワークに対する加工点である切削工具の切削部分に吹きかけられるほか、加工室8の真下に形成された貯留槽の投入口35に対しても供給されるようになっている。すなわち、工作機械5は、ベース2の内部に切屑やクーラント液を溜めることができる貯留槽が設けられ、加工室8の真下には貯留槽内部への投入口35が形成されている。そこで、加工室8内の底部にあたる投入口35の周りに切屑などが留まってしまわないように、投入口35の周りに落ちた切屑などをクーラント液によって貯留槽内部にまで流し込むようになっている。 The coolant liquid is sprayed on the cutting portion of the cutting tool, which is a processing point for the workpiece, and is also supplied to a storage tank inlet 35 formed immediately below the processing chamber 8. That is, the machine tool 5 is provided with a storage tank in which chips and coolant can be stored inside the base 2, and an inlet 35 to the inside of the storage tank is formed directly under the processing chamber 8. Therefore, the chips and the like that have fallen around the charging port 35 are poured into the storage tank by the coolant liquid so that the chips and the like do not remain around the charging port 35 corresponding to the bottom of the processing chamber 8. .
 本実施形態の工作機械5は、貯留槽にスクリューコンベアが組み込まれ、スクリューの回転によって切屑が掻き出されて回収される一方、クーラント液が貯留槽外側のクーラントタンク37へと流れ出して回収される。そして、クーラントタンク37に戻ったクーラント液がフィルタを通して再生され、ポンプ42によって再び加工点などへと供給されるようにして繰り返し使用される。 In the machine tool 5 of the present embodiment, a screw conveyor is incorporated in a storage tank, and chips are scraped and collected by rotation of the screw, while coolant liquid flows out to the coolant tank 37 outside the storage tank and is collected. . Then, the coolant liquid that has returned to the coolant tank 37 is regenerated through the filter and is repeatedly used by being supplied again to the processing point by the pump 42.
 クーラント液は、加工点における潤滑および切屑の洗い流しなどに使用されるが、こうした用途のほかにも、加工によって発生する熱を下げて熱変形を防止するという用途も有している。しかし、クーラント液によって冷却する場合、クーラント液が直接吹きかけられる箇所、あるいはその周辺は冷却効果を得ることができるものの、機内の発熱箇所全てに対してクーラント液を吹きかけることができるわけではない。また、クーラント液は繰り返し使用されることにより温度が上昇してしまうので、そのクーラント液がベッド上に吹きかけられることで逆に熱変形を生じさせてしまうことにもなる。 ¡Coolant liquid is used for lubrication at the processing point and washing of chips, etc. In addition to such applications, it also has the use of reducing heat generated by processing to prevent thermal deformation. However, in the case of cooling with the coolant liquid, although the cooling effect can be obtained at the portion where the coolant liquid is directly sprayed or the vicinity thereof, the coolant liquid cannot be sprayed on all the heat generating portions in the machine. In addition, since the temperature of the coolant rises due to repeated use, the coolant is sprayed on the bed, which causes thermal deformation.
 そこで、本実施形態のクーラント装置では、かかる点を考慮して、クーラント液による十分な冷却効果が得られる構成が採られている。図4は、工作機械5の内部構造を示した側面図であり、特にクーラント装置を示した図である。なかでも貯留槽の投入口35部分へクーラント液を噴出させるための流路を示したものである。 Therefore, in consideration of this point, the coolant device of the present embodiment adopts a configuration that can obtain a sufficient cooling effect by the coolant liquid. FIG. 4 is a side view showing the internal structure of the machine tool 5, particularly a view showing a coolant device. In particular, a flow path for injecting the coolant liquid to the charging port 35 portion of the storage tank is shown.
