WO2017121252A1 - 电子设备、电源控制电路及其驱动方法 - Google Patents

电子设备、电源控制电路及其驱动方法 Download PDF

Info

Publication number
WO2017121252A1
WO2017121252A1 PCT/CN2016/113613 CN2016113613W WO2017121252A1 WO 2017121252 A1 WO2017121252 A1 WO 2017121252A1 CN 2016113613 W CN2016113613 W CN 2016113613W WO 2017121252 A1 WO2017121252 A1 WO 2017121252A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
capacitor
turned
control
Prior art date
Application number
PCT/CN2016/113613
Other languages
English (en)
French (fr)
Inventor
黄国生
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2017121252A1 publication Critical patent/WO2017121252A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of power supply technologies, and more particularly to an electronic device, a power supply control circuit, and a driving method thereof.
  • the prior art uses a linear regulator circuit to reduce the supply voltage during standby of the electronic product, the power consumed by the linear regulator circuit is several times the actual required power, such as a linear regulator circuit that takes the voltage from 12V.
  • the loss power down to 3.3V is about 2.6 times the actual required power, so it is not conducive to the reduction of standby power consumption of electronic products.
  • the present invention provides a power control circuit and a driving method thereof to solve the problem that the power module of the prior art consumes a large amount of power during standby.
  • the present invention provides the following technical solutions:
  • a power control circuit includes a switch control module and a signal generation module, and the switch control module includes a voltage input terminal, a first voltage output terminal, a first switch, a second switch, a first capacitor, a second capacitor, and a first inverse Stop device and second backstop device;
  • a first end of the first switch is connected to the voltage input end, and a second end of the first switch is connected to a positive pole of the first backstop device by the first capacitor, the first backstop a negative electrode of the device serves as the first voltage output end, a first end of the second switch is connected to a common end of the first switch and the first capacitor, and a second end of the second switch is a negative connection of the first backstop device, a positive pole of the second backstop device is grounded, and a cathode of the second backstop device is connected at a common end of the first capacitor and the first backstop device, a second capacitor is connected between the cathode of the first backstop device and the ground;
  • the signal generating module is configured to control off and on of the first switch, and control off and on of the second switch;
  • the first backstop device is configured to be turned on when a voltage of a positive electrode of the first backstop device is greater than a voltage of a negative electrode of the first backstop device, and a voltage of a positive electrode of the first backstop device is less than the first The voltage of the negative terminal of the device is turned off;
  • the second backstop device is configured to be turned on when the voltage of the positive electrode of the second backstop device is greater than the voltage of the negative electrode of the second backstop device, and the voltage of the positive electrode of the second backstop device is less than the first Second, the voltage of the negative terminal of the device is turned off.
  • the first backstop device and the second backstop device are diodes.
  • the power control circuit further includes a linear voltage regulator module
  • the linear voltage regulator module includes a linear regulator, a third capacitor, and a second voltage output, and the input end of the linear regulator and the first a voltage output terminal is connected, an output end of the linear regulator is connected to the first end of the third capacitor, a second end of the third capacitor is grounded, the linear regulator and the third capacitor
  • the common terminal serves as a second voltage output, and the second voltage output is coupled to the load.
  • the first voltage output is connected to a load.
  • the signal generating module includes a first resistor, a second resistor, a third resistor, a fourth resistor, a third switch, and a signal generator;
  • the control end of the first switch is connected to the voltage input end through the first resistor, and the control end of the first switch is further connected to the high potential end of the third switch through the second resistor.
  • a low potential end of the third switch is grounded, a control end of the third switch is connected to an output end of the signal generator, and an input end of the signal generator is connected to the first voltage output end,
  • the control end of the three switches is further connected to the voltage input terminal through the third resistor, and the fourth resistor is connected between the control end of the third switch and the low potential end of the third switch, the second switch
  • the control end is connected to the common end of the third switch and the second resistor;
  • the signal generator is configured to detect a voltage of the first voltage output terminal, and control the first switch by controlling the third switch to be turned off when a voltage of the first voltage output terminal is greater than or equal to a first preset voltage
  • the switch is turned off, and the second switch is turned on.
  • the first switch is turned on and the second switch is turned off by controlling the third switch to be turned off.
  • the first switch is a PMOS transistor
  • the second switch and the third switch are NOMS transistors.
  • a driving method of a power supply control circuit which is applied to the power supply control circuit according to any one of the preceding claims, wherein the driving method comprises:
  • the signal generating module controls the first switch to be turned on, controls the second switch to be turned off, causes the voltage input terminal to charge the first capacitor and the second capacitor, and supplies power to the first voltage output terminal through the first capacitor and the first backstop device ;
  • the signal generating module controls the first switch to be turned off, and controls the second switch to be turned on, so that the first capacitor passes through the power supply loop formed by the second switch and the second backstop device to the first
  • the voltage output terminal supplies power to supply the second capacitor to the first voltage output terminal in parallel with the power supply circuit.
  • the signal generating module includes a first resistor, a second resistor, a third resistor, a fourth resistor, a third switch, and a signal generator, and the process of controlling the first switch to be turned on and controlling the second switch to be turned off include:
  • the signal generator determines whether the voltage of the first voltage output terminal is greater than or equal to the first preset voltage
  • the first control signal is output to the control end of the third switch to control the third switch to be turned off, the first switch is turned off, and the second switch is turned on.
  • the process of controlling the first switch to be turned off and the second switch to be turned on includes:
  • the signal generator determines whether the voltage of the first voltage output terminal is less than a second preset voltage
  • the second control signal is output to the control end of the third switch to control the third switch to be turned on, so that the first switch is turned on and the second switch is turned off.
  • An electronic device comprising the power supply control circuit of any of the above.
  • the signal generating module controls the first switch to be turned on, and after the second switch is turned off, the voltage input terminal charges the first capacitor and the second capacitor, and passes the first capacitor and the first
  • the backstop device supplies power to the first voltage output terminal;
  • the signal generating module controls the first switch to be turned off, and after the second switch is turned on, the first capacitor outputs to the first voltage through the power supply loop formed by the second switch and the second backstop device
  • the terminal power supply, the second capacitor and the power supply circuit are connected in parallel to the first voltage output end. Since the power input from the voltage input terminal is not consumed in the process, the standby power consumption of the electronic product can be reduced.
  • FIG. 1 is a schematic structural diagram of a circuit of a switch control module in a power supply control circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a circuit of a switch control module and a linear voltage regulator module in a power supply control circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic circuit diagram of a switch control module, a linear voltage regulator module, and a signal generation module in a power supply control circuit according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a driving method of a power control circuit according to an embodiment of the present invention.
  • One embodiment of the present invention provides a power control circuit that can be used to reduce the standby voltage of an AC-to-DC power module.
  • the power module can be a power module that provides only one main voltage.
