WO2017117812A1 - 信息发送方法、装置和系统 - Google Patents

信息发送方法、装置和系统 Download PDF

Info

Publication number
WO2017117812A1
WO2017117812A1 PCT/CN2016/070509 CN2016070509W WO2017117812A1 WO 2017117812 A1 WO2017117812 A1 WO 2017117812A1 CN 2016070509 W CN2016070509 W CN 2016070509W WO 2017117812 A1 WO2017117812 A1 WO 2017117812A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
base station
carrier frequency
carrier
Prior art date
Application number
PCT/CN2016/070509
Other languages
English (en)
French (fr)
Inventor
陈哲
金哲
吴毅凌
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/070509 priority Critical patent/WO2017117812A1/zh
Priority to CN202011505323.8A priority patent/CN113163373A/zh
Priority to EP21180007.3A priority patent/EP3958635A1/en
Priority to CN201680076901.6A priority patent/CN108432318B/zh
Priority to EP16882957.0A priority patent/EP3399815B1/en
Publication of WO2017117812A1 publication Critical patent/WO2017117812A1/zh
Priority to US16/029,635 priority patent/US11678277B2/en
Priority to US18/302,086 priority patent/US20230300762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, an apparatus and a system for transmitting information.
  • the Internet of Things refers to the network that acquires the information of the physical world by deploying various devices with certain sensing, computing, execution and communication capabilities, and transmits, cooperates and processes information to realize the interconnection of people, things and things.
  • the narrow band-internet of things (NB-IoT) project is mainly used to study methods for supporting extremely low complexity and low cost Internet of Things in cellular mobile networks.
  • NB-IoT when a terminal supporting NB-IoT communication utilizes an existing cellular mobile network architecture for communication, the frequency band used has three modes of operation with respect to the original frequency band of the cellular mobile network: independent band operation (stand -alone operation mode, guard band operation mode and in-band operation mode.
  • the communication quality of the NB-IoT is not good.
  • the invention provides an information indication method for effectively improving the communication quality of the NB-IoT between the base station and the terminal.
  • the base station determines first information indicating a first carrier frequency offset, and sends the first information to the terminal.
  • the first carrier frequency deviation is a frequency deviation between an actual cell carrier center frequency and a cell carrier center frequency acquired by the terminal, and the terminal acquires an actual cell carrier center frequency according to the first information.
  • the embodiment of the present application provides a method for sending information, including: determining, by a base station, first information indicating a frequency deviation of a first carrier; the first carrier frequency deviation is an actual cell carrier center frequency and a cell acquired by the terminal a carrier frequency deviation of the carrier center frequency; the base station sends the first information to the terminal, where the first information is used to obtain the actual cell carrier center frequency.
  • the embodiment of the present application provides another method for sending information, including: receiving, by a terminal, first information that is sent by a base station and indicating a frequency deviation of a first carrier; and the first carrier frequency deviation is an actual frequency of a cell carrier. Deviating from a carrier frequency of a cell carrier center frequency acquired by the terminal; the terminal acquiring the actual cell carrier center frequency according to the first information.
  • the cell carrier center frequency mentioned above may be a cell uplink carrier center frequency, a cell downlink carrier center frequency, or a cell uplink carrier center frequency and a cell downlink carrier center frequency.
  • the terminal acquires the actual cell uplink carrier center frequency, and can initiate a random access procedure on the actual cell uplink carrier center frequency to obtain uplink synchronization with the base station; the terminal acquires the actual cell downlink carrier center frequency, and can accurately perform sampling. Process such as frequency synchronization.
  • the first information includes at least one of a value of a first carrier frequency offset and an indication parameter of a first carrier frequency offset; wherein the indication parameter of the first carrier frequency offset is different from the The value of a carrier frequency deviation corresponds.
  • the terminal may directly obtain the value of the first carrier frequency deviation without performing additional processing; when the first information includes the indication parameter of the first carrier frequency deviation, relative to the previous one
  • the indication parameter of the first carrier frequency deviation with relatively small amount of data just solves this problem and improves the utilization of system resources.
  • the first information includes a root index value of the synchronization signal, and the value of the root index corresponds to a value of the first carrier frequency deviation.
  • the synchronization signal may be a secondary synchronization signal SSS, and the SSS includes a pair of ZC (Zadoff-Chu) sequences SSS1 and SSS2, the root index including a root index u1 of the SSS1 and a root index u2 of the SSS2.
  • the first information includes parameters such as the position of the synchronization signal, the sequence type, and the like, which parameters correspond to the values of the first carrier frequency deviation.
  • the first information includes a bandwidth parameter and a resource block index parameter, the bandwidth parameter and the resource block index parameter corresponding to a value of the first carrier frequency offset.