 本実施形態のクーラント装置は、繰り返し使用されるクーラント液の温度調整を行うための温度調整装置41が設けられている。ベース2内に設けられたクーラントタンク37には、フィルタを介して切屑などを排除したクーラント液を溜めるための温度調整用タンク38が形成され、その温度調整用タンク38に対して温度調整装置41が接続されている。この温度調整装置41は、クーラント液の温度上昇を抑えて冷媒として機能させるようにしたものであり、冷却させたクーラント液を温度調整用タンク38との間で循環させるものである。 The coolant device of the present embodiment is provided with a temperature adjusting device 41 for adjusting the temperature of the coolant liquid that is repeatedly used. A coolant tank 37 provided in the base 2 is formed with a temperature adjustment tank 38 for storing coolant liquid from which chips and the like are removed through a filter. A temperature adjustment device 41 is provided for the temperature adjustment tank 38. Is connected. The temperature adjustment device 41 is configured to function as a refrigerant by suppressing the temperature rise of the coolant liquid, and circulates the cooled coolant liquid between the temperature adjustment tank 38.
 温度調整用タンク38にはポンプ42が接続され、ポンプ42の出力ポートにはクーラント液を加工室8へと送るためのクーラント管431~433が接続されている。そして、このクーラント管431~433には、ヒートシンクとして機能する一又は二以上の冷却ブロックが配管される構成となっている。本実施形態の場合、2つの冷却ブロック45,46が設けられている。冷却ブロック45,46は、工作機械5の発熱箇所に取り付けられるものであるが、本実施形態では主軸台12とX軸駆動装置16の2箇所に取り付けられている。主軸台12は、主軸の軸受け部51に冷却ブロック45が取り付けられ、X軸駆動装置16は、ねじ軸25の軸受け部52に冷却ブロック46が取り付けられている。 A pump 42 is connected to the temperature adjustment tank 38, and coolant pipes 431 to 433 for sending the coolant liquid to the processing chamber 8 are connected to the output port of the pump 42. The coolant pipes 431 to 433 are configured to be provided with one or more cooling blocks that function as heat sinks. In the case of this embodiment, two cooling blocks 45 and 46 are provided. Although the cooling blocks 45 and 46 are attached to the heat generating part of the machine tool 5, they are attached to two parts of the headstock 12 and the X-axis drive device 16 in this embodiment. The headstock 12 has a cooling block 45 attached to the bearing portion 51 of the main shaft, and the X-axis drive device 16 has a cooling block 46 attached to the bearing portion 52 of the screw shaft 25.
 冷却ブロック45,46は、冷却効果を高めるための構成が採られている。具体的に冷却ブロック45,46は、熱伝導性に優れたアルミニウムからなるブロック体であって、内部には温度調整されたクーラント液が流れる流路が形成されている。その流路は、冷却ブロック45,46内をクーラント液が長い距離流れるようにしたものであり、折り返し部分によって流れの方向が変わるように形成されている。また、冷却ブロック45,46は、取り付け箇所の取り付け面に密着して且つ広い面積で接触するように形成されている。ここで、図5は、冷却ブロック45を示した斜視図であり、特に、内部の流路が分かるようにした断面が示されている。 The cooling blocks 45 and 46 are configured to enhance the cooling effect. Specifically, the cooling blocks 45 and 46 are block bodies made of aluminum having excellent thermal conductivity, and a flow path through which a coolant liquid whose temperature is adjusted is formed. The flow path is formed so that the coolant liquid flows through the cooling blocks 45 and 46 for a long distance, and is formed so that the flow direction changes depending on the folded portion. Further, the cooling blocks 45 and 46 are formed so as to be in close contact with the mounting surface of the mounting location and to contact in a wide area. Here, FIG. 5 is a perspective view showing the cooling block 45, and in particular, a cross section in which the internal flow path is seen is shown.