  • the power control circuit in this embodiment includes a switch control module.
  • the switch control module includes a voltage input terminal Vin, a first voltage output terminal Vout1, a first switch K1, a second switch K2, and a first capacitor C1.
  • the first end of the first switch K1 is connected to the voltage input terminal Vin, and the second end of the first switch K1 is connected to the anode of the first backstop device D1 through the first capacitor C1.
  • a first voltage output terminal Vout1 a first end of the second switch K2 is connected to a common end of the first switch K1 and the first capacitor C1, and a second end of the second switch K2 is connected to a negative end of the first backstop device D1
  • the anode of the second check device D2 is grounded, the cathode of the second backstop device D2 is connected to the common terminal of the first capacitor C1 and the first backstop device D1, and the second capacitor C2 is connected to the cathode of the first backstop device D1 and the ground. Between GND.
  • the first backstop device D1 is a device that is forward-conducting and reverse-cut, that is, the first backstop device D1 is turned on when the voltage of the positive electrode thereof is greater than the voltage of the negative electrode thereof, and when the voltage of the positive electrode is lower than the voltage of the negative electrode thereof cutoff.
  • the second backstop device D2 is also a device that is forward-conducting and reverse-cut, that is, the second backstop device D2 is turned on when the voltage of the positive electrode thereof is greater than the voltage of the negative electrode thereof, and is turned off when the voltage of the positive electrode is lower than the voltage of the negative electrode thereof.
  • the first backstop device D1 can prevent the second capacitor C2 from charging the first capacitor C1, and the second backstop device D2 can prevent the current of the first capacitor C2 from being lost to the ground.
  • the first backstop device D1 and the second backstop device D2 in this embodiment are diodes.
  • the present invention is not limited thereto.
  • the device D2 can also be a switch tube or the like.
  • the first voltage output terminal Vout1 in the power control circuit in this embodiment can be directly connected to the load, and can also be connected to the load through the linear voltage regulator module to further step down through the linear voltage regulator module. And linear regulator function.
  • the power control circuit further includes a linear voltage regulator module including a linear regulator U1, a third capacitor C3, and a second voltage output terminal Vout2, and an input terminal of the linear regulator U1
  • a linear voltage regulator module including a linear regulator U1, a third capacitor C3, and a second voltage output terminal Vout2, and an input terminal of the linear regulator U1
  • the first voltage output terminal Vout1 is connected, the output end of the linear regulator U1 is connected to the first end of the third capacitor C3, the second end of the third capacitor C3 is grounded, and the common end of the linear regulator U1 and the third capacitor C3
  • the second voltage output terminal Vout2 is connected to the load.
  • the voltage input terminal Vin in the embodiment can be connected to the main voltage output end of the power module. Since the power module has a module for converting AC to DC, the voltage input terminal Vin inputs a high DC voltage.
  • the voltage input terminal Vin charges the first capacitor C1 and the second capacitor C2, and passes through the first capacitor C1 and the first backstop device D1 to the first voltage output terminal.
  • Vout1 is powered.
  • the first voltage output terminal Vout1 outputs a voltage lower than the voltage input from the voltage input terminal Vin, thereby reducing the linear voltage regulation.
  • the first capacitor C1 supplies power to the first voltage output terminal Vout1 through the power supply loop formed by the second switch K2 and the second backstop device D2, and the second capacitor C2 passes Paraelectric power is supplied to the first voltage output terminal Vout1 in parallel with the power supply circuit formed by the first capacitor C1, the second switch K2 and the second backstop device D2.
  • the capacitor C2 is used to implement the step-down, and the power of the voltage input terminal Vin is not consumed, so that the power consumption of the linear voltage regulator module 2 and the power consumption of the electronic product during standby can be reduced.
  • the power control circuit of the present invention further includes a signal generating module for driving the first switch K1 and the second switch K2, that is, for controlling the cutoff and conduction of the first switch K1 and the control.
  • the second switch K2 is turned off and on.
  • the control function of the signal generating module will be described below by taking a specific structure of a signal generating module as an example. However, the signal generating module in the present invention is not limited thereto.
  • the signal generating module may include a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a third switch K3, and a signal generator U2.
  • the control end of the first switch K1 is connected to the voltage input terminal Vin through the first resistor R1, and the control terminal of the first switch K1 is further connected to the high potential end of the third switch K3 through the second resistor R2, and the third switch K3
  • the low potential end is grounded
  • the control end of the third switch K3 is connected to the output end of the signal generator U2, the input end of the signal generator U2 is connected to the first voltage output terminal Vout1, and the control end of the third switch K3 is also passed the third
  • the resistor R3 is connected to the voltage input terminal Vin
  • the fourth resistor R4 is connected between the control terminal of the third switch K3 and the low potential terminal of the third switch K3, and the control terminal of the second switch K2 passes through the port V1 and the third switch K3 and
  • the first switch K1, the second switch K2, and the third switch K3 in this embodiment may be MOS transistors, thyristors, triodes, etc., and the invention is not limited thereto.
  • only the first switch K1, the second switch K2, and the third switch K3 are MOS transistors as an example.
  • the first switch K1 in this embodiment is a PMOS transistor
  • the second switch K2 is The third switch K3 is an NMOS transistor, wherein the first end of the first switch K1 is the source of the PMOS transistor, the control terminal is its gate, and the second terminal is its drain; the first end of the second switch K2 is an NMOS
  • the drain and the control terminal of the transistor have their gates, and the first terminal is its source; the high potential terminal of the third switch K3 is the drain of the NMOS transistor, the low potential terminal is its source, and the control terminal is its gate.
  • the first switch K1 when the low level signal is input to the control terminal of the first switch K1, the first switch K1 is turned on, and when the high level signal is input to the control terminal of the first switch K1, the first switch K1 is turned off; to the second switch K2 When the control terminal inputs a low level signal, the second switch K2 is turned off, and when the high level signal is input to the control terminal of the second switch K2, the second switch K2 is turned on; and the third switch K3 and the second switch K2 are turned on and off.
  • the signals are the same and will not be described here.
  • the voltage input terminal Vin drives the third switch K3 to be turned on by the third resistor R3.
  • the low potential end of the third switch K3 controls the first switch K1 and the second switch K2.
  • the voltage of the terminal is pulled low, which is equivalent to inputting a low level signal to the control ends of the first switch K1 and the second switch K2, so that the first switch K1 is turned on, and the second switch K2 is turned off, so that the voltage input terminal Vin passes the first A switch K1 and the first backstop device D1 charge the first capacitor C1 and the second capacitor C2 while supplying power to the first voltage output terminal Vout1 through the first capacitor C1 and the first backstop device D1.
  • the signal generator U2 can detect the voltage of the first voltage output terminal Vout1.
  • the voltage of the first voltage output terminal Vout1 gradually increases, when the voltage output by the first voltage output terminal Vout1 is greater than the first preset value VH.
  • the signal generator U2 changes the PIN1 pin control signal to a low level, and enters the negative duty cycle period, that is, the signal generator U2 inputs a low level signal to the control terminal of the third switch K3 to make the third switch K3. cutoff.
  • the first switch K1 discharges the charge through the first resistor R1 until it is turned off.
  • the voltage input terminal Vin pulls the control terminal of the second switch K2 through the first resistor R1 and the second resistor R2, which is equivalent to inputting a high level signal to the control terminal of the second switch K2.
  • the second switch K2 is turned on.
