WO2015010475A1 - 一种开关电源驱动芯片及开关电源驱动电路 - Google Patents
一种开关电源驱动芯片及开关电源驱动电路 Download PDFInfo
- Publication number
- WO2015010475A1 WO2015010475A1 PCT/CN2014/073246 CN2014073246W WO2015010475A1 WO 2015010475 A1 WO2015010475 A1 WO 2015010475A1 CN 2014073246 W CN2014073246 W CN 2014073246W WO 2015010475 A1 WO2015010475 A1 WO 2015010475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- circuit
- pin
- switching
- supply driving
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
Definitions
- the invention belongs to the field of switching power supply driving circuit design, and particularly relates to a switching power supply driving chip and a switching power supply driving circuit.
- FIG. 1 shows a typical structure of a primary-side feedback flyback switching power supply driving circuit provided by the prior art.
- the diode D1, the diode D2, the diode D3 and the diode D4 form a rectifier bridge, and the rectifier bridge and the capacitor C1 together form an input circuit for rectifying and filtering the AC input voltage Vin, and outputting to the primary winding of the transformer T1.
- the diode D5, the capacitor C2 and the resistor R2 constitute an output circuit for performing a rectification and filtering process on the voltage output from the secondary winding of the transformer T1, and then outputting the load to the load.
- the resistor R3 and the resistor R4 divide the voltage fed back through the auxiliary winding of the primary winding of the transformer T1; the switching power supply drives the chip U0 through the feedback pin FB to sample the voltage divider signal of the resistor R3 and the resistor R4, and the voltage dividing signal continues The time is counted to obtain the degaussing time, and then the internal frequency tube switching frequency control signal is generated according to the current value and the degaussing time detected by the current detecting pin CS, and the corresponding pulse width modulation signal is output through the internal power tube drain pin LX.
- the auxiliary winding of the transformer T1 the voltage dividing resistor R3 and the voltage dividing resistor R4 are used to provide the degaussing detection signal for the feedback pin FB of the switching power supply driving chip U0, and
- the auxiliary winding of the transformer T1 needs to be used to supply power to the switching power supply driving chip U0 through the diode D6 and the resistor R5, so that the switching power supply driving chip U0 has many peripheral circuit devices, high cost, large occupied area, and low operational reliability.
- the object of the embodiments of the present invention is to provide a switching power supply driving circuit, which aims to solve the problem that the existing primary feedback flyback switching power supply driving circuit uses the auxiliary winding of the transformer to realize the degaussing signal detection, so that the switching power supply drives the periphery of the chip.
- a switching power supply driving circuit includes a transformer, an input circuit and an output circuit, and the switching power supply driving circuit further includes a switching circuit connected in series to the input circuit to the transformer power supply path.
- the switching circuit includes a switching power supply driving chip, and the switching power supply driving chip includes:
- a drain of the power tube Q1 is connected to a power tube drain pin of the switching power supply driving chip, and a source of the power tube Q1 is connected to a current detecting pin of the switching power supply driving chip;
- a pulse frequency modulation control circuit for connecting a feedback pin of the switching power supply driving chip, the current detecting pin, and a gate of the power transistor Q1, for detecting a feedback voltage according to the feedback pin and the The current input current value detected by the current detecting pin outputs a pulse width modulation signal corresponding to the duty ratio to the gate of the power tube Q1 to adjust the switching frequency of the power tube Q1;
- a quasi-resonant control and a valley detecting circuit connected to the feedback pin, configured to obtain a valley bottom in a quasi-resonant state after demagnetizing the primary winding of the transformer according to the feedback voltage, and output a valley detecting signal;
- a power supply circuit connecting the power supply pin of the switching power supply driving chip, the power tube drain pin, the quasi-resonance control and the valley detecting circuit, and the pulse frequency modulation control circuit, when the power supply voltage of the power supply pin is higher than a minimum
- the switching power supply driving chip is powered from the positive output end of the input circuit through the power tube drain pin.
- Another object of the present invention is to provide a switching power supply driving chip, where the switching power supply driving chip includes:
- a drain of the power tube Q1 is connected to a power tube drain pin of the switching power supply driving chip, and a source of the power tube Q1 is connected to a current detecting pin of the switching power supply driving chip;
- a pulse frequency modulation control circuit for connecting a feedback pin of the switching power supply driving chip, the current detecting pin, and a gate of the power transistor Q1, for detecting a feedback voltage according to the feedback pin and the The current input current value detected by the current detecting pin outputs a pulse width modulation signal corresponding to the duty ratio to the gate of the power tube Q1 to adjust the switching frequency of the power tube Q1;
- a quasi-resonant control and a valley detecting circuit connected to the feedback pin, configured to obtain a valley bottom in a quasi-resonant state after demagnetizing the primary winding of the transformer according to the feedback voltage, and output a valley detecting signal;
- the switching power supply driving chip is determined to receive power from the positive output terminal of the external input circuit through the power tube drain pin according to the bottom detecting signal.
- the switching power supply driving chip detects the valley bottom in the quasi-resonant state after the transformer is demagnetized by using the quasi-resonance control and the valley bottom detecting circuit, and the power supply circuit is powered according to the detected valley bottom and the chip.
- the current voltage value of the pin determines whether it needs to supply power to the power supply pin through the power tube drain pin of the chip, and the pulse frequency modulation control circuit adjusts the power tube Q1 in the chip according to the value of the feedback pin and the current detection pin of the chip.
- the switching frequency is to achieve a constant voltage or constant current output of the switching power supply driving circuit.
- the switching power supply driving circuit using the switching power supply driving chip does not need to utilize the auxiliary winding, and does not need the auxiliary winding to drive the intermediate device on the power supply path of the chip, so that the switching power supply drives the peripheral circuit device of the chip.
- the utility model reduces the cost of the switching power supply driving circuit, improves the integration degree of the switching power supply driving circuit, reduces the occupied area of the board surface, and improves the reliability of the system operation.
- the power supply circuit determines whether the switching power supply driving chip takes power from the positive output terminal of the input circuit through the drain pin of the power tube according to the bottom detecting signal, thereby realizing the dynamic adjustment of the power taking.
- FIG. 1 is a circuit diagram of a primary side feedback flyback switching power supply driving circuit provided by the prior art
- FIG. 2 is a circuit diagram of a switching power supply driving circuit according to an embodiment of the present invention.
- FIG. 3 is a circuit schematic diagram of the switching power supply driving chip of FIG. 2;
- Figure 4 is a circuit diagram of the power supply circuit of Figure 3.
- FIG. 5 is a waveform comparison diagram between a feedback voltage, a valley detection signal, and a voltage of a power tube drain pin in the embodiment of the present invention
- Figure 6 is a circuit diagram of the low standby control circuit of Figure 3.
- Figure 7 is a circuit diagram of the quasi-resonant control and valley bottom detecting circuit of Figure 3;
- FIG. 8 is a waveform comparison diagram between the voltage of the drain pin of the power transistor and the voltage of the current detecting pin in the embodiment of the present invention.
- the present invention provides a switching power supply driving chip and a switching power supply driving circuit.
- the chip uses a quasi-resonant control and a valley detection circuit to detect the valley bottom in the quasi-resonant state after the transformer is demagnetized.
- the power supply circuit determines whether it needs to pass the power tube drain of the chip according to the detected valley bottom and the current voltage value of the chip power supply pin VDD.
- the pin LX supplies power to the power supply pin VDD, and the pulse frequency modulation control circuit adjusts the switching frequency of the power tube Q1 in the chip according to the value of the feedback pin FB and the current detection pin CS of the chip, so as to realize the constant of the switching power supply driving circuit. Pressure or constant current output.
- FIG. 2 shows a circuit of a switching power supply driving circuit according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown.
- the switching power supply driving circuit includes a transformer T2, and further includes: an input circuit 1 for performing rectification and filtering processing on the AC input voltage Vin; and outputting the secondary winding and the load of the transformer T2 in series
- the output circuit 3 is used for rectifying and filtering the voltage output from the secondary winding of the transformer T2 and outputting it to the load;
- the switching circuit 2 connected in series with the input circuit 1 to the power supply path of the transformer T2 is used for detecting the primary side of the transformer T2.
- the current input current value of the winding and the feedback voltage of the primary winding of the transformer T2 according to the feedback voltage, the bottom of the transformer T2 is demagnetized and then in the quasi-resonant state, and the power is taken from the input circuit 1 according to the obtained valley bottom. And adjusting the switching frequency of the internal power tube according to the feedback voltage and the current input current value so that the output of the output circuit 3 is constant.
- the input circuit 1 may include: a capacitor C4, and a rectifier bridge composed of a diode D7, a diode D8, a diode D9, and a diode D10.
