WO2017121132A1 - 墨滴体积的校准方法和校准装置、打印设备 - Google Patents

墨滴体积的校准方法和校准装置、打印设备 Download PDF

Info

Publication number
WO2017121132A1
WO2017121132A1 PCT/CN2016/098155 CN2016098155W WO2017121132A1 WO 2017121132 A1 WO2017121132 A1 WO 2017121132A1 CN 2016098155 W CN2016098155 W CN 2016098155W WO 2017121132 A1 WO2017121132 A1 WO 2017121132A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
volume
calibrating
ink droplet
calibration
Prior art date
Application number
PCT/CN2016/098155
Other languages
English (en)
French (fr)
Inventor
赵德江
王浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/520,564 priority Critical patent/US10576738B2/en
Publication of WO2017121132A1 publication Critical patent/WO2017121132A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04535Control methods or devices therefor, e.g. driver circuits, control circuits involving calculation of drop size, weight or volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0456Control methods or devices therefor, e.g. driver circuits, control circuits detecting drop size, volume or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04586Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/0092Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume for metering by volume

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method and a calibration apparatus for calibrating an ink drop volume and a printing apparatus including the same.
  • Inkjet printing technology prints ink droplets into pixels through a printhead.
  • the use of inkjet printing technology to produce OLED display products has the advantages of high material utilization rate and short production time. Therefore, the use of inkjet printing technology to produce OLED display products has received widespread attention and has become a development focus.
  • the use of inkjet printing technology to produce OLED display products has higher requirements on the positional accuracy of printing and the volumetric accuracy of ink droplets. If the positional accuracy of printing is insufficient, ink droplets cannot enter the pixel. If the volumetric accuracy of the ink droplets is insufficient, There will be a display unevenness. Therefore, accurately measuring the drop volume is critical to the performance of the finished product.
  • Existing ink jet printing devices typically measure the volume of ink drops using optical measurement methods.
  • a single ink drop can be accurately measured by optical measurement methods and the measurement time is short.
  • the optical measurement method is to form an optical image of the ink droplets, and then perform fitting processing on the image to calculate the volume of the ink droplets. Therefore, the error of the optical measurement method is large.
  • FIG. 1 is a schematic view of measurement of ink droplets by using an optical measurement method in the prior art
  • FIG. 2 is an enlarged view of a portion A in FIG.
  • Part A is the edge profile of the ink drop 104 and Part B is the center position of the ink drop 104.
  • Optical measurement methods produce two types of errors: one is the error caused by the resolution of the optical lens; the other is the error caused by the estimation of the center position.
  • there is a problem in optical measurement methods that it is not easy to find a preferred measurement parameter, which also causes measurement errors.
  • different types of ink droplets have different refractive indices for light, and thus measurement errors are also generated.
  • the present invention provides a calibration method and calibration of the ink drop volume.
  • the apparatus and the printing apparatus including the same are used to eliminate or reduce errors in the optical measuring method to improve the accuracy of the ink drop volume.
  • a method of calibrating an ink drop volume includes: calculating a first volume of a single ink drop based on the mass and density of the ink drop; and measuring parameters used in the optical measurement method according to the first volume Calibrating; and obtaining a second volume of a single ink drop using an optical measurement method based on the measured parameters after calibration.
  • the optical measurement method acquires the volume of a single ink drop by fitting an optical image of the ink droplet.
  • the method may further include: acquiring a total mass of the plurality of ink droplets; acquiring the number of the plurality of ink droplets; and acquiring a density of the ink droplets.
  • the calculating of the first volume of the single ink droplet may include: calculating a total volume of the plurality of ink droplets according to a total mass and density of the plurality of ink droplets; and according to the plurality of inks The first volume is calculated from the total volume and number of drops.
  • the step of acquiring the total mass of the plurality of ink droplets may include: accommodating a plurality of ink droplets dripping from the nozzle; and measuring a total mass of the plurality of ink droplets.
  • the step of acquiring the number of the plurality of ink droplets may include: recording a first time at which the ink droplet begins to drip; recording a second time at which the ink droplet ends to drop; and according to the second moment
  • the time difference of a moment and the preset drip frequency are used to calculate the number of the plurality of ink droplets.
  • the dropping frequency is the number of ink droplets dripping from the nozzle per unit time.
  • the measurement parameters used in the optical measurement method may include: parameters for processing edges of the optical image of the ink droplets; and parameters for processing the center of the optical image of the ink droplets.
  • the step of acquiring the second volume of the single ink droplet by the optical measurement method according to the measurement parameter after the calibration may include: acquiring a radius of the ink droplet according to the measurement parameter after the calibration; and calculating a single ink according to the radius The second volume of the drop.
  • the step of acquiring the radius of the ink droplet according to the measurement parameter after the calibration may include: acquiring an edge contour of the optical image of the ink droplet according to the parameter for processing the edge of the optical image of the ink droplet after the calibration Obtaining an optical image of the ink droplet according to a parameter for processing the center of the optical image of the ink droplet after calibration a heart point; and obtaining a radius of the ink droplet according to the edge contour and the center point.
  • the method of calibrating the drop volume can be used to fabricate inkjet printing of an OLED display device.
