WO2017121269A1 - 无线通信系统中的电子设备、用户设备和无线通信方法 - Google Patents

无线通信系统中的电子设备、用户设备和无线通信方法 Download PDF

Info

Publication number
WO2017121269A1
WO2017121269A1 PCT/CN2017/070125 CN2017070125W WO2017121269A1 WO 2017121269 A1 WO2017121269 A1 WO 2017121269A1 CN 2017070125 W CN2017070125 W CN 2017070125W WO 2017121269 A1 WO2017121269 A1 WO 2017121269A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
wireless communication
information
cell
power adjustment
Prior art date
Application number
PCT/CN2017/070125
Other languages
English (en)
French (fr)
Inventor
赵友平
丁炜
郭欣
孙晨
Original Assignee
索尼公司
赵友平
丁炜
郭欣
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 赵友平, 丁炜, 郭欣, 孙晨 filed Critical 索尼公司
Priority to EP17738083.9A priority Critical patent/EP3402258A4/en
Priority to US16/069,103 priority patent/US20190037567A1/en
Priority to CN201780004836.0A priority patent/CN108432300B/zh
Priority to CA3010737A priority patent/CA3010737A1/en
Publication of WO2017121269A1 publication Critical patent/WO2017121269A1/zh
Priority to US17/241,094 priority patent/US20210258957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • H04W16/16Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the technical field of wireless communications, and in particular to electronic devices in wireless communication systems and methods for wireless communication in wireless communication systems.
  • Cognitive radio is an intelligent evolution of software radio technology.
  • the secondary user (SU) accessing the spectrum in an "opportunistic manner" can intelligently use the idle spectrum through the perception and analysis of the spectrum. It also avoids interference with the Primary User (PU) with licensed bands, while the primary user uses the licensed band with the highest priority.
  • PU Primary User
  • the primary user wants to use the licensed band the secondary user needs to stop using the spectrum in time and give the channel to the primary user.
  • the introduction of cognitive radio technology can greatly improve the problem of tight spectrum resources.
  • the signals sent by the secondary users may interfere with the primary users in the same frequency band, so the secondary users need to consider the influence on the primary users when allocating the spectrum. That is, the spectrum used by the primary user cannot be used, so that the spectrum resources that the secondary user can use are very limited.
  • secondary users of adjacent systems may share the spectrum, but the shared spectrum may cause interference.
  • NOMA Non-orthogonal multiple access
  • the basic idea of NOMA is to use non-orthogonal transmission at the transmitting end to actively introduce interference information, and achieve correct demodulation by serial interference cancellation at the receiving end. Although this design increases the complexity of the receiver, it can improve the spectrum utilization.
  • the present invention proposes a non-orthogonal spectrum sharing method, which extends the basic idea of NOMA to a wireless communication system including one or more cells, particularly a cognitive radio system, to solve at least one of the above technical problems.
  • An object of the present disclosure is to provide an electronic device in a wireless communication system and a method for wireless communication in a wireless communication system, such that different users in the wireless communication system can use the same spectrum resource to achieve non-orthogonal spectrum sharing. Improve spectrum utilization and throughput.
  • an electronic device in a wireless communication system includes a plurality of user equipments and at least one base station.
  • the electronic device includes: one or more processing circuits, the processing circuit configured to: obtain location information and waveform parameter information of the user equipment; and set a waveform based on location information and waveform parameter information of the user equipment Obtaining the spectrum resource information of the other user equipment, and allocating the spectrum resource of the other user equipment to the user equipment according to the spectrum resource information, so that the user equipment uses the other based on the set waveform parameter.
  • the spectrum resource of the user equipment is provided.
  • the wireless communication system includes a plurality of user equipments and at least one base station.
  • the electronic device includes: one or more processing circuits, the processing circuit configured to: obtain location information and waveform parameter information of the user equipment; and set a waveform based on location information and waveform parameter information of the user equipment Obtaining the spectrum resource information of the other user equipment, and allocating the spectrum resource of the other user equipment to the user equipment according to the spectrum resource information, so that
  • an electronic device in a wireless communication system includes at least a first cell and a second cell, and the electronic device is located within the first cell.
  • the electronic device includes: one or more processing circuits, the processing circuit configured to: acquire location information of the user equipment in the first cell to notify a spectrum coordinator in the core network;
  • the spectrum coordinator acquires waveform parameters and demodulation times information to notify the user equipment; acquires spectrum resource information of other user equipments in the second cell from the spectrum coordinator to notify the user equipment; and acquires
  • the waveform parameters and demodulation times information utilizes the spectrum resources of the other user equipment to wirelessly communicate with the user equipment.
  • a user equipment in a wireless communication system comprising a plurality of user equipments and at least one base station, the user equipment comprising: a transceiver; and one or more processes a circuit, the processing circuit configured to: cause the transceiver to transmit location information of the user equipment to a base station serving the user equipment; causing the transceiver to receive waveform parameters from the base station and Demodulation frequency information; The transceiver receives spectrum resource information of other user equipments from the base station; and uses the spectrum resources of the other user equipment to perform wireless communication with the base station based on the received waveform parameters and demodulation times information.
  • a method for wireless communication in a wireless communication system comprising a plurality of user equipments and at least one base station, the method comprising: obtaining a location of the user equipment Information and waveform parameter information; setting waveform parameters based on position information and waveform parameter information of the user equipment; and acquiring spectrum resource information of other user equipments, and allocating spectrum resources of the other user equipment according to the spectrum resource information The user equipment, such that the user equipment uses spectrum resources of the other user equipment based on the set waveform parameters.
  • a method for wireless communication in a wireless communication system comprising: acquiring the first Location information of the user equipment in the cell to notify the spectrum coordinator in the core network; acquiring waveform parameters and demodulation times information from the spectrum coordinator to notify the user equipment; acquiring other user equipment from the spectrum coordinator Generating spectral resource information to notify the one user equipment; and utilizing spectrum resources of the other user equipment to perform wireless communication with the user equipment based on the acquired waveform parameters and demodulation times information.
  • a method for wireless communication in a wireless communication system comprising a plurality of user equipments and at least one base station, the method comprising: serving a user equipment
  • the base station transmits location information of the user equipment; receives waveform parameters and demodulation times information from the base station; receives spectrum resource information of other user equipments from the base station; and utilizes the received waveform parameters and demodulation times information
  • the spectrum resources of other user equipments are used to perform wireless communication with the base station.
  • the electronic device can acquire position information of the user device and set a waveform parameter based on the position information, thereby enabling the wireless communication system Different users use the same spectrum resources to correctly demodulate data, thereby improving spectrum utilization and system throughput.
  • FIG. 1(a) is a schematic diagram illustrating one scenario of non-orthogonal spectrum sharing, in accordance with an embodiment of the present disclosure
  • 1(b) is a schematic diagram illustrating another scenario of non-orthogonal spectrum sharing, in accordance with an embodiment of the present disclosure
  • FIG. 2 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a scenario of determining a strong interference region, according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram illustrating a process of configuring a power adjustment factor, in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating a process of non-orthogonal spectrum sharing in a multi-system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram illustrating a process of signaling interaction of non-orthogonal spectrum sharing in multiple systems, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a block diagram illustrating a structure of another electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 8 is a block diagram illustrating a structure of a user equipment in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart illustrating a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating a wireless communication method according to another embodiment of the present disclosure.
  • FIG. 11 is a flowchart illustrating a wireless communication method according to still another embodiment of the present disclosure.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB (evolution Node Base Station) applicable to the present disclosure
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB suitable for the present disclosure
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone suitable for the present disclosure.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure. Figure.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • a UE (User Equipment) related to the present disclosure includes, but is not limited to, a terminal having a wireless communication function such as a mobile terminal, a computer, an in-vehicle device, or the like. Further, depending on the specifically described functionality, the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip. Further, similarly, the base station involved in the present disclosure may be, for example, an eNB or a component such as a chip in an eNB. Furthermore, the technical solution of the present disclosure can be used, for example, in an FDD (Frequency Division Duplexing) system and a TDD (Time Division Duplexing) system.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • FIG. 1(a) is a schematic diagram illustrating one scenario of non-orthogonal spectrum sharing, in accordance with an embodiment of the present disclosure.
  • the serving base station of the cell is a BS in which the first user equipment SU 1 and the second user equipment SU 2 are present .
  • the user equipment receives data sent by the BS to other user equipments, which causes data interference to the user equipment. Similar interference problems are encountered when the user equipment sends data to the BS.
  • the transmission line as an example, when the BS. 1 transmits data to the SU, the SU 1 may receive the downlink transmission of data to the BS SU 2, the BS cause interference SU 1 to SU 2 downlink data transmission.
  • h 1 is used to indicate the channel coefficient between the BS and SU 1
  • h 2 represents the channel coefficient between the BS and SU 2
  • s 1 represents the downlink signal of SU 1
  • s 2 represents the downlink signal of SU 2
  • x 1 represents the uplink signal of SU 1
  • x 2 represents the uplink signal of SU 2 .
  • the signal y BS received by the BS is:
  • the useful signal and the interference signal reach the receiving end through different channels; and in the downlink transmission, the useful signal and the interference signal pass through the same channel. Arrived at the receiving end.
  • NOMA can be used to achieve non-orthogonal spectrum sharing.
  • the transmitter of the BS transmits data to SU 1 and SU 2 using different powers of the same spectrum, and transmits channel information h 1 and h 2 to SU 1 and SU 2 .
  • the BS transmits data to the SU 1 with high power and transmits data to the SU 2 with low power.
  • SU 1 directly demodulates the data signal, and SU 2 first demodulates the interference signal to determine the data signal.
  • the process of uplink transmission is similar.
  • the SU In the process of data demodulation of SU 1 and SU 2 , the SU can be guaranteed only when the difference between the data signal and the interference signal is sufficiently large, so that the data signal and/or the interference signal received at the receiving end can satisfy the demodulation requirement. 1 and SU 2 are capable of correctly demodulating the data signal and the interference signal.
  • the waveform parameters are the filter parameters assigned to the transmitter, which, like the power adjustment factor, are parameters of the transmitter and can affect the power of the signal generated by the transmitter. Therefore, if the waveform parameters of the transmitting end can be reasonably adjusted so that the signal difference received at the receiving end is sufficiently large, the receiving end can correctly demodulate the data signal.
  • the same spectrum resources can be allocated to different user equipments located in the same cell, thereby realizing spectrum resource sharing.
  • FIG. 1(b) is a schematic diagram illustrating another scenario of non-orthogonal spectrum sharing, in accordance with an embodiment of the present disclosure.
  • FIG 1 (b) the presence of two adjacent cells in a wireless communication system: a first small cell and a second region SS 1 SS 2,
  • SS cell 1 is the base station BS 1, the cell 2 of base station BS SS 2 , the first user equipment SU 1 exists in the cell SS 1 , and the second user equipment SU 2 exists in the cell SS 2 , and the users SU 1 and SU 2 are located at the edge of the respective cell.
  • SU 1 can perform uplink and downlink transmission with BS 1
  • SU 2 can perform uplink and downlink transmission with BS 2 .
  • BS 1 SU 1 transmits the data signal to
  • BS 2 transmits the data signal to the SU 2.
  • SU 1 and SU 2 are located at the cell edge, SU 1 will receive an interference signal from BS 2 , and SU 2 will also receive an interference signal from BS 1 .
  • the channel coefficient between BS 1 and SU 1 is h 1,1
  • the channel coefficient between BS 2 and SU 2 is h 2,2
  • the channel coefficient between BS 1 and SU 2 is h 2,1
  • BS The channel coefficient between 2 and SU 1 is h 1,2
  • S 1 represents the downlink data signal of BS 1
  • S 2 represents the downlink data signal of BS 2
  • y SU1 represents the signal received by SU 1
  • y SU2 represents SU.
  • SU 1 transmits the data signal to the BS 1
  • SU 2 transmits the data signal to the BS 2.
  • BS 2 since SU 1 and SU 2 are located at the cell edge, BS 2 will receive an interference signal from SU 1 and BS 1 will also receive an interference signal from SU 2 .
  • the channel coefficient between BS 1 and SU 1 is h 1,1
  • the channel coefficient between BS 2 and SU 2 is h 2,2
  • the channel coefficient between BS 1 and SU 2 is h 2,1
  • BS The channel coefficient between 2 and SU 1 is h 1,2
  • the uplink data signal of SU 1 is represented by x 1
  • the uplink data signal of SU 2 is represented by x 2
  • the signal received by BS 1 is represented by y BS1
  • the BS is represented by y BS2 2 Received signal, then have the following formula:
  • FIG. 2 illustrates a structure of an electronic device 200 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 200 can include processing circuitry 210. It should be noted that the electronic device 200 may include one processing circuit 210 or multiple processing circuits 210. In addition, the electronic device 200 may further include a communication unit 220 or the like as a transceiver.
  • processing circuitry 210 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 210 may include an acquisition unit 211, a setting unit 212, and an allocation unit 213.
  • the acquiring unit 211 may acquire location information and waveform parameter information of the first user equipment in the wireless communication system where the electronic device is located, and a second user in the wireless communication system where the electronic device is located. Spectrum resource information of the device.
  • the setting unit 212 can set the waveform parameters.
  • the allocating unit 213 may allocate the spectrum resource of the second user equipment to the first user equipment, so that the first user equipment uses the spectrum resource of the second user equipment based on the set waveform parameter.
  • the acquiring unit 211 of the electronic device 200 may acquire location information of the user equipment by using various methods known in the art, for example, if the first user equipment is a new user equipment that accesses the system for the first time, The first user equipment may report the location information actively or passively; if the first user equipment is an existing user equipment in the system, the first user equipment may update the location information actively or passively.
  • the obtaining unit 211 may also acquire spectrum resource information of the user equipment from the electronic device 200 (for example, a storage unit, not shown) or from other electronic devices.
  • the obtaining unit 211 may obtain the foregoing information by using the communication unit 220 of the electronic device 200, and may send the acquired location information of the first user equipment to the setting unit 212, and send the acquired spectrum resource information of the second user equipment. Go to the allocation unit 213.
  • the setting unit 212 may acquire location information of the first user equipment from the obtaining unit 211, and may set waveform parameters according to a certain algorithm or rule.
  • setting the waveform parameters includes setting a waveform parameter of the first user equipment and setting a waveform parameter of the second user equipment.
  • the setting unit 212 can send the set waveform parameters
  • the communication unit 220 is sent to notify the first user equipment and the second user equipment.
  • the set waveform parameter is such that the receiving end can correctly demodulate the data during the data transmission by the first user equipment and the second user equipment, that is, the first user equipment and the downlink transmission
  • the second user equipment can correctly demodulate the data
  • the base station serving the user equipment in the uplink transmission can correctly demodulate the data.
  • the waveform parameter when the wireless communication system employs FBMC (Filter Bank Multicarrier) technology, the waveform parameter may be an aliasing factor of the filter.
  • the acquisition unit 211 of the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameter information of the user equipment may be reported, and the waveform parameter information may be reported together with the position information, or the waveform parameter information may be reported separately from the position information.
  • the allocating unit 213 may allocate the spectrum resource of the second user equipment to the first user equipment.
  • the allocating unit 213 may transmit the spectrum resource allocated to the first user equipment to the communication unit 220 to notify the first user equipment.
  • the electronic device 200 may be applied to a scenario as shown in FIG. 1( a ) (ie, a scenario of a single system), that is, the wireless communication system may include only the first cell, first. Both the user equipment and the second user equipment are located in the first cell.
  • electronic device 200 can be a base station in a first cell.
  • the electronic device 200 can also be applied to a scenario as shown in FIG. 1(b) (ie, a scenario of multiple systems), that is, the wireless communication system can include at least a first cell and a second cell, first The user equipment is located in the first cell, and the second user equipment is located in the second cell.
  • the acquiring unit 211 in the processing circuit 210 may further acquire location information of the second user equipment, and set waveform parameters based on the location information and the waveform parameter information of the first user equipment and the location information of the second user equipment. .
  • the obtaining unit 211 in the processing circuit 210 may also acquire The transmission mode information of the first user equipment, and setting the waveform parameter based on the location information of the first user equipment and the second user equipment and the transmission mode information of the first user equipment.
  • the transmission mode information of the first user equipment may include uplink transmission and downlink transmission. That is to say, when the transmission mode information is uplink transmission, it indicates that the first user equipment is about to perform uplink transmission; when the transmission mode information is downlink transmission, it indicates that the first user equipment is about to perform downlink transmission.
  • the acquiring unit 211 of the electronic device 200 may acquire transmission mode information of the user equipment by using various methods known in the art, for example, if the first user equipment is a new user equipment that accesses the system for the first time, The first user equipment may report the transmission mode information actively or passively; if the first user equipment is an existing user equipment in the system, the first user equipment may actively or passively update the transmission mode information.
  • the allocating unit 213 may allocate the spectrum resource of the second user equipment to the first user equipment, so that the first user equipment uses the spectrum resource of the second user equipment based on the set waveform parameter.
  • the second user equipment is the same user equipment as the transmission mode of the first user equipment. For example, when the transmission mode information of the first user equipment is the uplink transmission, the second user equipment that is also the uplink transmission is selected, and the spectrum resource is allocated to the first user equipment; when the transmission mode information of the first user equipment is the downlink During transmission, the second user equipment that is also downlink transmission is selected, and its spectrum resource is allocated to the first user equipment.
  • the setting unit 212 of the processing circuit 210 may further set a power adjustment factor based on location information of the first user equipment and the second user equipment.
  • the allocating unit 213 of the processing circuit 210 acquires the spectrum resource information of the second user equipment, and allocates the spectrum resource of the second user equipment to the first user equipment, so that the first user equipment uses the second user based on the set waveform parameter and the power adjustment factor.
  • the spectrum resource of the device may be set.
  • the electronic device 200 can not only set the waveform parameters of the user equipment, but also set the power adjustment factor of the user equipment.
  • setting the power adjustment factor includes setting a power adjustment factor of the first user equipment and setting a power adjustment factor of the second user equipment.
  • the setting unit 212 can transmit the set power adjustment factor to the communication unit 220 to notify the first user equipment and the second user equipment.
  • the set power adjustment factor enables the receiving end to correctly demodulate data during the data transmission by the first user equipment and the second user equipment, that is, the first user equipment in the downlink transmission Both the second user equipment and the second user equipment can correctly demodulate the data, and the base station serving the user equipment in the uplink transmission can correctly demodulate the data.
  • the setting unit 212 of the electronic device 200 may further set the first user equipment and the second user equipment. Demodulating the number of times information, and transmitting, by the communication unit 220, the demodulation times information of the first user equipment and the second user equipment to the first user equipment and the second user, respectively, along with respective waveform parameters and/or power adjustment factors.
  • the demodulation frequency information includes one demodulation and two demodulation. One demodulation indicates that the first demodulation is the data signal required by the user equipment; two demodulation indicates that the first demodulation is the interference signal, and the second demodulation is the data required by the user equipment. signal. After the user equipment receives the demodulation times information, it may determine whether one demodulation or two demodulation is needed according to the demodulation frequency information.
  • the electronic device 200 applied in a multi-system scenario will be described in detail below.
  • the wireless communication system includes at least a first cell and a second cell, the first user equipment is located in the first cell, and the second user equipment is located in the second cell.
  • the wireless communication system in the present disclosure may be a cognitive radio communication system
  • the first cell may be the first system
  • the second cell may be the second system
  • the electronic device 200 may be the spectrum in the core network. Coordinator.
  • the user equipment in the first cell can communicate with the spectrum coordinator through the base station in the first cell
  • the user equipment in the second cell can communicate with the spectrum coordinator through the base station in the second cell.
  • the electronic device 200 may also be a base station in a wireless communication system, such as a base station in a first cell. In this case, the user equipment in the first cell communicates directly with the electronic device 200, and the user equipment in the second cell communicates with the electronic device 200 through the base station in the second cell.
  • the first user equipment is in a specific area in the first cell, and within the specific area, the first user equipment is subjected to interference information of the second cell.
  • the specific area in the first cell is an area, and the received signal quality of the user equipment in this area does not satisfy the demodulation requirement, that is, the user equipment in this area is interfered by the user equipment from other cells and cannot be correct. Demodulate data.
  • there is also a specific area in the second cell and the received signal quality of the user equipment in the specific area in the second cell does not satisfy the demodulation requirement, that is, the user equipment in this area is received from other cells (for example, The interference of the user equipment of a cell cannot correctly demodulate the data.
  • the regions indicated by broken lines. 1 is a high interference area cell SS and SS 2
  • the user in this region of SU 1 1 2 suffers interference from SS cell is strong, the user suffers from the SU 2 of the cell. 1 SS
  • the interference is strong. Therefore, in the present disclosure, the area in the first cell in the dotted area is defined as a specific area in the first cell, and the area in the second cell in the dotted area is defined as a specific area in the second cell. .
  • the allocation unit 213 may allocate the idle spectrum to the first user equipment; when the cells SS 1 and SS 2 are located.
  • the electronic device 200 eg, a determining unit, not shown
  • the allocating unit 213 may allocate, to the first user equipment, the spectrum resource of the third user equipment that is the same as the transmission mode information of the first user equipment except the specific area in the second cell. .
  • the first user equipment is not in a specific area in the first cell, the first user equipment is farther away from the second cell, and the third user equipment in the second cell is outside the specific area of the second cell. It is also far from the first cell. Therefore, even if the first user equipment and the third user equipment use the same spectrum resource, due to channel attenuation, no large interference occurs, and the data signal can be correctly demodulated at the receiving end. The probability is great.
  • the allocating unit 213 may be the first The spectrum resource of the second user equipment whose transmission mode information of the user equipment is the same is allocated to the first user equipment.
  • the second user equipment is a user equipment that is located at any position in the second cell and has the same transmission mode information as the first user equipment.
  • the first user equipment and the second user equipment are assigned at least one of a suitable waveform parameter and a power adjustment factor by the setting unit 212 so that the first user equipment and the second user equipment can also correctly demodulate the data signal.
  • the processing circuit 220 is further configured to determine whether the first user equipment is within a particular area of the first cell based on the location information of the first user equipment.
  • FIG. 3 is a schematic diagram illustrating a scenario of determining a strong interference region, according to an embodiment of the present disclosure.
  • the distance of SU 1 from BS 1 is d 1,1
  • the distance of SU 1 from BS 2 is d 1,2
  • the channel coefficient between BS 1 and SU 1 is h 1, 1.
  • the channel coefficient between BS 2 and SU 1 is h 1,2
  • ⁇ 1 represents the ratio of the channel coefficient of the data signal received by SU 1 to the channel coefficient of the interference signal. Only the influence of path loss is considered here.
  • the channel coefficient is inversely proportional to the distance, so the following formula holds:
  • ⁇ 1 is the demodulation threshold of SU 1 .
  • the demodulation thresholds of the different user equipments are different. Therefore, according to the embodiment of the present disclosure, when the user equipment accesses the wireless communication system for the first time, the demodulation threshold of the user equipment may be reported. In addition, the user equipment may report the demodulation threshold together with the location information, or may report the demodulation threshold separately from the location information.
  • the demodulation threshold may be SIR (Signal to Interference Ratio), SINR (Signal to Interference plus Noise Ratio), or SNR (Signal Noise Ratio). Expressed by one or more of them. Equation (9) uses SIR to represent the quality of the SU 1 received signal, so ⁇ 1 may be the demodulation threshold represented by SIR, and the case for the demodulation threshold represented by other parameters is similar.
  • the electronic device 200 when the acquisition unit 211 of the electronic device 200 acquires the location information of the first user device, the electronic device 200 (eg, a determination unit, not shown) may determine the distance d 1 of the SU 1 from the BS 1 1 and the distance d 1 2 of the SU 1 from the BS 2 , and determining whether the SU 1 is located in a specific area of the first cell according to the formula (10).
  • the electronic device 200 when the acquiring unit 211 of the electronic device 200 acquires the location information of the first user device, the electronic device 200 (eg, a channel information acquiring unit, not shown) may be located on the electronic device 200 or the electronic device 200 is located outside of the database on the device acquires the channel information, including channel coefficients between 1 SU h 1,1 and the channel coefficients between the BS 1 BS 1 2 and SU h 1,2, then the electronic device 200 ( For example, the judging unit, not shown, may determine whether the SU 1 is located in a specific area of the first cell according to the formula (10).
  • the first user equipment and the second user equipment are located in different cells, and the transmission mode information of the first user equipment is assumed to be downlink transmission.
  • the processing circuit 210 is further configured to perform operations of: acquiring channel information based on location information of the first user equipment and the second user equipment; and based on channel information, demodulating the signal to interference and noise ratio according to the receiving end
  • the required signal to noise ratio requires a power adjustment factor.
  • FIG. 4 is a schematic diagram illustrating a process of configuring a power adjustment factor, according to an embodiment of the present disclosure.
  • the setting unit 212 first calculates the values of ⁇ 1 and ⁇ 2 .
  • the electronic device 200 When the acquiring unit 211 of the electronic device 200 acquires the location information of the first user device and the second user device, the electronic device 200 (eg, a channel information acquiring unit, not shown) may be located on the electronic device 200 or located at the electronic device 200.
  • the database on the device other than the device acquires channel information, including the channel coefficient h 1,1 between BS 1 and SU 1 , the channel coefficient h 2,2 between BS 2 and SU 2 , and the channel between BS 1 and SU 2
  • the coefficient h 2,1 and the channel coefficient h 1,2 between BS 2 and SU 1 then the setting unit 212 can calculate the value of ⁇ 1 according to the formula (8), and calculate SU 2 according to the following formula (12) The value of the ratio ⁇ 2 of the channel coefficient of the received data signal to the channel coefficient of the interfering signal.
  • ⁇ 2 ⁇ 1, d 2 , 1 represents the distance of SU 2 from BS 1
  • d 2 , 2 represents the distance of SU 2 from BS 2
  • h 2 , 1 represents the channel coefficient between BS 1 and SU 2
  • h 2 represents the channel coefficient between BS 2 and SU 2
  • only the influence of path loss is considered here.
  • the setting unit 212 can then compare the sizes of ⁇ 1 and ⁇ 2 .
  • SNR 2,2 SU represents the SNR of the received data signal to the BS 2
  • p 2 represents 2 SU power adjustment factor
  • h 2,2 represents a channel coefficient between the BS 2 and SU 2
  • N 0 represents white noise
  • gamma] 2 represents a demodulation threshold SU 2
  • SU then only if the SNR of the received data signal is greater than or equal to threshold 2 SU demodulated correctly demodulated data signal, and therefore has the formula Established:
  • SINR 2,1 is used to indicate the signal to interference and noise ratio of the interference signal of BS 1 received by SU 2
  • p 1 (1) represents the first power adjustment factor of SU 1
  • h 2,1 represents the relationship between BS 1 and SU 2 .
  • Channel coefficient, h 2 , 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (15)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • the first power adjustment factor p 1 (1) of SU 1 can be calculated as:
  • SINR 1,1 denotes SINR of the data signal received by the BS 1 SU 1
  • p 1 (2) represents a second SU power adjustment factor is 1
  • h 1,2 represents between BS 2 and SU 1 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (15)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • the second power adjustment factor p 1 (2) of SU 1 can be calculated as:
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor obtained by the formulas (17) and (19) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 through two steps, and solves the power adjustment factor p 2 of SU 2 through one step.
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (21) as:
  • SINR 1,2 is used to indicate the signal to interference and noise ratio of the interference signal of BS 2 received by SU 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 1,2 represents the relationship between BS 2 and SU 1 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (22)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2,2 SU represents the SINR of the received data signal of the BS 2
  • P 2 (2) represents a second SU power adjustment factor 2
  • h 2 represents Channel coefficient
  • h 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (22)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (24) and the formula (26) as:
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 in two steps, and solves the power adjustment factor p 1 of the SU 1 in one step.
  • the processing circuit 210 is further configured to: determine that the set power adjustment factor has exceeded the adjustment range of the power amplifier of the transmitting end; reset the power adjustment factor such that the reset power adjustment factor is in the transmission Obtaining the waveform parameter information of the first user equipment and the second user equipment; and setting waveform parameters of the first user equipment and the second user equipment, so that the demodulation signal to interference and noise ratio requirement of the receiving end is required Or the signal to noise ratio requirement is met.
  • the power amplifier has a transmitting end of the adjustment range, the setting unit 212 when solved SU power adjustment factor 2 p 2 and the power adjustment factor SU 1 p 1 according to the procedure described above, find a transmit power adjustment factor exceeds the The adjustment range of the power amplifier, then the power adjustment factor needs to be reset. For example, when the calculated power adjustment factor is less than the minimum power adjustment factor of the power amplifier, the power adjustment factor is reset to the minimum power adjustment factor of the power amplifier; when the calculated power adjustment factor is greater than the maximum power adjustment factor of the power amplifier, Reset the power adjustment factor to the maximum power adjustment factor of the power amplifier.
  • waveform parameters of the first user equipment and the second user equipment may also be set.
  • K can take values of 1, 2, 3 or 4.
  • K can take values of 1, 2, 3 or 4.