  • the voltage input terminal Vin is connected to the control terminal of the second switch K2 through the first resistor R1 and the second resistor R2, so that the voltage of the control terminal of the second switch K2 is approximately equal to the voltage of the voltage input terminal Vin, when the second switch When the voltage difference between the control terminal of K2 and the second terminal, that is, the first voltage output terminal Vout1 is greater than the conduction voltage of the second switch K2, the second switch K2 is turned on, and vice versa, when the control terminal of the second switch K2 is When the voltage difference between the two terminals, that is, the first voltage output terminal Vout1 is smaller than the ON voltage of the second switch K2, the second switch K2 is turned off.
  • the first capacitor C1 supplies power to the first voltage output terminal Vout1 through the power supply loop formed by the second switch K2 and the second backstop device D2, and the second capacitor C2 and The power supply circuit supplies power to the first voltage output terminal Vout1 in parallel, during which no input power of the voltage input terminal Vin is consumed, and during the power supply of the first capacitor C1 and the second capacitor C2, the first voltage output terminal Vout1 The voltage gradually decreases.
  • the signal generator U2 changes the PIN1 pin control signal to a high level, and enters the positive duty cycle period, that is, the signal generator U2.
  • a high level signal is input to the control terminal of the third switch K3 to turn on the third switch K3.
  • the third switch K3 is turned on, the first switch K1 is turned on, the second switch K2 is turned off, and the process of repeating the charging of the voltage input terminal Vin to the first capacitor C1 and the second capacitor C2 is started until the beginning.
  • the power control circuit stops after power is turned off.
  • the first resistor R1 to the fourth resistor R4 are resistors with a large resistance value.
  • the power control circuit consumes only milliampere-level current, so that the DC voltage input to the voltage input terminal Vin can be relatively high, thereby effectively reducing the overall operation of the machine. Standby power consumption.
  • the signal generator U2 in this embodiment may be an MCU, or may be a digital or analog line.
  • a circuit that does not need to accurately control the voltage of the first voltage output terminal Vout1 may be used.
  • the signal generator U2 may also be used. Timing chip for the LM555 class.
  • the signal generating module controls the first switch to be turned on, and after the second switch is turned off, the voltage input terminal charges the first capacitor and the second capacitor, and passes through the first capacitor and the first backstop device.
  • the first voltage output terminal supplies power;
  • the signal generating module controls the first switch to be turned off, and after the second switch is turned on, the first capacitor supplies power to the first voltage output terminal through the power supply loop formed by the second switch and the second backstop device,
  • the two capacitors are connected in parallel with the power supply circuit to supply power to the first voltage output terminal. Since the power input from the voltage input terminal is not consumed in the process, the standby power consumption of the electronic product can be reduced.
  • Another embodiment of the present invention provides a driving method of a power control circuit, which is applied to the power control circuit as described above. As shown in FIG. 4, the driving method includes:
  • the signal generating module controls the first switch to be turned on, and controls the second switch to be turned off, so that the voltage input terminal charges the first capacitor and the second capacitor, and outputs the first capacitor and the first backstop device to the first voltage.
  • the signal generating module controls the first switch to be turned off, and the second switch is controlled to be turned on, so that the first capacitor passes the power supply loop formed by the second switch and the second backstop device to the first
  • the voltage output terminal supplies power to supply the second capacitor to the first voltage output terminal in parallel with the power supply circuit.
  • the signal generating module includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a third switch K3, and a signal generator U2, and the power input circuit is powered on for the first time.
  • Vin drives the third switch K3 to be turned on by the third resistor R3.
  • the low potential end of the third switch K3 pulls down the voltage of the control terminals of the first switch K1 and the second switch K2, which is equivalent to the first switch K1.
  • a control signal of the second switch K2 inputs a low level signal, so that the first switch K1 is turned on, and the second switch K2 is turned off, so that the voltage input terminal Vin passes through the first switch K1 and the first backstop device D1
  • a capacitor C1 and a second capacitor C2 are charged while power is supplied to the first voltage output terminal Vout1 through the first capacitor C1 and the first backstop device D1.
  • the signal generator U2 can detect the voltage of the first voltage output terminal Vout1.
  • the voltage of the first voltage output terminal Vout1 gradually increases, and when the voltage outputted by the first voltage output terminal Vout1 is greater than or equal to the first preset voltage.
  • the signal generator U2 changes the PIN1 pin control signal to a low level, and enters the negative duty cycle, that is, the signal generator U2 inputs a low level signal to the control terminal of the third switch K3 to make the third Switch K3 is turned off.
  • the first switch K1 discharges the charge through the first resistor R1 until it is turned off.
  • the voltage input terminal Vin pulls the control terminal of the second switch K2 through the first resistor R1 and the second resistor R2, which is equivalent to inputting a high level signal to the control terminal of the second switch K2.
  • the second switch K2 is turned on.
  • the first capacitor C1 supplies power to the first voltage output terminal Vout1 through the power supply loop formed by the second switch K2 and the second backstop device D2, and the second capacitor C2 and The power supply circuit supplies power to the first voltage output terminal Vout1 in parallel, and does not consume input power of the voltage input terminal Vin during this process. Moreover, during the power supply of the first capacitor C1 and the second capacitor C2, the voltage of the first voltage output terminal Vout1 gradually decreases.
  • the signal generator U2 When the voltage of the first voltage output terminal Vout1 is less than the second preset voltage VL, the signal generator U2 The PIN1 pin control signal is turned to a high level, and the positive duty cycle is entered, that is, the signal generator U2 inputs a high level signal to the control terminal of the third switch K3 to turn on the third switch K3. After the third switch K3 is turned on, the first switch K1 is turned on, the second switch K2 is turned off, and the process of repeating the charging of the voltage input terminal Vin to the first capacitor C1 and the second capacitor C2 is started until the power control circuit is broken. Stop after electricity.
  • the voltage input terminal Vin drives the third switch K3 to be turned on to drive the first switch K1 to be turned on, and the second switch K2 to be turned off, but in the subsequent process, the control portion A process in which the switch K1 is turned on and the second switch K2 is turned off includes:
  • the signal generator U2 determines whether the voltage of the first voltage output terminal Vout1 is greater than or equal to the first preset voltage VH; if yes, outputs a first control signal, that is, a low level signal to the control terminal of the third switch K3, and controls the third switch K3 is turned off to turn off the first switch K1 and turn on the second switch K2.
  • the process of controlling the first switch K1 to be turned off and controlling the second switch K2 to be turned on includes:
  • the signal generator U2 determines whether the voltage of the first voltage output terminal Vout1 is less than the second preset voltage VL; if yes, outputs a first control signal, that is, a high level signal to the control terminal of the third switch K3, and controls the third switch K3.
  • the first switch K1 is turned on and the second switch K2 is turned off.
  • the driving method of the power control circuit provided in this embodiment controls the first switch to be turned on and the second switch to be turned off, so that the voltage input terminal charges the first capacitor and the second capacitor, and the voltage input terminal passes the first capacitor and
  • the first backstop device supplies power to the first voltage output terminal
  • the first capacitor is supplied with power to the first voltage output terminal through the power supply circuit formed by the second switch and the second backstop device, so that the second capacitor is connected in parallel with the power supply circuit.
  • the first voltage output is powered to reduce the consumption of electrical energy input to the voltage input and reduce the standby power consumption of the electronic product.
  • an electronic device including the power control circuit described above.
  • the electronic device can be an educational machine, a pico projector, a television, etc., and is not strictly limited herein.