- the two input ends of the rectifier bridge are connected to the AC input voltage Vin
- the capacitor C4 is connected in parallel between the positive output terminal and the negative output terminal of the rectifier bridge
- the end of the capacitor C4 connected to the positive output terminal serves as the positive output terminal of the input circuit 1
- the capacitor One end of the C4 connected to the negative output terminal serves as the negative output terminal of the input circuit 1.
- the output circuit 3 may include a diode D11, a capacitor C6, and a resistor R9.
- the anode of the diode D11 is connected to the first end of the secondary winding of the transformer T2, and the capacitor C6 and the resistor R9 are connected in parallel between the cathode of the diode D11 and the second end of the secondary winding of the transformer T2, respectively.
- the switch circuit 2 may include: a switching power supply driving chip 12, a capacitor C5, a resistor R6, a resistor R7, and a resistor R8.
- the power supply pin VDD of the switching power supply driving chip 12 is connected to the signal ground through the capacitor C5, the signal grounding pin GND of the switching power supply driving chip 12 is connected to the signal ground, and the power source drain pin LX of the switching power supply driving chip 12 is connected to the input circuit 1
- the positive output terminal, the current detecting pin CS of the switching power supply driving chip 12 is connected to the first end of the primary winding of the transformer T2 via the resistor R6 and the signal ground, and the resistor R7 and the resistor R8 are sequentially connected in series to the primary winding of the transformer T2.
- the second end of the primary winding of the transformer T2 is connected to the negative output end of the input circuit 1, and the end connected to the resistor R8 and the resistor R8 is simultaneously connected to the feedback pin FB of the switching power supply driving chip 12.
- the switching power supply driving chip 12 is configured to detect the current input current value of the primary winding of the transformer T2 through the current detecting pin CS, detect the feedback voltage of the primary winding of the transformer T2 through the feedback pin FB, and then obtain the transformer T2 according to the feedback voltage. After the primary winding is demagnetized, the bottom of the quasi-resonant state is determined according to the obtained valley bottom.
- the switching power supply driving chip 12 receives power from the positive output terminal of the input circuit 1 through the power tube drain pin LX, and according to the feedback voltage and current The input current value adjusts the switching frequency of the internal power tube such that the output of the output circuit 3 is constant.
- FIG. 3 shows a circuit principle of the switching power supply driving chip 12 of FIG.
- the switching power supply driving chip 12 may include: an NMOS type power tube Q1, a drain of the power tube Q1 is connected to the power tube drain pin LX, a source of the power tube Q1 is connected to the current detecting pin CS; and a feedback feedback pin is connected.
- Pulse frequency modulation of the gate of FB, current sense pin CS and power transistor Q1 Pulse Frequency Modulation, PFM) control circuit 123, for outputting a corresponding duty cycle pulse width modulation to the gate of the power tube Q1 according to the feedback voltage detected by the feedback pin FB and the current input current value detected by the current detecting pin CS a signal to adjust the switching frequency of the power transistor Q1 so that the output of the output circuit 3 is constant; a quasi-resonant control and a valley detecting circuit 124 connected to the feedback pin FB for obtaining the transformer T2 according to the feedback voltage detected by the feedback pin FB The primary winding is degaussed in the bottom of the quasi-resonant state, and outputs a valley detecting signal VB; the power supply pin VDD, the power tube drain pin LX, the quasi-resonance control and valley detecting circuit 124, and the pulse frequency modulation control circuit 123 are connected.
- PFM Pulse Frequency Modulation
- the power supply circuit 121 is configured to determine, when the supply voltage of the power supply pin VDD is higher than the minimum operating voltage limit, the switching power supply driving chip 12 from the positive output terminal of the input circuit 1 through the power tube drain pin LX according to the bottom bottom detection signal VB. Take power or not.
- the switching power supply driving chip 12 may further include: a low standby device that connects the power supply circuit 121, the pulse frequency modulation control circuit 123, and/or the quasi-resonance control and the valley detecting circuit 124.
- the control circuit 122 is configured to detect the switching frequency of the power tube Q1 according to the pulse width modulation signal output by the pulse frequency modulation control circuit 123.
- the control power supply circuit 121, the pulse frequency modulation control circuit 123, and/or Or the quasi-resonance control and valley detection circuit 124 is in a zero current loss state, that is, a zero power consumption state (commonly called stop operation) to reduce the light load loss of the system, and then when the switching frequency reaches a preset value, the power supply circuit 121 and the pulse are controlled.
- the frequency modulation control circuit 123 and/or the quasi-resonance control and valley sensing circuit 124 are in a normal current loss state (commonly referred to as normal operation).
- FIG. 4 shows the circuit of the power supply circuit 121 of FIG.
- the power supply circuit 121 may include a resistor R10, a resistor R11, a resistor R12, a comparator A1, a comparator A2, a NOT gate U1, an AND gate U2, an NMOS transistor Q2, an NMOS transistor Q3, and a junction field effect transistor J1.
- the resistor R10 and the resistor R11 are sequentially connected in series between the power supply pin VDD and the signal ground, and the end of the resistor R10 and the resistor R11 is simultaneously connected to the inverting input terminal of the comparator A1 and the non-inverting input terminal of the comparator A2, the comparator The non-inverting input terminal of A1 is connected to the second reference voltage VR2, the inverting input terminal of the comparator A2 is connected to the first reference voltage VR1, and VR2>VR1; the output end of the comparator A1 is connected to the first input end of the non-gate U1, and the comparison is made.
- the output end of the A2 is connected to the first input end of the AND gate U2, the second input end of the NOT gate U1 is connected to the quasi-resonance control and the valley detecting circuit 124, and the output end of the NOT gate U1 is connected to the second input end of the AND gate U2,
- the output end of the gate U2 is connected to the gate of the NMOS transistor Q2; the source of the NMOS transistor Q2 is connected to the signal ground, and the drain of the NMOS transistor Q2 is connected to the gate of the NMOS transistor Q3 and the gate of the junction field effect transistor J1; the NMOS transistor Q3
- the source is connected to the power supply pin VDD, the drain of the NMOS transistor Q3 is connected to the source of the junction FET J1, the drain of the junction FET J1 is connected to the power transistor drain pin LX; the junction field effect transistor J1
- the gate is connected to the source of the junction field effect transistor J1 through a resistor R12.
- the switching power supply driving chip 12 directly takes power from the power tube drain pin LX, the power of the switching power supply driving chip 12 is equivalent to the product of the operating current and the voltage of the power tube drain pin LX, when using FIG.
- the switching power supply driving chip 12 can operate in the discontinuous mode, and the external capacitor C5 of the power supply pin VDD is charged at the quasi-resonant valley bottom position after the degaussing time ends, and the power tube is leaked at the quasi-resonant valley position.
- the voltage of the pole pin LX is reduced to the lowest value, thereby reducing the power consumption of the switching power supply driving chip 12, see the feedback voltage VFB, the valley detecting signal VB, and the voltage of the power tube drain pin LX shown in FIG. A waveform comparison diagram between VLX, where VU represents the grid voltage.
- the power supply circuit 121 may further include: a switch K1, a switch K2, and a switch K3.
- the resistor R10 is connected to the power supply pin VDD through the switch K1
- the power terminal of the comparator A1 is connected to the power supply pin VDD through the switch K2
- the power terminal of the comparator A2 is connected to the power supply pin VDD through the switch K3, and the switch
- the opening and closing state of K1, switch K2, and switch K3 is controlled by the low standby control circuit 122.
- FIG. 6 shows the circuit of the low standby control circuit 122 of FIG.
- the low standby control circuit 122 may include an RS flip-flop U3, and may further include an oscillator 1221 connected to the pulse frequency modulation control circuit 123 for triggering the pulse width modulation signal output by the pulse frequency modulation control circuit 123.
- An oscillating signal is generated; a counter 1222 connected to the oscillator 1221 is configured to count the oscillating signal, and output a count value to the R pin of the RS flip-flop U3; and a switching frequency detecting circuit 1223 connected to the pulse frequency modulation control circuit 123,
- the switching frequency of the power tube Q1 is obtained, and when the switching frequency is lower than the preset value, the trigger signal is output to the S pin of the RS flip-flop U3, and the RS flip-flop U3
- the output pin Q of the RS flip-flop U3 is a control enable terminal
- the low standby control circuit 122 controls the power supply circuit 121 when the control power supply circuit 121, the pulse frequency modulation control circuit 123, and/or the quasi-resonance control and the valley detecting circuit 124 are in a zero current loss state, that is, a zero power consumption state.
- the pulse frequency modulation control circuit 123 and the quasi-resonance control and valley detection circuit 124 are in a zero current loss state, that is, a zero power consumption state, except for the reference power source, the oscillator 1221, and the counter 1222.