  • the waveform parameters of the first user equipment and the second user equipment may be set, so that the demodulated signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end is satisfied.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value is; when ⁇ 1 ⁇ ⁇ 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may use the first user by the communication unit 220.
  • the demodulation times information of the device and the second user equipment are transmitted to the first user equipment and the second user equipment, respectively, along with respective waveform parameters and/or power adjustment factors.
  • the demodulation frequency information of the first user equipment is twice demodulated, and the demodulation frequency information of the second user equipment is demodulated once; when ⁇ 1 > ⁇ 2 , the first user The demodulation frequency information of the device is one demodulation, and the demodulation frequency information of the second user equipment is two demodulation.
  • the setting unit 212 may set a value of the power adjustment factor for the first user equipment and the second user equipment; when the power adjustment factor When the adjustment range of the power amplifier of the transmitting end is exceeded, the setting unit 212 can also set the value of the waveform parameter. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in different cells, It is assumed that the transmission mode information of the first user equipment is a downlink transmission.
  • the processing circuit 210 is further configured to: obtain channel information based on location information of the first user equipment and the second user equipment; acquire waveform parameter information of the first user equipment and the second user equipment; And setting waveform parameters of the first user equipment and the second user equipment based on the channel information and the waveform parameter information to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 first needs Calcd 1 and ⁇ 2 of [alpha], [alpha] and compare the size of 1 and ⁇ 2. This process is the same as in the first embodiment, and will not be described herein again, that is, the setting unit 212 can calculate the value of ⁇ 1 according to the formula (8), and calculate the value of ⁇ 2 according to the formula (12).
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameters of the first user equipment and the second user equipment may be set to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value is; when ⁇ 1 ⁇ ⁇ 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the processing circuit 210 is further configured to: determine that the set waveform parameter fails to meet the demodulation signal to interference and noise ratio requirement or signal to noise ratio requirement of the receiving end; and further set the power adjustment based on the channel information Factor to meet the signal-to-noise ratio requirement or signal-to-noise ratio requirement of the demodulation at the receiving end.
  • processing circuit 210 may be configured to configure waveform parameters It is judged whether the set waveform parameter satisfies the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end. If the demodulation requirement is not met, the power adjustment factor needs to be further set.
  • the normalized transmitted signal power is defined.
  • the different aliasing factors and the corresponding normalized transmitted signal power are shown in Table 1.
  • Aliasing factor K Normalized transmit signal power 1 1 2 k 1 3 k 2 4 k 3
  • SNR 2,2 SU represents the SNR of the received data signal to the BS 2
  • p 2 represents 2 SU power adjustment factor
  • h 2,2 represents a channel coefficient between the BS 2 and SU 2
  • N 0 represents white noise
  • gamma] 2 represents a demodulation threshold SU 2
  • SU then only if the SNR of the received data signal is greater than or equal to threshold 2 SU demodulated correctly demodulated data signal, and therefore has the formula Established:
  • p 1 (1) represents the first power adjustment factor of SU 1 and h 2,1 represents the relationship between BS 1 and SU 2 .
  • Channel coefficient, h 2 , 2 represents the channel coefficient between BS 2 and SU 2 , N 0 represents white noise, p 2 represents the power adjustment factor of SU 2 calculated by equation (29), and k 3 represents SU 1
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the correct solution can only be solved if the signal to interference and noise ratio of the interference signal received by SU 2 is greater than or equal to the demodulation threshold of SU 1
  • the data signal is called up, so the following formula holds:
  • SINR 1,1 denotes SINR of the data signal received by the BS 1 SU 1
  • p 1 (2) represents a second SU power adjustment factor is 1
  • h 1,2 represents between BS 2 and SU 1 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (29)
  • k 3 represents SU 1
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the correct solution can only be solved if the signal to interference and noise ratio of the data signal received by SU 1 is greater than or equal to the demodulation threshold of SU 1
  • the data signal is called up, so the following formula holds:
  • the second power adjustment factor p 1 (2) of SU 1 can be calculated by the above formula (32 ) as:
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (31) and the formula (33) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 in two steps, and solves the power adjustment factor p 2 of SU 2 in one step.
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (35):
  • SINR 1,2 is used to indicate the signal to interference and noise ratio of the interference signal of BS 2 received by SU 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 1,2 represents the relationship between BS 2 and SU 1 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (36)
  • k 3 represents the SU 2
  • ⁇ 2 represents the demodulation threshold of SU 2
  • the correct solution can only be solved if the signal to interference and noise ratio of the interference signal received by SU 1 is greater than or equal to the demodulation threshold of SU 2
  • the data signal is called up, so the following formula holds:
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2,2 SU represents the SINR of the received data signal of the BS 2
  • P 2 (2) represents a second SU power adjustment factor 2
  • h 2 represents Channel coefficient
  • h 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (36)
  • k 3 represents SU 2
  • ⁇ 2 represents the demodulation threshold of SU 2 , and then the correct solution can only be solved if the signal to interference and noise ratio of the data signal received by SU 2 is greater than or equal to the demodulation threshold of SU 2 .
  • the data signal is called up, so the following formula holds:
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (38) and the formula (40) as:
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 in two steps, and solves the power adjustment factor p 1 of the SU 1 in one step.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set the value of the waveform parameter for the first user equipment and the second user equipment; when the waveform parameter cannot be satisfied
  • the setting unit 212 can also set the value of the power adjustment factor when the demodulation request of the receiving end is required. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in different cells, and it is assumed that the transmission mode information of the first user equipment is an uplink transmission.
  • the processing circuit 210 is further configured to perform the following operations: Obtaining channel information based on location information of the first user equipment and the second user equipment; and setting a power adjustment factor according to channel information, according to a demodulation signal to interference and noise ratio requirement or a signal to noise ratio requirement of the receiving end.
  • the electronic device 200 When the acquiring unit 211 of the electronic device 200 acquires the location information of the first user device and the second user device, the electronic device 200 (eg, a channel information acquiring unit, not shown) may be located on the electronic device 200 or located at the electronic device 200.
  • the database on the device other than the device acquires channel information, including the channel coefficient h 1,1 between BS 1 and SU 1 , the channel coefficient h 2,2 between BS 2 and SU 2 , and the channel between BS 1 and SU 2 The coefficient h 2,1 and the channel coefficient h 1,2 between BS 2 and SU 1 .
  • ⁇ 1 represents the ratio of the channel coefficient of the data signal received by SU 1 to the channel coefficient of the interference signal
  • ⁇ 2 represents the ratio of the channel coefficient of the data signal received by SU 2 to the channel coefficient of the interference signal.
  • ⁇ 1 may be defined as a ratio of a channel coefficient of a data signal received by BS 1 (ie, a signal from SU 1 ) to a channel coefficient of an interference signal (ie, a signal from SU 2 ), and ⁇ 2 indicates that BS 2 receives The ratio of the channel coefficient of the data signal (i.e., the signal from SU 2 ) to the channel coefficient of the interfering signal (i.e., the signal from SU 1 ). Only the effects of path loss are still considered here.
  • the setting unit 212 can calculate the values of ⁇ 1 and ⁇ 2 according to the following formula. Where ⁇ 1 represents the demodulation threshold of SU 1 and ⁇ 2 represents the demodulation threshold of SU 2 .
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (44):
  • SINR 1,2 is used to represent the signal to interference and noise ratio of the interference signal of SU 1 received by BS 2
  • p 1 (1) represents the first power adjustment factor of SU 1 and h 1,2 represents the relationship between BS 2 and SU 1 Channel coefficient
  • h 2 , 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (45)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • the first power adjustment factor p 1 (1) of SU 1 can be calculated by the above formula (46):
  • SINR 1,1 SU represents the SINR of the data signal received by the BS 1
  • p 1 (2) represents a second SU power adjustment factor 1, between the BS 1 and SU 2
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (45)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • the second power adjustment factor p 1 (2) of SU 1 can be calculated by the above formula (48 ) as:
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor derived by the formula (47) and the formula (49) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 through two steps, and solves the power adjustment factor p 2 of SU 2 through one step.
  • BS 2 When ⁇ 1 ⁇ ⁇ 2 , BS 2 directly demodulates the data signal, and BS 1 demodulates the SU 2 signal first, and then demodulates the SU 1 signal.
  • the signal to noise ratio SNR 1,1 SU represents a data signal received by the BS 1
  • p 1 represents an SU power adjustment factor
  • h 1,1 represents the BS 1 and the channel coefficient between 1 SU
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 1 received by BS 1 is greater than or equal to the demodulation threshold of SU 1 , so
  • the following formula is established:
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (51) as:
  • SINR 2,1 is used to indicate the signal to interference and noise ratio of the interference signal of SU 2 received by BS 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 2,1 represents the relationship between BS 1 and SU 2 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (52)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2,2 SU represents the SINR of a data signal received by the BS 2
  • p 2 (2) 2 represents the second power of the SU adjustment factor
  • h 1,2 represents 2 between the BS and SU 1 Channel coefficient
  • h 2 , 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (52)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated by the above formula (55 ) as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (54) and the formula (56) as:
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 in two steps, and solves the power adjustment factor p 1 of the SU 1 in one step.
  • the processing circuit 210 is further configured to: determine that the set power adjustment factor has exceeded the adjustment range of the power amplifier of the transmitting end; reset the power adjustment factor such that the reset power adjustment factor is in the transmission Obtaining the waveform parameter information of the first user equipment and the second user equipment; and setting waveform parameters of the first user equipment and the second user equipment, so that the demodulation signal to interference and noise ratio requirement of the receiving end is required Or the signal to noise ratio requirement is met.
  • the power amplifier has a transmitting end of the adjustment range, the setting unit 212 when solved SU power adjustment factor 2 p 2 and the power adjustment factor SU 1 p 1 according to the procedure described above, find a transmit power adjustment factor exceeds the The adjustment range of the power amplifier, then the power adjustment factor needs to be reset. For example, when the calculated power adjustment factor is less than the minimum power adjustment factor of the power amplifier, the power adjustment factor is reset to the minimum power adjustment factor of the power amplifier; when the calculated power adjustment factor is greater than the maximum power adjustment factor of the power amplifier, Reset the power adjustment factor to the maximum power adjustment factor of the power amplifier.
  • waveform parameters of the first user equipment and the second user equipment may also be set.
  • the stack factor K can be taken as 1, 2, 3 or 4. When K is 1, the generated transmit signal power is the smallest; when K is 4, the generated transmit signal power is the largest.
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameter information of the user equipment may be reported, and the waveform parameter information may be reported together with the position information, or the waveform parameter information may be reported separately from the position information.
  • the waveform parameters of the first user equipment and the second user equipment may be set, so that the demodulated signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end is satisfied.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value of the value is; when ⁇ 1 ⁇ ⁇ 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set a value of the power adjustment factor for the first user equipment and the second user equipment; when the power adjustment factor When the adjustment range of the power amplifier of the transmitting end is exceeded, the setting unit 212 can also set the value of the waveform parameter. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in different cells. It is assumed that the transmission mode information of the first user equipment is an uplink transmission.
  • the processing circuit 210 is further configured to: obtain channel information based on location information of the first user equipment and the second user equipment; acquire waveform parameter information of the first user equipment and the second user equipment; And setting waveform parameters of the first user equipment and the second user equipment based on the channel information and the waveform parameter information to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 first needs Calcd beta] 1 and ⁇ 2 and Comparative beta] 1 and ⁇ 2 of size. This process is the same as in the third embodiment, and will not be described herein again, that is, the setting unit 212 can calculate the value of ⁇ 1 according to the formula (42), and calculate the value of ⁇ 2 according to the formula (43).
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameters of the first user equipment and the second user equipment may be set to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value of the value is; when ⁇ 1 ⁇ ⁇ 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the processing circuit 210 is further configured to: determine that the set waveform parameter fails to meet the demodulation signal to interference and noise ratio requirement or signal to noise ratio requirement of the receiving end; and further set the power adjustment based on the channel information Factor to meet the signal-to-noise ratio requirement or signal-to-noise ratio requirement of the demodulation at the receiving end.
  • waveform parameters such as aliasing factors
  • the processing circuit 210 may be configured to determine whether the set waveform parameter satisfies the demodulation signal to noise ratio requirement or the signal to noise ratio requirement of the receiving end after configuring the waveform parameter, if the demodulation is not satisfied
  • the power adjustment factor needs to be further set.
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (58):
  • SINR 1,2 is used to represent the signal to interference and noise ratio of the interference signal of SU 1 received by BS 2
  • p 1 (1) represents the first power adjustment factor of SU 1 and h 1,2 represents the relationship between BS 2 and SU 1 Channel coefficient
  • h 2 , 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (59)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • k 3 represents the normalized transmitted signal power when K is 4, then the correct solution can only be solved if the signal to interference and noise ratio of the interference signal of SU 1 received by BS 2 is greater than or equal to the demodulation threshold of SU 1
  • the data signal is called up, so the following formula holds:
  • the first power adjustment factor p 1 (1) of SU 1 can be calculated by the above formula (60):
  • SINR 1,1 SU represents the SINR of the data signal received by the BS 1
  • p 1 (2) represents a second SU power adjustment factor 1, between the BS 1 and SU 2
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (59)
  • ⁇ 1 represents SU 1 Demodulation threshold
  • k 3 represents the normalized transmitted signal power when K is 4, then the correct solution can only be solved if the signal to interference and noise ratio of the SU 1 data signal received by BS 1 is greater than or equal to the demodulation threshold of SU 1
  • the data signal is called up, so the following formula holds:
  • the second power adjustment factor p 1 (2) of SU 1 can be calculated by the above formula (62 ) as:
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor derived by the formula (61) and the formula (63) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 through two steps, and solves the power adjustment factor p 2 of SU 2 through one step.
  • BS 2 When ⁇ 1 ⁇ ⁇ 2 , BS 2 directly demodulates the data signal, and BS 1 demodulates the SU 2 signal first, and then demodulates the SU 1 signal.
  • the signal to noise ratio SNR 1,1 SU represents a data signal received by the BS 1
  • p 1 represents an SU power adjustment factor
  • h 1,1 represents the BS 1 and the channel coefficient between 1 SU
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 1 received by BS 1 is greater than or equal to the demodulation threshold of SU 1 , so
  • the following formula is established:
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (65) as:
  • SINR 2,1 is used to indicate the signal to interference and noise ratio of the interference signal of SU 2 received by BS 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 2,1 represents the relationship between BS 1 and SU 2 Channel coefficient
  • h 1,1 represents the channel coefficient between BS 1 and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (66)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • k 3 represents the normalized transmitted signal power when K is 4, then the correct solution can only be solved if the signal-to-interference ratio of the interference signal of SU 2 received by BS 1 is greater than or equal to the demodulation threshold of SU 2
  • the data signal is called up, so the following formula holds:
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2,2 SU represents the SINR of a data signal received by the BS 2
  • p 2 (2) 2 represents the second power of the SU adjustment factor
  • h 1,2 represents 2 between the BS and SU 1 Channel coefficient
  • h 2 , 2 represents the channel coefficient between BS 2 and SU 2
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (66)
  • ⁇ 2 represents SU 2 Demodulation threshold
  • k 3 represents the normalized transmitted signal power when K is 4, then the correct solution can only be solved if the signal to interference and noise ratio of the SU 2 data signal received by BS 2 is greater than or equal to the demodulation threshold of SU 2
  • the data signal is called up, so the following formula holds:
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (68) and the formula (70) as:
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 in two steps, and solves the power adjustment factor p 1 of the SU 1 in one step.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set the value of the waveform parameter for the first user equipment and the second user equipment; when the waveform parameter cannot be satisfied
  • the setting unit 212 can also set the value of the power adjustment factor when the demodulation request of the receiving end is required. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • FIG. 5 is a schematic diagram illustrating a process of non-orthogonal spectrum sharing in a multi-system, in accordance with an embodiment of the present disclosure.
  • the location information needs to be reported, and the existing user can report the current updated location information periodically or eventally.
  • the new user can also report the transmission mode information and the waveform parameter information when accessing the system, and the existing user can also report the currently updated transmission mode information periodically or eventally.
  • the electronic device 200 can determine if there is an available idle spectrum, and if so, can allocate the available idle spectrum directly to the new user.
  • the electronic device 200 can determine whether the new user is located in the strong interference area, and if the new user is not located in the strong interference area, the electronic device 200 can place the new user outside the strong interference area of the adjacent system.
  • the spectrum of the user with the same transmission mode is assigned to the new user equipment. If the new user is located in the strong interference area, continue to determine whether the transmission mode information of the new user is an uplink transmission or a downlink transmission, and then the electronic device 200 allocates the spectrum of the user of the neighboring system that is the same as the transmission mode of the new user to the new user equipment, and obtains Channel information, and demodulation times information as well as waveform parameters and/or power adjustment factors are set in accordance with embodiments of the present disclosure.
  • the method according to an embodiment of the present disclosure may be performed with a new user access as a trigger event.
  • the diagram. 5 shows the process of spectrum allocation and parameter setting.
  • the spectrum information, waveform parameters, and power adjustment factors of all user equipments in the first cell and the second cell are not changed from one new user access system to the next new user access system.
  • the method according to an embodiment of the present disclosure may also be performed as needed. That is, when it is necessary to allocate a spectrum or set a waveform parameter and/or a power adjustment factor for a certain user equipment in a certain cell, the corresponding method is performed according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating a process of signaling interaction of non-orthogonal spectrum sharing in multiple systems, in accordance with an embodiment of the present disclosure.
  • the new user when a new user in the SS1 cell accesses the system, the new user reports the location information and the transmission mode information, and may also report the waveform parameter information and/or the demodulation threshold as needed, which is already in the SS2 cell. The user can update the current location information and transmission mode information.
  • the SC Spectrum Coordinator
  • the SC Spectrum Coordinator
  • the SC can determine if there is available free spectrum, and if so, the available free spectrum can be directly allocated to the new user. If there is no available idle spectrum, the SC can determine whether the new user is located in the strong interference area.
  • the SC can transmit the same transmission mode as the new user except the strong interference area of the adjacent system.
  • the user's spectrum is allocated to the new user equipment. If the new user is located in the strong interference region, the SC obtains the channel information according to the transmission mode information of the new user, and sets the demodulation frequency information and the waveform parameter and/or the power adjustment factor according to the preprocessing algorithm in the embodiment of the present disclosure.
  • the spectrum of the users of the adjacent system is assigned to the new user equipment.
  • the SC sends the set demodulation times information and the waveform parameters and/or the power adjustment factor, the channel parameters, and the allocated spectrum information to the new user equipment in the cell SS1, and sets the demodulation times information, the waveform parameters, and / or power adjustment factor and channel parameters are sent to the user equipment in the cell SS2.
  • the electronic device 200 applied in a multi-system scenario is described above.
  • the electronic device 200 applied in a single system scenario will be described in detail below.
  • the electronic device 200 can also be applied, for example, to the single system scenario of Figure 1 (a).
  • a method of setting a waveform parameter and/or a power adjustment factor of a user equipment in a single system includes: when a new user in the cell accesses the system, the new user (eg, the first user device) reports the location information And the transmission mode information to be executed (here, the transmission mode information includes uplink transmission and downlink transmission), and the waveform parameter information and/or the demodulation threshold may also be reported as needed, and the existing user in the cell may update the current location information.
  • the SC can determine if there is an available idle spectrum, and if so, the available free spectrum can be directly assigned to the new user.
  • SC sets the demodulation times information and the waveform parameters and/or the power adjustment factors, acquires channel information, and allocates spectrums of other user equipments (eg, second user equipments) in the cell to the new user equipment.
  • the SC sends the set demodulation times information, the waveform parameters and/or the power adjustment factor, the channel parameters, and the allocated spectrum information to the new user equipment in the cell, and sets the demodulation times information, the waveform parameters, and/or Or the power adjustment factor and channel parameters are sent to other user equipment.
  • the following describes how to set the waveform parameters and/or power adjustment factors of the user equipment in a single system.
  • the first user equipment and the second user equipment are located in the same cell, and the transmission mode information of the first user equipment is assumed to be downlink transmission.
  • the processing circuit 210 is further configured to perform operations of: acquiring channel information based on location information of the first user equipment and the second user equipment; and based on channel information, demodulating the signal to interference and noise ratio according to the receiving end
  • the required signal to noise ratio requires a power adjustment factor.
  • the electronic device 200 When the acquiring unit 211 of the electronic device 200 acquires the location information of the first user device and the second user device, the electronic device 200 (eg, a channel information acquiring unit, not shown) may be located on the electronic device 200 or located at the electronic device 200.
  • database on a device other than the acquired channel information includes a BS and SU channel coefficient between the 1 H 1 and a channel coefficient between the two BS and SU H 2, and then the setting unit 212 may compare h h sizes 1 and 2.
  • SU 2 When h 1 >h 2 , it indicates that SU 2 is far from the BS, and SU 1 is closer to the BS. That is to say, SU 2 directly demodulates the data signal, and SU 1 first demodulates the interference signal and then demodulates the data signal.
  • SNR 1 is used to represent the signal-to-noise ratio of the data signal of the BS received by SU 1
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 represents white noise
  • ⁇ 1 SU represents a demodulated threshold
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (72) as:
  • SINR 1 is used to represent the signal to interference and noise ratio of the interference signal of the BS received by SU 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 Indicates white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (73)
  • ⁇ 2 represents the demodulation threshold of SU 2
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2 is used to represent the signal to interference and noise ratio of the data signal of the BS received by SU 2
  • p 2 (2) represents the second power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 represents white noise
  • p 1 represents calculated by the equation (73) power SU 1 adjustment factor
  • gamma] 2 represents a demodulation threshold SU 2
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated by the above formula (76 ) as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (75) and the formula (77):
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 through two steps, and solves the power adjustment factor p 1 of the SU 1 through one step.
  • SU 2 When h 1 ⁇ h 2 , SU 2 is closer to the BS, and SU 1 is farther from the BS. That is to say, SU 1 directly demodulates the data signal, and SU 2 demodulates the interference signal first, and then demodulates the data signal.
  • SNR 2 is used to represent the signal-to-noise ratio of the data signal of the BS received by SU 2
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 represents white noise
  • ⁇ 2 SU represents a demodulation threshold 2
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (79):
  • SINR 2 is used to represent the signal to interference and noise ratio of the interference signal of the BS received by SU 2
  • p 1 (1) represents the first power adjustment factor of SU 1 and h 2 represents the channel coefficient between BS and SU 2
  • N 0 Indicates white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (80)
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the first power adjustment factor p 1 (1) of SU 1 can be calculated by the above formula (81 ) as:
  • SINR 1 is used to represent the signal to interference and noise ratio of the data signal of the BS received by SU 1
  • p 1 (2) represents the second power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 represents white noise
  • p 2 represents calculated by the equation (80) power SU 2 adjustment factor
  • gamma] 1 represents SU demodulation threshold 1
  • the second power adjustment factor p 1 (2) of SU 1 can be calculated by the above formula (83 ) as:
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor derived by the formula (82) and the formula (84) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 through two steps, and solves the power adjustment factor p 2 of SU 2 through one step.
  • the processing circuit 210 is further configured to: determine that the set power adjustment factor has exceeded the adjustment range of the power amplifier of the transmitting end; reset the power adjustment factor such that the reset power adjustment factor is in the transmission Obtaining the waveform parameter information of the first user equipment and the second user equipment; and setting waveform parameters of the first user equipment and the second user equipment, so that the demodulation signal to interference and noise ratio requirement of the receiving end is required Or the signal to noise ratio requirement is met.
  • the power amplifier has a transmitting end of the adjustment range, the setting unit 212 when solved SU power adjustment factor 2 p 2 and the power adjustment factor SU 1 p 1 according to the procedure described above, find a transmit power adjustment factor exceeds the The adjustment range of the power amplifier, then the power adjustment factor needs to be reset. For example, when the calculated power adjustment factor is less than the minimum power adjustment factor of the power amplifier, the power adjustment factor is reset to the minimum power adjustment factor of the power amplifier; when the calculated power adjustment factor is greater than the maximum power adjustment factor of the power amplifier, Reset the power adjustment factor to the maximum power adjustment factor of the power amplifier.
  • waveform parameters of the first user equipment and the second user equipment may also be set.
  • K can take values of 1, 2, 3 or 4.
  • K can take values of 1, 2, 3 or 4.
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • you can use it When the user equipment accesses the system for the first time, the waveform parameter information of the user equipment is reported, and the waveform parameter information may be reported together with the position information, or the waveform parameter information may be reported separately from the position information.
  • the waveform parameters of the first user equipment and the second user equipment may be set, so that the demodulated signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end is satisfied.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. value; when 1 ⁇ h 2, the setting unit of the first user device disposed h 212 aliasing factor K 1 is greater than the value of the second user device factor K 2 of aliasing.
  • setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set a value of the power adjustment factor for the first user equipment and the second user equipment; when the power adjustment factor When the adjustment range of the power amplifier of the transmitting end is exceeded, the setting unit 212 can also set the value of the waveform parameter. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in the same cell, and the transmission mode information of the first user equipment is assumed to be downlink transmission.
  • the processing circuit 210 is further configured to: obtain channel information based on location information of the first user equipment and the second user equipment; acquire waveform parameter information of the first user equipment and the second user equipment; And setting waveform parameters of the first user equipment and the second user equipment based on the channel information and the waveform parameter information to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 first needs to determine the value of h 1 and h 2, and compare the size h h 1 and 2. This process is the same as in the fifth embodiment and will not be described again.
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameters of the first user equipment and the second user equipment may be set to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. value; when 1 ⁇ h 2, the setting unit of the first user device disposed h 212 aliasing factor K 1 is greater than the value of the second user device factor K 2 of aliasing.
  • setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the processing circuit 210 is further configured to: determine that the set waveform parameter fails to meet the demodulation signal to interference and noise ratio requirement or signal to noise ratio requirement of the receiving end; and further set the power adjustment based on the channel information Factor to meet the signal-to-noise ratio requirement or signal-to-noise ratio requirement of the demodulation at the receiving end.
  • waveform parameters such as aliasing factors
  • the processing circuit 210 may be configured to determine whether the set waveform parameter satisfies the demodulation signal to noise ratio requirement or the signal to noise ratio requirement of the receiving end after configuring the waveform parameter, if the demodulation is not satisfied
  • the power adjustment factor needs to be further set.
  • SU 2 When h 1 >h 2 , it indicates that SU 2 is far from the BS, and SU 1 is closer to the BS. That is to say, SU 2 directly demodulates the data signal, and SU 1 first demodulates the interference signal and then demodulates the data signal.
  • SNR 1 is used to represent the signal-to-noise ratio of the data signal of the BS received by SU 1
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 represents white noise
  • ⁇ 1 SU represents a demodulated threshold
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (86):
  • SINR 1 is used to represent the signal to interference and noise ratio of the interference signal of the BS received by SU 1
  • p 2 (1) represents the first power adjustment factor of SU 2
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 Indicates white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (87)
  • ⁇ 2 represents the demodulation threshold of SU 2
  • k 3 represents the normalized transmitted signal power when K is 4,
  • the first power adjustment factor p 2 (1) of SU 2 can be calculated as:
  • SINR 2 is used to represent the signal to interference and noise ratio of the data signal of the BS received by SU 2
  • p 2 (2) represents the second power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 Indicates white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (87)
  • ⁇ 2 represents the demodulation threshold of SU 2
  • k 3 represents the normalized transmitted signal power when K is 4,
  • the second power adjustment factor p 2 (2) of SU 2 can be calculated by the above formula (90 ) as:
  • the setting unit 212 sets the power adjustment factor p 2 of the SU 2 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (89) and the formula (91) as:
  • the setting unit 212 solves the power adjustment factor p 2 of the SU 2 through two steps, and solves the power adjustment factor p 1 of the SU 1 through one step.
  • SU 2 When h 1 ⁇ h 2 , SU 2 is closer to the BS, and SU 1 is farther from the BS. That is to say, SU 1 directly demodulates the data signal, and SU 2 demodulates the interference signal first, and then demodulates the data signal.
  • SNR 2 is used to represent the signal-to-noise ratio of the data signal of the BS received by SU 2
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 represents white noise
  • ⁇ 2 SU represents a demodulation threshold 2
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (93):