  • the bandwidth parameter may be the bandwidth of the wireless mobile network
  • the resource block index is a resource block index of the carrier of the cell within the channel bandwidth of the wireless mobile network system.
  • the channel bandwidth parameter is an important parameter for the terminal, and is sent to the terminal in the process of implementing the technical solution of the present invention, so that the terminal can implement other functions according to the bandwidth parameter.
  • the base station sends a broadcast message or a dedicated message to the terminal, and the broadcast message or the dedicated message carries the first information; the terminal receives the broadcast message or the dedicated message.
  • the first information when the first information includes the root index of the synchronization signal, the first information is carried in the synchronization signal, for example, the SSS, and when the downlink synchronization is performed, the SSS is sent to the terminal through the base station.
  • the terminal in this case, if the first information is advanced to the SSS transmission phase of the downlink synchronization phase, the terminal is guaranteed to obtain the first information as early as possible, and the actual cell downlink carrier center frequency is obtained in the downlink synchronization phase.
  • the terminal is prevented from receiving the broadcast message of the cell due to the downlink synchronization failure, which leads to the failure of a series of subsequent communication processes.
  • the cell carrier center frequency acquired by the terminal is obtained when the terminal receives the synchronization signal.
  • the cell carrier center frequency acquired by the terminal is obtained by the terminal by receiving a broadcast message or a dedicated message.
  • the above method further includes: the base station determining second information indicating a second carrier frequency offset, and transmitting the second information to the terminal.
  • the second carrier frequency deviation is an actual inter-frequency cell carrier center frequency and a carrier frequency deviation of the inter-frequency cell carrier center frequency acquired by the terminal, and the terminal acquires an actual inter-frequency cell carrier center frequency according to the second information.
  • the terminal determines the actual inter-frequency cell carrier center frequency according to the second information, and can perform cell search on the inter-frequency cell quickly and accurately, and fully prepare for subsequent possible cell handover.
  • the above-mentioned cell is a cell supporting NB-IoT communication.
  • an embodiment of the present invention provides a base station, which has a function of implementing a behavior of a base station in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing method to the terminal.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the function can be implemented by hardware or by The hardware implementation of the corresponding software implementation.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the module can be software and/or hardware
  • the structure of the terminal includes a receiver and a processor configured to support the terminal to perform corresponding functions in the above methods.
  • the transmitter is configured to support communication between the terminal and the base station, and receive information or instructions involved in the foregoing method sent by the base station.
  • the terminal can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a communication system, including the base station and the terminal in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The implementation function of the base station involved in implementing the above method is implemented.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The design function of the terminal involved in implementing the above method is implemented.
  • the base station indicates the first information of the first frequency deviation to the terminal, so that the terminal obtains the actual cell carrier center frequency, and the terminal and the base station synchronize the communication process on the actual cell carrier center frequency.
  • the terminal can avoid the terminal Adverse effects caused by cognitive biases on the carrier center frequency of the cell, such as uplink synchronization failures.
  • the communication quality between the terminal and the base station is effectively improved.
  • FIG. 1(a) is a schematic diagram showing an independent operation mode of narrowband Internet of Things support according to an embodiment of the present invention
  • 1(b) is a schematic diagram showing a mode of operation of a guard band supported by a narrowband Internet of Things according to an embodiment of the present invention
  • 1(c) is a schematic diagram of an in-band mode of operation for providing narrowband Internet of Things support according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 3 is an application scenario according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of an information indication method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of comparison of information parameters according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another information indication method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the cellular internet of things is based on the existing wireless communication system to realize IoT communication, that is, the system architecture of the system operation and the wireless communication system, such as the long term evolution (LTE) system. , similar.
  • NB-IoT present invention is derived from the third generation partnership project (3 rd generation partnership project, 3GPP ) radio access network (radio access network, RAN) # 69 meeting proposal, NB-IoT goal is provision A wireless access method for cellular Internet of Things to achieve large coverage, low latency and low cost communication.
  • NB-IoT should support three different modes of operation:
  • NB-IoT works in an independent carrier frequency band, as shown in Figure 1(a).
  • the NB-IoT operates on unused resource blocks in the LTE carrier protection band, as shown in Figure 1(b).
  • NB-IoT operates on resource blocks of the LTE carrier frequency band (ie, channel bandwidth), as shown in Figure 1(c).
  • NB-IoT may use one resource block in the LTE carrier frequency band as the uplink carrier frequency band of the NB-IoT, and use another resource block in the LTE carrier frequency band as the downlink carrier frequency band of the NB-IoT. .
  • FIG. 2 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the terminal accesses an external network through a radio access network (RAN) and a core network (CN).
  • RAN radio access network
  • CN core network
  • the techniques described herein may be applicable to NB-IoT systems. Of course, it can also be applied to other wireless communication systems using various wireless access technologies, such as code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access, etc.