- the power supply terminal of the pulse frequency modulation control circuit 123 is also connected to the power supply pin VDD through the switch K4, and the opening and closing state of the switch K4. Controlled by the RS flip-flop U3.
- FIG. 7 shows the circuitry of the quasi-resonant control and valley sensing circuit 124 of FIG.
- the quasi-resonant control and valley detecting circuit 124 may include a comparator A3, the inverting terminal of the comparator A3 is connected to the feedback pin FB, the in-phase terminal of the comparator A3 is connected to the signal ground, and the output terminal of the comparator A3 is connected to the power supply circuit. 121.
- the quasi-resonance control and valley detecting circuit 124 may further include: a switch K5. At this time, the power supply terminal of the comparator A3 is connected to the power supply pin VDD through the switch K5.
- the embodiment of the present invention further provides a switching power supply driving chip as described above, which is not described herein.
- the switching power supply driving chip detects the valley bottom in the quasi-resonant state after the transformer is demagnetized by using the quasi-resonance control and the valley bottom detecting circuit, and the power supply circuit is detected according to the
- the current voltage value of the bottom and chip power supply pin VDD determines whether it needs to supply power to the power supply pin VDD through the power transistor drain pin LX of the chip, and the pulse frequency modulation control circuit is based on the feedback pin FB and the current detection pin of the chip.
- the value of CS adjusts the switching frequency of the power tube Q1 in the chip to achieve constant voltage or constant current output of the switching power supply driving circuit.
- the switching power supply driving circuit using the switching power supply driving chip does not need to utilize the auxiliary winding, and does not need the auxiliary winding to drive the intermediate device on the power supply path of the chip, so that the switching power supply drives the peripheral circuit device of the chip.
- the utility model reduces the cost of the switching power supply driving circuit, improves the integration degree of the switching power supply driving circuit, reduces the occupied area of the board surface, and improves the reliability of the system operation.
- the power supply circuit 121 determines whether the switching power supply driving chip 12 is powered from the positive output terminal of the input circuit 1 through the power tube drain pin LX according to the bottom detecting signal VB, thereby realizing the dynamic adjustment of the power taking.
- the power transistor drain pin LX can charge the external capacitor C5 of the power supply pin VDD at the quasi-resonant valley position, and the voltage of the power tube drain pin LX is reduced to the lowest value at the quasi-resonant valley position.
- the purpose of reducing the power consumption of the switching power supply driving chip 12 is achieved.
- the switching power supply driving chip provided by the present invention can also be applied to the switching power supply driving circuit in the prior art using the auxiliary winding shown in FIG. 1, and can also be applied to the buck topology, the buck-boost voltage. Topology, and other switching power supply driver circuits for boost topologies.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明属于开关电源驱动电路设计领域,提供了一种开关电源驱动芯片及开关电源驱动电路。其中,芯片利用准谐振控制及谷底检测电路检测变压器消磁后在准谐振状态下的谷底,供电电路根据检测到的谷底和芯片的供电引脚的当前电压值决定是否需要通过芯片的功率管漏极引脚向供电引脚供电,同时脉冲频率调制控制电路根据芯片的反馈引脚和电流检测引脚的值,调整芯片中功率管的开关频率,以实现开关电源驱动电路的恒压或恒流输出。采用该芯片的开关电源驱动电路无需利用辅助绕组,从而使得开关电源驱动芯片的外围电路器件减少,降低了开关电源驱动电路的成本,提高集成度,减少板面面积,提高系统工作可靠性,并实现了取电的动态调整。
Description
本发明属于开关电源驱动电路设计领域,尤其涉及一种开关电源驱动芯片及开关电源驱动电路。
在原边反馈反激式开关电源驱动电路中,利用变压器原边绕组的反馈信号,实现对输出的控制。如图1示出了现有技术提供的原边反馈反激式开关电源驱动电路的一种典型结构。
其中,二极管D1、二极管D2、二极管D3和二极管D4构成整流桥,该整流桥与电容C1共同构成输入电路,用于将交流输入电压Vin进行整流及滤波处理后,输出给变压器T1的原边绕组;其中,二极管D5、电容C2和电阻R2构成输出电路,用于将变压器T1的副边绕组输出的电压进行整流滤波处理后,输出给负载。电阻R3和电阻R4对经由变压器T1原边绕组的辅助绕组反馈的电压进行分压;开关电源驱动芯片U0中通过反馈引脚FB采样电阻R3和电阻R4的分压信号,对该分压信号持续时间进行计时,得到消磁时间,之后根据电流检测引脚CS检测到的电流值和消磁时间生成内部功率管的开关频率控制信号并通过内部功率管漏极引脚LX输出相应的脉冲宽度调制信号。
但现有技术提供的上述开关电源驱动电路中,由于需利用变压器T1的辅助绕组、以及分压电阻R3和分压电阻R4来为开关电源驱动芯片U0的反馈引脚FB提供消磁检测信号,且需利用变压器T1的辅助绕组通过二极管D6和电阻R5向开关电源驱动芯片U0供电,使得开关电源驱动芯片U0的外围电路器件较多,成本较高、占用面积较大、工作可靠性低。
