WO2017119992A2 - Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) - Google Patents
Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) Download PDFInfo
- Publication number
- WO2017119992A2 WO2017119992A2 PCT/US2016/066298 US2016066298W WO2017119992A2 WO 2017119992 A2 WO2017119992 A2 WO 2017119992A2 US 2016066298 W US2016066298 W US 2016066298W WO 2017119992 A2 WO2017119992 A2 WO 2017119992A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna ports
- combined
- combining
- res
- pairs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
- H04L25/03866—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/068—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0684—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
- H04L25/023—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
- H04L25/0232—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0606—Space-frequency coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
Definitions
- LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL), SC-FDMA on the uplink (UL), and multiple- input multiple-output (MIMO) antenna technology.
- UMTS Universal Mobile Telecommunications System
- 3GPP Third Generation Partnership Project
- Certain aspects of the present disclosure provide a method for wireless communications by a User Equipment (UE).
- the method generally includes combining pairs of antenna ports to generate at least first and second combined antenna ports, receiving reference signals transmitted in a narrow band region of a larger system bandwidth, for each combined antenna port, adding the reference signals received on resource elements (REs) of each of the combined pair of antenna ports, and determining channel estimates for each combined antenna port based on the added reference signals for the combined antenna port.
- REs resource elements
- FIG. 2 is a diagram illustrating an example of an access network.
- FIG. 4 is a diagram illustrating an example of an UL frame structure in LTE.
- FIG. 9 illustrates example operations performed by a base station for implementing a transmission scheme for NB IoT, in accordance with certain aspects of the present disclosure.
- the in-band version of NB-IoT uses signals embedded in the wide-band LTE signal.
- an eNB transmits one of 1-port CRS, 2-port CRS, and 4-port CRS.
- an NB-IoT device e.g., UE
- the eNB may typically transmit a full power signal only if all existing ports participate in the signal/data transmission. But, at the UE end, this would require estimating the channel for four eNB antennas for a UE Rx antenna.
- Certain aspects of the present disclosure provide a new transmission scheme for the NB-IoT.
- the functions described may be implemented in hardware, software, or combinations thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
- such computer- readable media can comprise RAM, ROM, EEPROM, PCM (phase change memory), flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- FIG. 1 is a diagram illustrating an LTE network architecture 100 in which aspects of the present disclosure may be practiced.
- the Operator's IP Services 122 may include, for example, the Internet, the Intranet, an IP Multimedia Subsystem (IMS), and a PS (packet-switched) Streaming Service (PSS).
- IMS IP Multimedia Subsystem
- PS packet-switched
- Streaming Service PSS
- FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture in which aspects of the present disclosure may be practiced.
- UEs 206 and e Bs 204 may be configured to implement techniques for implementing a new transmission scheme for B-IoT described in aspects of the present disclosure.
- an e B may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB.
- the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix (CP).
- the synchronization signals may be used by UEs for cell detection and acquisition.
- the eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
- PBCH Physical Broadcast Channel
- FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE.
- the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
- Layer 1 (LI layer) is the lowest layer and implements various physical layer signal processing functions.
- the LI layer will be referred to herein as the physical layer 506.
- Layer 2 (L2 layer) 508 is above the physical layer 506 and is responsible for the link between the UE and e B over the physical layer 506.
- the PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels.
- the PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
- the RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ).
- HARQ hybrid automatic repeat request
- the MAC sublayer 510 provides multiplexing between logical and transport channels.
- the MAC sublayer 510 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs.
- the MAC sublayer 510 is also responsible for HARQ operations.
- upper layer packets from the core network are provided to a controller/processor 675.
- the controller/processor 675 implements the functionality of the L2 layer.
- the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics.
- the controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
- the controller/processor 659 implements the L2 layer.
- the controller/processor can be associated with a memory 660 that stores program codes and data.
- the memory 660 may be referred to as a computer-readable medium.
- the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
- the upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer.
- Various control signals may also be provided to the data sink 662 for L3 processing.
- the controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
- ACK acknowledgement
- NACK negative acknowledgement
- the UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650.