  • Technical system, subsequent evolution system Such as the fifth generation 5G system.
  • the terms "network” and "system” are often used interchangeably, but those skilled in the art can understand the meaning.
  • the LTE system is taken as an example here.
  • an evolved universal terrestrial radio access (E-UTRA) network is used as a radio access network
  • an evolved packet core (EPC) is used as a core network because NB-IoT
  • E-UTRA evolved universal terrestrial radio access
  • EPC evolved packet core
  • the system architecture of the system is similar to that of the LTE system, so the above description of the LTE system architecture is equally applicable to the NB-IoT system.
  • FIG. 3 shows an application scenario of the embodiment of the present invention.
  • FIG. 3 includes a base station and terminals 1 to 6.
  • a base station is a device deployed in a radio access network to provide wireless communication functions to a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE system, called an evolved NodeB (eNodeB), in a third-generation network. , called Node B (Node B) and so on.
  • eNodeB evolved NodeB
  • Node B Node B
  • the terminal may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of mobile stations (MS), user devices (User Equipment, UE) and so on.
  • MS mobile stations
  • UE User Equipment
  • the base station can communicate with any of the terminals 1 to 6.
  • the terminal 4, the terminal 5, and the terminal 6 can constitute a small system in which the terminal 5 can communicate with the terminal 4 and the terminal 6, respectively.
  • the cell carrier center frequency involved in the present application can also be referred to as the cell carrier frequency in some cases.
  • the cell carrier center frequency includes a cell uplink carrier center frequency and a cell downlink carrier center frequency.
  • NB-IoT cell The cell supporting NB-IoT in this application is simply referred to as NB-IoT cell.
  • the cell carrier center frequency must be an integer multiple of 100 kilohertz (kHz), that is, the channel raster rule is satisfied.
  • the cell uplink carrier center frequency (hereinafter referred to as the uplink carrier frequency) and the cell downlink carrier center frequency (hereinafter referred to as the downlink carrier frequency) are identified by the E-UTRA absolute radio frequency channel number (EARFCN), and the EARFCN value ranges from 0. -65535.
  • the terminal searches for a cell, it searches on a carrier frequency that is an integer multiple of 100 kHz. Once the cell is searched, it tries to camp on the cell and reads the broadcast message sent by the base station through the cell.
  • the broadcast message includes the broadcast message.
  • the uplink EARFCN of the cell the terminal may obtain the uplink carrier center frequency of the cell according to formula (2), and initiate a random access procedure on the carrier center frequency to establish a connection with the network.
  • the broadcast message may further include a downlink EARFCN of the other inter-frequency cell.
  • the terminal may determine the downlink carrier center frequency of the inter-frequency cell, and quickly search for the inter-frequency cell. Perform subsequent cell reselection or cell handover procedures.
  • the NB-IoT cell carrier center frequency cannot fall on an integer multiple of 100 kHz, that is, the NB-IoT cell carrier center frequency.
  • Value (this frequency can be called actual The cell carrier center frequency) is different from the value that can be used as the cell carrier center frequency in the original LTE system. Therefore, when searching for the NB-IoT cell, the terminal performs downlink synchronization with the base station on the NB-IoT cell carrier center frequency, but the terminal misinterprets the NB-IoT cell carrier center frequency as an integer multiple of 100 kHz (the frequency can be It is called the cell carrier center frequency acquired for the terminal.
  • the subsequent may cause the sampling frequency synchronization and the like to fail; and the NB-IoT cell uplink carrier center frequency obtained according to the EARFCN in the broadcast message (this frequency may also be referred to as the terminal acquisition).
  • the cell carrier center frequency) and the NB-IoT cell uplink carrier center frequency (which may also be referred to as an actual cell carrier center frequency) are deviated, and the terminal initiates random access according to the calculated NB-IoT cell uplink carrier center frequency.
  • the process is likely to cause random access failure, which in turn causes uplink synchronization between the terminal and the base station to fail.
  • the downlink carrier center frequency of the NB-IoT inter-frequency cell obtained by the terminal is deviated from the actual downlink center frequency of the NB-IoT inter-frequency cell, which will also cause subsequent cell reselection or cell handover failure. In this way, the communication quality of NB-IoT is seriously affected.
  • FIG. 4 provides a schematic flowchart of an information indication method.
  • the method can be applied to the system architecture shown in FIG. 2 and the application scenario shown in FIG. 3.
  • the method includes:
  • the base station determines first information indicating a first carrier frequency offset.
  • the first carrier frequency deviation is a frequency offset of an actual cell carrier center frequency and a cell carrier center frequency acquired by the terminal.
  • the base station sends first information to the terminal, where the first information is used to obtain an actual cell carrier center frequency.