本发明实施例的目的在于提供一种开关电源驱动电路,旨在解决现有的原边反馈反激式开关电源驱动电路采用变压器的辅助绕组实现消磁信号的检测,使得其开关电源驱动芯片的外围电路器件较多、成本较高、占用面积较大、工作可靠性低的问题。
本发明实施例是这样实现的,一种开关电源驱动电路,包括变压器,输入电路和输出电路,所述开关电源驱动电路还包括串联在所述输入电路向所述变压器供电通路上的开关电路,所述开关电路包括开关电源驱动芯片,所述开关电源驱动芯片包括:
功率管Q1,所述功率管Q1的漏极连接所述开关电源驱动芯片的功率管漏极引脚,所述功率管Q1的源极连接所述开关电源驱动芯片的电流检测引脚;
连接所述开关电源驱动芯片的反馈引脚、所述电流检测引脚和所述功率管Q1的栅极的脉冲频率调制控制电路,用于根据所述反馈引脚检测到的反馈电压和所述电流检测引脚检测到的当前输入电流值,向所述功率管Q1的栅极输出相应占空比的脉冲宽度调制信号,以调整所述功率管Q1的开关频率;
连接所述反馈引脚的准谐振控制及谷底检测电路,用于根据所述反馈电压,得到所述变压器的原边绕组消磁后在准谐振状态下的谷底,并输出谷底检测信号;
连接所述开关电源驱动芯片的供电引脚、功率管漏极引脚、准谐振控制及谷底检测电路和脉冲频率调制控制电路的供电电路,用于当所述供电引脚的供电电压高于最小工作电压限制时,根据所述谷底检测信号确定所述开关电源驱动芯片通过所述功率管漏极引脚从所述输入电路的正输出端取电与否。
本发明实施例的另一目的在于提供一种开关电源驱动芯片,所述开关电源驱动芯片包括:
功率管Q1,所述功率管Q1的漏极连接所述开关电源驱动芯片的功率管漏极引脚,所述功率管Q1的源极连接所述开关电源驱动芯片的电流检测引脚;
连接所述开关电源驱动芯片的反馈引脚、所述电流检测引脚和所述功率管Q1的栅极的脉冲频率调制控制电路,用于根据所述反馈引脚检测到的反馈电压和所述电流检测引脚检测到的当前输入电流值,向所述功率管Q1的栅极输出相应占空比的脉冲宽度调制信号,以调整所述功率管Q1的开关频率;
连接所述反馈引脚的准谐振控制及谷底检测电路,用于根据所述反馈电压,得到所述变压器的原边绕组消磁后在准谐振状态下的谷底,并输出谷底检测信号;
连接所述开关电源驱动芯片的供电引脚、功率管漏极引脚、准谐振控制及谷底检测电路和脉冲频率调制控制电路的供电电路,用于当所述供电引脚的供电电压高于最小工作电压限制时,根据所述谷底检测信号确定所述开关电源驱动芯片通过所述功率管漏极引脚从外部输入电路的正输出端取电与否。
本发明提出的开关电源驱动芯片及开关电源驱动电路中,开关电源驱动芯片利用准谐振控制及谷底检测电路检测变压器消磁后在准谐振状态下的谷底,供电电路根据检测到的谷底和芯片的供电引脚的当前电压值决定是否需要通过芯片的功率管漏极引脚向供电引脚供电,同时脉冲频率调制控制电路根据芯片的反馈引脚和电流检测引脚的值,调整芯片中功率管Q1的开关频率,以实现开关电源驱动电路的恒压或恒流输出。相对于现有技术而言,采用该开关电源驱动芯片的开关电源驱动电路无需利用辅助绕组,且无需辅助绕组向开关电源驱动芯片供电通路上的中间器件,从而使得开关电源驱动芯片的外围电路器件减少,降低了开关电源驱动电路的成本,提高了开关电源驱动电路的集成度,减少了板面占用面积,并提高了系统工作的可靠性。同时,供电电路是根据谷底检测信号确定开关电源驱动芯片通过功率管漏极引脚从输入电路的正输出端取电与否,从而实现了取电的动态调整。
图1是现有技术提供的原边反馈反激式开关电源驱动电路的电路图;
图2是本发明实施例提供的开关电源驱动电路的电路图;
图3是图2中开关电源驱动芯片的一种电路原理图;
图4是图3中供电电路的电路图;
图5是本发明实施例中反馈电压、谷底检测信号、功率管漏极引脚的电压之间的波形比对图;
图6是图3中低待机控制电路的电路图;
图7是图3中准谐振控制及谷底检测电路的电路图;
图8是本发明实施例中功率管漏极引脚的电压与电流检测引脚的电压之间的波形比对图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提出了一种开关电源驱动芯片及开关电源驱动电路。该芯片利用准谐振控制及谷底检测电路检测变压器消磁后在准谐振状态下的谷底,供电电路根据检测到的谷底和芯片的供电引脚VDD的当前电压值决定是否需要通过芯片的功率管漏极引脚LX向供电引脚VDD供电,同时脉冲频率调制控制电路根据芯片的反馈引脚FB和电流检测引脚CS的值,调整芯片中功率管Q1的开关频率,以实现开关电源驱动电路的恒压或恒流输出。
图2示出了本发明实施例提供的开关电源驱动电路的电路,为了便于说明,仅示出了与本发明实施例相关的部分。
详细而言,本发明实施例提供的开关电源驱动电路包括变压器T2,还包括:输入电路1,用于将交流输入电压Vin进行整流滤波处理后输出;串联在变压器T2的副边绕组和负载之间的输出电路3,用于将变压器T2的副边绕组输出的电压进行整流滤波后输出给负载;串联在输入电路1向变压器T2供电通路上的开关电路2,用于检测变压器T2的原边绕组的当前输入电流值及变压器T2的原边绕组的反馈电压,根据反馈电压得到变压器T2的原边绕组消磁后在准谐振状态下的谷底,根据得到的谷底确定从输入电路1取电与否,并根据反馈电压和当前输入电流值调整内部功率管的开关频率,以使得输出电路3的输出恒定。
进一步地,本发明实施例中,输入电路1可包括:电容C4,以及由二极管D7、二极管D8、二极管D9、二极管D10构成的整流桥。整流桥的两个输入端连接交流输入电压Vin,电容C4并联在整流桥的正输出端和负输出端之间,且电容C4与正输出端连接的一端作为输入电路1的正输出端、电容C4与负输出端连接的一端作为输入电路1的负输出端。
进一步地,本发明实施例中,输出电路3可包括:二极管D11,电容C6和电阻R9。二极管D11的阳极连接变压器T2的副边绕组的第一端,电容C6和电阻R9分别并联在二极管D11的阴极和变压器T2的副边绕组的第二端之间。
进一步地,本发明实施例中,开关电路2可包括:开关电源驱动芯片12,电容C5,电阻R6,电阻R7和电阻R8。开关电源驱动芯片12的供电引脚VDD通过电容C5接信号地,开关电源驱动芯片12的接信号地引脚GND接信号地,开关电源驱动芯片12的功率管漏极引脚LX连接输入电路1的正输出端,开关电源驱动芯片12的电流检测引脚CS通过电阻R6连接变压器T2的原边绕组的第一端与信号地,电阻R7和电阻R8顺次串联在变压器T2的原边绕组的第一端和第二端之间,变压器T2的原边绕组的第二端连接输入电路1的负输出端,电阻R7与电阻R8连接的一端同时连接开关电源驱动芯片12的反馈引脚FB。
此时,变压器T2的原边绕组的第一端与变压器T2的副边绕组的第二端互为同名端。开关电源驱动芯片12用于通过电流检测引脚CS检测变压器T2的原边绕组的当前输入电流值,通过反馈引脚FB检测变压器T2的原边绕组的反馈电压,之后根据反馈电压得到变压器T2的原边绕组消磁后在准谐振状态下的谷底,根据得到的谷底确定开关电源驱动芯片12通过功率管漏极引脚LX从输入电路1的正输出端取电与否,并根据反馈电压和当前输入电流值调整内部功率管的开关频率,以使得输出电路3的输出恒定。
图3示出了图2中开关电源驱动芯片12的一种电路原理。
详细地,开关电源驱动芯片12可包括:NMOS型的功率管Q1,功率管Q1的漏极连接功率管漏极引脚LX,功率管Q1的源极连接电流检测引脚CS;连接反馈引脚FB、电流检测引脚CS和功率管Q1的栅极的脉冲频率调制(Pulse
Frequency
Modulation,PFM)控制电路123,用于根据反馈引脚FB检测到的反馈电压和电流检测引脚CS检测到的当前输入电流值,向功率管Q1的栅极输出相应占空比的脉冲宽度调制信号,以调整功率管Q1的开关频率,使得输出电路3的输出恒定;连接反馈引脚FB的准谐振控制及谷底检测电路124,用于根据反馈引脚FB检测到的反馈电压,得到变压器T2的原边绕组消磁后在准谐振状态下的谷底,并输出谷底检测信号VB;连接供电引脚VDD、功率管漏极引脚LX、准谐振控制及谷底检测电路124和脉冲频率调制控制电路123的供电电路121,用于当供电引脚VDD的供电电压高于最小工作电压限制时,根据谷底检测信号VB确定开关电源驱动芯片12通过功率管漏极引脚LX从输入电路1的正输出端取电与否。
进一步地,为了实现低待机功耗,本发明实施例中,开关电源驱动芯片12还可包括:连接供电电路121、脉冲频率调制控制电路123和/或准谐振控制及谷底检测电路124的低待机控制电路122,用于根据脉冲频率调制控制电路123输出的脉冲宽度调制信号检测功率管Q1的开关频率,当开关频率低于预设值时,控制供电电路121、脉冲频率调制控制电路123和/或准谐振控制及谷底检测电路124处于零电流损耗状态,即零功耗状态(俗称停止工作),以降低系统的轻载损耗,之后当开关频率达到预设值时,控制供电电路121、脉冲频率调制控制电路123和/或准谐振控制及谷底检测电路124处于正常电流损耗状态(俗称正常工作)。
图4示出了图3中供电电路121的电路。
详细而言,供电电路121可包括:电阻R10、电阻R11、电阻R12、比较器A1、比较器A2、非门U1、与门U2、NMOS管Q2、NMOS管Q3、结型场效应管J1。其中,电阻R10和电阻R11顺次串联在供电引脚VDD和信号地之间,电阻R10与电阻R11连接的一端同时连接比较器A1的反相输入端和比较器A2的同相输入端,比较器A1的同相输入端连接第二基准电压VR2,比较器A2的反相输入端连接第一基准电压VR1,且有VR2>VR1;比较器A1的输出端连接非门U1的第一输入端,比较器A2的输出端连接与门U2的第一输入端,非门U1的第二输入端连接准谐振控制及谷底检测电路124,非门U1的输出端连接与门U2的第二输入端,与门U2的输出端连接NMOS管Q2的栅极;NMOS管Q2的源极接信号地,NMOS管Q2的漏极连接NMOS管Q3的栅极和结型场效应管J1的栅极;NMOS管Q3的源极连接供电引脚VDD,NMOS管Q3的漏极连接结型场效应管J1的源极,结型场效应管J1的漏极连接功率管漏极引脚LX;结型场效应管J1的栅极通过电阻R12连接结型场效应管J1的源极。