Abstract

一种电子设备、电源控制电路及其驱动方法。电源控制电路包括开关控制模块以及信号发生模块。开关控制模块包括电压输入端(Vin)、第一电压输出端(Vout1)、第一开关(K1)、第二开关(K2)、第一电容(C1)、第二电容(C2)、第一逆止器件(D1)和第二逆止器件(D2)。信号发生模块用于控制第一开关和第二开关的截止和导通。当控制第一开关导通、第二开关截止时,电压输入端向第一电容和第二电容充电,并通过第一电容和第一逆止器件向第一电压输出端供电;当控制第一开关截止、第二开关导通时,第一电容通过与第二开关和第二逆止器件构成的供电回路向第一电压输出端供电,第二电容与供电回路并联向第一电压输出端供电。由于第一电容和第二电容供电的过程中不需消耗电压输入端的电能,因此,可以降低电子产品的待机功耗。

Description

电子设备、电源控制电路及其驱动方法 技术领域
本发明涉及电源技术领域,更具体地说,涉及一种电子设备、电源控制电路及其驱动方法。
背景技术
目前,环保组织要求电子产品的待机功耗小于0.5W,甚至小于0.3W。但是,现有的电子产品大多采用交流转直流的电源模块来给负载供电,这种电源模块只提供一路主电压,如提供12V或19V的电压。由于电子产品待机时实际需求的电压较低,如待机时电子产品MCU((Micro Control Unit,微控制单元)所需的电压只有2.5V或3.3V,因此,如果仍采用该主电压进行供电,会导致电子产品的待机功耗很大,不利于节能环保。
技术问题
虽然现有技术中采用了线性稳压电路来降低电子产品待机时的供电电压,但是,由于线性稳压电路损耗的功率当于实际所需功率的几倍,如线性稳压电路将电压从12V降到3.3V的损耗功率约为实际所需功率的2.6倍,因此,也不利于电子产品待机功耗的降低。
技术解决方案
有鉴于此,本发明提供了一种电源控制电路及其驱动方法,以解决现有技术中的电源模块在待机时功耗较大的问题。
为实现上述目的,本发明提供如下技术方案:
一种电源控制电路,包括开关控制模块和信号发生模块,所述开关控制模块包括电压输入端、第一电压输出端、第一开关、第二开关、第一电容、第二电容、第一逆止器件和第二逆止器件;
所述第一开关的第一端与所述电压输入端连接,所述第一开关的第二端通过所述第一电容与所述第一逆止器件的正极连接,所述第一逆止器件的负极作为所述第一电压输出端,所述第二开关的第一端连接在所述第一开关与所述第一电容的公共端,所述第二开关的第二端与所述第一逆止器件的负极连接,所述第二逆止器件的正极接地,所述第二逆止器件的负极连接在所述第一电容与所述第一逆止器件的公共端,所述第二电容连接在所述第一逆止器件的负极与地之间;
所述信号发生模块用于控制所述第一开关的截止和导通,控制所述第二开关的截止和导通;
所述第一逆止器件用于在所述第一逆止器件正极的电压大于所述第一逆止器件负极的电压时导通,在所述第一逆止器件正极的电压小于所述第一逆止器件负极的电压时截止;
所述第二逆止器件用于在所述第二逆止器件正极的电压大于所述第二逆止器件负极的电压时导通,在所述第二逆止器件正极的电压小于所述第二逆止器件负极的电压时截止。
优选的,所述第一逆止器件和所述第二逆止器件为二极管。
优选的,所述电源控制电路还包括线性稳压模块,所述线性稳压模块包括线性稳压器、第三电容和第二电压输出端,所述线性稳压器的输入端与所述第一电压输出端连接,所述线性稳压器的输出端与所述第三电容的第一端连接,所述第三电容的第二端接地,所述线性稳压器与所述第三电容的公共端作为第二电压输出端,所述第二电压输出端与负载连接。
优选的,所述第一电压输出端与负载连接。
优选的,所述信号发生模块包括第一电阻、第二电阻、第三电阻、第四电阻、第三开关和信号发生器;
所述第一开关的控制端通过所述第一电阻与所述电压输入端连接,所述第一开关的控制端还通过所述第二电阻与所述第三开关的高电位端连接,所述第三开关的低电位端接地,所述第三开关的控制端与所述信号发生器的输出端连接,所述信号发生器的输入端与所述第一电压输出端连接,所述第三开关的控制端还通过所述第三电阻与所述电压输入端连接,所述第四电阻连接在第三开关的控制端与第三开关的低电位端之间,所述第二开关的控制端与所述第三开关和所述第二电阻的公共端连接;
所述信号发生器用于检测所述第一电压输出端的电压,并在所述第一电压输出端的电压大于或等于第一预设电压时,通过控制所述第三开关截止来控制所述第一开关截止、第二开关导通,在所述第一电压输出端的电压小于第二预设电压时,通过控制所述第三开关截止来控制所述第一开关导通、第二开关截止。
优选的,所述第一开关为PMOS晶体管、所述第二开关和第三开关为NOMS晶体管。
一种电源控制电路的驱动方法,应用于如上任一项所述的电源控制电路,所述驱动方法包括:
信号发生模块控制第一开关导通、控制第二开关截止,使电压输入端向第一电容和第二电容充电,并通过所述第一电容和第一逆止器件向第一电压输出端供电;
所述信号发生模块控制所述第一开关截止、控制所述第二开关导通,使所述第一电容通过与所述第二开关和第二逆止器件构成的供电回路向所述第一电压输出端供电,使所述第二电容与所述供电回路并联向所述第一电压输出端供电。
优选的,所述信号发生模块包括第一电阻、第二电阻、第三电阻、第四电阻、第三开关和信号发生器,则所述控制第一开关导通、控制第二开关截止的过程包括:
信号发生器判断所述第一电压输出端的电压是否大于或等于第一预设电压;
若是,则输出第一控制信号至所述第三开关的控制端,以控制所述第三开关截止,使所述第一开关截止、第二开关导通。
优选的,所述控制所述第一开关截止、第二开关导通的过程包括:
所述信号发生器判断所述第一电压输出端的电压是否小于第二预设电压;
若是,则输出第二控制信号至所述第三开关的控制端,以控制所述第三开关导通,使所述第一开关导通、第二开关截止。
一种电子设备,包括如上任一项所述的电源控制电路。
有益效果
与现有技术相比,本发明所提供的技术方案具有以下优点:
本发明所提供的电源控制电路及其驱动方法,信号发生模块控制第一开关导通、第二开关截止后,电压输入端向第一电容和第二电容充电,并通过第一电容和第一逆止器件向第一电压输出端供电;信号发生模块控制第一开关截止、第二开关导通后,第一电容通过与第二开关和第二逆止器件构成的供电回路向第一电压输出端供电,第二电容与供电回路并联向第一电压输出端供电,由于在此过程中不需消耗电压输入端输入的电能,因此,可以降低电子产品的待机功耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的电源控制电路中的开关控制模块的电路结构示意图;