  • SINR 2 is used to represent the signal to interference and noise ratio of the interference signal of the BS received by SU 2
  • p 1 (1) represents the first power adjustment factor of SU 1 and h 2 represents the channel coefficient between BS and SU 2
  • N 0 Indicates white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (94)
  • ⁇ 1 represents the demodulation threshold of SU 1
  • k 3 represents the normalized transmitted signal power when K is 4, then only When the signal to interference and noise ratio of the interference signal received by SU 2 is greater than or equal to the demodulation threshold of SU 1 , the data signal can be correctly demodulated, so that the following formula holds:
  • the first power adjustment factor p 1 (1) of SU 1 can be calculated as:
  • SINR 1 is used to represent the signal to interference and noise ratio of the data signal of the BS received by SU 1
  • p 1 (2) represents the second power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 Indicates white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (94)
  • ⁇ 1 represents the demodulation threshold of SU 1
  • k 3 represents the normalized transmitted signal power when K is 4,
  • the setting unit 212 sets the power adjustment factor p 1 of the SU 1 according to the first power adjustment factor and the second power adjustment factor obtained by the formula (96) and the formula (98) as:
  • the setting unit 212 solves the power adjustment factor p 1 of SU 1 through two steps, and solves the power adjustment factor p 2 of SU 2 through one step.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set waveform parameters for the first user equipment and the second user equipment.
  • the value of the number when the waveform parameter cannot satisfy the demodulation requirement of the receiving end, the setting unit 212 can also set the value of the power adjustment factor. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in the same cell, and the transmission mode information of the first user equipment is assumed to be uplink transmission.
  • the processing circuit 210 is further configured to perform operations of: acquiring channel information based on location information of the first user equipment and the second user equipment; and based on channel information, demodulating the signal to interference and noise ratio according to the receiving end
  • the required signal to noise ratio requires a power adjustment factor.
  • the setting unit 212 first needs to determine the value of h 1 and h 2, and compare the size h h 1 and 2. This process is the same as in the fifth embodiment and will not be described again.
  • h 1 >h 2 it indicates that SU 2 is far from the BS, and SU 1 is closer to the BS. That is, the BS first demodulates the signal from SU 1 and demodulates the signal from SU 2 .
  • SNR 2 is used to represent the signal-to-noise ratio of the data signal of SU 2 received by the BS
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 represents white noise
  • ⁇ 2 Indicates the demodulation threshold of SU 2
  • the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 2 received by the BS is greater than or equal to the demodulation threshold of SU 2 , so that the following formula holds:
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (100):
  • SINR 1 is used to represent the signal to interference and noise ratio of the data signal of SU 1 received by the BS
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between the BS and SU 1
  • h 2 represents the BS and SU 2
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (101)
  • ⁇ 1 represents the demodulation threshold of SU 1
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (102) as:
  • the BS first demodulates the signal from SU 2 and demodulates the signal from SU 1 .
  • SNR 1 is used to indicate the signal-to-noise ratio of the data signal of SU 1 received by the BS
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 represents white noise
  • ⁇ 1 Representing the demodulation threshold of SU 1 then the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 1 received by the BS is greater than or equal to the demodulation threshold of SU 1 , so that the following formula holds:
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (104) as:
  • SINR 2 is used to represent the signal to interference and noise ratio of the data signal of the SU 2 received by the BS
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between the BS and SU 2
  • h 1 represents the BS and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (105)
  • ⁇ 2 represents the demodulation threshold of SU 2
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (106):
  • the processing circuit 210 is further configured to: determine that the set power adjustment factor has exceeded the adjustment range of the power amplifier of the transmitting end; reset the power adjustment factor such that the reset power adjustment factor is in the transmission Obtaining the waveform parameter information of the first user equipment and the second user equipment; and setting waveform parameters of the first user equipment and the second user equipment, so that the demodulation signal to interference and noise ratio requirement of the receiving end is required Or the signal to noise ratio requirement is met.
  • the power amplifier has a transmitting end of the adjustment range, the setting unit 212 when solved SU power adjustment factor 2 p 2 and the power adjustment factor SU 1 p 1 according to the procedure described above, find a transmit power adjustment factor exceeds the The adjustment range of the power amplifier, then the power adjustment factor needs to be reset. For example, when the calculated power adjustment factor is less than the minimum power adjustment factor of the power amplifier, the power adjustment factor is reset to the minimum power adjustment factor of the power amplifier; when the calculated power adjustment factor is greater than the maximum power adjustment factor of the power amplifier, Reset the power adjustment factor to the maximum power adjustment factor of the power amplifier.
  • waveform parameters of the first user equipment and the second user equipment may also be set.
  • K can take values of 1, 2, 3 or 4.
  • K can take values of 1, 2, 3 or 4.
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameter information of the user equipment may be reported, and the waveform parameter information may be reported together with the position information, or the waveform parameter information may be reported separately from the position information.
  • the waveform parameters of the first user equipment and the second user equipment may be set, so that the demodulated signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end is satisfied.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value is; when h 1 ⁇ h 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set a value of the power adjustment factor for the first user equipment and the second user equipment; when the power adjustment factor When the adjustment range of the power amplifier of the transmitting end is exceeded, the setting unit 212 can also set the value of the waveform parameter. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the first user equipment and the second user equipment are located in the same cell, and the transmission mode information of the first user equipment is assumed to be uplink transmission.
  • the processing circuit 210 is further configured to: obtain channel information based on location information of the first user equipment and the second user equipment; acquire waveform parameter information of the first user equipment and the second user equipment; And setting waveform parameters of the first user equipment and the second user equipment based on the channel information and the waveform parameter information to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 first needs to determine the value of h 1 and h 2, and compare the size h h 1 and 2. This process is the same as in the fifth embodiment and will not be described again.
  • the electronic device 200 may acquire waveform parameter information of the first user device and the second user device.
  • the waveform parameter information may include a range of waveform parameters that the user equipment may adopt, such as a range of aliasing factors, and may also include waveform parameters currently used by the user equipment, such as values of aliasing factors, and may also include whether the user equipment can perform Waveform parameter adjustment information.
  • the waveform parameters of the first user equipment and the second user equipment may be set to meet the demodulation signal to interference and noise ratio requirement or the signal to noise ratio requirement of the receiving end.
  • the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be larger than the value of the aliasing factor K 2 of the second user equipment. For example, setting unit 212 sets K 1 to the value of the largest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the smallest aliasing factor in the range of the aliasing factors of the second user equipment. The value is; when h 1 ⁇ h 2 , the setting unit 212 sets the aliasing factor K 1 of the first user equipment to be smaller than the value of the aliasing factor K 2 of the second user equipment.
  • setting unit 212 sets K 1 to the value of the smallest aliasing factor in the range of the aliasing factors of the first user equipment, and sets K 2 as the largest aliasing factor in the range of the aliasing factors of the second user equipment. Value.
  • the processing circuit 210 is further configured to: determine that the set waveform parameter fails to meet the demodulation signal to interference and noise ratio requirement or signal to noise ratio requirement of the receiving end; and further set the power adjustment based on the channel information Factor to meet the signal-to-noise ratio requirement or signal-to-noise ratio requirement of the demodulation at the receiving end.
  • waveform parameters such as aliasing factors
  • the processing circuit 210 may be configured to determine whether the set waveform parameter satisfies the demodulation signal to noise ratio requirement or the signal to noise ratio requirement of the receiving end after configuring the waveform parameter, if the demodulation is not satisfied
  • the power adjustment factor needs to be further set.
  • h 1 >h 2 it indicates that SU 2 is far from the BS, and SU 1 is closer to the BS. That is, the BS first demodulates the signal from SU 1 and demodulates the signal from SU 2 .
  • SNR 2 is used to represent the signal-to-noise ratio of the data signal of SU 2 received by the BS
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • N 0 represents white noise
  • ⁇ 2 Indicates the demodulation threshold of SU 2
  • the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 2 received by the BS is greater than or equal to the demodulation threshold of SU 2 , so that the following formula holds:
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (108):
  • SINR 1 is used to represent the signal to interference and noise ratio of the data signal of SU 1 received by the BS
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between the BS and SU 1
  • h 2 represents the BS and SU 2
  • N 0 represents white noise
  • p 2 represents the power adjustment factor of SU 2 calculated by equation (109)
  • ⁇ 1 represents the demodulation threshold of SU 1
  • k 3 represents the normalization when K is 4.
  • the data signal can be correctly demodulated only when the signal-to-interference ratio of the data signal of the SU 1 received by the BS is greater than or equal to the demodulation threshold of SU 1 , so that the following formula holds:
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (110) as:
  • the BS first demodulates the signal from SU 2 and demodulates the signal from SU 1 .
  • SNR 1 is used to indicate the signal-to-noise ratio of the data signal of SU 1 received by the BS
  • p 1 represents the power adjustment factor of SU 1
  • h 1 represents the channel coefficient between BS and SU 1
  • N 0 represents white noise
  • ⁇ 1 Representing the demodulation threshold of SU 1 then the data signal can be correctly demodulated only when the signal-to-noise ratio of the data signal of SU 1 received by the BS is greater than or equal to the demodulation threshold of SU 1 , so that the following formula holds:
  • the power adjustment factor p 1 of SU 1 can be calculated by the above formula (112) as:
  • SINR 2 is used to represent the signal to interference and noise ratio of the data signal of SU 2 received by the BS
  • p 2 represents the power adjustment factor of SU 2
  • h 2 represents the channel coefficient between BS and SU 2
  • h 1 represents BS and SU 1
  • N 0 represents white noise
  • p 1 represents the power adjustment factor of SU 1 calculated by equation (111)
  • ⁇ 2 represents the demodulation threshold of SU 2
  • k 3 represents the normalization when K is 4.
  • the data signal can be correctly demodulated only when the signal to interference and noise ratio of the SU 2 data signal received by the BS is greater than or equal to the demodulation threshold of SU 2 , so that the following formula holds:
  • the power adjustment factor p 2 of SU 2 can be calculated by the above formula (114):
  • the setting unit 212 may further set the demodulation times information of the first user equipment and the second user equipment, and may be first through the communication unit 220.
  • the demodulation times information of the user equipment and the second user equipment are respectively transmitted to the first user equipment and the second user equipment along with respective waveform parameters and/or power adjustment factors. This process is similar to the first embodiment and will not be described again.
  • the setting unit 212 may set the value of the waveform parameter for the first user equipment and the second user equipment; when the waveform parameter cannot be satisfied
  • the setting unit 212 can also set the value of the power adjustment factor when the demodulation request of the receiving end is required. In this way, the data signal can be correctly demodulated at the receiving end, achieving non-orthogonal sharing of the spectrum.
  • the wireless communication system may be a cognitive radio communication system
  • the cell in which the first user equipment and the second user equipment are located may be a secondary system.
  • FIG. 7 is a block diagram illustrating a structure of another electronic device 700 in a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system includes at least a first cell and a second cell, and the electronic device 700 is within the first cell.
  • electronic device 700 can include processing circuitry 710. It should be noted that the electronic device 700 may include one processing circuit 710 or multiple processing circuits 710. In addition, the electronic device 700 may also include a communication unit 720 such as a transceiver or the like.
  • processing circuit 710 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 710 may include a location management unit 711, and a parameter.
  • the location management unit 711 can acquire location information of the first user equipment in the first cell in the wireless communication system where the electronic device 700 is located to notify the spectrum coordinator in the core network.
  • the parameter management unit 712 may acquire the waveform parameter and the demodulation frequency information from the spectrum coordinator and the spectrum resource information of the second user equipment in the second cell in the wireless communication system where the electronic device 700 is located to notify the first user equipment.
  • the spectrum management unit 713 can utilize the spectrum resources of the second user equipment to perform wireless communication with the first user equipment based on the acquired waveform parameters and the number of demodulation times.
  • the processing circuit 710 is further configured to obtain a power adjustment factor from the spectrum coordinator to notify the first user equipment; to utilize the spectrum resource of the second user equipment to perform wireless with the first user equipment based on the acquired waveform parameters and the power adjustment factor Communication.
  • the processing circuit 710 is further configured to acquire waveform parameter information of the first user equipment to notify the spectrum coordinator.
  • the first user equipment is in a specific area in the first cell, and within the specific area, the first user equipment is interfered with by the second cell.
  • the waveform parameters include a filter aliasing factor.
  • the wireless communication system is a cognitive radio communication system
  • the first cell is a first time system
  • the second cell is a second time system
  • the electronic device 700 is a base station in the first cell.
  • FIG. 8 is a block diagram illustrating a structure of a user device 800 in a wireless communication system according to an embodiment of the present disclosure.
  • user device 800 can include processing circuitry 810. It should be noted that the user equipment 800 may include one processing circuit 810 or multiple processing circuits 810. In addition, user equipment 800 may also include communication unit 820, such as a transceiver.
  • processing circuit 810 can also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 810 may include a location management unit 811, a parameter management unit 812, and a spectrum management unit 813.
  • the location management unit 811 can cause the base station that the communication unit 820 provides the service to the user equipment 800 to transmit the location information of the user equipment 800.
  • the parameter management unit 812 can cause the communication unit 820 to receive waveform parameters and demodulation times information and spectrum resource information of the second user equipment from the base station.
  • the spectrum management unit 813 can utilize the spectrum resources of the second user equipment to wirelessly communicate with the base station based on the received waveform parameters.
  • the wireless communication system includes at least a first cell and a second cell, the user equipment 800 is located in the first cell, and the second user equipment is located in the second cell.
  • the processing circuit 810 is further configured to: cause the communication unit 820 to receive a power adjustment factor from the base station; and utilize the spectrum resources of the second user equipment to wirelessly communicate with the base station based on the received waveform parameters and power adjustment factors.
  • the processing circuit 810 is further configured to cause the communication unit 820 to transmit waveform parameter information of the user equipment 800 to the base station.
  • the user equipment 800 is in a specific area in the first cell, and within the specific area, the user equipment 800 is interfered by the second cell and cannot perform normal wireless communication.
  • the waveform parameters include a filter aliasing factor.
  • the wireless communication system is a cognitive radio communication system
  • the first cell is a first time system
  • the second cell is a second time system.
  • a base station in a single system, can set a waveform parameter and/or a frequency adjustment factor for a user equipment within its coverage so that the receiver can correctly demodulate at the receiving end.
  • the data is output, so that different users can achieve spectrum sharing, improve spectrum utilization and system performance.
  • the SC may set waveform parameters and/or frequency adjustment factors for user equipment in a strong interference region, so that data can be correctly demodulated at the receiving end, so that different users in neighboring cells can implement Spectrum sharing improves spectrum utilization and system performance.
  • An electronic device may be applied to an 802.19 coexistence system, and may also be applied to a spectrum sharing method of an ultra-dense network.
  • FIG. 9 shows a flow chart of a method of wireless communication in accordance with an embodiment of the present disclosure.
  • step S910 location information of the user equipment is acquired. Waveform parameter information.
  • step S920 waveform parameters are set based on the position information of the user equipment and the waveform parameter information.
  • step S930 the spectrum resource information of the other user equipments is obtained, and the spectrum resources of the other user equipments are allocated to the user equipment according to the spectrum resource information, so that the user equipment uses the spectrum resources of other user equipments based on the set waveform parameters. .
  • the method further comprises: acquiring location information of other user equipments, and setting waveform parameters based on location information of the user equipment and other user equipments.
  • the method further includes: setting a power adjustment factor based on the location information of the user equipment and the other user equipment; and acquiring spectrum resource information of the other user equipment, and allocating spectrum resources of the other user equipment to the user equipment, so that the user equipment is based on the setting Waveform parameters and power adjustment factors to use the spectrum resources of other user equipment.
  • the wireless communication system includes at least a first cell and a second cell, where the user equipment is in a specific area in the first cell, within the specific area, the user equipment is interfered by the second cell, and the other user equipment is located in the second cell. .
  • the method further comprises determining whether the user equipment is within the specific area based on the location information of the user equipment.
  • setting the waveform parameter comprises: acquiring channel information based on location information of the user equipment and other user equipment; acquiring waveform parameter information of the user equipment and other user equipment; and setting the user equipment and other user equipment based on the channel information and the waveform parameter information.
  • the waveform parameters satisfy the signal-to-interference ratio or signal-to-noise ratio requirements of the demodulation at the receiving end.
  • setting the power adjustment factor comprises: determining that the set waveform parameter cannot meet the signal to interference and noise ratio requirement or the signal to noise ratio requirement of the demodulation of the receiving end; and further setting the power adjustment factor based on the channel information to satisfy the demodulation of the receiving end.
  • Signal dry noise ratio requirements or signal to noise ratio requirements are examples of signal dry noise ratio requirements.
  • the waveform parameters include a filter aliasing factor.
  • the wireless communication system is a cognitive radio communication system
  • the first cell is a first time system
  • the second cell is a second time system
  • the method is performed by a spectrum coordinator in the core network.
  • FIG. 10 shows a flow chart of a method of wireless communication in accordance with another embodiment of the present disclosure.
  • Wireless communication method is applied in wireless communication system, wireless communication
  • the signaling system includes at least a first cell and a second cell.
  • step S1010 location information of the user equipment in the first cell is acquired to notify the spectrum coordinator in the core network.
  • step S1020 waveform parameters and demodulation times information are acquired from the spectrum coordinator to notify the user equipment.
  • step S1030 spectrum resource information of other user equipments in the second cell are acquired from the spectrum coordinator to notify the user equipment.
  • step S1040 the spectrum resources of the other user equipment are utilized to perform wireless communication with the user equipment based on the acquired waveform parameters and the number of demodulation times.
  • the method further comprises: obtaining a power adjustment factor from the spectrum coordinator to notify the user equipment; utilizing spectrum resources of other user equipments based on the acquired waveform parameters and power adjustment factors to wirelessly communicate with the user equipment.
  • the method further comprises: acquiring waveform parameter information of the user equipment to notify the spectrum coordinator.
  • the user equipment is in a specific area in the first cell, and within the specific area, the user equipment is interfered with by the second cell.
  • the waveform parameters include a filter aliasing factor.
  • the wireless communication system is a cognitive radio communication system
  • the first cell is a first time system
  • the second cell is a second time system
  • the method is performed by a base station in the first cell.
  • FIG. 11 shows a flow chart of a method of wireless communication in accordance with another embodiment of the present disclosure.
  • the wireless communication method is applied to a wireless communication system including a plurality of user equipments and at least one base station.
  • step S1110 the location information of the user equipment is transmitted to the base station serving the user equipment.
  • step S1120 waveform parameters and demodulation times information are received from the base station.
  • step S1130 spectrum resource information of other user equipments is received from the base station.
  • step S1140 based on the received waveform parameters and the demodulation frequency information, the spectrum resources of the other user equipment are used to perform wireless communication with the base station.
  • the wireless communication system includes at least a first cell and a second cell, the user equipment is located in the first cell, and the other user equipment is located in the second cell.
  • the method further comprises: receiving a power adjustment factor from the base station; and utilizing spectrum resources of the other user equipment to wirelessly communicate with the base station based on the received waveform parameters and power adjustment factors.
  • the method further comprises: transmitting waveform parameter information of the user equipment to the base station.
  • the user equipment is in a specific area in the first cell, and within the specific area, the user equipment is interfered with by the second cell.
  • the waveform parameters include a filter aliasing factor.
  • the wireless communication system is a cognitive radio communication system
  • the first cell is a first time system
  • the second cell is a second time system.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal. (such as car navigation equipment).
  • the UE may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above terminals.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1200 includes one or more antennas 1210 and base station devices 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1220 to transmit and receive wireless signals.
  • the eNB 1200 can include multiple antennas 1210.
  • multiple antennas 1210 can be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 illustrates an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220. For example, controller 1221 generates data packets based on data in signals processed by wireless communication interface 1225 and communicates the generated packets via network interface 1223. The controller 1221 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1221 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1222 includes a RAM and a ROM, and stores programs executed by the controller 1221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1223 is a communication interface for connecting base station device 1220 to core network 1224. Controller 1221 can communicate with a core network node or another eNB via network interface 1223. In this case, the eNB 1200 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1223 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1223 is a wireless communication interface, network interface 1223 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1225.
  • Wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 1200 via antenna 1210.
  • Wireless communication interface 1225 may typically include, for example, baseband (BB) processor 1226 and RF circuitry 1227.
  • the BB processor 1226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP))
  • layers eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • controller 1221 BB processor 1226 may have some or all of the above described logic functions.
  • the BB processor 1226 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program. Update program can make BB The functionality of processor 1226 changes.
  • the module can be a card or blade that is inserted into the slot of the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1210.
  • the wireless communication interface 1225 can include a plurality of BB processors 1226.
  • multiple BB processors 1226 can be compatible with multiple frequency bands used by eNB 1200.
  • the wireless communication interface 1225 can include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 can be compatible with multiple antenna elements.
  • FIG. 12 illustrates an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1330 includes one or more antennas 1340, base station devices 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 can include multiple antennas 1340.
  • multiple antennas 1340 can be compatible with multiple frequency bands used by eNB 1330.
  • FIG. 11 illustrates an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station device 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357.
  • the controller 1351, the memory 1352, and the network interface 1353 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG.
  • the wireless communication interface 1355 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in sectors corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • Wireless communication interface 1355 can typically include, for example, BB processor 1356.
  • the BB processor 1356 is identical to the BB processor 1226 described with reference to FIG. 12 except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 can include a plurality of BB processors 1356.
  • multiple BB processors 1356 can be compatible with multiple frequency bands used by eNB 1330.
  • FIG. 13 illustrates an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-described high speed line of the RRH 1360.
  • the RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1363 transmits and receives wireless signals via antenna 1340.
  • Wireless communication interface 1363 can generally include, for example, RF circuitry 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 can include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 can support multiple antenna elements.
  • FIG. 13 illustrates an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the processing circuit 210 described in FIG. 2 and the processing unit 710 described in the acquisition unit 211, the setting unit 212 and the allocation unit 213, and the FIG. 7 are used, and
  • the location management unit 711, the parameter management unit 712, and the spectrum management unit 713 may be implemented by the controller 1221 and/or the controller 1351, and by using the communication unit 220 described in FIG. 2 and the communication unit 720 described using FIG. It can be implemented by wireless communication interface 1225 as well as wireless communication interface 1355 and/or wireless communication interface 1363. At least a portion of the functionality can also be implemented by controller 1221 and controller 1351.
  • the controller 1221 and/or the controller 1351 can perform acquisition of location information, setting and acquisition of waveform parameters and power adjustment factors, and allocation of resource functions by executing instructions stored in respective memories.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 1400 to which the technology of the present disclosure can be applied.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, an imaging device 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, and one or more An antenna switch 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the processor 1401 may be, for example, a CPU or a system on chip (SoC), and controls the smart battery.
  • the memory 1402 includes a RAM and a ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1400.
  • USB universal serial bus
  • the image pickup device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1407 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smartphone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from a user.
  • the display device 1410 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400.
  • the speaker 1411 converts the audio signal output from the smartphone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1412 may generally include, for example, BB processor 1413 and RF circuitry 1414.
  • the BB processor 1413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1416.
  • the wireless communication interface 1412 can be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 can include a plurality of BB processors 1413 and a plurality of RF circuits 1414.
  • FIG. 14 illustrates an example in which the wireless communication interface 1412 includes a plurality of BB processors 1413 and a plurality of RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • wireless communication interface 1412 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 can include a BB processor 1413 and RF circuitry 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 between a plurality of circuits included in the wireless communication interface 1412, such as circuits for different wireless communication schemes.
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for wireless communication interface 1412 to transmit and receive Receive wireless signals.
  • smart phone 1400 can include multiple antennas 1416.
  • FIG. 14 illustrates an example in which smart phone 1400 includes multiple antennas 1416, smart phone 1400 may also include a single antenna 1416.
  • smart phone 1400 can include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 can be omitted from the configuration of the smartphone 1400.
  • the bus 1417 stores the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the imaging device 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 with each other. connection.
  • Battery 1418 provides power to various blocks of smart phone 1400 shown in FIG. 14 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1419 operates the minimum required function of the smartphone 1400, for example, in a sleep mode.
  • the smartphone 1400 shown in FIG. 14 by using the processing circuit 810 described in FIG. 8 and the position management unit 811, the parameter management unit 812, and the spectrum management unit 813 therein, it is possible to implement by the processor 1401 or the auxiliary controller 1419.
  • the communication unit 820 described by using FIG. 8 can be implemented by the wireless communication interface 1412.
  • At least a portion of the functionality may also be implemented by processor 1401 or secondary controller 1419.
  • the processor 1401 or the auxiliary controller 1419 can perform the communication unit 820 to transmit location information, receive waveform parameters and power adjustment factors, and perform wireless communication with the base station by executing instructions stored in the memory 1402 or the storage device 1403.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1520 to which the technology of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, and a wireless device.
  • the processor 1521 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1520.
  • the memory 1522 includes a RAM and a ROM, and stores data and programs executed by the processor 1521.
  • the GPS module 1524 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1520 using GPS signals received from GPS satellites.
  • Sensor 1525 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1526 is connected to, for example, the in-vehicle network 1541 via a terminal not shown, and is acquired by the vehicle. Data (such as vehicle speed data).
  • the content player 1527 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from a user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1533 may typically include, for example, BB processor 1534 and RF circuitry 1535.
  • the BB processor 1534 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1537.
  • the wireless communication interface 1533 can also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 can include a plurality of BB processors 1534 and a plurality of RF circuits 1535.
  • FIG. 15 illustrates an example in which the wireless communication interface 1533 includes a plurality of BB processors 1534 and a plurality of RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • wireless communication interface 1533 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1533 may include a BB processor 1534 and an RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 between a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1533 to transmit and receive wireless signals.
  • car navigation device 1520 can include a plurality of antennas 1537.
  • FIG. 15 illustrates an example in which the car navigation device 1520 includes a plurality of antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • car navigation device 1520 can include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 can be saved from the configuration of the car navigation device 1520. slightly.
  • Battery 1538 provides power to various blocks of car navigation device 1520 shown in FIG. 15 via feeders, which are partially shown as dashed lines in the figures. Battery 1538 accumulates power supplied from the vehicle.
  • the processing circuit 810 described in FIG. 8 and the position management unit 811, the parameter management unit 812, and the spectrum management unit 813 therein it is possible to be implemented by the processor 1521 and by using
  • the communication unit 820 depicted in FIG. 8 can be implemented by the wireless communication interface 1533.
  • At least a portion of the functionality can also be implemented by processor 1521.
  • the processor 1521 can perform the communication unit 820 to transmit location information, receive waveform parameters and power adjustment factors, and perform wireless communication with the base station by executing instructions stored in the memory 1522.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 1540 that includes one or more of the car navigation device 1520, the in-vehicle network 1541, and the vehicle module 1542.
  • vehicle module 1542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1541.