以下详细说明图4所示电路的工作原理:
供电电路121通过电阻R10和电阻R11对供电引脚VDD进行分压,得到的分压Vs分别与第二基准电压VR2和第一基准电压VR1进行比较。根据比较结果,当Vs>VR2,或VR2>Vs>VR1且VB=0时,NMOS管Q2由于栅极为高电平而导通,进而使得NMOS管Q3的栅极为低电平而截止,结型场效应管J1截止,此时,功率管漏极引脚LX停止向供电引脚VDD的外接电容C5充电;当Vs<VR1,或VR2>Vs>VR1且VB=1时,NMOS管Q2由于栅极为低电平而截止,进而使得NMOS管Q3的栅极为高电平而截止,结型场效应管J1导通,此时,功率管漏极引脚LX开始向供电引脚VDD的外接电容C5充电,从而实现了供电电压的动态可调。同时,由于开关电源驱动芯片12直接从功率管漏极引脚LX取电,因此开关电源驱动芯片12的功率相当于工作电流与功率管漏极引脚LX的电压的乘积,当采用图4所示的供电电路时,可使得开关电源驱动芯片12工作在断续模式时在消磁时间结束后的准谐振谷底位置对供电引脚VDD的外接电容C5充电,而在准谐振谷底位置时功率管漏极引脚LX的电压降至最低值,从而起到了降低开关电源驱动芯片12的功耗的目的,参见图5所示的反馈电压VFB、谷底检测信号VB、功率管漏极引脚LX的电压VLX之间的波形比对图,其中的VU表示线网电压。
进一步地,为了实现低待机功耗,当开关电源驱动芯片12还包括低待机控制电路122时,供电电路121还可包括:开关K1、开关K2和开关K3。此时,电阻R10是通过开关K1连接供电引脚VDD的,比较器A1的电源端通过开关K2连接供电引脚VDD,比较器A2的电源端通过开关K3连接所述供电引脚VDD,且开关K1、开关K2、开关K3的开合状态由低待机控制电路122进行控制。
图6示出了图3中低待机控制电路122的电路。
详细而言,低待机控制电路122可包括R-S触发器U3,还可包括:连接脉冲频率调制控制电路123的震荡器1221,用于在脉冲频率调制控制电路123输出的脉冲宽度调制信号的触发下产生震荡信号;连接震荡器1221的计数器1222,用于对震荡信号进行计数,并输出计数值给R-S触发器U3的R引脚;连接脉冲频率调制控制电路123的开关频率检测电路1223,用于根据脉冲频率调制控制电路123输出的脉冲宽度调制信号,得到功率管Q1的开关频率,并当开关频率低于预设值时,输出触发信号给R-S触发器U3的S引脚,R-S触发器U3根据R引脚的计数值和S引脚的触发信号输出相应的控制信号,R-S触发器U3的输出引脚Q为控制使能端,其作用是当供电电路121、脉冲频率调制控制电路123和准谐振控制及谷底检测电路124不工作时,关闭供电电路121、脉冲频率调制控制电路123和/或准谐振控制及谷底检测电路124的电流供应,以减少芯片功耗,此处,不工作是指不参与开关电源驱动芯片12的调制与控制。
此时,低待机控制电路122在控制供电电路121、脉冲频率调制控制电路123和/或准谐振控制及谷底检测电路124处于零电流损耗状态,即零功耗状态时,具体是控制供电电路121、脉冲频率调制控制电路123和准谐振控制及谷底检测电路124中除基准电源、震荡器1221和计数器1222以外的其它电路处于零电流损耗状态,即零功耗状态。
此时,为了实现低待机控制电路122对脉冲频率调制控制电路123的低待机功耗控制,脉冲频率调制控制电路123的供电端还通过开关K4连接供电引脚VDD,且开关K4的开合状态由所述R-S触发器U3控制。
图7示出了图3中准谐振控制及谷底检测电路124的电路。
详细而言,准谐振控制及谷底检测电路124可包括比较器A3,比较器A3的反相端连接反馈引脚FB,比较器A3的同相端接信号地,比较器A3的输出端连接供电电路121。
其中,比较器A3通过比较反馈电压VFB与信号地电位,来检测功率管漏极引脚LX是否低于线网电压,若VFB<VGND,则VB=1,否则VB=0,且仅当VFB<VGND时,功率管Q1才被允许开启,同时,VB也用于控制供电电路121,参见图8所示的功率管漏极引脚LX的电压VLX与电流检测引脚CS的电压VCS之间的波形比对图。
进一步地,为了实现低待机功耗,当开关电源驱动芯片12还包括低待机控制电路122时,准谐振控制及谷底检测电路124还可包括:开关K5。此时,比较器A3的电源端通过开关K5连接供电引脚VDD。
本发明实施例还提出了一种如上所述的开关电源驱动芯片,在此不赘述。
综上所述,本发明提出的开关电源驱动芯片及开关电源驱动电路中,开关电源驱动芯片利用准谐振控制及谷底检测电路检测变压器消磁后在准谐振状态下的谷底,供电电路根据检测到的谷底和芯片的供电引脚VDD的当前电压值决定是否需要通过芯片的功率管漏极引脚LX向供电引脚VDD供电,同时脉冲频率调制控制电路根据芯片的反馈引脚FB和电流检测引脚CS的值,调整芯片中功率管Q1的开关频率,以实现开关电源驱动电路的恒压或恒流输出。相对于现有技术而言,采用该开关电源驱动芯片的开关电源驱动电路无需利用辅助绕组,且无需辅助绕组向开关电源驱动芯片供电通路上的中间器件,从而使得开关电源驱动芯片的外围电路器件减少,降低了开关电源驱动电路的成本,提高了开关电源驱动电路的集成度,减少了板面占用面积,并提高了系统工作的可靠性。同时,供电电路121是根据谷底检测信号VB确定开关电源驱动芯片12通过功率管漏极引脚LX从输入电路1的正输出端取电与否,从而实现了取电的动态调整。另外,功率管漏极引脚LX可在准谐振谷底位置时向供电引脚VDD的外接电容C5充电,而在准谐振谷底位置时功率管漏极引脚LX的电压降至最低值,从而起到了降低开关电源驱动芯片12的功耗的目的。当然,本发明提供的开关电源驱动芯片在实际中,也可应用在图1所示的现有采用辅助绕组时的开关电源驱动电路中,同样也可应用在具有降压拓扑结构、升降压拓扑结构、以及升压拓扑结构的其它开关电源驱动电路中。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (14)
- 一种开关电源驱动电路,包括变压器,输入电路和输出电路,其特征在于,所述开关电源驱动电路还包括串联在所述输入电路向所述变压器供电通路上的开关电路,所述开关电路包括开关电源驱动芯片,所述开关电源驱动芯片包括:功率管Q1,所述功率管Q1的漏极连接所述开关电源驱动芯片的功率管漏极引脚,所述功率管Q1的源极连接所述开关电源驱动芯片的电流检测引脚;连接所述开关电源驱动芯片的反馈引脚、所述电流检测引脚和所述功率管Q1的栅极的脉冲频率调制控制电路,用于根据所述反馈引脚检测到的反馈电压和所述电流检测引脚检测到的当前输入电流值,向所述功率管Q1的栅极输出相应占空比的脉冲宽度调制信号,以调整所述功率管Q1的开关频率;连接所述反馈引脚的准谐振控制及谷底检测电路,用于根据所述反馈电压,得到所述变压器的原边绕组消磁后在准谐振状态下的谷底,并输出谷底检测信号;连接所述开关电源驱动芯片的供电引脚、功率管漏极引脚、准谐振控制及谷底检测电路和脉冲频率调制控制电路的供电电路,用于当所述供电引脚的供电电压高于最小工作电压限制时,根据所述谷底检测信号确定所述开关电源驱动芯片通过所述功率管漏极引脚从所述输入电路的正输出端取电与否。
- 如权利要求1所述的开关电源驱动电路,其特征在于,所述开关电源驱动芯片还包括:连接所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路的低待机控制电路,用于根据所述脉冲宽度调制信号检测所述功率管Q1的开关频率,当所述开关频率低于预设值时,控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路在所述功率管Q1截止时间内处于零电流损耗状态,之后当所述开关频率达到所述预设值时,控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路处于正常电流损耗状态。
- 如权利要求2所述的开关电源驱动电路,其特征在于,所述开关电路还包括电容C5,电阻R6,电阻R7和电阻R8;所述供电引脚通过所述电容C5接信号地,所述开关电源驱动芯片的接信号地引脚接信号地,所述功率管漏极引脚连接所述输入电路的正输出端,所述电流检测引脚通过所述电阻R6连接所述变压器的原边绕组的第一端与信号地,所述电阻R7和所述电阻R8顺次串联在所述变压器的原边绕组的第一端和第二端之间,所述变压器的原边绕组的第二端连接所述输入电路的负输出端,所述电阻R7与所述电阻R8连接的一端同时连接所述开关电源驱动芯片的反馈引脚,所述变压器的原边绕组的第一端与所述变压器的副边绕组的第二端互为同名端。
- 如权利要求2所述的开关电源驱动电路,其特征在于,所述低待机控制电路包括R-S触发器,所述低待机控制电路还包括:连接所述脉冲频率调制控制电路的震荡器,用于在所述脉冲宽度调制信号的触发下产生震荡信号;连接所述震荡器的计数器,用于对所述震荡信号进行计数,并输出计数值给所述R-S触发器的R引脚;连接所述脉冲频率调制控制电路的开关频率检测电路,用于根据所述脉冲宽度调制信号,得到所述功率管Q1的开关频率,并当所述开关频率低于所述预设值时,输出触发信号给所述R-S触发器的S引脚,所述R-S触发器根据所述计数值和所述触发信号输出相应的控制信号,以控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路处于零电流损耗状态或正常电流损耗状态。
- 如权利要求4所述的开关电源驱动电路,其特征在于,所述脉冲频率调制控制电路通过开关K4连接所述供电引脚,且所述开关K4的开合状态由所述R-S触发器控制。