图2为本发明实施例提供的电源控制电路中的开关控制模块和线性稳压模块的电路结构示意图;
图3为本发明实施例提供的电源控制电路中的开关控制模块、线性稳压模块和信号发生模块的电路结构示意图;
图4为本发明实施例提供的电源控制电路的驱动方法的流程图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一个实施例提供了一种电源控制电路,可用于降低交流转直流的电源模块的待机电压,该电源模块可以为只提供一路主电压的电源模块。
本实施例中的电源控制电路包括开关控制模块,如图1所示,该开关控制模块包括电压输入端Vin、第一电压输出端Vout1、第一开关K1、第二开关K2、第一电容C1、第二电容C2、第一逆止器件D1和第二逆止器件D2。
其中,第一开关K1的第一端与电压输入端Vin连接,第一开关K1的第二端通过第一电容C1与第一逆止器件D1的正极连接,第一逆止器件D1的负极作为第一电压输出端Vout1,第二开关K2的第一端连接在第一开关K1与第一电容C1的公共端,第二开关K2的第二端与第一逆止器件D1的负极连接,第二逆止器件D2的正极接地,第二逆止器件D2的负极连接在第一电容C1与第一逆止器件D1的公共端,第二电容C2连接在第一逆止器件D1的负极与地GND之间。
其中,第一逆止器件D1为正向导通、逆向截止的器件,即第一逆止器件D1在自身正极的电压大于自身负极的电压时导通,在自身正极的电压小于自身负极的电压时截止。第二逆止器件D2也为正向导通、逆向截止的器件,即第二逆止器件D2在自身正极的电压大于自身负极的电压时导通,在自身正极的电压小于自身负极的电压时截止。其中,第一逆止器件D1可以防止第二电容C2向第一电容C1充电,第二逆止器件D2可以防止第一电容C2的电流向地流失。可选的,本实施例中的第一逆止器件D1和第二逆止器件D2为二极管,但是,本发明并不仅限于此,在其他实施例中,第一逆止器件D1和第二逆止器件D2还可以为开关管等。进一步需要说明的是,本实施例中的电源控制电路中的第一电压输出端Vout1可以直接与负载连接,还可以通过线性稳压模块与负载连接,以通过线性稳压模块实现进一步地降压和线性稳压的功能。
如图2所示,该电源控制电路还包括线性稳压模块,该线性稳压模块包括线性稳压器U1、第三电容C3和第二电压输出端Vout2,线性稳压器U1的输入端与第一电压输出端Vout1连接,线性稳压器U1的输出端与第三电容C3的第一端连接,第三电容C3的第二端接地,线性稳压器U1与第三电容C3的公共端作为第二电压输出端Vout2,第二电压输出端Vout2与负载连接。
此外,本实施例中的电压输入端Vin可与电源模块的主电压输出端连接,由于该电源模块中具有将交流转换为直流的模块,因此,电压输入端Vin输入的是高直流电压。
当第一开关K1导通、第二开关K2截止时,电压输入端Vin向第一电容C1和第二电容C2充电,并通过第一电容C1和第一逆止器件D1向第一电压输出端Vout1供电,此过程中,在第一电容C1和第二电容C2的分压作用下,第一电压输出端Vout1会输出一个比电压输入端Vin输入的电压低的电压,从而可以降低线性稳压模块2的功耗以及电子产品的待机功耗。
当第一开关K1截止、第二开关K2导通时,第一电容C1通过与第二开关K2和第二逆止器件D2构成的供电回路向第一电压输出端Vout1供电,第二电容C2通过与第一电容C1、第二开关K2和第二逆止器件D2构成的供电回路并联向第一电压输出端Vout1供电,此过程中,不仅可以通过将第一电容C1上的电荷转移到第二电容C2上来实现降压,而且不需消耗电压输入端Vin的电能,因此,可以降低线性稳压模块2的功耗以及电子产品待机时的功耗。
进一步需要说明的是,本发明中的电源控制电路还包括信号发生模块,该信号发生模块用于驱动第一开关K1和第二开关K2即用于控制第一开关K1的截止和导通以及控制第二开关K2的截止和导通。下面以一种信号发生模块的具体结构为例来对信号发生模块的控制功能进行说明,但是,本发明中的信号发生模块并不仅限于此。
如图3所示,信号发生模块可以包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第三开关K3和信号发生器U2。其中,第一开关K1的控制端通过第一电阻R1与电压输入端Vin连接,第一开关K1的控制端还通过第二电阻R2与第三开关K3的高电位端连接,第三开关K3的低电位端接地,第三开关K3的控制端与信号发生器U2的输出端连接,该信号发生器U2的输入端与第一电压输出端Vout1连接,第三开关K3的控制端还通过第三电阻R3与电压输入端Vin连接,第四电阻R4连接在第三开关K3的控制端与第三开关K3的低电位端之间,第二开关K2的控制端通过端口V1与第三开关K3和第二电阻R2的公共端连接。
本实施例中的第一开关K1、第二开关K2和第三开关K3可以为MOS晶体管、也可以为可控硅和三极管等,本发明并不对此进行限定。本实施例中,仅以第一开关K1、第二开关K2和第三开关K3为MOS晶体管为例进行说明,进一步地,本实施例中的第一开关K1为PMOS晶体管,第二开关K2和第三开关K3为NMOS晶体管,其中,第一开关K1的第一端为PMOS晶体管的源极、控制端为其栅极、第二端为其漏极;第二开关K2的第一端为NMOS晶体管的漏极、控制端为其栅极、第一端为其源极;第三开关K3的高电位端为NMOS晶体管的漏极、低电位端为其源极、控制端为其栅极。
基于此,向第一开关K1的控制端输入低电平信号时第一开关K1导通,向第一开关K1的控制端输入高电平信号时第一开关K1截止;向第二开关K2的控制端输入低电平信号时第二开关K2截止,向第二开关K2的控制端输入高电平信号时第二开关K2导通;第三开关K3与第二开关K2的导通信号和截止信号相同,在此不再赘述。