  • a calibration apparatus for a droplet volume comprising: a calculation unit for calculating a first volume of a single ink droplet according to a mass and a density of the ink droplet; and a calibration unit for One volume calibrates the measurement parameters used in the optical measurement method; and a first acquisition unit for acquiring a second volume of a single ink drop using an optical measurement method based on the measured parameters after calibration.
  • the optical measurement method acquires the volume of a single ink drop by fitting an optical image of the ink droplet.
  • the calibration apparatus may further include: a second acquisition unit configured to acquire a total mass of the plurality of ink droplets, a number of the plurality of ink droplets, and a density of the ink droplets.
  • the calculating unit may calculate a total volume of the plurality of ink droplets according to a total mass and a density of the plurality of ink droplets, and may calculate according to a total volume and quantity of the plurality of ink droplets The first volume.
  • the second acquisition unit may include: a container for accommodating a plurality of ink droplets dripping from the nozzle; and a scale for measuring a total mass of the plurality of ink droplets.
  • the second obtaining unit may include: a recording module, configured to record a first time when the ink droplet starts to drop and a second time when the ink droplet ends to drop; and a counting module, configured to The time difference between the second time and the first time and the preset drop frequency are used to calculate the number of the plurality of ink drops.
  • the dropping frequency is the number of ink droplets dripping from the nozzle per unit time.
  • the measurement parameters used in the optical measurement method may include: parameters for processing edges of the optical image of the ink droplets; and parameters for processing the center of the optical image of the ink droplets.
  • the first acquiring unit may include: a radius acquiring module, configured to acquire a radius of the ink droplet according to the measured parameter after the calibration; and a volume calculating module, configured to calculate a single ink droplet according to the radius Second volume.
  • the radius acquisition module may comprise: a first sub-module for arranging the edge for processing the edge of the optical image of the ink droplet after calibration Obtaining an edge contour of the optical image of the ink droplet; a second sub-module for acquiring a center point of the optical image of the ink droplet according to a parameter for processing the center of the optical image of the ink droplet after calibration; and a third sub- And a module for acquiring a radius of the ink droplet according to the edge contour and the center point.
  • a printing apparatus comprising a calibration device for a drop volume according to the invention.
  • the measurement parameters used in the optical measurement method can be calibrated by the accurately calculated first volume of the single ink droplet, thereby obtaining a single ink droplet according to the measurement parameter after the calibration.
  • the second volume is used to eliminate or reduce errors in the optical measurement method and to improve the accuracy of the droplet volume.
  • 1 is a schematic view of measuring ink droplets by using an optical measuring method in the prior art
  • Figure 2 is an enlarged view of a portion A in Figure 1;
  • FIG. 3 is a flow chart of a method of calibrating a drop volume according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a device for calibrating an ink drop volume according to an embodiment of the present invention
  • Figure 5 is a schematic perspective view of a container and a scale of a calibration device for a drop volume of an embodiment of the present invention
  • Figure 6 is a top plan view of the container shown in Figure 5;
  • Figure 7 is a front elevational view of the container and scale of Figure 5.
  • FIG. 3 is a flow chart of a method of calibrating an ink drop volume in accordance with an embodiment of the present invention.
  • the method for calibrating the drop volume according to an embodiment of the present invention may include:
  • Step 1001 Calculate a first volume of a single ink droplet according to the mass and density of the ink droplet;
  • Step 1002 Calibrate the measurement parameters used in the optical measurement method according to the first volume
  • Step 1003 Acquire an second volume of a single ink drop using an optical measurement method based on the measured parameters after calibration.
  • the method may further include: acquiring a total mass of the plurality of ink droplets; acquiring the number of the plurality of ink droplets; and acquiring a density of the ink droplets.
  • the step of calculating the first volume of the individual ink drops may include calculating a total volume of the plurality of ink drops based on the total mass and density of the plurality of ink drops; The first volume is calculated from the total volume and number of ink drops.
  • the total mass of a plurality of ink droplets of number N is M
  • the accuracy of the first volume obtained can be improved by averaging multiple measurements.
  • the density ⁇ of the ink droplets may be provided by the supplier, or the density ⁇ of the ink droplets obtained in advance may be measured.
  • the step of acquiring the total mass of the plurality of ink droplets may include: accommodating a plurality of ink droplets dripping from the nozzle; and measuring a total mass of the plurality of ink droplets. Further, the step of acquiring the number of the plurality of ink droplets may include: recording a first time at which the ink droplet starts to drop; recording a second time at which the ink droplet ends to drop; and presetting the time difference according to the second time and the first time
  • the drop frequency is used to calculate the number of the plurality of ink drops.
  • the dropping frequency is the number of ink droplets dripping from the nozzle per unit time.
  • the nozzle starts to drop ink droplets to the container (105 in Fig. 5), the first time T1 is recorded, and when it is finished, the second time T2 is recorded, and the weighing is measured by the scale (106 in Fig. 5).
  • the total mass M of the ink droplets in the device, and the number of dropped ink droplets N F (T2-T1), where F is the dropping frequency.
  • the dropping frequency F can be in the range of 0-12000.
  • the measurement parameters used in the optical measurement method may include parameters for processing edges of the optical image of the ink droplets and parameters for processing the center of the optical image of the ink droplets.