 冷却ブロック45の取り付け箇所である主軸台12は、軸受け部51の側面が円周面になっている。そのため、冷却ブロック45は、主軸台12の取付面に合わせた湾曲面451とその他の平面によって形成されている。一方、冷却ブロック46の取り付け箇所であるX軸駆動装置16の軸受け部52は平面である。そのため、冷却ブロック46は単純な直方体形状である。そして、冷却ブロック45,46は、ともに入力ポートと出力ポートが形成され、内部には両ポートをつなぐ流路が形成されている。冷却ブロック45,46は、内部を流れるクーラント液によって冷やされるものであるため、クーラント液との接触面が大きくなるように流れる距離を長くした折返し流路が形成されている。 In the headstock 12 where the cooling block 45 is attached, the side surface of the bearing portion 51 is a circumferential surface. Therefore, the cooling block 45 is formed by a curved surface 451 that matches the mounting surface of the headstock 12 and other flat surfaces. On the other hand, the bearing portion 52 of the X-axis drive device 16 that is the attachment location of the cooling block 46 is a flat surface. Therefore, the cooling block 46 has a simple rectangular parallelepiped shape. Each of the cooling blocks 45 and 46 has an input port and an output port, and a flow path connecting the two ports is formed inside. Since the cooling blocks 45 and 46 are cooled by the coolant liquid flowing inside, the folded flow path is formed with a longer flow distance so that the contact surface with the coolant liquid becomes larger.
 例えば、冷却ブロック45では、同じ側の面に入力ポート452と出力ポート453が形成され、3箇所の折返しを有する流路458が形成されている。本実施形態では、穴あけ加工によって流路458が形成されているが、そのため冷却ブロック45は上ブロック455と下ブロック456の2つに分けられている。上ブロック455と下ブロック456には、それぞれに穴あけ加工の後に栓部材によって不要な開口部が塞がれ、流路458が一本の流路になっている。上ブロック455と下ブロック456はボルト締めなどによって一体に組み合わされ、流路458の接続部分にはOリング48を使ったシール処理が行われている。一方、冷却ブロック46は体積が小さいため、1箇所の折返しを有する流路458が形成されている。この場合には、一つのブロックに対して穴あけ加工の後、栓部材49によって不要な開口部分が塞がれて一本の流路458が形成される。 For example, in the cooling block 45, an input port 452 and an output port 453 are formed on the same side surface, and a flow path 458 having three turns is formed. In this embodiment, the flow path 458 is formed by drilling, and therefore the cooling block 45 is divided into two blocks, an upper block 455 and a lower block 456. In the upper block 455 and the lower block 456, unnecessary openings are closed by plug members after drilling, and the flow path 458 is a single flow path. The upper block 455 and the lower block 456 are combined together by bolting or the like, and a sealing process using an O-ring 48 is performed on a connection portion of the flow path 458. On the other hand, since the cooling block 46 has a small volume, a flow path 458 having one turn is formed. In this case, after opening a hole in one block, an unnecessary opening is closed by the plug member 49 to form one flow path 458.
 工作機械5は、X軸駆動装置16の軸受け部52よりも主軸台12の軸受け部51の発熱量が大きく、しかも主軸台12の軸受け部51の方が加工点に近いため加工に対する熱の影響が大きい。そこで、冷却ブロック45がクーラント管431によってポンプ42と直接接続され、温度調整された低い温度のクーラント液が流れ込むようになっている。そして、冷却ブロック45の下流側に冷却ブロック46があり、クーラント管432によって接続されている。更に、冷却ブロック46の出力ポートにはクーラント管433が接続され、そのクーラント管433が加工室8へと延びている。 In the machine tool 5, the heat generation amount of the bearing portion 51 of the headstock 12 is larger than that of the bearing portion 52 of the X-axis drive device 16, and the bearing portion 51 of the headstock 12 is closer to the machining point. Is big. Therefore, the cooling block 45 is directly connected to the pump 42 by the coolant pipe 431 so that the low-temperature coolant liquid whose temperature is adjusted flows. A cooling block 46 is provided downstream of the cooling block 45 and is connected by a coolant pipe 432. Further, a coolant pipe 433 is connected to the output port of the cooling block 46, and the coolant pipe 433 extends to the processing chamber 8.