当电源控制电路首次上电时,电压输入端Vin通过第三电阻R3驱动第三开关K3导通,此时,第三开关K3的低电位端会将第一开关K1和第二开关K2的控制端的电压拉低,相当于向第一开关K1和第二开关K2的控制端输入了一个低电平信号,从而使得第一开关K1导通,第二开关K2截止,使得电压输入端Vin通过第一开关K1和第一逆止器件D1向第一电容C1和第二电容C2充电,同时通过第一电容C1和第一逆止器件D1向第一电压输出端Vout1供电。由于第一电压输出端Vout1与信号发生器U2的输入端连接,因此,信号发生器U2可检测第一电压输出端Vout1的电压。在电压输入端Vin向第一电容C1和第二电容C2供电的过程中,第一电压输出端Vout1的电压逐渐升高,当第一电压输出端Vout1输出的电压大于第一预设值VH时,信号发生器U2将PIN1脚控制信号变为低电平,进入负占空比期间,即信号发生器U2向第三开关K3的控制端输入了一个低电平信号,来使得第三开关K3截止。第三开关K3截止后,第一开关K1通过第一电阻R1释放电荷直至截止。第一开关K1截止后,电压输入端Vin通过第一电阻R1和第二电阻R2将第二开关K2的控制端拉高,相当于向第二开关K2的控制端输入了一个高电平信号,使得第二开关K2导通。
具体地,电压输入端Vin通过第一电阻R1和第二电阻R2与第二开关K2的控制端连接后,使得第二开关K2的控制端的电压近似等于电压输入端Vin的电压,当第二开关K2的控制端和第二端即第一电压输出端Vout1之间的电压差大于第二开关K2的导通电压时,第二开关K2导通,反之,当第二开关K2的控制端和第二端即第一电压输出端Vout1之间的电压差小于第二开关K2的导通电压时,第二开关K2截止。
当第一开关K1截止、第二开关K2导通后,第一电容C1通过与第二开关K2和第二逆止器件D2构成的供电回路向第一电压输出端Vout1供电,第二电容C2与该供电回路并联向第一电压输出端Vout1供电,在此过程中不消耗电压输入端Vin的输入电能,并且,在第一电容C1和第二电容C2供电的过程中,第一电压输出端Vout1的电压逐渐降低,当第一电压输出端Vout1的电压小于第二预设值VL时,信号发生器U2把PIN1脚控制信号变为高电平,进入正占空比期间,即信号发生器U2向第三开关K3的控制端输入了一个高电平信号,来使得第三开关K3导通。同上所述,第三开关K3导通后,第一开关K1导通、第二开关K2截止,重复电压输入端Vin向第一电容C1和第二电容C2充电的过程,周而负始,直到电源控制电路断电后停止。
本实施例中,第一电阻R1至第四电阻R4都为大阻值的电阻,在电源控制电路工作的过程中,第一电阻R1至第四电阻R4中只通过细小的电流,基本不消耗电能。当电源控制电路及其连接的电源模块所在的电子产品待机时,电源控制电路只消耗毫安级的电流,从而可以在电压输入端Vin输入的直流电压比较高的情况下,有效降低整机的待机功耗。
本实施例中,可根据具体情况选取第一电容C1和第二电容C2的电容量,例如,在信号发生器U2的占空比为50%时,可根据公式Vout1*x C1=(Vin-Vout1)* C2确定第一电容C1和第二电容C2的电容量。如电压输入端Vin输入的电压为24V,第一电压输出端Vout1输出的电压为4V时,第一电容C1的容量为第二电容C2的5倍;再如,电压输入端Vin输入的电压为12V,第一电压输出端Vout1输出的电压为6V时,第一电容C1和第二电容C2的容量相等。
此外,本实施例中的信号发生器U2可为MCU,也可为数字或模拟线路,针对更简单的应用即不需要准确控制第一电压输出端Vout1的电压的电路,信号发生器U2也可为LM555类的定时芯片。
本实施例提供的电源控制电路,信号发生模块控制第一开关导通、第二开关截止后,电压输入端向第一电容和第二电容充电,并通过第一电容和第一逆止器件向第一电压输出端供电;信号发生模块控制第一开关截止、第二开关导通后,第一电容通过与第二开关和第二逆止器件构成的供电回路向第一电压输出端供电,第二电容与供电回路并联向第一电压输出端供电,由于在此过程中不需消耗电压输入端输入的电能,因此,可以降低电子产品的待机功耗。
本发明的另一实施例提供了一种电源控制电路的驱动方法,应用于如上所述的电源控制电路,如图4所示,该驱动方法包括:
S401:信号发生模块控制第一开关导通、控制第二开关截止,使电压输入端向第一电容和第二电容充电,并通过所述第一电容和第一逆止器件向第一电压输出端供电;
S402:信号发生模块控制所述第一开关截止、控制所述第二开关导通,使所述第一电容通过与所述第二开关和第二逆止器件构成的供电回路向所述第一电压输出端供电,使所述第二电容与所述供电回路并联向所述第一电压输出端供电。
参考图3,信号发生模块包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第三开关K3和信号发生器U2,且电源控制电路首次上电时,电压输入端Vin通过第三电阻R3驱动第三开关K3导通,此时,第三开关K3的低电位端会将第一开关K1和第二开关K2的控制端的电压拉低,相当于向第一开关K1和第二开关K2的控制端输入了一个低电平信号,从而使得第一开关K1导通,第二开关K2截止,使得电压输入端Vin通过第一开关K1和第一逆止器件D1向第一电容C1和第二电容C2充电,同时通过第一电容C1和第一逆止器件D1向第一电压输出端Vout1供电。
由于第一电压输出端Vout1与信号发生器U2的输入端连接,因此,信号发生器U2可检测第一电压输出端Vout1的电压。在电压输入端Vin向第一电容C1和第二电容C2供电的过程中,第一电压输出端Vout1的电压逐渐升高,当第一电压输出端Vout1输出的电压大于或等于第一预设电压VH时,信号发生器U2将PIN1脚控制信号变为低电平,进入负占空比期间,即信号发生器U2向第三开关K3的控制端输入了一个低电平信号,来使得第三开关K3截止。第三开关K3截止后,第一开关K1通过第一电阻R1释放电荷直至截止。第一开关K1截止后,电压输入端Vin通过第一电阻R1和第二电阻R2将第二开关K2的控制端拉高,相当于向第二开关K2的控制端输入了一个高电平信号,使得第二开关K2导通。
当第一开关K1截止、第二开关K2导通后,第一电容C1通过与第二开关K2和第二逆止器件D2构成的供电回路向第一电压输出端Vout1供电,第二电容C2与该供电回路并联向第一电压输出端Vout1供电,在此过程中不消耗电压输入端Vin的输入电能。并且,在第一电容C1和第二电容C2供电的过程中,第一电压输出端Vout1的电压逐渐降低,当第一电压输出端Vout1的电压小于第二预设电压VL时,信号发生器U2把PIN1脚控制信号变为高电平,进入正占空比期间,即信号发生器U2向第三开关K3的控制端输入了一个高电平信号,来使得第三开关K3导通。第三开关K3导通后,第一开关K1导通、第二开关K2截止,重复电压输入端Vin向第一电容C1和第二电容C2充电的过程,周而负始,直到电源控制电路断电后停止。