Abstract

本公开涉及无线通信系统中的电子设备、用户设备和无线通信方法。该无线通信系统包括多个用户设备和至少一个基站。根据本公开的电子设备包括:一个或多个处理电路,被配置为执行以下操作:获取用户设备的位置信息和波形参数信息;基于用户设备的位置信息和波形参数信息,设置波形参数;以及获取其他用户设备的频谱资源信息,将其他用户设备的频谱资源分配给用户设备,以便用户设备基于设置的波形参数,来使用其他用户设备的频谱资源。使用根据本公开的电子设备和无线通信方法,可以使得无线通信系统中的用户可以使用相同的频谱资源,实现非正交频谱共享,提高了频谱利用率和吞吐量。

Description

无线通信系统中的电子设备、用户设备和无线通信方法
本申请要求于2016年1月13日提交中国专利局、申请号为201610021159.0、发明名称为“无线通信系统中的电子设备、用户设备和无线通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信的技术领域,具体地涉及无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法。
背景技术
这个部分提供了与本公开有关的背景信息,这不一定是现有技术。
随着无线通信技术的发展,频谱资源越来越紧张,而现有的研究表明,已分配的授权频谱的资源利用率普遍不高,因此如何提高频谱利用率是一个急需解决的问题。认知无线电是软件无线电技术的一个智能化演进,在认知无线电中,以“机会方式”接入频谱的次用户(Secondary User,SU)能够通过对频谱的感知和分析,智能地使用空闲频谱并避免对拥有授权频段的主用户(Primary User,PU)形成干扰,而主用户以最高的优先级使用被授权的频段。当主用户要使用授权频段时,次用户需要及时停止使用频谱,将信道让给主用户。认知无线电技术的引入,可以很大程度上改善频谱资源紧张的问题。
但是,在认知无线电系统中,由于在相同频段下发射不同的调制信号,次用户发出的信号对于同频段的主用户有可能产生干扰,因此次用户分配频谱时需要考虑对主用户的影响,即不能使用主用户所使用的频谱,这样次用户能够使用的频谱资源非常有限。另一方面,相邻系统的次用户可能会共用频谱,然而共用频谱有可能产生干扰。
NOMA(Non-orthogonal multiple access,非正交多址接入)也是一种提高频谱利用率的关键技术。NOMA的基本思想是在发送端采用非正交传输,主动引入干扰信息,在接收端通过串行干扰消除实现正确解调。虽然这种设计会增加接收机的复杂度,但是可以很好地提高频谱利用率。
本发明提出一种非正交频谱共享方法,将NOMA的基本思想扩展应用到包括一个或者多个小区的无线通信系统,尤其是认知无线电系统之中,以解决上述技术问题中的至少一个。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,使得无线通信系统中的不同用户可以使用相同的频谱资源,实现非正交频谱共享,提高频谱利用率和吞吐量。
根据本公开的一方面,提供了一种无线通信系统中的电子设备。所述无线通信系统包括多个用户设备和至少一个基站。所述电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:获取用户设备的位置信息和波形参数信息;基于所述用户设备的位置信息和波形参数信息,设置波形参数;以及获取其他用户设备的频谱资源信息,根据所述频谱资源信息将所述其他用户设备的频谱资源分配给所述用户设备,以便所述用户设备基于设置的波形参数,来使用所述其他用户设备的频谱资源。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备。所述无线通信系统至少包括第一小区和第二小区,所述电子设备处于所述第一小区之内。并且所述电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:获取所述第一小区中的用户设备的位置信息以通知核心网中的频谱协调器;从所述频谱协调器获取波形参数和解调次数信息以通知所述用户设备;从所述频谱协调器获取所述第二小区中的其他用户设备的频谱资源信息以通知所述用户设备;以及基于获取的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述用户设备进行无线通信。
根据本公开的另一方面,提供了一种无线通信系统中的用户设备,所述无线通信系统包括多个用户设备和至少一个基站,所述用户设备包括:收发机;以及一个或多个处理电路,所述处理电路被配置为执行以下操作:使所述收发机向为所述用户设备提供服务的基站发送所述用户设备的位置信息;使所述收发机从所述基站接收波形参数和解调次数信息;使 所述收发机从所述基站接收其他用户设备的频谱资源信息;以及基于接收的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述基站进行无线通信。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括多个用户设备和至少一个基站,所述方法包括:获取用户设备的位置信息和波形参数信息;基于所述用户设备的位置信息和波形参数信息,设置波形参数;以及获取其他用户设备的频谱资源信息,根据所述频谱资源信息将所述其他用户设备的频谱资源分配给所述用户设备,以便所述用户设备基于设置的波形参数,来使用所述其他用户设备的频谱资源。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统至少包括第一小区和第二小区,所述方法包括:获取所述第一小区中的用户设备的位置信息以通知核心网中的频谱协调器;从所述频谱协调器获取波形参数和解调次数信息以通知所述用户设备;从所述频谱协调器获取其他用户设备的频谱资源信息以通知所述一个用户设备;以及基于获取的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述用户设备进行无线通信。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括多个用户设备和至少一个基站,所述方法包括:向为用户设备服务的基站发送所述用户设备的位置信息;从所述基站接收波形参数和解调次数信息;从所述基站接收其他用户设备的频谱资源信息;以及基于接收的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述基站进行无线通信。
使用根据本公开的无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,电子设备能够获取用户设备的位置信息,并基于位置信息设置波形参数,因此能够使得无线通信系统中不同的用户使用相同的频谱资源也能够正确解调出数据,从而提高频谱的利用率和系统的吞吐量。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1(a)是图示根据本公开的实施例的非正交频谱共享的一个场景的示意图;
图1(b)是图示根据本公开的实施例的非正交频谱共享的另一个场景的示意图;
图2是图示根据本公开的实施例的无线通信系统中的电子设备的结构的框图;
图3是图示根据本公开的实施例的确定强干扰区域的场景的示意图;
图4是图示根据本公开的实施例的配置功率调整因子的过程的示意图;
图5是图示根据本公开的实施例的多系统中非正交频谱共享的过程的示意图;
图6是图示根据本公开的实施例的多系统中非正交频谱共享的信令交互的过程的示意图;
图7是图示根据本公开的实施例的无线通信系统中的另一个电子设备的结构的框图;
图8是图示根据本公开的实施例的无线通信系统中的用户设备的结构的框图;
图9是图示根据本公开的实施例的无线通信方法的流程图;
图10是图示根据本公开的另一实施例的无线通信方法的流程图;
图11是图示根据本公开的又一实施例的无线通信方法的流程图;
图12是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)的示意性配置的第一示例的框图;
图13是示出适用于本公开的eNB的示意性配置的第二示例的框图;
图14是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图15是示出适用于本公开的汽车导航设备的示意性配置的示例的框 图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有无线通信功能的终端。进一步,取决于具体所描述的功能,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,类似地,本公开中所涉及的基站可以例如是eNB或者是eNB中的部件如芯片。进而,本公开的技术方案例如可以用于FDD(Frequency Division Duplexing,频分双工)系统和TDD(Time Division Duplexing,时分双工)系统。
图1(a)是图示根据本公开的实施例的非正交频谱共享的一个场景的示意图。如图1(a)所示,在无线通信系统中存在一个小区,该小区的服务基站为BS,在这个小区中存在第一用户设备SU1和第二用户设备SU2。在BS与用户设备之间进行数据传输时,由于用户设备会接收到BS发送给其他用户设备的数据,这样导致产生对用户设备的数据干扰。用户设备向BS发送数据时同样会遇到类似的干扰问题。以下行传输为例,当BS向SU1发送数据时,SU1可能会接收到BS向SU2发送的下行数据,因此BS向SU2发送的下行数据对SU1造成了干扰。
如果用h1表示BS和SU1之间的信道系数,h2表示BS和SU2之间的信道系数,。s1表示SU1的下行信号,s2表示SU2的下行信号,x1表示SU1的上行信号,x2表示SU2的上行信号。则在下行传输中,SU1接收到的信号ySU1和SU2接收到的信号ySU2分别为:
Figure PCTCN2017070125-appb-000001
Figure PCTCN2017070125-appb-000002
类似地,在上行传输中,BS接收到的信号yBS为:
yBS=x1*h1+x2*h2           (3)
由此可见,在具有一个小区的无线通信系统(单系统)中的上行传输中,有用信号和干扰信号经过不同的信道到达接收端;而在下行传输中,有用信号和干扰信号经过相同的信道到达接收端。
为避免不同用户设备之间的数据干扰,不同用户设备之间可以使用不同频谱或不同功率进行传输。为此,在这个场景中,可以使用NOMA来实现非正交频谱共享。以下行传输为例,BS的发射机采用相同的频谱不同的功率来向SU1和SU2发送数据,并将信道信息h1和h2发送给SU1和SU2。例如,BS采用高功率向SU1发送数据,以低功率向SU2发送数据。在接收端,SU1直接解调出数据信号,而SU2首先解调出干扰信号,从而确定出数据信号。上行传输的过程类似。在SU1和SU2进行数据解调的过程中,只有当数据信号和干扰信号的差异足够大,使得在接收端接收到的数据信号和/或干扰信号能够满足解调要求,才能够保证SU1和SU2能够正确地解调出数据信号和干扰信号。
波形参数是分配给发射机的滤波器参数,其与功率调整因子一样,都是发射端的参数,能够影响发射端生成信号的功率。因此,如果能够合理地调整发射端的波形参数,使得在接收端接收到的信号差异足够大,那么接收端就能够正确解调出数据信号。
也就是说,在单系统中,通过合理地设置发射端的参数,例如波形参数和/或功率调整因子,可以为位于同一个小区中的不同用户设备分配相同的频谱资源,从而实现频谱资源共享。
图1(b)是图示根据本公开的实施例的非正交频谱共享的另一个场景的示意图。
如图1(b)所示,在无线通信系统中存在两个相邻的小区:第一小 区SS1和第二小区SS2,小区SS1的基站为BS1,小区SS2的基站为BS2,在小区SS1中存在第一用户设备SU1,在小区SS2中存在第二用户设备SU2,用户SU1和SU2都位于各自所在小区的边缘。SU1可以与BS1进行上下行的传输,SU2可以与BS2进行上下行的传输。
在下行传输过程中,BS1向SU1发送数据信号,BS2向SU2发送数据信号。在这个过程中,由于SU1和SU2位于小区边缘,因此SU1会接收到来自BS2的干扰信号,SU2也会接收到来自BS1的干扰信号。假定BS1与SU1之间的信道系数为h1,1,BS2与SU2之间的信道系数为h2,2,BS1与SU2之间的信道系数为h2,1,BS2与SU1之间的信道系数为h1,2,用S1表示BS1的下行数据信号,S2表示BS2的下行数据信号,ySU1表示SU1接收到的信号,ySU2表示SU2接收到的信号,则有下述公式:
Figure PCTCN2017070125-appb-000003
Figure PCTCN2017070125-appb-000004
在上行传输过程中,SU1向BS1发送数据信号,SU2向BS2发送数据信号。在这个过程中,由于SU1和SU2位于小区边缘,因此BS2会接收到来自SU1的干扰信号,BS1也会接收到来自SU2的干扰信号。假定BS1与SU1之间的信道系数为h1,1,BS2与SU2之间的信道系数为h2,2,BS1与SU2之间的信道系数为h2,1,BS2与SU1之间的信道系数为h1,2,用x1表示SU1的上行数据信号,x2表示SU2的上行数据信号,yBS1表示BS1接收到的信号,yBS2表示BS2接收到的信号,则有下述公式:
Figure PCTCN2017070125-appb-000005
Figure PCTCN2017070125-appb-000006
与单系统的情况类似,在具有多个小区的无线通信系统(多系统)中,如果能够合理地调整发射端的参数,例如波形参数或者功率调整因子,使得在接收端接收到的数据信号和干扰信号的差异满足解调要求,那么SU1和SU2就可以使用相同的频谱资源。
针对以上技术问题,提出了根据本公开的技术方案。图2图示了根据本公开的实施例的无线通信系统中的电子设备200的结构。
如图2所示,电子设备200可以包括处理电路210。需要说明的是,电子设备200既可以包括一个处理电路210,也可以包括多个处理电路210。另外,电子设备200还可以包括作为收发机的通信单元220等。
进一步,处理电路210可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,如图2所示,处理电路210可以包括获取单元211、设置单元212和分配单元213。
在如图2所示的电子设备200中,获取单元211可以获取电子设备所在的无线通信系统中的第一用户设备的位置信息和波形参数信息以及电子设备所在的无线通信系统中的第二用户设备的频谱资源信息。
基于第一用户设备的位置信息和波形参数信息,设置单元212可以设置波形参数。
分配单元213可以将第二用户设备的频谱资源分配给第一用户设备,以便第一用户设备基于设置的波形参数使用第二用户设备的频谱资源。
根据本公开的实施例,电子设备200的获取单元211可以采用本领域各种公知的方法来获取用户设备的位置信息,例如,如果第一用户设备是第一次接入系统的新用户设备,第一用户设备可以主动或者被动地上报位置信息;如果第一用户设备是系统中已有的用户设备,第一用户设备可以主动或者被动地更新位置信息。此外,获取单元211还可以从电子设备200中(例如存储单元,未示出)或者从其它电子设备中获取用户设备的频谱资源信息。进一步,获取单元211可以通过电子设备200的通信单元220来获取上述信息,并可以将获取的第一用户设备的位置信息发送到设置单元212,并将获取的第二用户设备的频谱资源信息发送到分配单元213。
根据本公开的实施例,设置单元212可以从获取单元211来获取第一用户设备的位置信息,并可以根据一定的算法或者规则来设置波形参数。这里,设置波形参数包括设置第一用户设备的波形参数以及设置第二用户设备的波形参数。进一步,设置单元212可以将设置好的波形参数发 送到通信单元220以便通知第一用户设备和第二用户设备。根据本公开的实施例,设置的波形参数使得在第一用户设备和第二用户设备进行数据传输的过程中接收端可以正确解调出数据,也就是说,在下行传输中第一用户设备和第二用户设备都能够正确解调出数据,在上行传输中为用户设备服务的基站能够正确解调出数据。
在本公开中,当无线通信系统采用FBMC(Filter Bank Multicarrier,滤波器组多载波)技术时,波形参数可以是滤波器的混叠因子。但是本领域技术人员应当理解,波形参数可以是本领域中任何一种发射端的波形参数。根据本公开的实施例,电子设备200的获取单元211可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。这里,可以当用户设备第一次接入系统时,上报用户设备的波形参数信息,可以与位置信息一起上报波形参数信息,也可以与位置信息分开上报波形参数信息。
根据本公开的实施例,分配单元213可以将第二用户设备的频谱资源分配给第一用户设备。这里,分配单元213可以将分配给第一用户设备的频谱资源发送到通信单元220以便通知第一用户设备。
采用根据本公开的电子设备200,通过设置波形参数,无线通信系统中的不同的用户设备可以使用相同的频谱资源,实现非正交频谱资源共享,提高了频谱的利用率。
值得注意的是,根据本公开的实施例,电子设备200可以应用于如图1(a)所示的场景中(即单系统的场景),即无线通信系统可以只包括第一小区,第一用户设备和第二用户设备都位于第一小区中。在这个场景中,电子设备200可以为第一小区中的基站。根据本公开的实施例,电子设备200也可以应用于如图1(b)所示的场景中(即多系统的场景),即无线通信系统可以至少包括第一小区和第二小区,第一用户设备位于第一小区中,第二用户设备位于第二小区中。
根据本公开的实施例,处理电路210中的获取单元211还可以获取第二用户设备的位置信息,并基于第一用户设备的位置信息和波形参数信息以及第二用户设备的位置信息设置波形参数。
根据本公开的实施例,处理电路210中的获取单元211还可以获取 第一用户设备的传输模式信息,并基于第一用户设备和第二用户设备的位置信息以及第一用户设备的传输模式信息来设置波形参数。这里,第一用户设备的传输模式信息可以包括上行传输和下行传输。也就是说,当传输模式信息为上行传输时,表明第一用户设备即将执行上行传输;当传输模式信息为下行传输时,表明第一用户设备即将执行下行传输。
在这个实施例中,电子设备200的获取单元211可以采用本领域各种公知的方法来获取用户设备的传输模式信息,例如,如果第一用户设备是第一次接入系统的新用户设备,第一用户设备可以主动或者被动地上报传输模式信息;如果第一用户设备是系统中已有的用户设备,第一用户设备可以主动或者被动地更新传输模式信息。
根据本公开的实施例,分配单元213可以将第二用户设备的频谱资源分配给第一用户设备,以便第一用户设备基于设置的波形参数使用第二用户设备的频谱资源。这个,第二用户设备是与第一用户设备的传输模式相同的用户设备。例如,当第一用户设备的传输模式信息是上行传输时,选择同样是上行传输的第二用户设备,并将其频谱资源分配给第一用户设备;当第一用户设备的传输模式信息是下行传输时,选择同样是下行传输的第二用户设备,并将其频谱资源分配给第一用户设备。
根据本公开的实施例,处理电路210的设置单元212还可以基于第一用户设备和第二用户设备的位置信息设置功率调整因子。处理电路210的分配单元213获取第二用户设备的频谱资源信息,将第二用户设备的频谱资源分配给第一用户设备,以便第一用户设备基于设置的波形参数和功率调整因子使用第二用户设备的频谱资源。
在这个实施例中,电子设备200不仅能够设置用户设备的波形参数,还能够设置用户设备的功率调整因子。这里,设置功率调整因子包括设置第一用户设备的功率调整因子以及设置第二用户设备的功率调整因子。进一步,设置单元212可以将设置好的功率调整因子发送到通信单元220以便通知第一用户设备和第二用户设备。根据本公开的实施例,设置的功率调整因子使得在第一用户设备和第二用户设备进行数据传输的过程中接收端可以正确解调出数据,也就是说,在下行传输中第一用户设备和第二用户设备都能够正确解调出数据,在上行传输中为用户设备服务的基站能够正确解调出数据。
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,电子设备200的设置单元212还可以设置第一用户设备和第二用户设备的 解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这里,解调次数信息包括一次解调和两次解调。一次解调表明第一次解调出来的就是用户设备所需的数据信号;两次解调表明第一次解调出来的是干扰信号,第二次解调出来的是用户设备所需的数据信号。当用户设备收到解调次数信息后,可以根据解调次数信息确定需要一次解调还是两次解调。
下面将详细描述应用于多系统场景中的电子设备200。
在多系统场景中,无线通信系统至少包括第一小区和第二小区,第一用户设备位于第一小区中,并且第二用户设备位于第二小区中。
值得注意的是,本公开中的无线通信系统可以为认知无线电通信系统,第一小区可以为第一次系统,第二小区可以为第二次系统,电子设备200可以为核心网中的频谱协调器。在这个无线通信系统中,第一小区中的用户设备可以通过第一小区中的基站与频谱协调器进行通信,第二小区中的用户设备可以通过第二小区中的基站与频谱协调器进行通信。根据本公开的实施例,电子设备200也可以是无线通信系统中的基站,例如第一小区中的基站。在这种情况下,第一小区中的用户设备直接与电子设备200进行通信,第二小区中的用户设备通过第二小区中的基站与电子设备200进行通信。
根据本公开的实施例,第一用户设备处于第一小区中的特定区域,在特定区域之内,第一用户设备受到第二小区的干扰信息。这里,第一小区中的特定区域是一个区域,在这个区域中的用户设备的接收信号质量不满足解调要求,即在这个区域中的用户设备受到来自其他小区的用户设备的干扰而不能正确地解调数据。同样地,在第二小区中也存在特定区域,在第二小区中的特定区域中的用户设备的接收信号质量不满足解调要求,即在这个区域中的用户设备受到来自其他小区(例如第一小区)的用户设备的干扰而不能正确地解调数据。如图1所示,虚线所示的区域为小区SS1和SS2的强干扰区域,在这个区域中的用户SU1遭受来自小区SS2的干扰较强,用户SU2遭受来自小区SS1的干扰较强,因此,在本公开中,定义第一小区中位于虚线区域内的区域为第一小区中的特定区域,定义第二小区中位于虚线区域内的区域为第二小区中的特定区域。
根据本公开的实施例,当小区SS1和SS2所在的无线通信系统中存在可用的空闲频谱时,分配单元213可以将空闲的频谱分配给第一用户设 备;当小区SS1和SS2所在的无线通信系统中没有可用的空闲频谱时,电子设备200(例如判断单元,未示出)可以判断第一用户设备是否处于第一小区中的特定区域,如果第一用户设备没有处于第一小区中的特定区域,那么分配单元213可以将第二小区中处于第二小区中的特定区域之外的与第一用户设备的传输模式信息相同的第三用户设备的频谱资源分配给第一用户设备。这是因为当第一用户设备没有处于第一小区中的特定区域时,说明第一用户设备距离第二小区较远,而第二小区中处于第二小区的特定区域之外的第三用户设备距离第一小区也较远,因此即便第一用户设备与第三用户设备采用相同的频谱资源,由于信道的衰减,也不会产生很大的干扰,在接收端能够正确解调出数据信号的概率很大。
根据本公开的实施例,当小区SS1和SS2所在的无线通信系统中没有可用的空闲频谱,并且第一用户设备处于第一小区中的特定区域时,那么分配单元213可以将与第一用户设备的传输模式信息相同的第二用户设备的频谱资源分配给第一用户设备。这里,第二用户设备为位于第二小区中任意位置的与第一用户设备的传输模式信息相同的用户设备。通过设置单元212为第一用户设备和第二用户设备分配合适的波形参数和功率调整因子中的至少一个,使得第一用户设备和第二用户设备也能够正确地解调出数据信号。
根据本公开的实施例,处理电路220进一步被配置为基于第一用户设备的位置信息来确定第一用户设备是否处于第一小区的特定区域之内。
图3是图示根据本公开的实施例的确定强干扰区域的场景的示意图。以SU1的下行传输为例,假定SU1距离BS1的距离为d1,1,SU1距离BS2的距离为d1,2,BS1与SU1之间的信道系数为h1,1,BS2与SU1之间的信道系数为h1,2,α1表示SU1接收到的数据信号的信道系数与干扰信号的信道系数的比值,这里只考虑了路径损耗的影响,而信道系数和距离成反比,因此有下述公式成立:
Figure PCTCN2017070125-appb-000007
其中,α1≥1。假定BS1和BS2的发射功率相同,那么SU1的用信干比表示的接收信号质量SIRSU1如下所示:
Figure PCTCN2017070125-appb-000008
当SU1的接收信号质量不满足解调要求,即小于解调门限时,可以判定SU1处于第一小区的特定区域。当SU1的SIR不满足解调门限时,有下式成立:
Figure PCTCN2017070125-appb-000009
也就是说,
Figure PCTCN2017070125-appb-000010
其中,γ1是SU1的解调门限。这里,不同的用户设备的解调门限不同,因此根据本公开的实施例,当用户设备第一次接入该无线通信系统中时,可以上报该用户设备的解调门限。此外,用户设备可以与位置信息一起上报解调门限,也可以与位置信息分开上报解调门限。
在本公开的实施例中,解调门限可以用SIR(Signal to Interference Ratio,信干比)、SINR(Signal to Interference plus Noise Ratio,信干噪比)或者SNR(Signal Noise Ratio,信噪比)中的一种或多种来表示。公式(9)采用了SIR来表示SU1接收信号的质量,因此γ1可以是用SIR表示的解调门限,而对于用其它参数表示的解调门限的情况是类似的。
根据本公开的实施例,当电子设备200的获取单元211获取了第一用户设备的位置信息时,电子设备200(例如判断单元,未示出)可以确定SU1距离BS1的距离d1,1以及SU1距离BS2的距离d1,2,并根据公式(10)来确定SU1是否位于第一小区的特定区域。
根据本公开的另一个实施例,当电子设备200的获取单元211获取了第一用户设备的位置信息时,电子设备200(例如信道信息获取单元,未示出)可以从位于电子设备200上或者位于电子设备200以外的设备上的数据库获取信道信息,包括BS1与SU1之间的信道系数h1,1以及BS2与SU1之间的信道系数h1,2,然后电子设备200(例如判断单元,未示出)可以根据公式(10)来确定SU1是否位于第一小区的特定区域。
下面将详细说明应用于多系统场景中的电子设备200如何设置第一用户设备和第二用户设备的波形参数和功率调整因子。
第一实施例
在第一实施例中,第一用户设备与第二用户设备位于不同的小区中,假定第一用户设备的传输模式信息为下行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;以及基于信道信息,按照接收端的解调的信干噪比要求或信噪比要求设置功率调整因子。
图4是图示根据本公开的实施例的配置功率调整因子的过程的示意图。
如图4所示,设置单元212首先计算α1和α2的值。
当电子设备200的获取单元211获取了第一用户设备和第二用户设备的位置信息时,电子设备200(例如信道信息获取单元,未示出)可以从位于电子设备200上或者位于电子设备200以外的设备上的数据库获取信道信息,包括BS1与SU1之间的信道系数h1,1,BS2与SU2之间的信道系数h2,2,BS1与SU2之间的信道系数h2,1和BS2与SU1之间的信道系数h1,2,然后设置单元212可以根据公式(8)来计算α1的值,并根据下述公式(12)来计算SU2接收到的数据信号的信道系数与干扰信号的信道系数的比值α2的值。
Figure PCTCN2017070125-appb-000011
其中,α2≥1,d2,1表示SU2距离BS1的距离,d2,2表示SU2距离BS2的距离,h2,1表示BS1与SU2之间的信道系数,h2,2表示BS2与SU2之间的信道系数,这里只考虑了路径损耗的影响。与前面说明的过程类似,如果用γ2表示SU2的解调门限,当SU2的SIR不满足解调门限时,有下式成立:
Figure PCTCN2017070125-appb-000012
然后设置单元212可以比较α1和α2的大小。
α12
当α12时,说明与SU1相比,SU2距离强干扰区域的中心更近一些,因此遭受的干扰更强一些。也就是说,SU1直接解调出数据信号,而SU2先解调出干扰信号,再解调出数据信号。如果用SNR2,2表示SU2接收到的BS2的数据信号的信噪比,p2表示SU2的功率调整因子,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信噪比大于或者等于SU2的解调门限时 才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000013
则由上述公式(14)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000014
如果用SINR2,1表示SU2接收到的BS1的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h2,1表示BS1与SU2之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p2表示由公式(15)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当SU2接收到的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000015
则由上述公式(16)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000016
如果用SINR1,1表示SU1接收到的BS1的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h1,2表示BS2与SU1之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p2表示由公式(15)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000017
则由上述公式(18)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000018
然后,设置单元212根据公式(17)和公式(19)得出的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000019
由此,当α12时,设置单元212经过两个步骤求解出了SU1的功率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
α1≤α2
当α1≤α2时,说明与SU2相比,SU1距离强干扰区域的中心更近一些,因此遭受的干扰更强一些。也就是说,SU2直接解调出数据信号,而SU1先解调出干扰信号,再解调出数据信号。如果用SNR1,1表示SU1接收到的BS1的数据信号的信噪比,p1表示SU1的功率调整因子,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000020
则由上述公式(21)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000021
如果用SINR1,2表示SU1接收到的BS2的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h1,2表示BS2与SU1之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p1表示由公式(22)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当SU1接收到的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000022
则由上述公式(23)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000023
如果用SINR2,2表示SU2接收到的BS2的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h2,1表示BS1与SU2之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p1表示由公式(22)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000024
则由上述公式(25)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000025
然后,设置单元212根据公式(24)和公式(26)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000026
由此,当α1≤α2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的功率调整因子已超过了发送端的功率放大器的调整范围;重新设置功率调整因子,使得重新设置的功率调整因子处于发送端的功率放大器的调整范围之内;获取第一用户设备和第二用户设备的波形参数信息;以及设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
发送端的功率放大器都有其调整的范围,当设置单元212根据上面描述的步骤求解出SU2的功率调整因子p2和SU1的功率调整因子p1后,发现某个功率调整因子超过了发送端功率放大器的调整范围,那么需要重新设置功率调整因子。例如,当求解出的功率调整因子小于功率放大器的最小功率调整因子时,重新设置功率调整因子为功率放大器的最小功率调 整因子;当求解出的功率调整因子大于功率放大器的最大功率调整因子时,重新设置功率调整因子为功率放大器的最大功率调整因子。
根据本公开的实施例,在设置单元212重新设置了功率调整因子之后,还可以设置第一用户设备和第二用户设备的波形参数。以滤波器的混叠因子K为例,K可以取值为1,2,3或者4。当K取值为1时,生成的发射信号功率最小;当K取值为4时,生成的发射信号功率最大。
当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