- Each receiver 618RX receives a signal through its respective antenna 620.
- Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670.
- the RX processor 670 may implement the LI layer.
- the Internet of Things is a network of physical objects or "things" embedded with, e.g., electronics, software, sensors, and network connectivity, which enable these objects to collect and exchange data.
- the Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit.
- IoT is augmented with sensors and actuators, the technology becomes an instance of the more general class of cyber-physical systems, which also encompasses technologies such as smart grids, smart homes, intelligent transportation and smart cities.
- Each "thing” is generally uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure.
- the UE combines pairs of antenna ports after performing some initial processing. For example, the UE descrambles CRS port 0 and CRS port 2 with a first and second scrambling sequence, and combines the resulting descrambled signal. Similarly, the UE descrambles CRS port 1 and CRS port 3 with a third and fourth scrambling sequence, and combines the resulting descrambled signal. In another example, the UE might perform time and/or frequency interpolation on the CRS RE corresponding to ports 0-3 (possibly after performing the descrambling operation indicated above) before combining. In yet another example, the UE might perform descrambling of the CRS RE and Doppler compensation/filtering before combining.
- the UE then processes two channel estimates based on the combined ports, for example, one estimate for combined ports 0+2 and another estimate for combined ports 1+3.
- the UE processes all data REs as simple SFBC pairs based on the two channel estimates.
- the eNB transmits the same data content on matching REs of the combined ports, for example, REs of both ports 0 and 2 or ports 1 and 3.
- RS positions e.g., REs
- RS positions corresponding to AP2 are left empty and RS for API is power boosted.
- RS positions corresponding to AP2 are filled with RS corresponding to API .
- FIG 12 illustrates operations 1200 for using different sequences in different RBs in a cell, in accordance with certain aspects of the present disclosure.
- Operations 1200 begin, at 1202, by configuring two or more RBs for transmission in a cell.
- a different scrambling sequence is configured for each of the two or more RBs for the transmission in the cell.
- data to be transmitted in each of the RBs is scrambled using a scrambling sequence configured for the RB.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Communication Control (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018535089A JP7094883B2 (ja) | 2016-01-07 | 2016-12-13 | 狭帯域モノのインターネット(NB-IoT)のためのデータ送信スキームのための方法および装置 |
| CN201680078076.3A CN108476113B (zh) | 2016-01-07 | 2016-12-13 | 用于窄带物联网(nb-iot)的数据传输方案的方法和装置 |
| CN202011318392.8A CN112491761B (zh) | 2016-01-07 | 2016-12-13 | 用于窄带物联网(nb-iot)的数据传输方案的方法和装置 |
| KR1020187019209A KR102611210B1 (ko) | 2016-01-07 | 2016-12-13 | 협대역 사물 인터넷(nb-iot)을 위한 데이터 송신 방식에 대한 방법들 및 장치 |