  • the terminal acquires an actual cell carrier center frequency according to the first information.
  • the cell is referred to as a cell in the NB-IoT system, and the NB-IoT system operates in the operation mode 2 or 3 as an example, and will be described in detail.
  • the base station itself can know the actual cell carrier center frequency.
  • the base station obtains an integer multiple of 100 KHz which is closest to the actual cell carrier center frequency according to the actual cell carrier center frequency, and can also obtain according to formula (1) or (2) and Table 5.7.3-1 of 3GPP TS 36.104.
  • the EARFCN corresponding to the frequency of the nearest integer multiple of 100KHz, wherein the actual cell carrier center frequency can be divided into an actual cell downlink carrier center frequency and an actual cell uplink carrier center frequency; the EARFCN includes a downlink EARFCN and an uplink EARFCN.
  • the base station can obtain the value of the first carrier frequency offset according to the actual cell carrier center frequency and the frequency of the integer multiple of 100 KHz which is the closest to the actual cell carrier center frequency.
  • the frequency of the integer multiple of 100 kHz which is the closest to the actual cell carrier center frequency is the cell carrier center frequency acquired by the terminal, which can be acquired by the terminal by being carried in a broadcast message or a dedicated message. It can be obtained when the terminal receives the synchronization signal.
  • the base station may inform the terminal by carrying the EARFCN obtained in the broadcast message.
  • the base station needs to notify the terminal of the value of the first carrier frequency offset obtained above, so that the terminal can accurately know the actual cell carrier center frequency.
  • the base station may send the first information of the first carrier frequency offset corresponding to the first carrier frequency offset value to the terminal.
  • the first information determined by the base station includes the value of the first carrier frequency offset.
  • the first information determined by the base station includes an indication parameter of the first carrier frequency deviation, and the indication parameter of the first carrier frequency deviation corresponds to a value of the first carrier frequency deviation, and the correspondence may be performed by the base station and the terminal. In advance, it may be configured in advance between the base station and the terminal.
  • the base station may preset several possible values of the value of the first carrier frequency deviation, and map the several values one by one to the indication parameter of the first carrier frequency deviation.
  • the indication parameter of the first carrier frequency deviation and the value of the first carrier frequency deviation respectively correspond one-to-one from left to right.
  • the indication parameter of the first carrier frequency deviation is "2" corresponding to the value of the first carrier frequency deviation of -47.5 kHz, and so on.
  • the indication parameter of the first carrier frequency deviation may be determined according to Table 1 as the first information.
  • the advantage of the above method is that since the value of the first carrier frequency deviation may be relatively large, if it is directly sent to the terminal as the first information, there is a problem of wasted system resources, and the first carrier frequency with a relatively small amount of data The indication parameter of the deviation just solves this problem and improves the utilization of system resources.
  • the first information determined by the base station includes a root index value of the synchronization signal.
  • the first carrier frequency deviation information may pass the value of the root index in the secondary synchronization signal (SSS).
  • SSS secondary synchronization signal
  • the set ⁇ u1, u2 ⁇ of the root indices u1 and u2 of the SSS1 and SSS2 constituting the SSS the set corresponds to the value of the first carrier frequency deviation, and the correspondence may be pre-agreed by the base station and the terminal, or may be They are respectively configured in the base station and the terminal in advance.
  • SSS is a pair of ZC (Zadoff-Chu) sequences, SSS1 And SSS2.
  • ZC sequence of length L The basic expression for a ZC sequence of length L is:
  • u is the root index of the ZC sequence and q is the offset parameter.
  • q is the offset parameter.
  • different root indices of the ZC sequence can be used to distinguish the values of the different first downlink carrier frequency offsets.
  • the possible values of the first carrier frequency offset difference that the base station knows in advance may be mapped to the set ⁇ u1, u2 ⁇ of the root index u1 of the SSS1 and the root index u2 of the SSS2 as the first information. That is, the value of each first downlink carrier frequency offset corresponds to a possible ⁇ u1, u2 ⁇ . For example, ⁇ 1, 2 ⁇ corresponds to -47.5 kHz.
  • the first information determined by the base station includes a channel bandwidth parameter and a resource block (RB) index; for example, the channel bandwidth parameter is a value of a channel bandwidth of the LTE system, and the resource block The index is the resource block index of the carrier of the cell within the channel bandwidth of the LTE system.
  • the LTE system channel bandwidth is divided into 16 resource blocks, and these resource blocks are numbered from left to right from low to high, forming an index of 0-15.
  • the carrier of the cell occupies the fourth resource block on the channel bandwidth of the LTE system carrier, and at this time, the corresponding resource block index is 3.
  • the channel bandwidth parameter and the resource block index correspond to the value of the first carrier frequency deviation, and the correspondence may be pre-agreed by the base station and the terminal, or may be configured in the base station and the terminal respectively.