  • the step of obtaining a second volume of a single ink droplet using an optical measurement method may include: obtaining a radius of the ink droplet based on the measured parameter after the calibration; and calculating a second volume of the ink droplet based on the radius.
  • the edge contour of the optical image of the ink droplet can be acquired according to the parameter for processing the edge of the optical image of the ink droplet after calibration; the center of the optical image for the ink droplet after the calibration can be processed according to the calibration
  • the parameter acquires a center point of the optical image of the ink drop; and the radius of the ink drop can be obtained from the edge contour and the center point.
  • the ink droplet can be equivalent to a sphere, and the volume of the ink droplet can be calculated using the radius of the obtained ink droplet.
  • the measurement parameter used in the optical measurement method can be calibrated by the first volume obtained by the weighing measurement, so that a more accurate edge contour and center point can be obtained by the optical measurement method. That is, a more accurate equivalent sphere radius can be obtained to calculate a more accurate volume of a single ink drop.
  • different measurement parameters can be provided for different kinds of ink droplets, thereby achieving the purpose of accurately measuring the droplet volume.
  • the weighing measurement and the optical measurement are combined with each other to calibrate the measurement parameters used in the optical measurement method according to the result of the weighing measurement, thereby improving the measurement of the optical measurement method. Precision.
  • FIG. 4 is a schematic structural view of a device for calibrating an ink drop volume according to an embodiment of the present invention.
  • the ink droplet volume calibration apparatus may include a calculation unit 101, a calibration unit 102, and a first acquisition unit 103 to perform the respective steps 1001 to 1003 shown in FIG. 3, respectively.
  • the calculation unit 101 is configured to calculate a first volume of a single ink droplet based on the mass and density of the ink droplets.
  • the calibration unit 102 is configured to calibrate the measurement parameters used in the optical measurement method based on the first volume.
  • the first acquisition unit 103 is configured to acquire a second volume of a single ink droplet by an optical measurement method according to the measurement parameter after the calibration.
  • the apparatus for calibrating the droplet volume may further include a second acquisition unit for acquiring the total mass of the plurality of ink droplets, the number of the plurality of ink droplets, and the density of the ink droplets.
  • the calculation unit 101 may calculate the total volume of the plurality of ink droplets according to the total mass and density of the plurality of ink droplets, and may calculate the first according to the total volume and the number of the plurality of ink droplets. One volume.
  • the second acquisition unit comprises a receiver and a scale (which will be described in detail later in connection with Figures 5 to 7).
  • the container is for accommodating a plurality of ink droplets dripping from the nozzle.
  • a scale is used to measure the total mass of multiple drops.
  • the second acquisition unit comprises a recording module and a counting module.
  • the recording module is used to record the first moment at which the ink droplet begins to drip and the second moment at which the ink droplet ends.
  • the counting module is configured to calculate the quantity of the plurality of ink drops according to a time difference between the second time and the first time and a preset dropping frequency.
  • the dropping frequency is the number of ink droplets dripping from the nozzle per unit time.
  • FIG. 5 is a schematic perspective view of a receiver and a scale of a calibration device for a drop volume of an embodiment of the present invention
  • FIG. 6 is a top plan view of the container shown in FIG. 5
  • FIG. 7 is a view of FIG. Front view of the receiver and scale.
  • the receptacle 105 can include an upper portion 108 and a lower portion 109.
  • a non-volatile liquid for example, silicone oil
  • the scale 106 can employ a high precision balance.
  • a docking device 107 corresponding to the head can be provided at the opening of the reservoir 105 to ensure that ink droplets can be dropped into the reservoir 105, thereby further reducing evaporation of the ink droplets during the dropping process.
  • a plurality of nozzles may be disposed on the nozzle, and a control program may be used to control the nozzle to start dropping ink droplets and ending the droplets.
  • the first obtaining unit 103 may include a radius taking module and a volume calculating module.
  • the radius acquisition module is configured to acquire the radius of the ink droplet according to the measurement parameter after the calibration.
  • a volume calculation module is operative to calculate a second volume of a single ink drop based on the radius.
  • the radius acquisition module may include first to third sub-modules.
  • the first sub-module is configured to acquire an edge contour of the optical image of the ink droplet based on parameters used to process the edges of the optical image of the ink droplet after calibration.
  • the second sub-module is for acquiring a center point of the optical image of the ink droplet based on a parameter for processing the center of the optical image of the ink droplet after calibration.
  • a third sub-module is configured to acquire a radius of the ink droplet based on the edge contour and the center point.
  • the measurement parameter used in the optical measurement method can be calibrated by the first volume obtained by the weighing measurement, so that a more accurate edge contour and center point can be obtained by the optical measurement method. , that is, a more accurate equivalent sphere radius can be obtained to calculate a more accurate single drop body product.
  • different measurement parameters can be provided for different kinds of ink droplets, so that the purpose of accurately measuring the ink droplet volume can be achieved.
  • the weighing measurement and the optical measurement are combined with each other to calibrate the measurement parameters used in the optical measurement method according to the result of the weighing measurement, thereby improving the measurement of the optical measurement method. Precision.
  • the apparatus for calibrating the droplet volume according to the present invention can be applied to various printing apparatuses, and in particular, can be applied to an inkjet printing apparatus that manufactures an OLED display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Ink Jet (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