| EP20190574.2A EP3767867A1 (en) | 2016-01-07 | 2016-12-13 | Methods and apparatus for a data transmission scheme for narrow-band internet of things |
| EP16871794.0A EP3400668A2 (en) | 2016-01-07 | 2016-12-13 | Methods and apparatus for a data transmission scheme for narrow-band internet of things |
| KR1020237015203A KR102637584B1 (ko) | 2016-01-07 | 2016-12-13 | 협대역 사물 인터넷(nb-iot)을 위한 데이터 송신 방식에 대한 방법들 및 장치 |
| JP2022100348A JP7431892B2 (ja) | 2016-01-07 | 2022-06-22 | 狭帯域モノのインターネット(NB-IoT)のためのデータ送信スキームのための方法および装置 |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662276219P | 2016-01-07 | 2016-01-07 | |
| US62/276,219 | 2016-01-07 | ||
| US201662280590P | 2016-01-19 | 2016-01-19 | |
| US62/280,590 | 2016-01-19 | ||
| US201662292194P | 2016-02-05 | 2016-02-05 | |
| US62/292,194 | 2016-02-05 | ||
| US15/376,490 | 2016-12-12 | ||
| US15/376,490 US11212141B2 (en) | 2016-01-07 | 2016-12-12 | Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT) |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2017119992A2 true WO2017119992A2 (en) | 2017-07-13 |
| WO2017119992A3 WO2017119992A3 (en) | 2017-10-26 |
Family
ID=59014712
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/066298 Ceased WO2017119992A2 (en) | 2016-01-07 | 2016-12-13 | Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US11212141B2 (enExample) |
| EP (2) | EP3400668A2 (enExample) |
| JP (2) | JP7094883B2 (enExample) |
| KR (2) | KR102637584B1 (enExample) |
| CN (2) | CN108476113B (enExample) |
| TW (2) | TWI784300B (enExample) |
| WO (1) | WO2017119992A2 (enExample) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170142615A1 (en) * | 2015-11-18 | 2017-05-18 | Prakash Bhalerao | Method and apparatus for communicating additional narrowband traffic over an existing 4g/lte network |
| EP3399815B1 (en) * | 2016-01-08 | 2021-07-28 | Huawei Technologies Co., Ltd. | Information sending method, apparatus and system |
| RU2695079C1 (ru) * | 2016-02-04 | 2019-07-19 | Телефонактиеболагет Лм Эрикссон (Пабл) | Развертывание службы узкополосной передачи на широкополосной несущей в защитной полосе частот |
| WO2017142464A1 (en) * | 2016-02-15 | 2017-08-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive beam selection in a wireless communication system |
| CN107196734A (zh) * | 2016-03-15 | 2017-09-22 | 株式会社Ntt都科摩 | 主信息块生成方法、主信息块处理方法、基站及移动台 |
| US10608770B2 (en) * | 2017-03-23 | 2020-03-31 | Qualcomm Incorporated | Techniques and apparatuses for channel processing backwards compatibility |
| KR102437642B1 (ko) | 2017-08-18 | 2022-08-30 | 삼성전자주식회사 | 무선 통신 시스템에서 상향링크 전송을 스케줄링하기 위한 장치 및 방법 |
| US10356802B2 (en) | 2017-12-20 | 2019-07-16 | Industrial Technology Research Institute | Base station and scheduling method of uplink resource unit |
| WO2019119386A1 (en) * | 2017-12-22 | 2019-06-27 | Telefonaktiebolaget Lm Ericsson (Publ) | A method and a device for sharing resource |
| CN108024226A (zh) * | 2018-01-04 | 2018-05-11 | 李江成 | 一种基于NB-IoT的低功耗无线传感数据采集装置、系统及方法 |
| US10869268B2 (en) * | 2018-01-19 | 2020-12-15 | Mediatek Inc. | NR power saving enhancements |
| CN112913175A (zh) * | 2018-08-01 | 2021-06-04 | 苹果公司 | 用于测量和同步的窄带参考信号传输 |
| KR102353062B1 (ko) | 2018-09-03 | 2022-01-19 | 주식회사 엘지에너지솔루션 | 분리막 기재가 없는 이차전지용 분리막 |