  • the correspondence may be pre-agreed by the base station and the terminal, or may be configured in the base station and the terminal respectively.
  • the channel bandwidth of the LTE system has the following values: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
  • the number of available RBs corresponding to the channel bandwidth can be obtained from Table 5.6-1 of 3GPP TS 36.101.
  • These RBs may be indexed in the order of the frequency (for example, from low to high (ie, from left to right as shown in Figure 3(c)), for example, 0, 1, ..., N RB -1.
  • the channel bandwidth B LTE of the LTE system is 3 MHz, 5 MHz or 15 MHz
  • round100 ⁇ x ⁇ represents a calculation
  • the calculated value is an integral multiple of 100
  • the absolute value of the difference from x is the smallest.
  • the channel bandwidth B LTE of the LTE system is 1.4 MHz, 10 MHz or 20 MHz,
  • the base station itself knows the bandwidth and resource block index of the LTE system, and sends it as the first information to the terminal.
  • the channel bandwidth parameter is an important parameter for the terminal, and is sent to the terminal in the process of implementing the technical solution of the present invention, so that the terminal can implement other functions according to the bandwidth parameter.
  • the first information described in this application may be used to indicate a first downlink carrier frequency offset, a first uplink carrier frequency offset, or a first downlink carrier frequency offset and a first uplink carrier frequency offset.
  • the value of the actual carrier carrier center frequency and the first carrier frequency deviation of the carrier center frequency acquired by the terminal may not be as much as the values listed in the second column of the second row of Table 1. May be a subset of the values listed. Then for the second or third example, it can be further simplified.
  • Table 1 can be simplified to Table 2, that is, the first frequency deviation value here takes the original part, which is the most frequently occurring first frequency deviation value in practical applications:
  • Indication parameter of the first carrier frequency deviation 1,2,3,4 First carrier frequency deviation value (kHz) -7.5, -2.5, 2.5, 7.5
  • the set ⁇ u1, u2 ⁇ has four values, which correspond to four kinds of first carrier frequency deviation values of -7.5 kHz, -2.5 kHz, 2.5 kHz, and 7.5 kHz, respectively.
  • the advantage of the above method is that the resource utilization rate is maximized according to the actual system situation. Avoid unnecessary system overhead.
  • the base station may send the first information to the terminal in the following manner according to the content included in the first information determined by the base station.
  • the base station may send the first information to the terminal in a broadcast message or a dedicated message sent by the base station to the cell.
  • the first information may include a value of the first carrier frequency deviation, an indication parameter of the first carrier frequency deviation, a root index value of the SSS, and a channel bandwidth of the wireless mobile network and the wireless mobile network. At least one of the resource block indexes.
  • the sending, by the base station, the first information to the terminal includes: sending, by the base station, the SSS signal to the terminal.
  • the SSS signal is generated by a specific root index, and the base station can indicate the first information of the first frequency deviation by transmitting the SSS to the terminal.
  • the terminal can obtain the value of the first carrier frequency deviation according to the set of the root indices of SSS1 and SSS2.
  • the terminal compensates the carrier frequency deviation and the sampling frequency deviation according to the synchronization estimation result.
  • the compensation for the sampling frequency offset is an over-compensation rather than a correct compensation. Therefore, it may be impossible to receive the message sent by the base station, and the manner of the above two examples is to perform the indication of the first carrier frequency deviation information by receiving the message sent by the base station after obtaining the downlink synchronization by the terminal. If the first information is advanced to the SSS transmission phase of the downlink synchronization phase, the terminal ensures that the terminal obtains the first information as early as possible, and obtains the actual cell downlink carrier center frequency in the downlink synchronization phase, thereby avoiding the failure of the subsequent communication process.
  • the base station can also pass the position of the SSS (for example, different subframe numbers in which the SSS is located respectively correspond to values of different first carrier frequency deviations, or between multiple SSSs. The same relative position corresponds to a different value of the first carrier frequency deviation, etc., and the sequence type (for example, the different types used by the SSS sequence respectively correspond to values of different first carrier frequency deviations) or other parameters are indicated to the terminal as the first information.
  • the position of the SSS for example, different subframe numbers in which the SSS is located respectively correspond to values of different first carrier frequency deviations, or between multiple SSSs.
  • the same relative position corresponds to a different value of the first carrier frequency deviation, etc.
  • the sequence type for example, the different types used by the SSS sequence respectively correspond to values of different first carrier frequency deviations
  • the terminal receives the first information sent by the base station.
  • the terminal that obtains the first information can restore the value of the first carrier frequency offset, thereby obtaining the actual cell carrier center frequency.
  • the first information comprises a value of the first downlink carrier frequency offset.