提供了一种墨滴体积的校准方法、校准装置以及包括该校准装置的打印设备,其中校准方法包括:根据墨滴的质量和密度计算单个墨滴的第一体积;根据第一体积对光学测量方法中使用的测量参数进行校准;以及根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积。根据称重测量方法的结果校准光学测量方法中的测量参数,提高了墨滴体积的测量精度。

Description

墨滴体积的校准方法和校准装置、打印设备 技术领域
本发明涉及显示技术领域,尤其涉及一种墨滴体积的校准方法和校准装置以及包括该校准装置的打印设备。
背景技术
喷墨打印技术是通过打印喷头将墨滴打印到像素之中。使用喷墨打印技术制作OLED显示产品具有材料利用率高、制作时间短等优点。因此,采用喷墨打印技术制作OLED显示产品已得到广泛关注,并成为开发重点。采用喷墨打印技术制作OLED显示产品对打印的位置精度和墨滴的体积精度的要求比较高,如果打印的位置精度不够,则墨滴无法进入像素之中,如果墨滴的体积精度不够,则会出现显示不均匀的情况。因此,精确地测量墨滴体积对于制作出的产品的性能至关重要。
现有的喷墨打印设备通常采用光学测量方法对墨滴的体积进行测量。通过光学测量方法可以精确地测量单个墨滴,并且测量时间短。光学测量方法是形成墨滴的光学图像,再对图像进行拟合处理,以计算得到墨滴的体积。因此,光学测量方法的误差较大。
图1为利用现有技术中的光学测量方法对墨滴进行测量的示意图,并且图2为图1中的A部分的放大图。
参见图1和图2,A部分为墨滴104的边缘轮廓,B部分为墨滴104的中心位置。光学测量方法产生的误差有两种:一种是光学镜头的分辨能力造成的误差;另一种是对中心位置的估算造成的误差。此外,在光学测量方法中还存在不容易找到优选的测量参数的问题,这也会造成测量误差。另外,不同品种的墨滴对光的折射率不同,因而也会产生测量误差。
发明内容
为解决上述问题,本发明提供一种墨滴体积的校准方法和校准 装置以及包括该校准装置的打印设备,用于消除或减少光学测量方法中的误差,以提高墨滴体积的精度。
根据本发明的一个方面,提高一种墨滴体积的校准方法,包括:根据墨滴的质量和密度计算单个墨滴的第一体积;根据所述第一体积对光学测量方法中使用的测量参数进行校准;以及根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积。所述光学测量方法通过对墨滴的光学图像进行拟合处理来获取单个墨滴的体积。
根据本发明的实施例,在计算单个墨滴的第一体积的步骤之前还可以包括:获取多个墨滴的总质量;获取所述多个墨滴的数量;以及获取墨滴的密度。
根据本发明的实施例,计算单个墨滴的第一体积的步骤可以包括:根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积;以及根据所述多个墨滴的总体积和数量计算所述第一体积。
根据本发明的实施例,获取多个墨滴的总质量的步骤可以包括:容纳从喷嘴滴出的多个墨滴;以及测量所述多个墨滴的总质量。
根据本发明的实施例,获取所述多个墨滴的数量的步骤可以包括:记录墨滴开始滴出的第一时刻;记录墨滴结束滴出的第二时刻;以及根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量。所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。
根据本发明的实施例,光学测量方法中使用的测量参数可以包括:用于对墨滴的光学图像的边缘进行处理的参数;以及用于对墨滴的光学图像的中心进行处理的参数。
根据本发明的实施例,根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积的步骤可以包括:根据校准之后的测量参数获取墨滴的半径;以及根据所述半径计算单个墨滴的第二体积。
根据本发明的实施例,根据校准之后的测量参数获取墨滴的半径的步骤可以包括:根据校准之后的用于对墨滴的光学图像的边缘进行处理的参数获取墨滴的光学图像的边缘轮廓;根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中 心点;以及根据所述边缘轮廓和所述中心点获取墨滴的半径。
根据本发明的实施例,所述墨滴体积的校准方法可以用于制造OLED显示器件的喷墨打印。
根据本发明的另一个方面,提供一种墨滴体积的校准装置,包括:计算单元,用于根据墨滴的质量和密度计算单个墨滴的第一体积;校准单元,用于根据所述第一体积对光学测量方法中使用的测量参数进行校准;以及第一获取单元,用于根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积。所述光学测量方法通过对墨滴的光学图像进行拟合处理来获取单个墨滴的体积。
根据本发明的实施例,所述校准装置还可以包括:第二获取单元,用于获取多个墨滴的总质量、所述多个墨滴的数量和墨滴的密度。