| EP3857753A4 (en) * | 2018-09-25 | 2022-06-15 | Hughes Network Systems, LLC | EFFICIENT TRANSPORT OF INTERNET OF THINGS (IOT) TRAFFIC ACROSS TERRESTRIAL WIRELESS AND SATELLITE NETWORKS |
| KR102066977B1 (ko) | 2018-12-26 | 2020-01-15 | 우송대학교산학협력단 | NB-IoT망을 이용한 IoT 시스템 및 이의 시간 동기화 방법 |
| KR102751536B1 (ko) | 2019-06-07 | 2025-01-07 | 삼성전자주식회사 | 전자 장치 및 그 시스템 |
| CN110689696A (zh) * | 2019-08-29 | 2020-01-14 | 湖北民族大学 | 基于NB-IoT模块的森林火灾救援系统及救援方法 |
| CN112004205A (zh) * | 2020-08-25 | 2020-11-27 | 惠州市智源物联科技有限公司 | 一种基于窄带物联网的工业数据采集系统及采集方法 |
| CN113395346A (zh) * | 2021-06-11 | 2021-09-14 | 徐涛 | 一种基于nb-iot的局域网抄表系统 |
| CN117255351A (zh) * | 2022-06-10 | 2023-12-19 | 中兴通讯股份有限公司 | 窄带物联网的部署方法、装置、电子设备及存储介质 |
| CN119316844B (zh) * | 2024-10-14 | 2025-07-15 | 西安电子科技大学 | 基于uav的空对地混合通信方法、装置和通信系统 |
Family Cites Families (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1256815C (zh) | 2000-05-25 | 2006-05-17 | 三星电子株式会社 | 利用多于两个天线的发送分集的设备和方法 |
| EP1232585A4 (en) * | 2000-10-04 | 2006-11-29 | Samsung Electronics Co Ltd | APPARATUS AND METHOD FOR CONTROLLING THE TRANSMISSION POWER OF A DOWNLINK SHARING CHANNEL IN A MOBILE COMMUNICATION SYSTEM |
| JP3956085B2 (ja) * | 2000-12-20 | 2007-08-08 | 日本電気株式会社 | 送信回路 |
| JP4785377B2 (ja) * | 2004-12-14 | 2011-10-05 | 株式会社エヌ・ティ・ティ・ドコモ | 無線回線制御局、移動通信システム及び移動通信方法 |
| JP2007300217A (ja) * | 2006-04-27 | 2007-11-15 | Toshiba Corp | Ofdm信号の送信方法、ofdm送信機及びofdm受信機 |
| CN101479975B (zh) | 2006-04-28 | 2011-12-21 | 三菱电机株式会社 | 无线通信装置 |
| US8290088B2 (en) * | 2007-08-07 | 2012-10-16 | Research In Motion Limited | Detecting the number of transmit antennas in a base station |
| US8369450B2 (en) * | 2007-08-07 | 2013-02-05 | Samsung Electronics Co., Ltd. | Pilot boosting and traffic to pilot ratio estimation in a wireless communication system |
| US8509291B2 (en) * | 2008-02-08 | 2013-08-13 | Qualcomm Incorporated | Open-loop transmit diversity schemes with four transmit antennas |
| MX2010011494A (es) * | 2008-04-25 | 2010-11-09 | Sharp Kk | Sistema de comunicacion movil, aparato de estacion base, aparato de estacion movil y metodo de comunicacion movil. |
| DE602008002930D1 (de) * | 2008-08-01 | 2010-11-18 | Panasonic Corp | Ressourcenblockzuordnung für wiederholte Symbole |
| WO2010103989A1 (ja) * | 2009-03-10 | 2010-09-16 | シャープ株式会社 | 無線通信システム、無線送信装置および無線送信装置の制御プログラム |
| CN102461036A (zh) * | 2009-06-12 | 2012-05-16 | 三菱电机株式会社 | 通信装置 |
| US8300587B2 (en) * | 2009-08-17 | 2012-10-30 | Nokia Corporation | Initialization of reference signal scrambling |
| CA2773382C (en) | 2009-09-07 | 2015-12-01 | Lg Electronics Inc. | Method and apparatus for transmitting/receiving a reference signal in a wireless communication system |
| JP5597715B2 (ja) * | 2009-10-02 | 2014-10-01 | インターデイジタル パテント ホールディングス インコーポレイテッド | アップリンクにおいて多重アンテナ送信の送信電力制御を行うための方法および装置 |
| WO2011052220A1 (ja) * | 2009-10-30 | 2011-05-05 | パナソニック株式会社 | 無線送信装置及び参照信号送信方法 |
| US9407409B2 (en) * | 2010-02-23 | 2016-08-02 | Qualcomm Incorporated | Channel state information reference signals |
| WO2012151064A2 (en) * | 2011-05-02 | 2012-11-08 | Research In Motion Limted | Methods and system of wireless communication with remote radio heads |