  • the terminal receives the first information through a broadcast message or a dedicated message.
  • the value of the first carrier frequency deviation is the value of the first carrier frequency deviation that needs to be restored.
  • the terminal adds the value of the first carrier frequency offset to the acquired cell carrier center frequency to obtain an actual cell carrier center frequency.
  • the carrier center frequency of the cell f NB-IoT f 0 + ⁇ f
  • f 0 is the cell carrier center frequency obtained by the terminal
  • ⁇ f is the value of the first carrier frequency deviation
  • the first information comprises an indication parameter of the first carrier frequency offset.
  • the terminal receives the first information through a broadcast message or a dedicated message.
  • the terminal searches the table 1 or the table 2 according to the indication parameter of the first carrier frequency deviation to find the value of the first carrier frequency deviation corresponding to the indication parameter of the first carrier frequency deviation.
  • the actual cell carrier center frequency can then be obtained according to formula (7).
  • the first information includes a root index value of the SSS.
  • the first carrier frequency deviation information is exemplified by a pair of root indices u1 and u2 in a pair of secondary synchronization signals SSS1 and SSS2 constituting the SSS.
  • the value of the first carrier frequency offset may be obtained according to a correspondence relationship agreed with the base station in advance.
  • the actual cell carrier center frequency can then be obtained according to formula (7).
  • the terminal receives SSS1 and SSS2, and the types of SSS1 and SSS2 may be ZC sequences.
  • the terminal uses different root indices for matching to try to restore the received two ZC sequences, and finally obtains a root index that can restore the two ZC sequences as SSS1 and The root index of SSS2, wherein the root index of SSS1 is u1, the root index u2 of SSS2, and the terminal obtains the value of the first carrier frequency deviation according to the correspondence relationship between the values of ⁇ u1, u2 ⁇ and the first carrier frequency deviation, the terminal
  • the result of the synchronization estimation and the synchronization error compensation operation are corrected according to the obtained value of the first carrier frequency deviation, that is, the actual cell carrier center frequency is obtained by using Equation (7).
  • the actual cell carrier center frequency is the actual cell downlink carrier center frequency.
  • the first information includes a bandwidth parameter (e.g., a channel bandwidth of the LTE system) and an RB index parameter.
  • a bandwidth parameter e.g., a channel bandwidth of the LTE system
  • the terminal receives the first information through a broadcast message or a dedicated message.
  • the terminal can restore the value of the first downlink carrier frequency deviation according to the formulas (3)-(6).
  • the actual cell carrier center frequency can then be obtained according to formula (7).
  • the terminal obtains the actual cell carrier center frequency, and can perform uplink synchronization with the base station on the actual cell carrier center frequency, complete synchronization of the sampling frequency, and the like, thereby achieving high-quality communication with the base station.
  • the base station indicates the first information of the first frequency deviation to the terminal, so that the terminal obtains the actual cell carrier center frequency, and the terminal and the base station perform synchronization and other communication processes on the actual cell carrier center frequency.
  • the adverse effects caused by the cognitive bias of the terminal to the carrier center frequency of the cell will be avoided, such as uplink synchronization failure. Wait.
  • the communication quality between the terminal and the base station is effectively improved.
  • FIG. 6 provides a schematic flowchart of another information indicating method.
  • the method can be applied to the system architecture shown in FIG. 2 and the application scenario shown in FIG. 3, and the method includes steps 401-403 of the method shown in FIG. 4, since steps 401-403 have been described in detail above, here For further details, reference may be made to the contents at the introduction of steps 401-403.
  • the method also includes:
  • the base station determines second information indicating a frequency deviation of the second carrier.
  • the second carrier frequency deviation is a frequency offset of the actual inter-frequency cell carrier center frequency and the inter-frequency cell carrier center frequency acquired by the terminal.
  • the base station sends the second information to the terminal, where the second information is used to obtain the actual inter-frequency cell carrier center frequency.
  • the terminal acquires the actual inter-frequency cell carrier center frequency according to the second information.
  • the cell is a cell in the NB-IoT system, and the NB-IoT system operates in the operation mode 2 or 3 as an example.
  • the method can be applied to a cell handover procedure.
  • the carrier center frequency of the inter-frequency cell obtained by the terminal may deviate from the actual value.
  • This step is performed in the same manner as 401. Determining here is the second information of the inter-frequency cell of the cell, used to indicate the second carrier frequency deviation, and the second carrier frequency deviation is the actual inter-frequency cell carrier center frequency and the frequency of the inter-frequency cell carrier center frequency acquired by the terminal. deviation.
  • the second information may be sent to the terminal through a broadcast message or a dedicated message of the cell.