 そこで、工作機械5では、前述したように、回転するワークに対して切削工具が当てられて所定の加工が行われる。その際、ポンプ42の駆動によって送り出されるクーラント液が加工点へと吹きかけられるほか、図4に示すように貯留槽の投入口35への吹きかけも行われる。繰り返し使用されるクーラント液は、加工点などで熱を奪うことによって自身の温度が上がってしまう。しかし、本実施形態では、貯留槽へ流れ落ちたクーラント液がクーラントタンク37から温度調整用タンク38へと送られ、温度調整装置41との間を循環することにより冷やされる。クーラント液は、こうして温度が上がらないように温度調整が行われる。 Therefore, in the machine tool 5, as described above, the cutting tool is applied to the rotating workpiece and predetermined processing is performed. At that time, the coolant liquid sent out by driving the pump 42 is sprayed to the processing point, and also sprayed to the inlet 35 of the storage tank as shown in FIG. The coolant liquid that is used repeatedly increases its own temperature by taking heat away from the processing point. However, in the present embodiment, the coolant liquid that has flowed down to the storage tank is sent from the coolant tank 37 to the temperature adjustment tank 38, and is cooled by being circulated between the temperature adjustment device 41. The temperature of the coolant is adjusted so that the temperature does not rise in this way.
 冷やされたクーラント液は、ポンプ42によって温度調整用タンク38から送り出され、クーラント管431から冷却ブロック45へと流れる。そして、冷却ブロック45に形成された折返しの流路458を通り抜け、クーラント管432から第2の冷却ブロック46へと流れる。冷却ブロック46においても折返し流路を通り抜けてクーラント管433へと流れ、加工室8内に噴出して貯留槽の投入口35へと流れ落ちる。工作機械5の加工中は主軸台12などの軸受け部51,52が回転によって発熱する。しかし、その熱は軸受け部51,52に接した冷却ブロック45,46へと伝わり、その冷却ブロック45,46では、流路458などを流れるクーラント液との間で熱交換が行われる。 The cooled coolant liquid is sent out from the temperature adjustment tank 38 by the pump 42 and flows from the coolant pipe 431 to the cooling block 45. Then, it passes through the folded flow path 458 formed in the cooling block 45 and flows from the coolant pipe 432 to the second cooling block 46. Also in the cooling block 46, it passes through the return flow path and flows to the coolant pipe 433, and is ejected into the processing chamber 8 and flows down to the charging port 35 of the storage tank. During processing of the machine tool 5, the bearing portions 51 and 52 such as the headstock 12 generate heat by rotation. However, the heat is transmitted to the cooling blocks 45 and 46 that are in contact with the bearing portions 51 and 52, and heat exchange is performed between the cooling blocks 45 and 46 and the coolant flowing through the flow path 458 and the like.
 よって、本実施形態の工作機械5によれば、冷却ブロック45,46を備えたクーラント装置を搭載することにより、軸受台12の軸受け部51などで発生した熱がクーラント液によって奪われるため加工時の熱変形が抑えられる。従って、従来の工作機械に比べてワークの加工寸法を安定させることができる。しかも、従来の工作機械から構成を大幅に変えることなくクーラント装置について多少の改良を加えただけであるため、コストを抑えて上記効果を達成することができる。しかも、工作機械5の外装カバー6の内部では、従来の構成に比べて冷却ブロック45,46と、その間を接続するクーラント管432とを追加しただけの構成であるため、これまでの狭小な内部空間にも取り付けが可能である。 