根据本发明的实施例,所述计算单元可以根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积,并且可以根据所述多个墨滴的总体积和数量计算所述第一体积。
根据本发明的实施例,所述第二获取单元可以包括:容纳器,用于容纳从喷嘴滴出的多个墨滴;以及称重器,用于测量所述多个墨滴的总质量。
根据本发明的实施例,所述第二获取单元可以包括:记录模块,用于记录墨滴开始滴出的第一时刻和墨滴结束滴出的第二时刻;以及计数模块,用于根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量。所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。
根据本发明的实施例,光学测量方法中使用的测量参数可以包括:用于对墨滴的光学图像的边缘进行处理的参数;以及用于对墨滴的光学图像的中心进行处理的参数。
根据本发明的实施例,所述第一获取单元可以包括:半径获取模块,用于根据校准之后的测量参数获取墨滴的半径;以及体积计算模块,用于根据所述半径计算单个墨滴的第二体积。
根据本发明的实施例,所述半径获取模块可以包括:第一子模块,用于根据校准之后的用于对墨滴的光学图像的边缘进行处理的参 数获取墨滴的光学图像的边缘轮廓;第二子模块,用于根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中心点;以及第三子模块,用于根据所述边缘轮廓和所述中心点获取墨滴的半径。
根据本发明的实施例,提供一种打印设备,其包括根据本发明的墨滴体积的校准装置。
根据本发明的墨滴体积的校准方法和校准装置,可以通过准确计算的单个墨滴的第一体积对光学测量方法中使用的测量参数进行校准,从而根据校准之后的测量参数获取单个墨滴的第二体积,以消除或减少光学测量方法中的误差,并提高墨滴体积的精度。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为利用现有技术中的光学测量方法对墨滴进行测量的示意图;
图2为图1中的A部分的放大图;
图3为根据本发明实施例的墨滴体积的校准方法的流程图;
图4为根据本发明实施例的墨滴体积的校准装置的结构示意图;
图5为用于本发明实施例的墨滴体积的校准装置的容纳器和称重器的示意性透视图;
图6为图5所示容纳器的俯视示意图;以及
图7为图5所示容纳器和称重器的前视示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对根据本发明各实施例的墨滴体积的校准方法和校准装置以及包括校准装置的打印设备进行详细描述。
图3为根据本发明实施例的墨滴体积的校准方法的流程图。
如图3所示,根据本发明实施例的墨滴体积的校准方法可以包括:
步骤1001:根据墨滴的质量和密度计算单个墨滴的第一体积;
步骤1002:根据所述第一体积对光学测量方法中使用的测量参数进行校准;以及
步骤1003:根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积。
根据本发明的实施例,在计算单个墨滴的第一体积的步骤之前还可以包括:获取多个墨滴的总质量;获取所述多个墨滴的数量;以及获取墨滴的密度。在此情况下,计算单个墨滴的第一体积的步骤(步骤1001)可以包括:根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积;以及根据所述多个墨滴的总体积和数量计算所述第一体积。例如,数量为N的多个墨滴的总质量为M,并且墨滴的密度ρ,可以计算出N个墨滴的总体积V=M/ρ,然后计算出单个墨滴的第一体积v=V/N。此外,可以通过多次测量求平均值的方式来提高所获得的第一体积的精准度。可以由供应商提供墨滴的密度ρ,或者测量预先得到墨滴的密度ρ。
根据本发明的实施例,获取多个墨滴的总质量的步骤可以包括:容纳从喷嘴滴出的多个墨滴;以及测量所述多个墨滴的总质量。此外,获取多个墨滴的数量的步骤可以包括:记录墨滴开始滴出的第一时刻;记录墨滴结束滴出的第二时刻;以及根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量。所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。例如,当喷嘴开始向容纳器(图5中的105)滴出墨滴时,记录第一时刻T1,当结束时,记录第二时刻T2,利用称重器(图5中的106)测量容纳器内墨滴的总质量M,并且计算滴出的墨滴的数量N=F(T2-T1),其中F为滴出频率。滴出频率F可以在0-12000的范围内。