根据本公开的实施例,当α12时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当α1≤α2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
如前文所述,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。例如,当α1≤α2时,第一用户设备的解调次数信息为两次解调,第二用户设备的解调次数信息为一次解调;当α12时,第一用户设备的解调次数信息为一次解调,第二用户设备的解调次数信息为两次解调。
如上所述,在第一实施例中,当第一用户设备的传输模式信息为下行传输时,设置单元212可以为第一用户设备和第二用户设备设置功率调整因子的值;当功率调整因子超过了发送端的功率放大器的调整范围时,设置单元212还可以设置波形参数的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第二实施例
在第二实施例中,第一用户设备与第二用户设备位于不同的小区中, 假定第一用户设备的传输模式信息为下行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;获取第一用户设备和第二用户设备的波形参数信息;以及基于信道信息和波形参数信息,设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,设置单元212首先需要计算α1和α2的值,并比较α1和α2的大小。这个过程与第一实施例中相同,在此不再赘述,即设置单元212可以根据公式(8)来计算α1的值,并根据公式(12)来计算α2的值。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,当α12时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当α1≤α2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及基于信道信息,进一步设置功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
前文中提到,波形参数,例如混叠因子具有一定的取值范围,所以存在无论如何调整波形参数都无法满足接收端的解调要求的情况。因而处理电路210(例如判断单元,未示出)可以被配置为在配置波形参数之后 判断设置的波形参数是否满足接收端的解调的信干噪比要求或信噪比要求,如果不满足解调要求,需要进一步设置功率调整因子。
在本公开中,定义归一化发射信号功率,以混叠因子为例,定义当混叠因子K为1时生成的发射信号功率对应的归一化功率为1,当K为2,3和4时,定义生成的发射信号功率与K=1时生成的发射信号功率的比值k1,k2和k3分别作为K为2,3和4时的归一化发射信号功率。不同的混叠因子与对应的归一化发射信号功率如表1所示。
表1
混叠因子K 归一化发射信号功率
1 1
2 k1
3 k2
4 k3
下面将具体说明如何设置功率调整因子。
α12
当α12时,前文中提到,SU1的混叠因子K1大于SU2的混叠因子K2,这里假定K1=4,K2=1。
当α12时,说明与SU1相比,SU2距离强干扰区域的中心更近一些,因此遭受的干扰更强一些。也就是说,SU1直接解调出数据信号,而SU2先解调出干扰信号,再解调出数据信号。如果用SNR2,2表示SU2接收到的BS2的数据信号的信噪比,p2表示SU2的功率调整因子,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000027
则由上述公式(28)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000028
如果用SINR2,1表示SU2接收到的BS1的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h2,1表示BS1与SU2之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p2表示由公式(29)计算出的SU2的功率调整因子,k3表示SU1的混叠因子对应的归一化发射信号功率,γ1表示SU1的解调门限,那么只有当SU2接收到的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000029
则由上述公式(30)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000030
如果用SINR1,1表示SU1接收到的BS1的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h1,2表示BS2与SU1之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p2表示由公式(29)计算出的SU2的功率调整因子,k3表示SU1的混叠因子对应的归一化发射信号功率,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000031
则由上述公式(32)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000032
然后,设置单元212根据公式(31)和公式(33)得到的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000033
由此,当α12时,设置单元212经过两个步骤求解出了SU1的功 率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
α1≤α2
当α1≤α2时,前文中提到,SU1的混叠因子K1小于SU2的混叠因子K2,这里假定K1=1,K2=4。
当α1≤α2时,说明与SU2相比,SU1距离强干扰区域的中心更近一些,因此遭受的干扰更强一些。也就是说,SU2直接解调出数据信号,而SU1先解调出干扰信号,再解调出数据信号。如果用SNR1,1表示SU1接收到的BS1的数据信号的信噪比,p1表示SU1的功率调整因子,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000034
则由上述公式(35)可以计算出SU1的功率调整因子p1为:
如果用SINR1,2表示SU1接收到的BS2的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h1,2表示BS2与SU1之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p1表示由公式(36)计算出的SU1的功率调整因子,k3表示SU2的混叠因子对应的归一化发射信号功率,γ2表示SU2的解调门限,那么只有当SU1接收到的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000036
则由上述公式(37)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000037
如果用SINR2,2表示SU2接收到的BS2的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h2,1表示BS1与SU2之间的信道系数,h2,2 表示BS2与SU2之间的信道系数,N0表示白噪声,p1表示由公式(36)计算出的SU1的功率调整因子,k3表示SU2的混叠因子对应的归一化发射信号功率,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000038
则由上述公式(39)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000039
然后,设置单元212根据公式(38)和公式(40)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000040
由此,当α1≤α2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第二实施例中,当第一用户设备的传输模式信息为下行传输时,设置单元212可以为第一用户设备和第二用户设备设置波形参数的值;当波形参数无法满足接收端的解调要求时,设置单元212还可以设置功率调整因子的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第三实施例
在第三实施例中,第一用户设备和第二用户设备位于不同的小区中,假定第一用户设备的传输模式信息为上行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作: 基于第一用户设备和第二用户设备的位置信息获取信道信息;以及基于信道信息,按照接收端的解调的信干噪比要求或信噪比要求设置功率调整因子。
当电子设备200的获取单元211获取了第一用户设备和第二用户设备的位置信息时,电子设备200(例如信道信息获取单元,未示出)可以从位于电子设备200上或者位于电子设备200以外的设备上的数据库获取信道信息,包括BS1与SU1之间的信道系数h1,1,BS2与SU2之间的信道系数h2,2,BS1与SU2之间的信道系数h2,1和BS2与SU1之间的信道系数h1,2
前文中提到,可以定义α1表示SU1接收到的数据信号的信道系数与干扰信号的信道系数的比值,α2表示SU2接收到的数据信号的信道系数与干扰信号的信道系数的比值。类似地,可以定义β1表示BS1接收到的数据信号(即来自SU1的信号)的信道系数与干扰信号(即来自SU2的信号)的信道系数的比值,β2表示BS2接收到的数据信号(即来自SU2的信号)的信道系数与干扰信号(即来自SU1的信号)的信道系数的比值。这里仍然只考虑路径损耗的影响。
设置单元212可以根据下面的公式来计算β1和β2的值。其中,γ1表示SU1的解调门限,γ2表示SU2的解调门限。
Figure PCTCN2017070125-appb-000041
Figure PCTCN2017070125-appb-000042
然后,可以比较β1和β2的大小。
β12
当β12时,BS1直接解调SU1信号,BS2先解调SU1信号,再解调SU2信号。如果用SNR2,2表示BS2接收到的SU2的数据信号的信噪比,p2表示SU2的功率调整因子,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当BS2接收到的SU2的数据信号的信噪比大于或者等于BS2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000043
则由上述公式(44)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000044
如果用SINR1,2表示BS2接收到的SU1的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h1,2表示BS2与SU1之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p2表示由公式(45)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当BS2接收到的SU1的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000045
则由上述公式(46)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000046
如果用SINR1,1表示BS1接收到的SU1的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h2,1表示BS1与SU2之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p2表示由公式(45)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当BS1接收到的SU1的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000047
则由上述公式(48)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000048
然后,设置单元212根据公式(47)和公式(49)得出的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000049
由此,当β12时,设置单元212经过两个步骤求解出了SU1的功率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
β1≤β2
当β1≤β2时,BS2直接解调出数据信号,而BS1先解调出SU2信号,再解调出SU1信号。如果用SNR1,1表示BS1接收到的SU1的数据信号的信噪比,p1表示SU1的功率调整因子,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当BS1接收到的SU1的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000050
则由上述公式(51)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000051
如果用SINR2,1表示BS1接收到的SU2的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h2,1表示BS1与SU2之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p1表示由公式(52)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当BS1接收到的SU2的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000052
则由上述公式(53)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000053
如果用SINR2,2表示BS2接收到的SU2的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h1,2表示BS2与SU1之间的信道系数,h2,2 表示BS2与SU2之间的信道系数,N0表示白噪声,p1表示由公式(52)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当BS2接收到的SU2的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000054
则由上述公式(55)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000055
然后,设置单元212根据公式(54)和公式(56)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000056
由此,当β1≤β2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的功率调整因子已超过了发送端的功率放大器的调整范围;重新设置功率调整因子,使得重新设置的功率调整因子处于发送端的功率放大器的调整范围之内;获取第一用户设备和第二用户设备的波形参数信息;以及设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
发送端的功率放大器都有其调整的范围,当设置单元212根据上面描述的步骤求解出SU2的功率调整因子p2和SU1的功率调整因子p1后,发现某个功率调整因子超过了发送端功率放大器的调整范围,那么需要重新设置功率调整因子。例如,当求解出的功率调整因子小于功率放大器的最小功率调整因子时,重新设置功率调整因子为功率放大器的最小功率调整因子;当求解出的功率调整因子大于功率放大器的最大功率调整因子时,重新设置功率调整因子为功率放大器的最大功率调整因子。
根据本公开的实施例,在设置单元212重新设置了功率调整因子之后,还可以设置第一用户设备和第二用户设备的波形参数。以滤波器的混 叠因子K为例,K可以取值为1,2,3或者4。当K取值为1时,生成的发射信号功率最小;当K取值为4时,生成的发射信号功率最大。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。这里,可以当用户设备第一次接入系统时,上报用户设备的波形参数信息,可以与位置信息一起上报波形参数信息,也可以与位置信息分开上报波形参数信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
根据本公开的实施例,当β12时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当β1≤β2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第三实施例中,当第一用户设备的传输模式信息为上行传输时,设置单元212可以为第一用户设备和第二用户设备设置功率调整因子的值;当功率调整因子超过了发送端的功率放大器的调整范围时,设置单元212还可以设置波形参数的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第四实施例
在第四实施例中,第一用户设备与第二用户设备位于不同的小区 中,假定第一用户设备的传输模式信息为上行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;获取第一用户设备和第二用户设备的波形参数信息;以及基于信道信息和波形参数信息,设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,设置单元212首先需要计算β1和β2的值,并比较β1和β2的大小。这个过程与第三实施例中相同,在此不再赘述,即设置单元212可以根据公式(42)来计算β1的值,并根据公式(43)来计算β2的值。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,当β12时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当β1≤β2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及基于信道信息,进一步设置功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
前文中提到,波形参数,例如混叠因子具有一定的取值范围,所以存在无论如何调整波形参数都无法满足接收端的解调要求的情况。因而处理电路210(例如判断单元,未示出)可以被配置为在配置波形参数之后 判断设置的波形参数是否满足接收端的解调的信干噪比要求或信噪比要求,如果不满足解调要求,需要进一步设置功率调整因子。这里,仍然可以定义归一化发射信号功率,例如定义当K为4时生成的发射信号功率与K=1时生成的发射信号功率的比值k3作为K为4时的归一化发射信号功率。这部分内容与第二实施例相同,在此不再赘述。
下面将具体说明如何设置功率调整因子。
β12
当β12时,前文中提到,SU1的混叠因子K1大于SU2的混叠因子K2,这里假定K1=4,K2=1。
当β12时,BS1直接解调SU1信号,BS2先解调SU1信号,再解调SU2信号。如果用SNR2,2表示BS2接收到的SU2的数据信号的信噪比,p2表示SU2的功率调整因子,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当BS2接收到的SU2的数据信号的信噪比大于或者等于BS2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000057
则由上述公式(58)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000058
如果用SINR1,2表示BS2接收到的SU1的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h1,2表示BS2与SU1之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p2表示由公式(59)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS2接收到的SU1的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000059
则由上述公式(60)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000060
如果用SINR1,1表示BS1接收到的SU1的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h2,1表示BS1与SU2之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p2表示由公式(59)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS1接收到的SU1的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000061
则由上述公式(62)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000062
然后,设置单元212根据公式(61)和公式(63)得出的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000063
由此,当β12时,设置单元212经过两个步骤求解出了SU1的功率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
β1≤β2
当β1≤β2时,前文中提到,SU1的混叠因子K1小于SU2的混叠因子K2,这里假定K1=1,K2=4。
当β1≤β2时,BS2直接解调出数据信号,而BS1先解调出SU2信号,再解调出SU1信号。如果用SNR1,1表示BS1接收到的SU1的数据信号的信噪比,p1表示SU1的功率调整因子,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当BS1接收到的SU1的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000064
则由上述公式(65)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000065
如果用SINR2,1表示BS1接收到的SU2的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h2,1表示BS1与SU2之间的信道系数,h1,1表示BS1与SU1之间的信道系数,N0表示白噪声,p1表示由公式(66)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS1接收到的SU2的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000066
则由上述公式(67)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000067
如果用SINR2,2表示BS2接收到的SU2的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h1,2表示BS2与SU1之间的信道系数,h2,2表示BS2与SU2之间的信道系数,N0表示白噪声,p1表示由公式(66)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS2接收到的SU2的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000068
则由上述公式(69)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000069
然后,设置单元212根据公式(68)和公式(70)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000070
由此,当β1≤β2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第四实施例中,当第一用户设备的传输模式信息为上行传输时,设置单元212可以为第一用户设备和第二用户设备设置波形参数的值;当波形参数无法满足接收端的解调要求时,设置单元212还可以设置功率调整因子的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
图5是图示根据本公开的实施例的多系统中非正交频谱共享的过程的示意图。如图5所示,当新用户接入系统时,需要上报位置信息,已有的用户可以周期性或者事件性的上报当前更新的位置信息。这里,新用户接入系统时还可以上报其传输模式信息和波形参数信息,已有的用户还可以周期性或者事件性的上报当前更新的传输模式信息。接下来,电子设备200可以判断是否有可用的空闲频谱,如果有,那么可以将可用的空闲频谱直接分配给新用户。如果没有可用的空闲频谱,那么电子设备200可以判断新用户是否位于强干扰区域,如果新用户没有位于强干扰区域,那么电子设备200可以将相邻系统的强干扰区域之外的与新用户的传输模式相同的用户的频谱分配给新用户设备。如果新用户位于强干扰区域,继续判断新用户的传输模式信息是上行传输还是下行传输,然后电子设备200将相邻系统的与新用户的传输模式相同的用户的频谱分配给新用户设备,获取信道信息,并根据本公开的实施例来设置解调次数信息以及波形参数和/或功率调整因子。
根据本公开的实施例,可以以新用户接入为触发事件来执行根据本公开的实施例所示的方法。换句话说,每当有新用户接入系统时,按照图 5所示来执行频谱的分配和参数的设置过程。从一个新用户接入系统到下一个新用户接入系统之间,不改变第一小区和第二小区中所有用户设备的频谱信息、波形参数以及功率调整因子。根据本公开的另一个实施例,也可以根据需要来执行根据本公开的实施例所示的方法。也就是说,当需要为某个小区中的某个用户设备分配频谱或者设置波形参数和/或功率调整因子时,根据本公开的实施例来执行相应的方法。
图6是图示根据本公开的实施例的多系统中非正交频谱共享的信令交互的过程的示意图。如图6所示,当SS1小区中的新用户接入系统时,新用户上报位置信息和传输模式信息,并根据需要还可以上报波形参数信息和/或解调门限,SS2小区中已有的用户可以更新当前的位置信息和传输模式信息。接下来,SC(Spectrum Coordinator,频谱协调器)可以判断是否有可用的空闲频谱,如果有,那么可以将可用的空闲频谱直接分配给新用户。如果没有可用的空闲频谱,那么SC可以判断新用户是否位于强干扰区域,如果新用户没有位于强干扰区域,那么SC可以将相邻系统的强干扰区域之外的与新用户的传输模式相同的用户的频谱分配给新用户设备。如果新用户位于强干扰区域,那么SC按照新用户的传输模式信息,并根据本公开的实施例中的预处理算法来设置解调次数信息以及波形参数和/或功率调整因子,获取信道信息,并将相邻系统的用户的频谱分配给新用户设备。接下来,SC将设置的解调次数信息以及波形参数和/或功率调整因子、信道参数和分配的频谱信息发送给小区SS1中的新用户设备,并将设置的解调次数信息、波形参数和/或功率调整因子和信道参数发送到小区SS2中的用户设备。
上面描述了应用于多系统场景中的电子设备200。下面将详细描述应用于单系统场景中的电子设备200。
前面提到,电子设备200还可以应用于例如图1(a)的单系统场景中。
根据本公开的实施例,在单系统中设置用户设备的波形参数和/或功率调整因子的方法包括:当小区中的新用户接入系统时,新用户(例如第一用户设备)上报位置信息以及即将执行的传输模式信息(这里,传输模式信息包括上行传输和下行传输),并根据需要还可以上报波形参数信息和/或解调门限,小区中已有的用户可以更新当前的位置信息。接下来,SC可以判断是否有可用的空闲频谱,如果有,那么可以将可用的空闲频谱直接分配给新用户。如果没有可用的空闲频谱,那么SC根据本公开的 实施例中的预处理算法来设置解调次数信息以及波形参数和/或功率调整因子,获取信道信息,并将小区中的其他用户设备(例如第二用户设备)的频谱分配给新用户设备。接下来,SC将设置的解调次数信息、波形参数和/或功率调整因子、信道参数和分配的频谱信息发送给小区中的新用户设备,并将设置的解调次数信息、波形参数和/或功率调整因子以及信道参数发送到其他用户设备。
下面将具体说明如何在单系统中设置用户设备的波形参数和/或功率调整因子。
第五实施例
在第五实施例中,第一用户设备和第二用户设备位于相同的小区,假定第一用户设备的传输模式信息为下行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;以及基于信道信息,按照接收端的解调的信干噪比要求或信噪比要求设置功率调整因子。
当电子设备200的获取单元211获取了第一用户设备和第二用户设备的位置信息时,电子设备200(例如信道信息获取单元,未示出)可以从位于电子设备200上或者位于电子设备200以外的设备上的数据库获取信道信息,包括BS与SU1之间的信道系数h1以及BS与SU2之间的信道系数h2,然后设置单元212可以比较h1和h2的大小。
h1>h2
当h1>h2时,说明SU2距离BS较远,SU1距离BS较近。也就是说,SU2直接解调出数据信号,而SU1先解调出干扰信号,再解调出数据信号。如果用SNR1表示SU1接收到的BS的数据信号的信噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000071
则由上述公式(72)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000072
如果用SINR1表示SU1接收到的BS的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,p1表示由公式(73)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当SU1接收到的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000073
则由上述公式(74)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000074
如果用SINR2表示SU2接收到的BS的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,p1表示由公式(73)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000075
则由上述公式(76)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000076
然后,设置单元212根据公式(75)和公式(77)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000077
由此,当h1>h2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
h1≤h2
当h1≤h2时,SU2距离BS较近,SU1距离BS较远。也就是说,SU1直接解调出数据信号,而SU2先解调出干扰信号,再解调出数据信号。如果用SNR2表示SU2接收到的BS的数据信号的信噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000078
则由上述公式(79)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000079
如果用SINR2表示SU2接收到的BS的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,p2表示由公式(80)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当SU2接收到的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000080
则由上述公式(81)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000081
如果用SINR1表示SU1接收到的BS的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,p2表示由公式(80)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000082
则由上述公式(83)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000083
然后,设置单元212根据公式(82)和公式(84)得出的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000084
由此,当h1≤h2时,设置单元212经过两个步骤求解出了SU1的功率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的功率调整因子已超过了发送端的功率放大器的调整范围;重新设置功率调整因子,使得重新设置的功率调整因子处于发送端的功率放大器的调整范围之内;获取第一用户设备和第二用户设备的波形参数信息;以及设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
发送端的功率放大器都有其调整的范围,当设置单元212根据上面描述的步骤求解出SU2的功率调整因子p2和SU1的功率调整因子p1后,发现某个功率调整因子超过了发送端功率放大器的调整范围,那么需要重新设置功率调整因子。例如,当求解出的功率调整因子小于功率放大器的最小功率调整因子时,重新设置功率调整因子为功率放大器的最小功率调整因子;当求解出的功率调整因子大于功率放大器的最大功率调整因子时,重新设置功率调整因子为功率放大器的最大功率调整因子。