  • the value of the second carrier frequency offset of the uplink carrier center frequency of the inter-frequency cell or the indication parameter of the second frequency offset may be obtained by the broadcast message or the dedicated message of the inter-frequency cell after the terminal switches to the inter-frequency cell.
  • the terminal receives the second information sent by the base station.
  • the terminal obtains a value of the second carrier frequency offset according to the second information, and further obtains a carrier center frequency of the inter-frequency cell.
  • the terminal determines the actual inter-frequency cell carrier center frequency according to the second information, and can quickly and accurately search the inter-frequency cell to fully prepare for subsequent possible cell handover.
  • the terminal acquiring the actual carrier frequency of the inter-frequency cell can also be used for other processes except cell handover, and is not limited herein.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of interaction between the base stations and the terminals. It can be understood that a base station, a terminal, etc., in order to implement the above functions, include hardware structures and/or software modules corresponding to each function. Those skilled in the art will readily appreciate that the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 7 shows a possible structural diagram of a base station involved in the above embodiment.
  • the base station includes a transmitter/receiver 701, a controller/processor 702, a memory 703, and a communication unit 704.
  • the transmitter/receiver 701 is configured to support transmission and reception of information between a base station and a terminal, and to support radio communication between the terminal and other terminals. Said The controller/processor 702 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via the antenna, coordinated by the receiver 701, and further processed by the controller/processor 702 to recover the service data and signaling information transmitted by the terminal.
  • traffic data and signaling messages are processed by controller/processor 702 and mediated by transmitter 701 to generate downlink signals for transmission to the terminal via the antenna.
  • the controller/processor 702 also performs the processes involved in the base station of Figures 4 and 6 and/or other processes for the techniques described herein.
  • the memory 703 is used to store program codes and data of the base station.
  • the communication unit 704 is configured to support the base station to communicate with other network devices.
  • Figure 7 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • FIG. 8 is a schematic diagram showing a possible structure of a terminal involved in the above embodiment.
  • the terminal includes a transmitter 801, a receiver 802, a controller/processor 803, a memory 804, and a modem processor 805.
  • Transmitter 801 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • Receiver 802 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • modem processor 805 encoder 806 receives traffic data and signaling to be transmitted on the uplink. Messages and process (eg, format, encode, and interleave) traffic data and signaling messages.
  • Modulator 807 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 809 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 808 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 806, modulator 807, demodulator 809, and decoder 808 may be implemented by a composite modem processor 805. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 803 controls and manages the actions of the terminal for performing the processing performed by the terminal in the above embodiment, and controls the transmitter 801 and the receiver 802 to perform the operations performed by the terminal in FIGS. 4 and 6.
  • the memory 804 is used to store program codes and data for the terminal.
  • FIG. 9 is a base station 900 according to an embodiment of the present invention.
  • the base station 900 may include a processing unit 910 and a transceiver unit 920.
  • the processing unit 910 can implement the function of the controller/processor 702 of the base station in FIG. 7; the transceiver unit 920 can implement the function of the transmitter/receiver 701 of the base station in FIG.
  • FIG. 10 is a terminal 1000 according to an embodiment of the present invention.
  • the terminal 1000 may include a processing unit 1010 and a transceiver unit 1020.
  • the processing unit 1010 can implement the functions of the controller/processor 803 of the terminal in FIG. 8; the transceiver unit 1020 can implement the functions of the transmitter 801 and the receiver 802 of the terminal in FIG.
  • the various illustrative logic blocks, modules and circuits described in the embodiments of the invention may be implemented by a general purpose processing unit, a digital signal processing unit, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic. Devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processing unit may be a micro processing unit.
  • the general purpose processing unit may be any conventional processing unit, controller, microcontroller or state machine.
  • the processing unit may also be implemented by a combination of computing devices, such as a digital signal processing unit and a microprocessing unit, a plurality of microprocessing units, one or more microprocessing units in conjunction with a digital signal processing unit core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software module executed by a processing unit, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processing unit such that the processing unit can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processing unit.