根据本发明的实施例,光学测量方法中使用的测量参数可以包括用于对墨滴的光学图像的边缘进行处理的参数和用于对墨滴的光学图像的中心进行处理的参数。在此情况下,根据校准之后的测量参 数利用光学测量方法获取单个墨滴的第二体积的步骤(步骤1003)可以包括:根据校准之后的测量参数获取墨滴的半径;以及根据所述半径计算墨滴的第二体积。具体而言,可以根据校准之后的用于对墨滴的光学图像的边缘进行处理的参数获取墨滴的光学图像的边缘轮廓;可以根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中心点;并且可以根据所述边缘轮廓和所述中心点获取墨滴的半径。可以将墨滴等效为球体,从而利用获取的墨滴的半径计算出墨滴的体积。
根据本发明实施例的墨滴体积的校准方法,可以通过称重测量得到的第一体积对光学测量方法中使用的测量参数进行校准,从而可以通过光学测量方法获得更加准确的边缘轮廓和中心点,即,可以获得更加准确的等效球体的半径,从而计算出更加准确的单个墨滴的体积。根据本发明实施例的墨滴体积的校准方法,可以针对不同种类的墨滴提供不同的测量参数,从而能够达到精准测量墨滴体积的目的。
根据本发明实施例的墨滴体积的校准方法,将称重测量与光学测量相互结合,以根据称重测量的结果对光学测量方法中使用的测量参数进行校准,从而提高了光学测量方法的测量精度。
图4为根据本发明实施例的墨滴体积的校准装置的结构示意图。
如图4所示,根据本发明实施例的墨滴体积的校准装置可以包括计算单元101、校准单元102和第一获取单元103,以分别执行图3所示的各个步骤1001至1003。计算单元101用于根据墨滴的质量和密度计算单个墨滴的第一体积。校准单元102用于根据所述第一体积对光学测量方法中使用的测量参数进行校准。第一获取单元103用于根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积。
根据本发明的实施例的墨滴体积的校准装置还可以包括第二获取单元,用于获取多个墨滴的总质量、所述多个墨滴的数量和墨滴的密度。在此情况下,计算单元101可以根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积,并且可以根据所述多个墨滴的总体积和数量计算所述第一体积。
根据本发明的实施例,第二获取单元包括容纳器和称重器(稍后将结合图5至图7进行详细说明)。容纳器用于容纳从喷嘴滴出的多个墨滴。称重器用于测量多个墨滴的总质量。
根据本发明的实施例,第二获取单元包括记录模块和计数模块。记录模块用于记录墨滴开始滴出的第一时刻和墨滴结束滴出的第二时刻。计数模块用于根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量。所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。
图5为用于本发明实施例的墨滴体积的校准装置的容纳器和称重器的示意性透视图,图6为图5所示容纳器的俯视示意图,并且图7为图5所示容纳器和称重器的前视示意图。
如图5至图7所示,容纳器105可以包括上部108和下部109。在下部分109中,预先储存不易挥发的液体(例如,硅油),从而使得墨滴滴入容纳器105后不易挥发。称重器106可采用高精度的天平。
在储存器105的开口处可以设置与喷头相对应的对接器107,以保证墨滴都可以滴入储存器105中,从而进一步减少墨滴在滴入过程中的挥发。喷头上可以设置有多个个喷嘴,并且可以通过控制程序来控制喷嘴开始滴出墨滴和结束滴出墨滴。
根据本发明的实施例,第一获取单元103可以包括半径取模块和体积计算模块。半径获取模块用于根据校准之后的测量参数获取墨滴的半径。体积计算模块用于根据所述半径计算单个墨滴的第二体积。半径获取模块可以包括第一至第三子模块。第一子模块用于根据校准之后的用于对墨滴的光学图像的边缘进行处理的参数获取墨滴的光学图像的边缘轮廓。第二子模块用于根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中心点。第三子模块用于根据所述边缘轮廓和所述中心点获取墨滴的半径。
根据本发明实施例的墨滴体积的校准装置,可以通过称重测量得到的第一体积对光学测量方法中使用的测量参数进行校准,从而可以通过光学测量方法获得更加准确的边缘轮廓和中心点,即,可以获得更加准确的等效球体的半径,从而计算出更加准确的单个墨滴的体 积。根据本发明实施例的墨滴体积的校准装置,可以针对不同种类的墨滴提供不同的测量参数,从而能够达到精准测量墨滴体积的目的。
根据本发明实施例的墨滴体积的校准装置,将称重测量与光学测量相互结合,以根据称重测量的结果对光学测量方法中使用的测量参数进行校准,从而提高了光学测量方法的测量精度。
根据本发明的墨滴体积的校准装置可以应用于各种打印设备,特别地,可以应用于制造OLED显示器件的喷墨打印设备。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (18)