根据本公开的实施例,在设置单元212重新设置了功率调整因子之后,还可以设置第一用户设备和第二用户设备的波形参数。以滤波器的混叠因子K为例,K可以取值为1,2,3或者4。当K取值为1时,生成的发射信号功率最小;当K取值为4时,生成的发射信号功率最大。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。这里,可以当用 户设备第一次接入系统时,上报用户设备的波形参数信息,可以与位置信息一起上报波形参数信息,也可以与位置信息分开上报波形参数信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
根据本公开的实施例,当h1>h2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值;当h1≤h2时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值。
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第五实施例中,当第一用户设备的传输模式信息为下行传输时,设置单元212可以为第一用户设备和第二用户设备设置功率调整因子的值;当功率调整因子超过了发送端的功率放大器的调整范围时,设置单元212还可以设置波形参数的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第六实施例
在第六实施例中,第一用户设备和第二用户设备位于相同的小区,假定第一用户设备的传输模式信息为下行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;获取第一用户设备和第二用户设备的波形参数信息;以及基于信道信息和波形参数信息,设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,设置单元212首先需要确定h1和h2的值, 并比较h1和h2的大小。这个过程与第五实施例中相同,在此不再赘述。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,当h1>h2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值;当h1≤h2时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及基于信道信息,进一步设置功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
前文中提到,波形参数,例如混叠因子具有一定的取值范围,所以存在无论如何调整波形参数都无法满足接收端的解调要求的情况。因而处理电路210(例如判断单元,未示出)可以被配置为在配置波形参数之后判断设置的波形参数是否满足接收端的解调的信干噪比要求或信噪比要求,如果不满足解调要求,需要进一步设置功率调整因子。这里,仍然可以定义归一化发射信号功率,例如定义当K为4时生成的发射信号功率与K=1时生成的发射信号功率的比值k3作为K为4时的归一化发射信号功率。这部分内容与第二实施例相同,在此不再赘述。
下面将具体说明如何设置功率调整因子。
h1>h2
当h1>h2时,前文中提到,SU1的混叠因子K1小于SU2的混叠因子K2,这里假定K1=1,K2=4。
当h1>h2时,说明SU2距离BS较远,SU1距离BS较近。也就是说,SU2直接解调出数据信号,而SU1先解调出干扰信号,再解调出数据信号。如果用SNR1表示SU1接收到的BS的数据信号的信噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当SU1接收到的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000085
则由上述公式(86)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000086
如果用SINR1表示SU1接收到的BS的干扰信号的信干噪比,p2 (1)表示SU2的第一功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,p1表示由公式(87)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当SU1接收到的干扰信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000087
则由上述公式(88)可以计算出SU2的第一功率调整因子p2 (1)为:
Figure PCTCN2017070125-appb-000088
如果用SINR2表示SU2接收到的BS的数据信号的信干噪比,p2 (2)表示SU2的第二功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,p1表示由公式(87)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当SU2接收到的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000089
则由上述公式(90)可以计算出SU2的第二功率调整因子p2 (2)为:
Figure PCTCN2017070125-appb-000090
然后,设置单元212根据公式(89)和公式(91)得到的第一功率调整因子和第二功率调整因子来设置SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000091
由此,当h1>h2时,设置单元212经过两个步骤求解出了SU2的功率调整因子p2,并经过一个步骤求解出了SU1的功率调整因子p1
h1≤h2
当h1≤h2时,前文中提到,SU1的混叠因子K1大于SU2的混叠因子K2,这里假定K1=4,K2=1。
当h1≤h2时,SU2距离BS较近,SU1距离BS较远。也就是说,SU1直接解调出数据信号,而SU2先解调出干扰信号,再解调出数据信号。如果用SNR2表示SU2接收到的BS的数据信号的信噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当SU2接收到的数据信号的信噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000092
则由上述公式(93)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000093
如果用SINR2表示SU2接收到的BS的干扰信号的信干噪比,p1 (1)表示SU1的第一功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,p2表示由公式(94)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当SU2接收到的干扰信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000094
则由上述公式(95)可以计算出SU1的第一功率调整因子p1 (1)为:
Figure PCTCN2017070125-appb-000095
如果用SINR1表示SU1接收到的BS的数据信号的信干噪比,p1 (2)表示SU1的第二功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,p2表示由公式(94)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当SU1接收到的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000096
则由上述公式(97)可以计算出SU1的第二功率调整因子p1 (2)为:
Figure PCTCN2017070125-appb-000097
然后,设置单元212根据公式(96)和公式(98)得出的第一功率调整因子和第二功率调整因子来设置SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000098
由此,当h1≤h2时,设置单元212经过两个步骤求解出了SU1的功率调整因子p1,并经过一个步骤求解出了SU2的功率调整因子p2
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第六实施例中,当第一用户设备的传输模式信息为下行传输时,设置单元212可以为第一用户设备和第二用户设备设置波形参 数的值;当波形参数无法满足接收端的解调要求时,设置单元212还可以设置功率调整因子的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第七实施例
在第七实施例中,第一用户设备和第二用户设备位于相同的小区,假定第一用户设备的传输模式信息为上行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;以及基于信道信息,按照接收端的解调的信干噪比要求或信噪比要求设置功率调整因子。
根据本公开的实施例,设置单元212首先需要确定h1和h2的值,并比较h1和h2的大小。这个过程与第五实施例中相同,在此不再赘述。
h1>h2
当h1>h2时,说明SU2距离BS较远,SU1距离BS较近。也就是说,BS先解调出来自SU1的信号,再解调出来自SU2的信号。如果用SNR2表示BS接收到的SU2的数据信号的信噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当BS接收到的SU2的数据信号的信噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000099
则由上述公式(100)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000100
如果用SINR1表示BS接收到的SU1的数据信号的信干噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,h2表示BS与SU2之间的信道系数,N0表示白噪声,p2表示由公式(101)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,那么只有当BS接收到的SU1的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000101
则由上述公式(102)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000102
h1≤h2
当h1≤h2时,SU2距离BS较近,SU1距离BS较远。也就是说,BS先解调出来自SU2的信号,再解调出来自SU1的信号。如果用SNR1表示BS接收到的SU1的数据信号的信噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当BS接收到的SU1的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000103
则由上述公式(104)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000104
如果用SINR2表示BS接收到的SU2的数据信号的信干噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,h1表示BS与SU1之间的信道系数,N0表示白噪声,p1表示由公式(105)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,那么只有当BS接收到的SU2的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000105
则由上述公式(106)可以计算出SU2的功率调整因子p2为:
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的功率调整因子已超过了发送端的功率放大器的调整范围;重新设置功率调整因子,使得重新设置的功率调整因子处于发送端的功率放大器的调整范围之内;获取第一用户设备和第二用户设备的波形参数信息;以及设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
发送端的功率放大器都有其调整的范围,当设置单元212根据上面描述的步骤求解出SU2的功率调整因子p2和SU1的功率调整因子p1后,发现某个功率调整因子超过了发送端功率放大器的调整范围,那么需要重新设置功率调整因子。例如,当求解出的功率调整因子小于功率放大器的最小功率调整因子时,重新设置功率调整因子为功率放大器的最小功率调整因子;当求解出的功率调整因子大于功率放大器的最大功率调整因子时,重新设置功率调整因子为功率放大器的最大功率调整因子。
根据本公开的实施例,在设置单元212重新设置了功率调整因子之后,还可以设置第一用户设备和第二用户设备的波形参数。以滤波器的混叠因子K为例,K可以取值为1,2,3或者4。当K取值为1时,生成的发射信号功率最小;当K取值为4时,生成的发射信号功率最大。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。这里,可以当用户设备第一次接入系统时,上报用户设备的波形参数信息,可以与位置信息一起上报波形参数信息,也可以与位置信息分开上报波形参数信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数,使得接收端的解调的信干噪比要求或信噪比要求被满足。
根据本公开的实施例,当h1>h2时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当h1≤h2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备 的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第七实施例中,当第一用户设备的传输模式信息为上行传输时,设置单元212可以为第一用户设备和第二用户设备设置功率调整因子的值;当功率调整因子超过了发送端的功率放大器的调整范围时,设置单元212还可以设置波形参数的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
第八实施例
在第八实施例中,第一用户设备和第二用户设备位于相同的小区,假定第一用户设备的传输模式信息为上行传输。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:基于第一用户设备和第二用户设备的位置信息获取信道信息;获取第一用户设备和第二用户设备的波形参数信息;以及基于信道信息和波形参数信息,设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,设置单元212首先需要确定h1和h2的值,并比较h1和h2的大小。这个过程与第五实施例中相同,在此不再赘述。
根据本公开的实施例,电子设备200(例如波形参数信息获取单元,未示出)可以获取第一用户设备和第二用户设备的波形参数信息。波形参数信息可以包括用户设备可以采用的波形参数的范围,例如混叠因子的范围,也可以包括用户设备当前所采用的波形参数,例如混叠因子的值等,还可以包括用户设备是否可以进行波形参数调整的信息。当电子设备200获取了用户设备的波形参数信息后,可以设置第一用户设备和第二用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
根据本公开的实施例,当h1>h2时,设置单元212设置第一用户设备的混叠因子K1大于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最大的混叠因子的值, 将K2设置成第二用户设备的混叠因子的范围中最小的混叠因子的值;当h1≤h2时,设置单元212设置第一用户设备的混叠因子K1小于第二用户设备的混叠因子K2的值。例如,设置单元212将K1设置成第一用户设备的混叠因子的范围中最小的混叠因子的值,将K2设置成第二用户设备的混叠因子的范围中最大的混叠因子的值。
根据本公开的实施例,处理电路210进一步被配置为执行以下操作:确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及基于信道信息,进一步设置功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
前文中提到,波形参数,例如混叠因子具有一定的取值范围,所以存在无论如何调整波形参数都无法满足接收端的解调要求的情况。因而处理电路210(例如判断单元,未示出)可以被配置为在配置波形参数之后判断设置的波形参数是否满足接收端的解调的信干噪比要求或信噪比要求,如果不满足解调要求,需要进一步设置功率调整因子。这里,仍然可以定义归一化发射信号功率,例如定义当K为4时生成的发射信号功率与K=1时生成的发射信号功率的比值k3作为K为4时的归一化发射信号功率。这部分内容与第二实施例相同,在此不再赘述。
下面将具体说明如何设置功率调整因子。
h1>h2
当h1>h2时,前文中提到,SU1的混叠因子K1大于SU2的混叠因子K2,这里假定K1=4,K2=1。
当h1>h2时,说明SU2距离BS较远,SU1距离BS较近。也就是说,BS先解调出来自SU1的信号,再解调出来自SU2的信号。如果用SNR2表示BS接收到的SU2的数据信号的信噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,N0表示白噪声,γ2表示SU2的解调门限,那么只有当BS接收到的SU2的数据信号的信噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000107
则由上述公式(108)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000108
如果用SINR1表示BS接收到的SU1的数据信号的信干噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,h2表示BS与SU2之间的信道系数,N0表示白噪声,p2表示由公式(109)计算出的SU2的功率调整因子,γ1表示SU1的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS接收到的SU1的数据信号的信干噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000109
则由上述公式(110)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000110
h1≤h2
当h1≤h2时,前文中提到,SU1的混叠因子K1小于SU2的混叠因子K2,这里假定K1=1,K2=4。
当h1≤h2时,SU2距离BS较近,SU1距离BS较远。也就是说,BS先解调出来自SU2的信号,再解调出来自SU1的信号。如果用SNR1表示BS接收到的SU1的数据信号的信噪比,p1表示SU1的功率调整因子,h1表示BS与SU1之间的信道系数,N0表示白噪声,γ1表示SU1的解调门限,那么只有当BS接收到的SU1的数据信号的信噪比大于或者等于SU1的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000111
则由上述公式(112)可以计算出SU1的功率调整因子p1为:
Figure PCTCN2017070125-appb-000112
如果用SINR2表示BS接收到的SU2的数据信号的信干噪比,p2表示SU2的功率调整因子,h2表示BS与SU2之间的信道系数,h1表示BS 与SU1之间的信道系数,N0表示白噪声,p1表示由公式(111)计算出的SU1的功率调整因子,γ2表示SU2的解调门限,k3表示K为4时的归一化发射信号功率,那么只有当BS接收到的SU2的数据信号的信干噪比大于或者等于SU2的解调门限时才能正确解调出数据信号,因此有下式成立:
Figure PCTCN2017070125-appb-000113
则由上述公式(114)可以计算出SU2的功率调整因子p2为:
Figure PCTCN2017070125-appb-000114
在这个实施例中,基于第一用户设备和第二用户设备的位置信息,设置单元212还可以设置第一用户设备和第二用户设备的解调次数信息,并且可以通过通信单元220将第一用户设备和第二用户设备的解调次数信息随着各自的波形参数和/或功率调整因子一起分别发送到第一用户设备和第二用户设备。这个过程与第一实施例类似,在此不再赘述。
如上所述,在第八实施例中,当第一用户设备的传输模式信息为上行传输时,设置单元212可以为第一用户设备和第二用户设备设置波形参数的值;当波形参数无法满足接收端的解调要求时,设置单元212还可以设置功率调整因子的值。以这种方式,使得在接收端能够正确解调出数据信号,实现了频谱的非正交共享。
根据本公开的实施例,无线通信系统可以为认知无线电通信系统,第一用户设备和第二用户设备所在的小区可以为次系统。
图7是图示根据本公开的实施例的无线通信系统中的另一个电子设备700的结构的框图。该无线通信系统至少包括第一小区和第二小区,电子设备700处于第一小区之内。
如图7所示,电子设备700可以包括处理电路710。需要说明的是,电子设备700既可以包括一个处理电路710,也可以包括多个处理电路710。另外,电子设备700还可以包括诸如收发机之类的通信单元720等。
如上面提到的那样,同样地,处理电路710也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,如图7所示,处理电路710可以包括位置管理单元711、参 数管理单元712和频谱管理单元713。
位置管理单元711可以获取电子设备700所在的无线通信系统中的第一小区中的第一用户设备的位置信息以通知核心网中的频谱协调器。
参数管理单元712可以从频谱协调器获取波形参数和解调次数信息以及电子设备700所在的无线通信系统中的第二小区中的第二用户设备的频谱资源信息以通知第一用户设备。
频谱管理单元713可以基于获取的波形参数和解调次数信息利用第二用户设备的频谱资源来与第一用户设备进行无线通信。
优选地,处理电路710进一步被配置为从频谱协调器获取功率调整因子以通知第一用户设备;基于获取的波形参数和功率调整因子利用第二用户设备的频谱资源来与第一用户设备进行无线通信。
优选地,处理电路710进一步被配置为获取第一用户设备的波形参数信息以通知频谱协调器。
优选地,第一用户设备处于第一小区中的特定区域,在特定区域之内,第一用户设备受到第二小区的干扰信息。
优选地,波形参数包括滤波器混叠因子。
优选地,无线通信系统为认知无线电通信系统,第一小区为第一次系统,第二小区为第二次系统,并且电子设备700为第一小区中的基站。
图8是图示根据本公开的实施例的无线通信系统中的用户设备800的结构的框图。
如图8所示,用户设备800可以包括处理电路810。需要说明的是,用户设备800既可以包括一个处理电路810,也可以包括多个处理电路810。另外,用户设备800还可以包括诸如收发机之类的通信单元820等。
如上面提到的那样,同样地,处理电路810也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,如图8所示,处理电路810可以包括位置管理单元811、参数管理单元812和频谱管理单元813。
位置管理单元811可以使通信单元820向用户设备800提供服务的基站发送用户设备800的位置信息。
参数管理单元812可以使通信单元820从基站接收波形参数和解调次数信息以及第二用户设备的频谱资源信息。
频谱管理单元813可以基于接收的波形参数利用第二用户设备的频谱资源来与基站进行无线通信。
优选地,无线通信系统至少包括第一小区和第二小区,用户设备800位于第一小区,第二用户设备位于第二小区。
优选地,处理电路810进一步被配置为:使通信单元820从基站接收功率调整因子;以及基于接收的波形参数和功率调整因子,利用第二用户设备的频谱资源来与基站进行无线通信。
优选地,处理电路810进一步被配置为使通信单元820向基站发送用户设备800的波形参数信息。
优选地,用户设备800处于第一小区中的特定区域,在特定区域之内,用户设备800受到第二小区的干扰而不能进行正常无线通信。
优选地,波形参数包括滤波器混叠因子。
优选地,无线通信系统为认知无线电通信系统,第一小区为第一次系统,并且第二小区为第二次系统。
综上所述,根据本公开的实施例,一方面,在单系统中,基站可以为其覆盖范围内的用户设备设置波形参数和/或频率调整因子,以使得在接收端能够正确地解调出数据,从而使得不同用户可以实现频谱共享,提高频谱的利用率和系统的性能。在多系统中,SC可以为处于强干扰区域中的用户设备设置波形参数和/或频率调整因子,以使得在接收端能够正确地解调出数据,从而使得相邻小区中的不同用户可以实现频谱共享,提高频谱的利用率和系统的性能。另一方面,由于调整了发射端的参数,放宽了对发射端功率放大器动态范围的要求,并且放宽了在接收端进行解调时对信道条件的要求,提高了接收端的解调性能。根据本公开的实施例的电子设备可以应用于802.19共存系统中,也可以应用于超密集网络的频谱共享方法中。
接下来参考图9来描述根据本公开的实施例的用于在无线通信系统中进行无线通信的方法。图9示出了根据本公开的实施例的无线通信方法的流程图。
如图9所示,首先,在步骤S910中,获取用户设备的位置信息和 波形参数信息。
接下来,在步骤S920中,基于用户设备的位置信息和波形参数信息,设置波形参数。
接下来,在步骤S930中,获取其他用户设备的频谱资源信息,根据所述频谱资源信息将其他用户设备的频谱资源分配给用户设备,以便用户设备基于设置的波形参数使用其他用户设备的频谱资源。
优选地,方法还包括:获取其他用户设备的位置信息,并且基于用户设备和其他用户设备的位置信息,设置波形参数。
优选地,方法还包括:基于用户设备和其他用户设备的位置信息,设置功率调整因子;以及获取其他用户设备的频谱资源信息,将其他用户设备的频谱资源分配给用户设备,以便用户设备基于设置的波形参数和功率调整因子,来使用其他用户设备的频谱资源。
优选地,无线通信系统至少包括第一小区和第二小区,用户设备处于第一小区中的特定区域,在特定区域之内,用户设备受到第二小区的干扰信息,其他用户设备位于第二小区。
优选地,方法还包括:基于用户设备的位置信息来确定用户设备是否处于特定区域之内。
优选地,设置波形参数包括:基于用户设备和其他用户设备的位置信息获取信道信息;获取用户设备和其他用户设备的波形参数信息;以及基于信道信息和波形参数信息,设置用户设备和其他用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
优选地,设置功率调整因子包括:确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及基于信道信息,进一步设置功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
优选地,波形参数包括滤波器混叠因子。
优选地,无线通信系统为认知无线电通信系统,第一小区为第一次系统,第二小区为第二次系统,并且所述方法由核心网中的频谱协调器来执行。
接下来参考图10来描述根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法。图10示出了根据本公开的另一个实施例的无线通信方法的流程图。无线通信方法应用于无线通信系统中,无线通 信系统至少包括第一小区和第二小区。
如图10所示,首先,在步骤S1010中,获取第一小区中的用户设备的位置信息以通知核心网中的频谱协调器。
接下来,在步骤S1020中,从频谱协调器获取波形参数和解调次数信息以通知用户设备。
接下来,在步骤S1030中,从频谱协调器获取第二小区中的其他用户设备的频谱资源信息以通知用户设备。
接下来,在步骤S1040中,基于获取的波形参数和解调次数信息利用其他用户设备的频谱资源来与用户设备进行无线通信。
优选地,方法进一步包括:从频谱协调器获取功率调整因子以通知用户设备;基于获取的波形参数和功率调整因子利用其他用户设备的频谱资源来与用户设备进行无线通信。
优选地,方法进一步包括:获取用户设备的波形参数信息以通知频谱协调器。
优选地,用户设备处于第一小区中的特定区域,在特定区域之内,用户设备受到第二小区的干扰信息。
优选地,波形参数包括滤波器混叠因子。
优选地,无线通信系统为认知无线电通信系统,第一小区为第一次系统,第二小区为第二次系统,并且所述方法由第一小区中的基站来执行。
接下来参考图11来描述根据本公开的又一实施例的用于在无线通信系统中进行无线通信的方法。图11示出了根据本公开的另一个实施例的无线通信方法的流程图。无线通信方法应用于无线通信系统中,无线通信系统包括多个用户设备和至少一个基站。
如图11所示,首先,在步骤S1110中,向为用户设备服务的基站发送用户设备的位置信息。
接下来,在步骤S1120中,从基站接收波形参数和解调次数信息。
接下来,在步骤S1130中,从基站接收其他用户设备的频谱资源信息。
接下来,在步骤S1140中,基于接收的波形参数和解调次数信息,利用其他用户设备的频谱资源来与基站进行无线通信。
优选地,无线通信系统至少包括第一小区和第二小区,用户设备位于第一小区,其他用户设备位于第二小区。
优选地,方法还包括:从基站接收功率调整因子;以及基于接收的波形参数和功率调整因子利用其他用户设备的频谱资源来与基站进行无线通信。
优选地,方法还包括:向基站发送用户设备的波形参数信息。
优选地,用户设备处于第一小区中的特定区域,在特定区域之内,用户设备受到第二小区的干扰信息。
优选地,波形参数包括滤波器混叠因子。
优选地,无线通信系统为认知无线电通信系统,第一小区为第一次系统,并且第二小区为第二次系统。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的上述各个步骤的各种具体实施方式前面已经作过详细描述,在此不再重复说明。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图12是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB 处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
图13是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图11示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
在图12和图13所示的eNB 1200和eNB 1330中,通过使用图2所描述的处理电路210以及其中的获取单元211、设置单元212和分配单元213和图7所描述的处理电路710以及其中的位置管理单元711、参数管理单元712和频谱管理单元713可以由控制器1221和/或控制器1351实现,并且通过使用图2所描述的通信单元220和使用图7所描述的通信单元720可以由无线通信接口1225以及无线通信接口1355和/或无线通信接口1363实现。功能的至少一部分也可以由控制器1221和控制器1351实现。例如,控制器1221和/或控制器1351可以通过执行相应的存储器中存储的指令而执行获取位置信息、设置和获取波形参数和功率调整因子、分配资源功能。
图14是示出可以应用本公开的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电 话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接 收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图14所示的智能电话1400中,通过使用图8所描述的处理电路810以及其中的位置管理单元811、参数管理单元812和频谱管理单元813,可以由处理器1401或辅助控制器1419实现,并且通过使用图8所描述的通信单元820可以由无线通信接口1412实现。功能的至少一部分也可以由处理器1401或辅助控制器1419实现。例如,处理器1401或辅助控制器1419可以通过执行存储器1402或存储装置1403中存储的指令而执行使通信单元820发送位置信息、接收波形参数和功率调整因子和与基站进行无线通信功能。
图15是示出可以应用本公开的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生 成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图15所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图15示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图15所示,汽车导航设备1520可以包括多个天线1537。虽然图15示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省 略。
电池1538经由馈线向图15所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
在图15示出的汽车导航设备1520中,通过使用图8所描述的处理电路810以及其中的位置管理单元811、参数管理单元812和频谱管理单元813,可以由处理器1521实现,并且通过使用图8所描述的通信单元820可以由无线通信接口1533实现。功能的至少一部分也可以由处理器1521实现。例如,处理器1521可以通过执行存储器1522中存储的指令而执行使通信单元820发送位置信息、接收波形参数和功率调整因子和与基站进行无线通信功能。
本公开的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (25)