Therefore, according to the machine tool 5 of the present embodiment, by mounting the coolant device provided with the cooling blocks 45 and 46, the heat generated in the bearing portion 51 of the bearing base 12 and the like is taken away by the coolant liquid, so that the machining tool 5 The thermal deformation of is suppressed. Therefore, it is possible to stabilize the machining dimension of the workpiece as compared with the conventional machine tool. In addition, since the coolant apparatus is only slightly improved without significantly changing the configuration from the conventional machine tool, the above-described effects can be achieved with reduced costs. In addition, the inside of the exterior cover 6 of the machine tool 5 has a configuration in which only the cooling blocks 45 and 46 and the coolant pipe 432 connecting the cooling blocks 45 and 46 are added compared to the conventional configuration. Can be installed in space.
 また、本実施形態のクーラント装置は、温度調整用タンク38と温度調整装置41との間でクーラント液を循環させることにより、ポンプ42から送り出されるクーラント液を安定して所定の温度にすることができる。例えば、発熱箇所に温度センサを設置し、その計測値を基に温度調整装置41の駆動を制御すれば、クーラント液を適切な温度にして送り出すことができる。更に、冷却ブロック45が主軸台12の取付面に合わせた形状で形成され、広い面で接しているため、発熱箇所からより多くの熱を奪うことができる。しかも、冷却ブロック45,46は、熱伝導性に優れたアルミニウムであって長い流路458が形成されているため、クーラント液による効率の良い熱交換を行うことができる。 Moreover, the coolant apparatus of this embodiment can make the coolant liquid sent out from the pump 42 stably to a predetermined temperature by circulating the coolant liquid between the temperature adjustment tank 38 and the temperature adjustment apparatus 41. it can. For example, if a temperature sensor is installed at a heat generation location and the drive of the temperature adjustment device 41 is controlled based on the measured value, the coolant liquid can be sent out at an appropriate temperature. Furthermore, since the cooling block 45 is formed in a shape matching the mounting surface of the headstock 12 and is in contact with a wide surface, more heat can be taken from the heat generating portion. In addition, since the cooling blocks 45 and 46 are made of aluminum having excellent thermal conductivity and are formed with a long channel 458, efficient heat exchange with the coolant liquid can be performed.
 以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、Z軸駆動装置17は、ネジ軸33の軸受け部53が発熱箇所となるが、X軸スライダ22に搭載されて上下動してしまうため、前記実施形態ではクーラント液によって冷却する構成にはなっていない。しかし、その軸受け部53にも冷却ブロックを取り付け、フレキシブル管によって接続して上下の妨げにならないように変形してもよい。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to these, A various change is possible in the range which does not deviate from the meaning.
For example, in the Z-axis drive device 17, the bearing portion 53 of the screw shaft 33 serves as a heat generating portion, but the Z-axis drive device 17 is mounted on the X-axis slider 22 and moves up and down. is not. However, a cooling block may also be attached to the bearing portion 53 and connected by a flexible tube so that the bearing portion 53 is deformed so as not to obstruct the up and down.
 また、2つの冷却ブロック45,46は、一本の流路によって接続されているが、別々のクーラント管を接続させて異なる流路にクーラント液が流れるようにした構成であってもよい。
 また、ヒートシンクとして機能する冷却ブロックは、材料として伝熱特性の良いアルミニウムを使用したが、そのほかにも鉄や銅などの金属であってもよい。
The two cooling blocks 45 and 46 are connected by a single flow path, but may be configured such that a coolant liquid flows through different flow paths by connecting separate coolant pipes.
The cooling block that functions as a heat sink uses aluminum having good heat transfer characteristics as a material, but may be other metal such as iron or copper.
1…加工機械ライン 2…ベース 5…工作機械 12…主軸台 15…工具台 16…X軸駆動装置 17…Z軸駆動装置 37…クーラントタンク 38…温度調整用タンク 41…温度調整装置 42…ポンプ 431~433…クーラント管 45,46…冷却ブロック 51,52…軸受け部
 