| WO2013010305A1 (en) | 2011-07-15 | 2013-01-24 | Panasonic Corporation | Method of scrambling signals, transmission point device and user equipment using the method |
| CN107104912B (zh) * | 2011-07-15 | 2020-07-28 | 太阳专利信托公司 | 发送装置、接收装置、发送方法、接收方法以及集成电路 |
| US9014111B2 (en) * | 2011-08-10 | 2015-04-21 | Industrial Technology Research Institute | Multi-block radio access method and transmitter module and receiver module using the same |
| US9084242B2 (en) * | 2011-08-15 | 2015-07-14 | Texas Instruments Incorporated | On transparency of CoMP |
| WO2013055178A2 (ko) * | 2011-10-13 | 2013-04-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치 |
| CN102413090B (zh) * | 2011-11-04 | 2014-10-22 | 电信科学技术研究院 | 一种传输信息的方法、系统和设备 |
| CN104081707B (zh) | 2012-01-13 | 2017-02-15 | 华为技术有限公司 | 用于生成和传输解调参考信号的方法 |
| WO2013108742A1 (ja) | 2012-01-18 | 2013-07-25 | 京セラ株式会社 | 無線通信装置および無線通信方法 |
| CN104054286B (zh) * | 2012-01-19 | 2017-06-09 | 太阳专利信托公司 | 参考信号加扰方法、使用该方法的装置和用户设备 |
| KR20130130593A (ko) * | 2012-05-22 | 2013-12-02 | 삼성전자주식회사 | 분산 안테나를 사용하는 복수 개의 기지국을 포함하는 무선통신 시스템에서 기준 신호 측정 방법 및 장치 |
| JP5990793B2 (ja) * | 2012-06-07 | 2016-09-14 | シャープ株式会社 | 端末装置、基地局装置、通信方法および集積回路 |
| US8787225B2 (en) * | 2012-07-11 | 2014-07-22 | Blackberry Limited | Phase-rotated reference signals for multiple antennas |
| WO2014019181A1 (zh) * | 2012-08-01 | 2014-02-06 | 华为技术有限公司 | 一种控制信道传输方法及装置 |
| US9155089B2 (en) | 2012-08-10 | 2015-10-06 | Qualcomm Incorporated | Cell ID and antenna port configurations for EPDCCH |
| CN108833066A (zh) * | 2012-09-29 | 2018-11-16 | 索尼公司 | 基站设备、终端设备及通信系统 |
| CN104885497A (zh) * | 2012-11-14 | 2015-09-02 | Lg电子株式会社 | 用于监视下行控制信道的方法和装置 |
| WO2014123317A1 (ko) | 2013-02-07 | 2014-08-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 및 간섭 측정 방법 |
| JP6151108B2 (ja) * | 2013-06-28 | 2017-06-21 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び参照信号送信方法 |
| WO2015100620A1 (zh) * | 2013-12-31 | 2015-07-09 | 展讯通信(上海)有限公司 | Ofdm通信系统及信号收发方法与装置 |
| JP2015201804A (ja) * | 2014-04-10 | 2015-11-12 | 富士通株式会社 | 受信装置、受信方法、送信装置、送信方法、及び、無線通信システム |
| EP3264626B1 (en) * | 2015-03-27 | 2020-07-29 | Huawei Technologies Co., Ltd. | Method, apparatus, device and system for acquiring beam identifier |
| CN110808825B (zh) * | 2015-07-22 | 2022-01-11 | 三星电子株式会社 | 基站、用户设备及其方法 |
| WO2017026971A1 (en) * | 2015-08-12 | 2017-02-16 | Intel IP Corporation | Configuration of non-ue-specific search space for m-pdcch |
| US10601627B2 (en) * | 2015-09-02 | 2020-03-24 | Lg Electronics Inc. | Method and apparatus for indicating center frequency offset for narrowband UE in wireless communication system |
| WO2017058096A2 (en) * | 2015-10-02 | 2017-04-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Narrowband carrier searching |
| WO2017078464A1 (ko) * | 2015-11-04 | 2017-05-11 | 엘지전자(주) | 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치 |
| CN108353050B (zh) * | 2015-11-06 | 2020-07-14 | 华为技术有限公司 | 一种上下行载频间隔指示、获得方法及装置 |
| CN108353055B (zh) * | 2015-11-06 | 2022-08-19 | 苹果公司 | 用于窄带物联网通信的同步信号设计 |
| US10104651B2 (en) * | 2015-12-17 | 2018-10-16 | Mediatek Inc. | Physical downlink control channel design for narrow band internet of things |