  1. 一种无线通信系统中的电子设备,所述无线通信系统包括多个用户设备和至少一个基站,所述电子设备包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    获取用户设备的位置信息和波形参数信息;
    基于所述用户设备的位置信息和波形参数信息,设置波形参数;以及
    获取其他用户设备的频谱资源信息,根据所述频谱资源信息将所述其他用户设备的频谱资源分配给所述用户设备,以便所述用户设备基于设置的波形参数,来使用所述其他用户设备的频谱资源。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置为:
    获取所述其他用户设备的位置信息,并且基于所述用户设备的位置信息和波形参数信息以及所述其他用户设备的位置信息,设置波形参数。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路进一步被配置为:
    基于所述用户设备和所述其他用户设备的位置信息,设置功率调整因子;以及
    获取所述其他用户设备的频谱资源信息,将所述其他用户设备的频谱资源分配给所述用户设备,以便所述用户设备基于设置的波形参数和功率调整因子,来使用所述其他用户设备的频谱资源。
  4. 根据权利要求3所述的电子设备,其中,所述无线通信系统至少包括第一小区和第二小区,其中,所述用户设备处于所述第一小区中的特定区域,在所述特定区域之内,所述用户设备受到所述第二小区的干扰信息,所述其他用户设备位于所述第二小区。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路进一步被配置为基于所述用户设备的位置信息来确定所述用户设备是否处于所述特定区域之内。
  6. 根据权利要求3所述的电子设备,其中,在设置波形参数时,所述处理电路进一步被配置为执行以下操作:
    基于所述用户设备和所述其他用户设备的位置信息获取信道信息;
    获取所述用户设备和所述其他用户设备的波形参数信息;以及
    基于所述信道信息和波形参数信息,设置所述用户设备和所述其他用户设备的波形参数以满足接收端的解调的信干噪比要求或信噪比要求。
  7. 根据权利要求6所述的电子设备,其中,在设置功率调整因子时,所述处理电路进一步被配置为执行以下操作:
    确定设置的波形参数无法满足接收端的解调的信干噪比要求或信噪比要求;以及
    基于所述信道信息,进一步设置所述功率调整因子,以满足接收端的解调的信干噪比要求或信噪比要求。
  8. 根据权利要求2所述的电子设备,其中,所述波形参数包括滤波器混叠因子。
  9. 根据权利要求4至8中任一项所述的电子设备,其中,所述无线通信系统为认知无线电通信系统,所述第一小区为第一次系统,所述第二小区为第二次系统,并且所述电子设备为核心网中的频谱协调器。
  10. 一种无线通信系统中的电子设备,所述无线通信系统至少包括第一小区和第二小区,所述电子设备处于所述第一小区之内,并且所述电子设备包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    获取所述第一小区中的用户设备的位置信息以通知核心网中的频谱协调器;
    从所述频谱协调器获取波形参数和解调次数信息以通知所述用户设备;
    从所述频谱协调器获取所述第二小区中的其他用户设备的频谱资源信息以通知所述用户设备;以及
    基于获取的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述用户设备进行无线通信。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路进一步被配置为:
    从所述频谱协调器获取功率调整因子以通知所述用户设备;
    基于获取的波形参数利用所述其他用户设备的频谱资源来与所述用户设备进行无线通信。
  12. 根据权利要求10所述的电子设备,其中,所述处理电路进一步被配置为获取所述用户设备的波形参数信息以通知所述频谱协调器。
  13. 根据权利要求11所述的电子设备,其中,所述用户设备处于所述第一小区中的特定区域,在所述特定区域之内,所述用户设备受到所述第二小区的干扰信息。
  14. 根据权利要求10所述的电子设备,其中,所述波形参数包括滤波器混叠因子。
  15. 根据权利要求10至14中任一项所述的电子设备,其中,所述无线通信系统为认知无线电通信系统,所述第一小区为第一次系统,所述第二小区为第二次系统,并且所述电子设备为所述第一小区中的基站。
  16. 一种无线通信系统中的用户设备,所述无线通信系统包括多个用户设备和至少一个基站,所述用户设备包括:
    收发机;以及
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    使所述收发机向为所述用户设备提供服务的基站发送所述用户设备的位置信息;
    使所述收发机从所述基站接收波形参数和解调次数信息;
    使所述收发机从所述基站接收其他用户设备的频谱资源信息;以及
    基于接收的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述基站进行无线通信。
  17. 根据权利要求16所述的用户设备,其中,所述无线通信系统至少包括第一小区和第二小区,所述用户设备位于所述第一小区,所述其他用户设备位于所述第二小区。
  18. 根据权利要求17所述的用户设备,其中,所述处理电路进一步被配置为:
    使所述收发机从所述基站接收功率调整因子和解调次数信息;以及
    基于接收的波形参数和功率调整因子利用所述其他用户设备的频谱资源来与所述基站进行无线通信。
  19. 根据权利要求17所述的用户设备,其中,所述处理电路进一步被配置为使所述收发机向所述基站发送所述用户设备的波形参数信息。
  20. 根据权利要求18所述的用户设备,其中,所述用户设备处于所述第一小区中的特定区域,在所述特定区域之内,所述用户设备受到所述第二小区的干扰信息。
  21. 根据权利要求17所述的用户设备,其中,所述波形参数包括滤波器混叠因子。
  22. 根据权利要求17-21中任一项所述的用户设备,其中,所述无线通信系统为认知无线电通信系统,所述第一小区为第一次系统,并且所述第二小区为第二次系统。
  23. 一种用于在无线通信系统中进行无线通信的方法,包括:
    获取用户设备的位置信息和波形参数信息;
    基于所述用户设备的位置信息和波形参数信息,设置波形参数;以及
    获取其他用户设备的频谱资源信息,根据所述频谱资源信息将所述其他用户设备的频谱资源分配给所述用户设备,以便所述用户设备基于设置的波形参数,来使用所述其他用户设备的频谱资源。
  24. 一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统至少包括第一小区和第二小区,所述方法包括:
    获取所述第一小区中的用户设备的位置信息以通知核心网中的频谱协调器;
    从所述频谱协调器获取波形参数和解调次数信息以通知所述用户设备;
    从所述频谱协调器获取其他用户设备的频谱资源信息以通知所述一个用户设备;以及
    基于获取的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述用户设备进行无线通信。
  25. 一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括多个用户设备和至少一个基站,所述方法包括:
    向为用户设备服务的基站发送所述用户设备的位置信息;
    从所述基站接收波形参数和解调次数信息;
    从所述基站接收其他用户设备的频谱资源信息;以及
    基于接收的波形参数和解调次数信息利用所述其他用户设备的频谱资源来与所述基站进行无线通信。
PCT/CN2017/070125 2016-01-13 2017-01-04 无线通信系统中的电子设备、用户设备和无线通信方法 WO2017121269A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17738083.9A EP3402258A4 (en) 2016-01-13 2017-01-04 Electronic device, user equipment and wireless communication method in wireless communication system
US16/069,103 US20190037567A1 (en) 2016-01-13 2017-01-04 Electronic device, user equipment and wireless communication method in wireless communication system
CN201780004836.0A CN108432300B (zh) 2016-01-13 2017-01-04 无线通信系统中的电子设备、用户设备和无线通信方法
CA3010737A CA3010737A1 (en) 2016-01-13 2017-01-04 Electronic device, user equipment and wireless communication method in wireless communication system
US17/241,094 US20210258957A1 (en) 2016-01-13 2021-04-27 Electronic device, user equipment and wireless communication method in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610021159.0A CN106973430A (zh) 2016-01-13 2016-01-13 无线通信系统中的电子设备、用户设备和无线通信方法
CN201610021159.0 2016-01-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/069,103 A-371-Of-International US20190037567A1 (en) 2016-01-13 2017-01-04 Electronic device, user equipment and wireless communication method in wireless communication system
US17/241,094 Continuation US20210258957A1 (en) 2016-01-13 2021-04-27 Electronic device, user equipment and wireless communication method in wireless communication system