也就是说,在电源控制电路首次上电时,电压输入端Vin通过驱动第三开关K3导通来驱动第一开关K1导通、第二开关K2截止,但是,在后续的过程中,控制第一开关K1导通、控制第二开关K2截止的过程包括:
信号发生器U2判断第一电压输出端Vout1的电压是否大于或等于第一预设电压VH;若是,则输出第一控制信号即低电平信号至第三开关K3的控制端,控制第三开关K3截止,以使第一开关K1截止、第二开关K2导通。
控制第一开关K1截止、控制第二开关K2导通的过程包括:
信号发生器U2判断第一电压输出端Vout1的电压是否小于第二预设电压VL;若是,则输出第一控制信号即高电平信号至第三开关K3的控制端,控制第三开关K3导通,以使第一开关K1导通、第二开关K2截止。
本实施例提供的电源控制电路的驱动方法,通过控制第一开关导通、第二开关截止,来使电压输入端向第一电容和第二电容充电,并使电压输入端通过第一电容和第一逆止器件向第一电压输出端供电;
通过控制第一开关截止、第二开关导通,来使第一电容通过与第二开关和第二逆止器件构成的供电回路向第一电压输出端供电,使第二电容与供电回路并联向第一电压输出端供电,以减少对电压输入端输入的电能的消耗,降低电子产品的待机功耗。
此外,在一个实施例中,还提供一种电子设备,包括上述的电源控制电路。该电子设备可以为教育机、微型投影机、电视等,这里不作严格限制。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1、一种电源控制电路,其特征在于,包括开关控制模块和信号发生模块,所述开关控制模块包括电压输入端、第一电压输出端、第一开关、第二开关、第一电容、第二电容、第一逆止器件和第二逆止器件;
所述第一开关的第一端与所述电压输入端连接,所述第一开关的第二端通过所述第一电容与所述第一逆止器件的正极连接,所述第一逆止器件的负极作为所述第一电压输出端,所述第二开关的第一端连接在所述第一开关与所述第一电容的公共端,所述第二开关的第二端与所述第一逆止器件的负极连接,所述第二逆止器件的正极接地,所述第二逆止器件的负极连接在所述第一电容与所述第一逆止器件的公共端,所述第二电容连接在所述第一逆止器件的负极与地之间;
所述信号发生模块用于控制所述第一开关的截止和导通,控制所述第二开关的截止和导通;
所述第一逆止器件用于在所述第一逆止器件正极的电压大于所述第一逆止器件负极的电压时导通,在所述第一逆止器件正极的电压小于所述第一逆止器件负极的电压时截止;
所述第二逆止器件用于在所述第二逆止器件正极的电压大于所述第二逆止器件负极的电压时导通,在所述第二逆止器件正极的电压小于所述第二逆止器件负极的电压时截止。
2、根据权利要求1所述的电源控制电路,其特征在于,所述第一逆止器件和所述第二逆止器件为二极管。
3、根据权利要求1所述的电源控制电路,其特征在于,所述电源控制电路还包括线性稳压模块,所述线性稳压模块包括线性稳压器、第三电容和第二电压输出端,所述线性稳压器的输入端与所述第一电压输出端连接,所述线性稳压器的输出端与所述第三电容的第一端连接,所述第三电容的第二端接地,所述线性稳压器与所述第三电容的公共端作为第二电压输出端,所述第二电压输出端与负载连接。
4、根据权利要求1所述的电源控制电路,其特征在于,所述第一电压输出端与负载连接。
5、根据权利要求1所述的电路,其特征在于,所述信号发生模块包括第一电阻、第二电阻、第三电阻、第四电阻、第三开关和信号发生器;
所述第一开关的控制端通过所述第一电阻与所述电压输入端连接,所述第一开关的控制端还通过所述第二电阻与所述第三开关的高电位端连接,所述第三开关的低电位端接地,所述第三开关的控制端与所述信号发生器的输出端连接,所述信号发生器的输入端与所述第一电压输出端连接,所述第三开关的控制端还通过所述第三电阻与所述电压输入端连接,所述第四电阻连接在第三开关的控制端与第三开关的低电位端之间,所述第二开关的控制端与所述第三开关和所述第二电阻的公共端连接;
所述信号发生器用于检测所述第一电压输出端的电压,并在所述第一电压输出端的电压大于或等于第一预设电压时,通过控制所述第三开关截止来控制所述第一开关截止、第二开关导通,在所述第一电压输出端的电压小于第二预设电压时,通过控制所述第三开关截止来控制所述第一开关导通、第二开关截止。
6、根据权利要求1~5任一项所述的电路,其特征在于,所述第一开关为PMOS晶体管、所述第二开关和第三开关为NOMS晶体管。
7、一种电源控制电路的驱动方法,其特征在于,应用于权利要求1~6任一项所述的电源控制电路,所述驱动方法包括:
信号发生模块控制第一开关导通、控制第二开关截止,使电压输入端向第一电容和第二电容充电,并通过所述第一电容和第一逆止器件向第一电压输出端供电;
所述信号发生模块控制所述第一开关截止、控制所述第二开关导通,使所述第一电容通过与所述第二开关和第二逆止器件构成的供电回路向所述第一电压输出端供电,使所述第二电容与所述供电回路并联向所述第一电压输出端供电。
8、根据权利要求7所述的驱动方法,其特征在于,所述信号发生模块包括第一电阻、第二电阻、第三电阻、第四电阻、第三开关和信号发生器,则所述控制第一开关导通、控制第二开关截止的过程包括:
信号发生器判断所述第一电压输出端的电压是否大于或等于第一预设电压;
若是,则输出第一控制信号至所述第三开关的控制端,以控制所述第三开关截止,使所述第一开关截止、第二开关导通。
9、根据权利要求8所述的驱动方法,其特征在于,所述控制所述第一开关截止、第二开关导通的过程包括:
所述信号发生器判断所述第一电压输出端的电压是否小于第二预设电压;
若是,则输出第二控制信号至所述第三开关的控制端,以控制所述第三开关导通,使所述第一开关导通、第二开关截止。
10、一种电子设备,其特征在于,包括权利要求1~6任一项所述的电源控制电路。
PCT/CN2016/113613 2016-01-15 2016-12-30 电子设备、电源控制电路及其驱动方法 WO2017121252A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029055.4A CN106981983A (zh) 2016-01-15 2016-01-15 电子设备、电源控制电路及其驱动方法
CN201610029055.4 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121252A1 true WO2017121252A1 (zh) 2017-07-20