  1. 一种墨滴体积的校准方法,包括:
    根据墨滴的质量和密度计算单个墨滴的第一体积;
    根据所述第一体积对光学测量方法中使用的测量参数进行校准;以及
    根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积,
    其中,所述光学测量方法通过对墨滴的光学图像进行拟合处理来获取单个墨滴的体积。
  2. 根据权利要求1所述的墨滴体积的校准方法,其中,在计算单个墨滴的第一体积的步骤之前还包括:
    获取多个墨滴的总质量;
    获取所述多个墨滴的数量;以及
    获取墨滴的密度。
  3. 根据权利要求2所述的墨滴体积的校准方法,其中,计算单个墨滴的第一体积的步骤包括:
    根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积;以及
    根据所述多个墨滴的总体积和数量计算所述第一体积。
  4. 根据权利要求2所述的墨滴体积的校准方法,其中,获取多个墨滴的总质量的步骤包括:
    容纳从喷嘴滴出的多个墨滴;以及
    测量所述多个墨滴的总质量。
  5. 根据权利要求2所述的墨滴体积的校准方法,其中,获取所述多个墨滴的数量的步骤包括:
    记录墨滴开始滴出的第一时刻;
    记录墨滴结束滴出的第二时刻;以及
    根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量,
    其中,所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。
  6. 根据权利要求1所述的墨滴体积的校准方法,其中,光学测量方法中使用的测量参数包括:
    用于对墨滴的光学图像的边缘进行处理的参数;以及
    用于对墨滴的光学图像的中心进行处理的参数。
  7. 根据权利要求6所述的墨滴体积的校准方法,其中,根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积的步骤包括:
    根据校准之后的测量参数获取墨滴的半径;以及
    根据所述半径计算单个墨滴的第二体积。
  8. 根据权利要求7所述的墨滴体积的校准方法,其中,根据校准之后的测量参数获取墨滴的半径的步骤包括:
    根据校准之后的用于对墨滴的光学图像的边缘进行处理的参数获取墨滴的光学图像的边缘轮廓;
    根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中心点;以及
    根据所述边缘轮廓和所述中心点获取墨滴的半径。
  9. 根据权利要求1所述的墨滴体积的校准方法,其用于制造OLED显示器件的喷墨打印。
  10. 一种墨滴体积的校准装置,包括:
    计算单元,用于根据墨滴的质量和密度计算单个墨滴的第一体 积;
    校准单元,用于根据所述第一体积对光学测量方法中使用的测量参数进行校准;以及
    第一获取单元,用于根据校准之后的测量参数利用光学测量方法获取单个墨滴的第二体积,
    其中,所述光学测量方法通过对墨滴的光学图像进行拟合处理来获取单个墨滴的体积。
  11. 根据权利要求10所述的墨滴体积的校准装置,还包括:
    第二获取单元,用于获取多个墨滴的总质量、所述多个墨滴的数量和墨滴的密度。
  12. 根据权利要求11所述的墨滴体积的校准装置,其中,所述计算单元根据所述多个墨滴的总质量和密度计算所述多个墨滴的总体积,并且根据所述多个墨滴的总体积和数量计算所述第一体积。
  13. 根据权利要求11所述的墨滴体积的校准装置,其中,所述第二获取单元包括:
    容纳器,用于容纳从喷嘴滴出的多个墨滴;以及
    称重器,用于测量所述多个墨滴的总质量。
  14. 根据权利要求11所述的墨滴体积的校准装置,其中,所述第二获取单元包括:
    记录模块,用于记录墨滴开始滴出的第一时刻和墨滴结束滴出的第二时刻;以及
    计数模块,用于根据第二时刻与第一时刻的时间差与预设的滴出频率来计算所述多个墨滴的数量,
    其中,所述滴出频率为单位时间内从喷嘴滴出墨滴的数量。
  15. 根据权利要求10所述的墨滴体积的校准装置,其中,光学 测量方法中使用的测量参数包括:
    用于对墨滴的光学图像的边缘进行处理的参数;以及
    用于对墨滴的光学图像的中心进行处理的参数。
  16. 根据权利要求15所述的墨滴体积的校准装置,其中,所述第一获取单元包括:
    半径获取模块,用于根据校准之后的测量参数获取墨滴的半径;以及
    体积计算模块,用于根据所述半径计算单个墨滴的第二体积。
  17. 根据权利要求16所述的墨滴体积的校准装置,其中,所述半径获取模块包括:
    第一子模块,用于根据校准之后的用于对墨滴的光学图像的边缘进行处理的参数获取墨滴的光学图像的边缘轮廓;
    第二子模块,用于根据校准之后的用于对墨滴的光学图像的中心进行处理的参数获取墨滴的光学图像的中心点;以及
    第三子模块,用于根据所述边缘轮廓和所述中心点获取墨滴的半径。
  18. 一种打印设备,包括根据权利要求10至17中任一项所述的墨滴体积的校准装置。
PCT/CN2016/098155 2016-01-15 2016-09-06 墨滴体积的校准方法和校准装置、打印设备 WO2017121132A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,564 US10576738B2 (en) 2016-01-15 2016-09-06 Calibration method and calibration device for volume of ink droplet, printing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029198.5A CN105459601B (zh) 2016-01-15 2016-01-15 墨滴体积的校准方法及其校准系统、打印设备
CN201610029198.5 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121132A1 true WO2017121132A1 (zh) 2017-07-20