Publications (1)

Publication Number Publication Date
WO2017121269A1 true WO2017121269A1 (zh) 2017-07-20

Family

ID=59310761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070125 WO2017121269A1 (zh) 2016-01-13 2017-01-04 无线通信系统中的电子设备、用户设备和无线通信方法

Country Status (6)

Country Link
US (2) US20190037567A1 (zh)
EP (1) EP3402258A4 (zh)
CN (3) CN106973430A (zh)
CA (1) CA3010737A1 (zh)
TW (1) TWI710255B (zh)
WO (1) WO2017121269A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200035010A (ko) * 2017-08-10 2020-04-01 지티이 코포레이션 채널 구조 정보를 표시 및 결정하는 시스템 및 방법
US10771105B2 (en) * 2018-02-22 2020-09-08 Qualcomm Incorporated Configuration of NOMA communication using multiple sets of spreading sequences
CN109673020A (zh) * 2018-11-15 2019-04-23 天津大学青岛海洋技术研究院 一种融合式频谱检测方法
US11317245B2 (en) 2019-03-11 2022-04-26 Qualcomm Incorporated Time-domain waveform reporting for positioning
US11375339B2 (en) * 2019-03-11 2022-06-28 Qualcomm Incorporated Waveform reporting for positioning
CN110337148B (zh) * 2019-04-26 2022-04-05 重庆邮电大学 基于非正交多址接入的认知无线电能效资源分配方法
US11582055B2 (en) 2020-08-18 2023-02-14 Charter Communications Operating, Llc Methods and apparatus for wireless device attachment in a managed network architecture
US11563593B2 (en) 2020-08-19 2023-01-24 Charter Communications Operating, Llc Methods and apparatus for coordination between wireline backhaul and wireless systems
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems
TWI796911B (zh) * 2021-12-30 2023-03-21 國立高雄師範大學 機器型態通訊之多訊框存取控制方法及其系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686976A (zh) * 2013-09-27 2014-03-26 北京邮电大学 一种d2d系统中功率控制的方法及其实现装置
WO2014122994A1 (ja) * 2013-02-06 2014-08-14 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065062A1 (en) * 1998-09-25 2002-05-30 Christian Levesque Automatic gsm mobile power
JP3848068B2 (ja) * 2000-09-12 2006-11-22 株式会社エヌ・ティ・ティ・ドコモ Cdma無線送信装置、cdma無線送受信システムおよびcdma無線送信装置の送信電力制御方法ならびにcdma無線送受信システムにおける無線送信装置の送信電力制御方法
US8886210B1 (en) * 2007-01-16 2014-11-11 Cisco Technology, Inc. Resolving ambiguity with respect to locationing and classification of wireless transmitters
US7949357B2 (en) * 2007-12-11 2011-05-24 Nokia Corporation Method and apparatus to select collaborating users in spectrum sensing
JP5408586B2 (ja) * 2009-07-17 2014-02-05 独立行政法人情報通信研究機構 コグニティブ無線通信における電力制御方法,コグニティブ無線通信システム,及び無線通信デバイス
CN101720093B (zh) * 2009-11-25 2012-08-15 南京邮电大学 一种基于正交矩阵的认知无线电频谱共享方法
US8873480B2 (en) * 2010-10-01 2014-10-28 Intel Corporation Techniques for dynamic spectrum management, allocation, and sharing
US8977274B2 (en) * 2010-11-15 2015-03-10 Qualcomm Incorporated Geo-location aided sensing
CN102036252A (zh) * 2010-12-27 2011-04-27 中国人民解放军理工大学 基于接收机信标发射的认知无线电自适应干扰保护方法
CN102075267A (zh) * 2010-12-30 2011-05-25 青海西部矿业科技有限公司 一种基于微分博弈的认知无线电系统功率控制方法
US20130343219A1 (en) * 2011-03-11 2013-12-26 Telefonaktiebolaget L M Ericsson (Publ) Method for Determining White Space Interference Margin
EP2875685A2 (en) * 2012-07-23 2015-05-27 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
US9692550B2 (en) * 2012-11-29 2017-06-27 Huawei Technologies Co., Ltd. Systems and methods for waveform selection and adaptation
CN104717753B (zh) * 2013-12-17 2019-09-13 北京三星通信技术研究有限公司 一种非正交通信方法、基站及终端
CN104811943A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 认知无线电系统频谱资源配置方法和装置
US10206215B2 (en) * 2014-03-11 2019-02-12 Lg Electronics Inc. Method for assigning resources in wireless communication system supporting device-to-device direct communication, and apparatus therefor
CN104980389B (zh) * 2015-05-27 2019-03-08 哈尔滨工业大学 适用非正交多址系统的新用户差异性选择接入方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122994A1 (ja) * 2013-02-06 2014-08-14 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN103686976A (zh) * 2013-09-27 2014-03-26 北京邮电大学 一种d2d系统中功率控制的方法及其实现装置
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3402258A4 *
ZHANG, CHEN: "Research on Cooperative Communication Technology in Heterogeneous Network", CHINA MASTER'S THESES FULL-TEXT DATABASE, 1 April 2014 (2014-04-01), pages 43 - 49, XP055499178 *

Also Published As

Publication number Publication date
US20210258957A1 (en) 2021-08-19
CN106973430A (zh) 2017-07-21
TW201725923A (zh) 2017-07-16
EP3402258A4 (en) 2018-12-05
CN108432300A (zh) 2018-08-21
US20190037567A1 (en) 2019-01-31
CA3010737A1 (en) 2017-07-20
TWI710255B (zh) 2020-11-11
CN113692040A (zh) 2021-11-23
EP3402258A1 (en) 2018-11-14
CN108432300B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
US20210258957A1 (en) Electronic device, user equipment and wireless communication method in wireless communication system
US10211934B2 (en) Communication control apparatus, communication control method and radio communication apparatus
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US10772093B2 (en) Communication control device, communication control method, and communication device
CN105704822B (zh) 频谱资源管理装置和方法、无线通信设备和方法
CN111567127A (zh) 终端设备、基站设备和方法
US20220070865A1 (en) Electronic device, wireless communication method, and computer readable storage medium
US10708941B2 (en) Apparatus for acquiring and reporting power allocation
US20210136845A1 (en) Electronic device and method for wireless communications
US20210345352A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020020025A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
US20220038913A1 (en) Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
US10667139B2 (en) Frequency spectrum management device, electronic device, and method executed thereby
WO2021208791A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021208417A1 (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3010737

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738083

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738083

Country of ref document: EP

Effective date: 20180807