| CN108029136B (zh) * | 2015-12-29 | 2021-01-15 | 华为技术有限公司 | 用于随机接入的方法和装置 |
-
2016
- 2016-12-12 US US15/376,490 patent/US11212141B2/en active Active
- 2016-12-13 CN CN201680078076.3A patent/CN108476113B/zh active Active
- 2016-12-13 EP EP16871794.0A patent/EP3400668A2/en not_active Withdrawn
- 2016-12-13 WO PCT/US2016/066298 patent/WO2017119992A2/en not_active Ceased
- 2016-12-13 KR KR1020237015203A patent/KR102637584B1/ko active Active
- 2016-12-13 KR KR1020187019209A patent/KR102611210B1/ko active Active
- 2016-12-13 CN CN202011318392.8A patent/CN112491761B/zh active Active
- 2016-12-13 JP JP2018535089A patent/JP7094883B2/ja active Active
- 2016-12-13 EP EP20190574.2A patent/EP3767867A1/en active Pending
- 2016-12-14 TW TW109127343A patent/TWI784300B/zh active
- 2016-12-14 TW TW105141353A patent/TWI713319B/zh active
-
2021
- 2021-12-03 US US17/542,355 patent/US20220094573A1/en active Pending
-
2022
- 2022-06-22 JP JP2022100348A patent/JP7431892B2/ja active Active
Non-Patent Citations (1)
| Title |
|---|
| None |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170201393A1 (en) | 2017-07-13 |
| CN108476113A (zh) | 2018-08-31 |
| JP7094883B2 (ja) | 2022-07-04 |
| EP3400668A2 (en) | 2018-11-14 |
| US11212141B2 (en) | 2021-12-28 |
| KR20180104608A (ko) | 2018-09-21 |
| TWI713319B (zh) | 2020-12-11 |
| KR102611210B1 (ko) | 2023-12-06 |
| CN112491761A (zh) | 2021-03-12 |
| EP3767867A1 (en) | 2021-01-20 |
| TW201733284A (zh) | 2017-09-16 |
| KR20230066487A (ko) | 2023-05-15 |
| JP2022126784A (ja) | 2022-08-30 |
| JP2019503138A (ja) | 2019-01-31 |
| TWI784300B (zh) | 2022-11-21 |
| KR102637584B1 (ko) | 2024-02-15 |
| CN112491761B (zh) | 2024-05-03 |
| WO2017119992A3 (en) | 2017-10-26 |
| JP7431892B2 (ja) | 2024-02-15 |
| CN108476113B (zh) | 2022-09-02 |
| US20220094573A1 (en) | 2022-03-24 |
| TW202044782A (zh) | 2020-12-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220094573A1 (en) | Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) | |
| US10624079B2 (en) | Coexistence of narrow-band internet-of-things/enhanced machine type communication and 5G | |
| US10447447B2 (en) | Methods and apparatus for multiplexing reference signals for multiple input multiple output (MIMO) layers | |
| CN111556472B (zh) | 用于无执照频谱的物联网设计 | |
| EP3465961B1 (en) | Uplink control information reporting | |
| US9641310B2 (en) | Network assisted interference cancellation signaling | |
| US20130308567A1 (en) | Methods and apparatus for positioning reference signals in a new carrier type | |
| WO2015123834A1 (en) | TIME DOMAIN DUPLEXING CONFIGURATION FOR eIMTA | |
| WO2018165941A1 (en) | Random access optimization for narrow-band system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16871794 Country of ref document: EP Kind code of ref document: A2 |
|
| ENP | Entry into the national phase |
Ref document number: 20187019209 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2018535089 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2016871794 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2016871794 Country of ref document: EP Effective date: 20180807 |