 
DESCRIPTION OF SYMBOLS 1 ... Machining machine line 2 ... Base 5 ... Machine tool 12 ... Spindle base 15 ... Tool stand 16 ... X-axis drive device 17 ... Z-axis drive device 37 ... Coolant tank 38 ... Temperature adjustment tank 41 ... Temperature adjustment device 42 ... Pump 431 to 433 ... Coolant pipes 45, 46 ... Cooling blocks 51, 52 ... Bearings

Claims (5)

  1.  ワークの加工室内に供給したクーラント液をクーラントタンクへと回収し、ポンプにより前記加工室内への供給を繰り返す工作機械のクーラント装置において、
     前記クーラントタンク内のクーラント液を前記加工室内の供給位置に送るためのクーラント流路を構成するクーラント管と、
     前記クーラント管に配管され、前記クーラント流路の一部を構成する流路が形成された、熱伝導性の良い材料からなる一又は二以上の冷却ブロックと、
     前記加工室内へ供給するクーラント液を冷却するための温度調整装置とを有するものであることを特徴とする工作機械のクーラント装置。
    In the coolant device of the machine tool that collects the coolant liquid supplied into the workpiece processing chamber into the coolant tank and repeats supply to the processing chamber by a pump,
    A coolant pipe constituting a coolant flow path for sending the coolant liquid in the coolant tank to a supply position in the processing chamber;
    One or two or more cooling blocks made of a material with good thermal conductivity, which is piped to the coolant pipe and has a flow path forming a part of the coolant flow path,
    A coolant device for a machine tool, comprising: a temperature adjusting device for cooling a coolant liquid supplied into the processing chamber.
  2.  前記冷却ブロックは、前記工作機械内部の発熱箇所に取り付けられるものであり、その発熱箇所に応じた形状で形成されたものあることを特徴とする請求項1に記載する工作機械のクーラント装置。 The coolant device for a machine tool according to claim 1, wherein the cooling block is attached to a heat generation location inside the machine tool, and is formed in a shape corresponding to the heat generation location.
  3.  前記冷却ブロックは、アルミニウムにより形成され、方向を変えた流路が内部に形成されたものであることを特徴とする請求項1又は請求項2に記載する工作機械のクーラント装置。 The coolant device for a machine tool according to claim 1 or 2, wherein the cooling block is made of aluminum, and a flow path whose direction is changed is formed inside.
  4.  前記温度調整装置は、前記クーラントタンク内のクーラント液を温度調整するものであることを特徴とする請求項1乃至請求項3のいずれかに記載する工作機械のクーラント装置。 4. The coolant device for a machine tool according to claim 1, wherein the temperature adjusting device adjusts the temperature of a coolant liquid in the coolant tank.
  5.  前記工作機械は、
     ベース上を前後方向に移動可能な可動ベッドと、
     前記可動ベッドに固定された主軸台に対して軸線方向が前後方向になるように設けられた主軸と、
     前記主軸の前方側に位置し、前記主軸に保持されたワークを加工するための工具を備えた工具台と、
     前記主軸の軸線方向と平行な主軸方向と、その主軸方向に直交する上下方向に前記工具台を移動させる駆動装置とを有するものであり、
     前記冷却ブロックは、前記主軸台に取り付けられた第1冷却ブロックと、前記駆動装置に取り付けられた第2冷却ブロックであることを特徴とする請求項1乃至請求項4のいずれかに記載する工作機械のクーラント装置。
     