Family

ID=55597951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098155 WO2017121132A1 (zh) 2016-01-15 2016-09-06 墨滴体积的校准方法和校准装置、打印设备

Country Status (3)

Country Link
US (1) US10576738B2 (zh)
CN (1) CN105459601B (zh)
WO (1) WO2017121132A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105459601B (zh) 2016-01-15 2017-08-01 京东方科技集团股份有限公司 墨滴体积的校准方法及其校准系统、打印设备
CN108340679B (zh) * 2017-01-24 2019-08-27 京东方科技集团股份有限公司 液滴体积的调节装置和调节方法
JP7019303B2 (ja) * 2017-03-24 2022-02-15 東芝テック株式会社 液滴分注装置
CN109016846A (zh) * 2017-12-22 2018-12-18 合肥欣奕华智能机器有限公司 喷头维护装置、打印设备及喷头维护方法
CN109353121B (zh) * 2018-09-28 2020-07-28 共享智能铸造产业创新中心有限公司 基于喷墨式打印头的喷墨衰减量的计算方法和装置
CN110525048B (zh) * 2019-08-30 2020-10-09 合肥京东方卓印科技有限公司 一种测量墨滴体积的装置、系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431679B1 (en) * 2000-04-04 2002-08-13 Hewlett-Packard Company Calibration of print contrast using an optical-electronic sensor
CN1607378A (zh) * 2003-10-15 2005-04-20 精工爱普生株式会社 体积测定方法及装置、具有该装置的液滴喷出装置
CN101301814A (zh) * 2007-05-09 2008-11-12 三星电子株式会社 墨滴体积测量方法和使用该方法控制喷墨头的喷嘴的方法
CN101952049A (zh) * 2008-02-22 2011-01-19 武藏工业株式会社 排出量修正方法以及涂布装置
US20120296581A1 (en) * 2011-05-19 2012-11-22 Xerox Corporation Apparatus and method for measuring drop volume
JP2015125125A (ja) * 2013-12-27 2015-07-06 パナソニック株式会社 液滴測定方法、及び液滴測定システム
CN105459601A (zh) * 2016-01-15 2016-04-06 京东方科技集团股份有限公司 墨滴体积的校准方法及其校准系统、打印设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760926B2 (ja) 2003-04-25 2006-03-29 セイコーエプソン株式会社 液滴吐出装置、及び液滴吐出方法
ATE419121T1 (de) 2003-05-02 2009-01-15 Tpo Displays Corp Verfahren zum präzisen regeln des volumens von aus einem druckkopf ausgestossenen tintentröpfchen
US7296882B2 (en) 2005-06-09 2007-11-20 Xerox Corporation Ink jet printer performance adjustment
JP2009274063A (ja) * 2008-04-18 2009-11-26 Ulvac Japan Ltd インクの吐出方法
WO2010014061A1 (en) * 2008-07-30 2010-02-04 Hewlett-Packard Development Company, L.P. Method of dispensing liquid
FR2954215A1 (fr) * 2009-12-23 2011-06-24 Markem Imaje Systeme de determination de l'autonomie en fluides consommables d'une imprimante a jet d'encre continu
GB2509497B (en) * 2013-01-02 2017-09-13 Cambridge Display Tech Ltd Organic electronic device fabrication methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431679B1 (en) * 2000-04-04 2002-08-13 Hewlett-Packard Company Calibration of print contrast using an optical-electronic sensor
CN1607378A (zh) * 2003-10-15 2005-04-20 精工爱普生株式会社 体积测定方法及装置、具有该装置的液滴喷出装置
CN101301814A (zh) * 2007-05-09 2008-11-12 三星电子株式会社 墨滴体积测量方法和使用该方法控制喷墨头的喷嘴的方法
CN101952049A (zh) * 2008-02-22 2011-01-19 武藏工业株式会社 排出量修正方法以及涂布装置
US20120296581A1 (en) * 2011-05-19 2012-11-22 Xerox Corporation Apparatus and method for measuring drop volume
JP2015125125A (ja) * 2013-12-27 2015-07-06 パナソニック株式会社 液滴測定方法、及び液滴測定システム
CN105459601A (zh) * 2016-01-15 2016-04-06 京东方科技集团股份有限公司 墨滴体积的校准方法及其校准系统、打印设备

Also Published As

Publication number Publication date
US20180104949A1 (en) 2018-04-19
US10576738B2 (en) 2020-03-03
CN105459601B (zh) 2017-08-01
CN105459601A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2017121132A1 (zh) 墨滴体积的校准方法和校准装置、打印设备
CN110143055B (zh) 墨滴滴落位置偏移的校正方法、装置和系统
US10751992B2 (en) Inkjet printing spray head, inkjet amount measuring system and method and inkjet amount controlling method
JP6439831B2 (ja) 向上されたインク使用量推定のためのインク液滴サイズ推定の調整
CN107530971B (zh) 增材制造系统中的温度确定
JP6384262B2 (ja) 印刷装置、方法およびプログラム
US9096056B2 (en) Apparatus and method for measuring drop volume
CN101286234B (zh) 信息处理设备和信息处理方法
CN107379530B (zh) Fdm式3d打印机平台倾斜时的斜路补偿装置及方法
US20180079150A1 (en) Alignment method for 3d printer
CN108944048A (zh) 喷墨打印装置的喷嘴的定位方法、定位系统及检测系统
CN113771518A (zh) 喷墨打印方法和喷墨打印装置
JP6354934B2 (ja) 液滴測定方法、及び液滴測定システム
KR20170111463A (ko) 잉크젯 헤드를 이용한 인쇄 방법
JP5250536B2 (ja) 体積感知型ディスペンサー制御方法
US10724890B2 (en) Apparatus and method for measuring a volume of a liquor dispensed from a bottle
JP2007192760A (ja) 液体重量測定方法及び液体重量測定装置
JP2000146993A (ja) 移動物体の検出方法及びその装置
JP6582873B2 (ja) 画像形成装置、プログラム及び方法
CN109064517A (zh) 一种光轴垂直度调整方法及装置
WO2018137341A1 (zh) 液滴体积的检测装置、检测方法和调节方法
CN203100835U (zh) 燃油加油机的自动检定装置
CN113022135A (zh) 喷墨打印的墨水浓度控制方法
KR20110001445A (ko) 잉크방울의 메니스커스 측정 방법
JP3918914B2 (ja) 微小流量測定装置、方法、コンピュータプログラム、および記憶媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15520564

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884686

Country of ref document: EP

Kind code of ref document: A1