- 如权利要求1所述的开关电源驱动电路,其特征在于,所述供电电路包括:电阻R10、电阻R11、电阻R12、比较器A1、比较器A2、非门U1、与门U2、NMOS管Q2、NMOS管Q3、结型场效应管J1;所述电阻R10和所述电阻R11顺次串联在所述供电引脚和信号地之间,所述电阻R10与所述电阻R11连接的一端同时连接所述比较器A1的反相输入端和所述比较器A2的同相输入端,所述比较器A1的同相输入端连接第二基准电压,所述比较器A2的反相输入端连接第一基准电压,且所述第二基准电压大于所述第一基准电压;所述比较器A1的输出端连接所述非门U1的第一输入端,所述比较器A2的输出端连接所述与门U2的第一输入端,所述非门U1的第二输入端连接所述准谐振控制及谷底检测电路,所述非门U1的输出端连接所述与门U2的第二输入端,所述与门U2的输出端连接所述NMOS管Q2的栅极;所述NMOS管Q2的源极接信号地,所述NMOS管Q2的漏极连接所述NMOS管Q3的栅极和所述结型场效应管J1的栅极;所述NMOS管Q3的源极连接所述供电引脚,所述NMOS管Q3的漏极连接所述结型场效应管J1的源极,所述结型场效应管J1的漏极连接所述功率管漏极引脚;所述结型场效应管J1的栅极通过所述电阻R12连接所述结型场效应管J1的源极。
- 如权利要求6所述的开关电源驱动电路,其特征在于,所述供电电路还包括开关K1、开关K2和开关K3;所述电阻R10是通过所述开关K1连接所述供电引脚的,所述比较器A1的电源端通过所述开关K2连接所述供电引脚,所述比较器A2的电源端通过所述开关K3连接所述供电引脚。
- 如权利要求1所述的开关电源驱动电路,其特征在于,所述准谐振控制及谷底检测电路包括比较器A3,所述比较器A3的反相端连接所述反馈引脚,所述比较器的同相端接信号地,所述比较器A3的输出端连接所述供电电路。
- 如权利要求8所述的开关电源驱动电路,其特征在于,所述准谐振控制及谷底检测电路还包括开关K5,所述比较器A3的电源端通过所述开关K5连接所述供电引脚。
- 一种开关电源驱动芯片,其特征在于,所述开关电源驱动芯片包括:功率管Q1,所述功率管Q1的漏极连接所述开关电源驱动芯片的功率管漏极引脚,所述功率管Q1的源极连接所述开关电源驱动芯片的电流检测引脚;连接所述开关电源驱动芯片的反馈引脚、所述电流检测引脚和所述功率管Q1的栅极的脉冲频率调制控制电路,用于根据所述反馈引脚检测到的反馈电压和所述电流检测引脚检测到的当前输入电流值,向所述功率管Q1的栅极输出相应占空比的脉冲宽度调制信号,以调整所述功率管Q1的开关频率;连接所述反馈引脚的准谐振控制及谷底检测电路,用于根据所述反馈电压,得到所述变压器的原边绕组消磁后在准谐振状态下的谷底,并输出谷底检测信号;连接所述开关电源驱动芯片的供电引脚、功率管漏极引脚、准谐振控制及谷底检测电路和脉冲频率调制控制电路的供电电路,用于当所述供电引脚的供电电压高于最小工作电压限制时,根据所述谷底检测信号确定所述开关电源驱动芯片通过所述功率管漏极引脚从外部输入电路的正输出端取电与否。
- 如权利要求10所述的开关电源驱动芯片,其特征在于,所述开关电源驱动芯片还包括:连接所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路的低待机控制电路,用于根据所述脉冲宽度调制信号检测所述功率管Q1的开关频率,当所述开关频率低于预设值时,控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路在所述功率管Q1截止时间内处于零电流损耗状态,之后当所述开关频率达到所述预设值时,控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路处于正常电流损耗状态。
- 如权利要求11所述的开关电源驱动芯片,其特征在于,所述低待机控制电路包括R-S触发器,所述低待机控制电路还包括:连接所述脉冲频率调制控制电路的震荡器,用于在所述脉冲宽度调制信号的触发下产生震荡信号;连接所述震荡器的计数器,用于对所述震荡信号进行计数,并输出计数值给所述R-S触发器的R引脚;连接所述脉冲频率调制控制电路的开关频率检测电路,用于根据所述脉冲宽度调制信号,得到所述功率管Q1的开关频率,并当所述开关频率低于所述预设值时,输出触发信号给所述R-S触发器的S引脚,所述R-S触发器根据所述计数值和所述触发信号输出相应的控制信号,以控制所述供电电路、脉冲频率调制控制电路和/或准谐振控制及谷底检测电路处于零电流损耗状态或正常电流损耗状态;所述脉冲频率调制控制电路通过开关K4连接所述供电引脚,且所述开关K4的开合状态由所述R-S触发器控制;所述准谐振控制及谷底检测电路包括比较器A3和开关K5,所述比较器A3的反相端连接所述反馈引脚,所述比较器的同相端接信号地,所述比较器A3的输出端连接所述供电电路,所述比较器A3的电源端通过所述开关K5连接所述供电引脚,且所述开关K5的开合状态由所述R-S触发器控制。
- 如权利要求10所述的开关电源驱动芯片,其特征在于,所述供电电路包括:电阻R10、电阻R11、电阻R12、比较器A1、比较器A2、非门U1、与门U2、NMOS管Q2、NMOS管Q3、结型场效应管J1;所述电阻R10和所述电阻R11顺次串联在所述供电引脚和信号地之间,所述电阻R10与所述电阻R11连接的一端同时连接所述比较器A1的反相输入端和所述比较器A2的同相输入端,所述比较器A1的同相输入端连接第二基准电压,所述比较器A2的反相输入端连接第一基准电压,且所述第二基准电压大于所述第一基准电压;所述比较器A1的输出端连接所述非门U1的第一输入端,所述比较器A2的输出端连接所述与门U2的第一输入端,所述非门U1的第二输入端连接所述准谐振控制及谷底检测电路,所述非门U1的输出端连接所述与门U2的第二输入端,所述与门U2的输出端连接所述NMOS管Q2的栅极;所述NMOS管Q2的源极接信号地,所述NMOS管Q2的漏极连接所述NMOS管Q3的栅极和所述结型场效应管J1的栅极;所述NMOS管Q3的源极连接所述供电引脚,所述NMOS管Q3的漏极连接所述结型场效应管J1的源极,所述结型场效应管J1的漏极连接所述功率管漏极引脚;所述结型场效应管J1的栅极通过所述电阻R12连接所述结型场效应管J1的源极。
- 如权利要求13所述的开关电源驱动芯片,其特征在于,所述供电电路还包括开关K1、开关K2和开关K3;所述电阻R10是通过所述开关K1连接所述供电引脚的,所述比较器A1的电源端通过所述开关K2连接所述供电引脚,所述比较器A2的电源端通过所述开关K3连接所述供电引脚。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310316363.1A CN103391010B (zh) | 2013-07-25 | 2013-07-25 | 一种开关电源驱动芯片及开关电源驱动电路 |
CN201310316363.1 | 2013-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015010475A1 true WO2015010475A1 (zh) | 2015-01-29 |
Family
ID=49535194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073246 WO2015010475A1 (zh) | 2013-07-25 | 2014-03-11 | 一种开关电源驱动芯片及开关电源驱动电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103391010B (zh) |
WO (1) | WO2015010475A1 (zh) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107104495A (zh) * | 2017-07-05 | 2017-08-29 | 保力新能源科技(东莞)有限公司 | 充电器 |
CN107360502A (zh) * | 2017-08-30 | 2017-11-17 | 东莞中拓机械技术开发有限公司 | 一种脉宽调制双1000w(ir2)功放模组 |
CN107396245A (zh) * | 2017-08-25 | 2017-11-24 | 东莞中拓机械技术开发有限公司 | 一种脉宽调制700w+700w(pfc)功放模组 |
CN107979150A (zh) * | 2016-10-21 | 2018-05-01 | 广州市君盘实业股份有限公司 | 基于sg3525芯片的数控动态输出充电器 |
CN107979151A (zh) * | 2016-10-21 | 2018-05-01 | 广州市君盘实业股份有限公司 | 基于Top Switch Ⅱ芯片的数控动态输出充电器 |
CN108667285A (zh) * | 2018-04-20 | 2018-10-16 | 深圳市芯飞凌半导体有限公司 | 调整开关频率与负载电流关系的控制电路及开关电源 |
CN108762169A (zh) * | 2018-07-31 | 2018-11-06 | 成都锐成芯微科技股份有限公司 | 电池移除检测电路及其检测方法 |
CN109245289A (zh) * | 2018-10-30 | 2019-01-18 | 广州供电局有限公司 | 基于双开关电源供电电能表的低视载功耗控制电路 |
CN109245568A (zh) * | 2018-09-12 | 2019-01-18 | 杭州海兴电力科技股份有限公司 | 一种交流转直流隔离开关电源电路 |
CN110798938A (zh) * | 2019-11-07 | 2020-02-14 | 杭州优特电源有限公司 | 一种led驱动器 |
CN110829846A (zh) * | 2019-10-12 | 2020-02-21 | 陕西亚成微电子股份有限公司 | 一种应用于开关电源的零电压开关控制电路及方法 |
CN110932528A (zh) * | 2019-12-06 | 2020-03-27 | 杭州必易微电子有限公司 | 自供电控制电路及控制方法以及开关电源电路 |
CN111162678A (zh) * | 2020-01-24 | 2020-05-15 | 杭州必易微电子有限公司 | 隔离式变换器的副边控制电路、控制方法以及隔离式变换器 |
CN112271792A (zh) * | 2020-11-10 | 2021-01-26 | 上海裕芯电子科技有限公司 | 一种低待机功耗的太阳能控制电路 |
CN112448485A (zh) * | 2020-11-03 | 2021-03-05 | 王万辉 | 无线充电电源管理器 |