Family

ID=59310774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113613 WO2017121252A1 (zh) 2016-01-15 2016-12-30 电子设备、电源控制电路及其驱动方法

Country Status (2)

Country Link
CN (1) CN106981983A (zh)
WO (1) WO2017121252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245526A (zh) * 2018-09-21 2019-01-18 深圳市道通智能航空技术有限公司 一种供电电路及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117397885A (zh) * 2022-06-21 2024-01-16 西安稳先半导体科技有限责任公司 驱动指示灯的系统控制芯片、指示组件及电子雾化装置
WO2023246413A1 (zh) * 2022-06-21 2023-12-28 西安稳先半导体科技有限责任公司 系统控制电路、指示组件及电子雾化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720237A1 (en) * 2005-05-04 2006-11-08 Harman Becker Automotive Systems GmbH Circuit and method for reducing a supply voltage
CN101965676A (zh) * 2008-03-12 2011-02-02 索尼爱立信移动通讯有限公司 具有低电流模式的切换模式电压转换器及以低电流模式进行电压转换的方法
CN102761244A (zh) * 2011-04-27 2012-10-31 瑞昱半导体股份有限公司 电荷泵反馈控制装置及其方法
CN202838077U (zh) * 2012-01-17 2013-03-27 国民技术股份有限公司 一种集成在射频芯片中的电源系统
CN104049663A (zh) * 2013-03-15 2014-09-17 慧荣科技股份有限公司 应用于高负载电流的电荷注入式开关电容稳压器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294343B2 (ja) * 1992-11-13 2002-06-24 松下電工株式会社 電源装置
JP5397067B2 (ja) * 2009-07-29 2014-01-22 株式会社リコー チャージポンプ回路及びその動作制御方法
US7940118B1 (en) * 2009-11-11 2011-05-10 Texas Instruments Incorporated Dying gasp charge controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720237A1 (en) * 2005-05-04 2006-11-08 Harman Becker Automotive Systems GmbH Circuit and method for reducing a supply voltage
CN101965676A (zh) * 2008-03-12 2011-02-02 索尼爱立信移动通讯有限公司 具有低电流模式的切换模式电压转换器及以低电流模式进行电压转换的方法
CN102761244A (zh) * 2011-04-27 2012-10-31 瑞昱半导体股份有限公司 电荷泵反馈控制装置及其方法
CN202838077U (zh) * 2012-01-17 2013-03-27 国民技术股份有限公司 一种集成在射频芯片中的电源系统
CN104049663A (zh) * 2013-03-15 2014-09-17 慧荣科技股份有限公司 应用于高负载电流的电荷注入式开关电容稳压器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245526A (zh) * 2018-09-21 2019-01-18 深圳市道通智能航空技术有限公司 一种供电电路及电子设备
CN109245526B (zh) * 2018-09-21 2024-04-12 深圳市道通智能航空技术股份有限公司 一种供电电路及电子设备

Also Published As

Publication number Publication date
CN106981983A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2017004984A1 (zh) 电源变换器及开关电源装置
CN104836421B (zh) 一种开关电源的供电电路和供电方法
CN101097456A (zh) 电压调节器
US8710903B2 (en) Drive and startup for a switched capacitor divider
WO2015113341A1 (zh) 电子设备充电装置及其电源适配器
WO2015010475A1 (zh) 一种开关电源驱动芯片及开关电源驱动电路
WO2015113344A1 (zh) 电池充电装置及电池充电保护控制方法
WO2011029334A1 (zh) 一种移动终端供电单元及移动终端供电切换方法
WO2015010261A1 (zh) 一种电子烟usb充电器
WO2017219659A1 (zh) 适配器
WO2017121252A1 (zh) 电子设备、电源控制电路及其驱动方法
WO2015113333A1 (zh) 电子设备充电控制装置及方法
WO2020056870A1 (zh) 驱动电路、升压芯片及显示装置
WO2012100406A1 (zh) 一种低压控制电源电路及其产生方法
WO2014154091A1 (zh) 一种恒流驱动控制器及led恒流驱动电路
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2016000259A1 (zh) 一种电源供应器
WO2020113709A1 (zh) 驱动保护电路、显示装置及驱动保护方法
WO2022178718A1 (zh) Poe转usb供电电路及usb转换器
CN205004952U (zh) 一种直流软启动电路
WO2018157418A1 (zh) 一种保护电路及led驱动电路
WO2014059736A1 (zh) Dc/dc变换电路的输出电压检测电路
WO2022103107A1 (ko) 전원 공급 회로
WO2018166030A1 (zh) 双输出反激式电压转换电路及显示装置
CN112583255B (zh) 一种电子设备的供电装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884803

Country of ref document: EP

Kind code of ref document: A1