     

     
    The machine tool is
    A movable bed that can be moved back and forth on the base;
    A main shaft provided such that an axial direction thereof is a front-rear direction with respect to the main shaft base fixed to the movable bed;
    A tool table that is located on the front side of the spindle and includes a tool for machining a workpiece held by the spindle;
    A main shaft direction parallel to the axial direction of the main shaft, and a drive device that moves the tool table in a vertical direction perpendicular to the main shaft direction,
    The work according to any one of claims 1 to 4, wherein the cooling block is a first cooling block attached to the headstock and a second cooling block attached to the drive unit. Mechanical coolant device.



PCT/JP2016/050781 2016-01-13 2016-01-13 Coolant apparatus for machine tool WO2017122288A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/050781 WO2017122288A1 (en) 2016-01-13 2016-01-13 Coolant apparatus for machine tool
JP2017561101A JP6698106B2 (en) 2016-01-13 2016-01-13 Coolant device for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050781 WO2017122288A1 (en) 2016-01-13 2016-01-13 Coolant apparatus for machine tool

Publications (1)

Publication Number Publication Date
WO2017122288A1 true WO2017122288A1 (en) 2017-07-20

Family

ID=59310927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050781 WO2017122288A1 (en) 2016-01-13 2016-01-13 Coolant apparatus for machine tool

Country Status (2)

Country Link
JP (1) JP6698106B2 (en)
WO (1) WO2017122288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015355A (en) * 2019-12-30 2020-04-17 江西乔扬数控设备有限公司 Self-supporting formula milling machine cooling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187844U (en) * 1987-12-04 1989-06-09
JPH04343639A (en) * 1991-05-22 1992-11-30 Mitsubishi Heavy Ind Ltd Machine tool
JP2002059338A (en) * 2000-08-18 2002-02-26 Mori Seiki Co Ltd Tool divider of machine tool
JP2005262379A (en) * 2004-03-18 2005-09-29 Niigata Machine Techno Co Ltd Machine tool
JP2010532279A (en) * 2007-07-03 2010-10-07 ハーディング, インコーポレイテッド Belt-driven rotary tool turret assembly
JP2012165604A (en) * 2011-02-08 2012-08-30 Sumitomo Heavy Ind Ltd Stage device and cooling unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187844U (en) * 1987-12-04 1989-06-09
JPH04343639A (en) * 1991-05-22 1992-11-30 Mitsubishi Heavy Ind Ltd Machine tool
JP2002059338A (en) * 2000-08-18 2002-02-26 Mori Seiki Co Ltd Tool divider of machine tool
JP2005262379A (en) * 2004-03-18 2005-09-29 Niigata Machine Techno Co Ltd Machine tool
JP2010532279A (en) * 2007-07-03 2010-10-07 ハーディング, インコーポレイテッド Belt-driven rotary tool turret assembly
JP2012165604A (en) * 2011-02-08 2012-08-30 Sumitomo Heavy Ind Ltd Stage device and cooling unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015355A (en) * 2019-12-30 2020-04-17 江西乔扬数控设备有限公司 Self-supporting formula milling machine cooling device

Also Published As

Publication number Publication date
JP6698106B2 (en) 2020-05-27
JPWO2017122288A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US7204004B2 (en) Machine tool
US10252391B2 (en) Precision machine tool
US7237310B2 (en) Composite lathe
JP4410142B2 (en) Compound lathe
US20150231751A1 (en) Machine Tool Having Functional Components That Produce Heating During Operation
WO2017122288A1 (en) Coolant apparatus for machine tool
KR101630144B1 (en) Horizontal type multi spindle line center
KR101420259B1 (en) Machining method of printed circuit boards
KR20140080736A (en) Machine tool having cuttiing oil cooler
JP2000042864A (en) Machine tool
JP2003145373A (en) Thermal deformation preventing structure for machine tool
JPH10156661A (en) Machine tool incorporating clean tank for cutting fluid
JP6834377B2 (en) Multi-axis machine tool
JP6498702B2 (en) Machine Tools
JP2002346860A (en) Device for suppressing thermal displacement and machine tool
JP4078366B2 (en) Machine tool thermal displacement compensation device
JP4564202B2 (en) Machine Tools
JP2004042144A (en) Processing device and processing method
JP2005262379A (en) Machine tool
JP2009214187A (en) Machine tool
JPS6157144B2 (en)
JP7187618B1 (en) Machine tool temperature controller
JPH04343639A (en) Machine tool
JP7221791B2 (en) Machine Tools
KR100988275B1 (en) Bi-axial control device of exclusive use nc apparatus for working a bore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884891

Country of ref document: EP

Kind code of ref document: A1