CN112564046A (zh) * | 2020-12-02 | 2021-03-26 | 郑州嘉晨电器有限公司 | 一种开关电源短路保护电路 |
CN112671213A (zh) * | 2021-01-15 | 2021-04-16 | 苏州博创集成电路设计有限公司 | 反激式开关电源控制电路及应用该电路的控制方法 |
CN112993746A (zh) * | 2021-02-04 | 2021-06-18 | 长春工程学院 | 一种具有多重闭环控制的半导体激光器脉冲驱动器 |
CN113576052A (zh) * | 2021-09-08 | 2021-11-02 | 富海半导体(深圳)有限公司 | 一种可调状态的电子烟驱动芯片及电子烟 |
CN113726172A (zh) * | 2021-07-20 | 2021-11-30 | 北京航天时代激光导航技术有限责任公司 | 一种老化高压电源 |
CN113765379A (zh) * | 2021-08-31 | 2021-12-07 | 湖北三江航天万峰科技发展有限公司 | 基于电流环控制的数字稳压装置及其控制方法 |
CN115001514A (zh) * | 2022-05-30 | 2022-09-02 | 交通运输部南海航海保障中心广州通信中心 | 发信机开关高压电路 |
CN118694147A (zh) * | 2024-08-22 | 2024-09-24 | 中科(深圳)无线半导体有限公司 | 一种耗尽型GaN的开关电源结构 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103391010B (zh) * | 2013-07-25 | 2015-10-21 | 深圳市明微电子股份有限公司 | 一种开关电源驱动芯片及开关电源驱动电路 |
JP6272679B2 (ja) * | 2013-11-22 | 2018-01-31 | ローム株式会社 | 電源制御回路、電源装置および電子機器 |
CN106230263B (zh) * | 2016-07-28 | 2018-11-09 | 天宝电子(惠州)有限公司 | 一种正激式零电压开关电源变换器 |
CN107707123B (zh) * | 2016-08-08 | 2019-09-13 | 三垦电气株式会社 | 电流谐振电源装置 |
CN106301115A (zh) * | 2016-08-29 | 2017-01-04 | 中山英达思迅智能科技有限公司 | 微型步进电机驱动器 |
CN106160498A (zh) * | 2016-08-31 | 2016-11-23 | 重庆佩特电气有限公司 | 用于变桨距控制器的双反馈多路输出开关电源 |
CN107742984B (zh) * | 2017-09-28 | 2020-01-21 | 广州金升阳科技有限公司 | 波谷控制电路及波谷控制方法 |
CN108282096A (zh) * | 2018-04-04 | 2018-07-13 | 深圳市必易微电子有限公司 | 无辅助绕组原边反馈恒压恒流装置及控制芯片 |
CN111884513B (zh) * | 2018-07-09 | 2021-12-03 | 华为数字能源技术有限公司 | 应用于电源适配器的控制电路和电源适配器 |
CN110797948B (zh) * | 2019-11-18 | 2021-10-08 | 深圳市群芯科创电子有限公司 | 一种快充控制电路 |
CN113260115A (zh) * | 2020-02-11 | 2021-08-13 | 深圳市明微电子股份有限公司 | 一种恒流驱动控制电路及系统 |
CN112736851B (zh) * | 2020-12-30 | 2023-11-03 | 上海晶丰明源半导体股份有限公司 | 电压检测与处理电路和方法、开关电源电路、驱动芯片 |
CN113364416B (zh) * | 2021-06-21 | 2023-03-10 | 成都天通电子科技有限公司 | 一种微波脉冲功率放大器栅极馈电的电源电路 |
CN114944763B (zh) * | 2022-07-25 | 2022-10-28 | 陕西中科天地航空模块有限公司 | 一种开关电源频率调节电路 |
CN116032124B (zh) * | 2022-10-27 | 2023-12-19 | 深圳市力生美半导体股份有限公司 | 开关电源及其补电电路、补电方法和芯片 |
CN117412448B (zh) * | 2023-11-03 | 2024-04-16 | 瑞森半导体科技(广东)有限公司 | 电源功率的智能调制方法及线路 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100027300A1 (en) * | 2008-07-30 | 2010-02-04 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for primary-side regulation in off-line switching-mode flyback power conversion system |
CN102136810A (zh) * | 2010-09-08 | 2011-07-27 | 上海岩芯电子科技有限公司 | 一种脉冲频率调制和准谐振双模式调制的微型并网逆变器控制方法 |
CN103023330A (zh) * | 2012-12-18 | 2013-04-03 | 深圳市明微电子股份有限公司 | 一种开关电源及其自适应多模式控制电路 |
CN103066872A (zh) * | 2013-01-17 | 2013-04-24 | 矽力杰半导体技术(杭州)有限公司 | 一种集成开关电源控制器以及应用其的开关电源 |
CN103391010A (zh) * | 2013-07-25 | 2013-11-13 | 深圳市明微电子股份有限公司 | 一种开关电源驱动芯片及开关电源驱动电路 |
CN203398994U (zh) * | 2013-07-25 | 2014-01-15 | 深圳市明微电子股份有限公司 | 一种开关电源驱动芯片及开关电源驱动装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5117980B2 (ja) * | 2008-10-02 | 2013-01-16 | パナソニック株式会社 | エネルギー伝達装置およびエネルギー伝達制御用半導体装置 |
US8755203B2 (en) * | 2008-12-30 | 2014-06-17 | Dialog Semiconductor Inc. | Valley-mode switching schemes for switching power converters |
CN102684460B (zh) * | 2012-05-24 | 2014-07-16 | 佛山市南海赛威科技技术有限公司 | 用于准谐振开关电源的频率软钳位系统及方法 |
CN202634284U (zh) * | 2012-06-18 | 2012-12-26 | 深圳市明微电子股份有限公司 | 一种开关电源及其恒流控制电路 |
CN102969915B (zh) * | 2012-11-19 | 2016-03-02 | 深圳市明微电子股份有限公司 | 一种高功率因数恒流控制电路 |
-
2013
- 2013-07-25 CN CN201310316363.1A patent/CN103391010B/zh active Active
-
2014
- 2014-03-11 WO PCT/CN2014/073246 patent/WO2015010475A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100027300A1 (en) * | 2008-07-30 | 2010-02-04 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for primary-side regulation in off-line switching-mode flyback power conversion system |
CN102136810A (zh) * | 2010-09-08 | 2011-07-27 | 上海岩芯电子科技有限公司 | 一种脉冲频率调制和准谐振双模式调制的微型并网逆变器控制方法 |
CN103023330A (zh) * | 2012-12-18 | 2013-04-03 | 深圳市明微电子股份有限公司 | 一种开关电源及其自适应多模式控制电路 |
CN103066872A (zh) * | 2013-01-17 | 2013-04-24 | 矽力杰半导体技术(杭州)有限公司 | 一种集成开关电源控制器以及应用其的开关电源 |
CN103391010A (zh) * | 2013-07-25 | 2013-11-13 | 深圳市明微电子股份有限公司 | 一种开关电源驱动芯片及开关电源驱动电路 |
CN203398994U (zh) * | 2013-07-25 | 2014-01-15 | 深圳市明微电子股份有限公司 | 一种开关电源驱动芯片及开关电源驱动装置 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107979151B (zh) * | 2016-10-21 | 2024-02-06 | 广州市君盘实业股份有限公司 | 基于Top Switch Ⅱ芯片的数控动态输出充电器 |
CN107979150A (zh) * | 2016-10-21 | 2018-05-01 | 广州市君盘实业股份有限公司 | 基于sg3525芯片的数控动态输出充电器 |
CN107979151A (zh) * | 2016-10-21 | 2018-05-01 | 广州市君盘实业股份有限公司 | 基于Top Switch Ⅱ芯片的数控动态输出充电器 |
CN107979150B (zh) * | 2016-10-21 | 2024-02-06 | 广州市君盘实业股份有限公司 | 基于sg3525芯片的数控动态输出充电器 |
CN107104495A (zh) * | 2017-07-05 | 2017-08-29 | 保力新能源科技(东莞)有限公司 | 充电器 |
CN107396245A (zh) * | 2017-08-25 | 2017-11-24 | 东莞中拓机械技术开发有限公司 | 一种脉宽调制700w+700w(pfc)功放模组 |
CN107396245B (zh) * | 2017-08-25 | 2023-12-22 | 东莞精恒电子有限公司 | 一种脉宽调制700w+700w(pfc)功放模组 |
CN107360502A (zh) * | 2017-08-30 | 2017-11-17 | 东莞中拓机械技术开发有限公司 | 一种脉宽调制双1000w(ir2)功放模组 |
CN107360502B (zh) * | 2017-08-30 | 2023-12-22 | 东莞精恒电子有限公司 | 一种脉宽调制双1000w(ir2)功放模组 |
CN108667285A (zh) * | 2018-04-20 | 2018-10-16 | 深圳市芯飞凌半导体有限公司 | 调整开关频率与负载电流关系的控制电路及开关电源 |
CN108667285B (zh) * | 2018-04-20 | 2024-05-28 | 上海芯飞半导体技术有限公司 | 调整开关频率与负载电流关系的控制电路及开关电源 |
CN108762169A (zh) * | 2018-07-31 | 2018-11-06 | 成都锐成芯微科技股份有限公司 | 电池移除检测电路及其检测方法 |
CN109245568A (zh) * | 2018-09-12 | 2019-01-18 | 杭州海兴电力科技股份有限公司 | 一种交流转直流隔离开关电源电路 |
CN109245568B (zh) * | 2018-09-12 | 2024-05-24 | 杭州海兴电力科技股份有限公司 | 一种交流转直流隔离开关电源电路 |
CN109245289B (zh) * | 2018-10-30 | 2023-12-22 | 广东电网有限责任公司广州供电局 | 基于双开关电源供电电能表的低视载功耗控制电路 |
CN109245289A (zh) * | 2018-10-30 | 2019-01-18 | 广州供电局有限公司 | 基于双开关电源供电电能表的低视载功耗控制电路 |
CN110829846A (zh) * | 2019-10-12 | 2020-02-21 | 陕西亚成微电子股份有限公司 | 一种应用于开关电源的零电压开关控制电路及方法 |
CN110798938A (zh) * | 2019-11-07 | 2020-02-14 | 杭州优特电源有限公司 | 一种led驱动器 |
CN110932528B (zh) * | 2019-12-06 | 2023-02-03 | 杭州必易微电子有限公司 | 自供电控制电路及控制方法以及开关电源电路 |
CN110932528A (zh) * | 2019-12-06 | 2020-03-27 | 杭州必易微电子有限公司 | 自供电控制电路及控制方法以及开关电源电路 |
CN111162678A (zh) * | 2020-01-24 | 2020-05-15 | 杭州必易微电子有限公司 | 隔离式变换器的副边控制电路、控制方法以及隔离式变换器 |
CN112448485A (zh) * | 2020-11-03 | 2021-03-05 | 王万辉 | 无线充电电源管理器 |
CN112271792A (zh) * | 2020-11-10 | 2021-01-26 | 上海裕芯电子科技有限公司 | 一种低待机功耗的太阳能控制电路 |
CN112271792B (zh) * | 2020-11-10 | 2024-06-07 | 上海裕芯电子科技有限公司 | 一种低待机功耗的太阳能控制电路 |
CN112564046B (zh) * | 2020-12-02 | 2023-08-11 | 河南嘉晨智能控制股份有限公司 | 一种开关电源短路保护电路 |
CN112564046A (zh) * | 2020-12-02 | 2021-03-26 | 郑州嘉晨电器有限公司 | 一种开关电源短路保护电路 |
CN112671213A (zh) * | 2021-01-15 | 2021-04-16 | 苏州博创集成电路设计有限公司 | 反激式开关电源控制电路及应用该电路的控制方法 |
CN112671213B (zh) * | 2021-01-15 | 2024-01-12 | 苏州博创集成电路设计有限公司 | 反激式开关电源控制电路及应用该电路的控制方法 |
CN112993746A (zh) * | 2021-02-04 | 2021-06-18 | 长春工程学院 | 一种具有多重闭环控制的半导体激光器脉冲驱动器 |
CN112993746B (zh) * | 2021-02-04 | 2024-04-05 | 长春工程学院 | 一种具有多重闭环控制的半导体激光器脉冲驱动器 |
CN113726172B (zh) * | 2021-07-20 | 2023-06-16 | 北京航天时代激光导航技术有限责任公司 | 一种老化高压电源 |
CN113726172A (zh) * | 2021-07-20 | 2021-11-30 | 北京航天时代激光导航技术有限责任公司 | 一种老化高压电源 |
CN113765379A (zh) * | 2021-08-31 | 2021-12-07 | 湖北三江航天万峰科技发展有限公司 | 基于电流环控制的数字稳压装置及其控制方法 |
CN113576052A (zh) * | 2021-09-08 | 2021-11-02 | 富海半导体(深圳)有限公司 | 一种可调状态的电子烟驱动芯片及电子烟 |
CN115001514A (zh) * | 2022-05-30 | 2022-09-02 | 交通运输部南海航海保障中心广州通信中心 | 发信机开关高压电路 |
CN118694147A (zh) * | 2024-08-22 | 2024-09-24 | 中科(深圳)无线半导体有限公司 | 一种耗尽型GaN的开关电源结构 |
Also Published As
Publication number | Publication date |
---|---|
CN103391010B (zh) | 2015-10-21 |
CN103391010A (zh) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015010475A1 (zh) | 一种开关电源驱动芯片及开关电源驱动电路 | |
CN207559860U (zh) | 谐振变换器 | |
US10056842B2 (en) | Quasi-resonant valley lockout without feedback reference | |
CN102523650B (zh) | 一种led电流检测和控制电路 | |
US7915866B2 (en) | Supercapacitor backup power supply with bi-directional power flow | |
WO2012122701A1 (zh) | 一种电流检测电路及其控制电路和电源转换电路 | |
CN108923657A (zh) | 谐振变换器及其控制电路和控制方法 | |
WO2012163248A1 (zh) | 开关电源控制装置及包含该控制装置的反激式开关电源 | |
WO2012071733A1 (zh) | 一种led驱动电源电路、驱动电源和照明装置 | |
TW201338373A (zh) | 雙開關返馳式功率轉換器 | |
CN104602390B (zh) | 双绕组单级原边反馈的led灯驱动电路 | |
CN108880296A (zh) | 电源转换系统 | |
WO2012100406A1 (zh) | 一种低压控制电源电路及其产生方法 | |
CN109787482A (zh) | 控制芯片及控制方法、恒压恒流装置以及隔离反激pwm系统 | |
US20210036631A1 (en) | Ac-dc converter and ac-dc rectifier | |
CN203398994U (zh) | 一种开关电源驱动芯片及开关电源驱动装置 | |
WO2014154091A1 (zh) | 一种恒流驱动控制器及led恒流驱动电路 | |
TWI711249B (zh) | 輸出過壓感測系統和感測方法 | |
WO2014107926A1 (zh) | Led驱动电路 | |
CN103152896A (zh) | 具有创新架构的大功率led智能电源驱动器 | |
TW202023171A (zh) | 一種準諧振電源控制器 | |
CN209571962U (zh) | 一种双绕组副边反馈开关电源 | |
CN102185468A (zh) | 高压启动开关和检测晶体管复用电路及应用该电路的开关电源 | |
TWI815214B (zh) | 準諧振開關電源及其控制晶片和控制方法 | |
CN202026239U (zh) | 高压启动开关和检测晶体管复用电路及应用该电路的开关电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14828767 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/07/2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14828767 Country of ref document: EP Kind code of ref document: A1 |