  • the processing unit and the storage medium may be configured in an ASIC, and the ASIC may be configured in the user terminal. Alternatively, the processing unit and the storage medium may also be configured in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions can be stored on a computer readable medium or in one or more instructions Or the code form is transmitted on a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general or special processing unit.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信息发送方法,包括:基站确定指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的频率偏差;所述基站向所述终端发送所述第一信息,所述第一信息用于获取所述实际的小区载波中心频率。本发明实施例提供的技术方案,有效提高了终端和基站之间的通信质量。

Description

信息发送方法、装置和系统 技术领域
本发明涉及无线通信技术,尤其涉及一种信息发送的方法、装置和系统。
背景技术
物联网是指通过部署具有一定感知、计算、执行和通信能力的各种设备,获取物理世界的信息,进行信息传输、协同和处理,以实现人与物、物与物互联的网络。
窄带物联网(narrow band-internet of things,NB-IoT)课题主要用于研究在蜂窝移动网络中支持极低复杂度和低成本物联网的方法。在NB-IoT中,支持NB-IoT通信的终端利用现有的蜂窝移动网络架构进行通信时,所使用的频带相对于该蜂窝移动网络原有的频带,有三种操作模式:独立频带操作(stand-alone operation)模式,保护带操作(guard band operation)模式以及带内操作(in-band operation)模式。
在保护带操作模式,或者带内操作模式下,NB-IoT的通信质量不佳。
发明内容
本发明提供了一种信息指示方法,以有效提升基站和终端间NB-IoT的通信质量。
本申请的实施例中,基站确定指示第一载波频率偏差的第一信息,并向终端发送所述第一信息。其中,所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的频率偏差,终端根据所述第一信息获取实际的小区载波中心频率。
一方面,本申请实施例提供了一种信息发送的方法,包括:基站确定指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的载波频率偏差;基站向所述终端发送所述第一信息,所述第一信息用于获取所述实际的小区载波中心频率。
另一方面,本申请实施例提供了另一种信息发送的方法,包括:终端接收基站发送的指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和所述终端获取的小区载波中心频率的载波频率偏差;终端根据所述第一信息获取所述实际的小区载波中心频率。
基于上述方面,本申请还提供了以下可能的设计:
在一种可能的设计中,以上提及的小区载波中心频率可能为小区上行载波中心频率,小区下行载波中心频率,或者小区上行载波中心频率和小区下行载波中心频率。终端获取实际的小区上行载波中心频率,能够在该实际的小区上行载波中心频率上发起随机接入流程,以获得和基站的上行同步;终端获取实际的小区下行载波中心频率,能够准确地进行采样频率同步等流程。
在一种可能的涉及中,第一信息包括第一载波频率偏差的值和第一载波频率偏差的指示参数中的至少一种;其中,所述第一载波频率偏差的指示参数与所述第一载波频率偏差的值相对应。第一信息包括第一载波频率偏差的值时,终端不需要做额外的处理便可直接获得第一载波频率偏差的值;第一信息包括第一载波频率偏差的指示参数时,相对于前一种示例,由于第一载波频率偏差的值可能数据量比较大,如果直接将它作为第一信息给到终端,存在系统资源浪费的问题, 而数据量相对较小的第一载波频率偏差的指示参数刚好能解决这个问题,提高了系统资源的利用率。
在一种可能的设计中,第一信息包括同步信号的根指数取值,所述根指数的取值与所述第一载波频率偏差的值相对应。例如,同步信号可以是辅同步信号SSS,SSS包括了一对ZC(Zadoff-Chu)序列SSS1和SSS2,所述根指数包括所述SSS1的根指数u1和所述SSS2的根指数u2。
在一种可能的设计中,第一信息包括同步信号的位置,序列类型等参数,这些参数和第一载波频率偏差的值相对应。
在一种可能的设计中,第一信息包括带宽参数和资源块索引参数,所述带宽参数和所述资源块索引参数与所述第一载波频率偏差的值相对应。例如,该带宽参数可以是无线移动网络的带宽,资源块索引为该小区的载波在无线移动网络系统信道带宽内所处的资源块索引。信道带宽参数,对于终端来说是一个重要的参数,在本发明技术方案实施的过程中就将其发送给终端,便于终端根据带宽参数实现其它功能。
在一种可能的设计中,基站向终端发送广播消息或者专用消息,所述广播消息或者专用消息携带所述第一信息;终端接收该广播消息或者专用消息。
在一种的可能的设计中,当第一信息包括同步信号的根指数取值时,所述第一信息携带在同步信号当中,例如SSS,在下行同步时,通过基站向终端发送SSS给到终端,在这种情况下,如果将第一信息提前到下行同步阶段的SSS发送阶段,保证终端尽可能早的获得第一信息,在下行同步阶段就获得实际的小区下行载波中心频率,避 免了终端因下行同步失败而无法接收到小区的广播消息,进而导致一系列后续通信流程的失败。
在一种可能的设计中,终端获取的小区载波中心频率为所述终端在接收同步信号时获取。
在一种可能的设计中,终端获取的小区载波中心频率为所述终端通过接收广播消息或者专用消息获取。
在一种可能的设计中,以上的方法还包括:基站确定指示第二载波频率偏差的第二信息,并向终端发送所述第二信息。其中,所述第二载波频率偏差为实际的异频小区载波中心频率和终端获取的异频小区载波中心频率的载波频率偏差,终端根据所述第二信息获取实际的异频小区载波中心频率。终端根据第二信息确定实际的异频小区载波中心频率,能够快速,准确地对异频小区进行小区搜索,为后续可能的小区切换做好充分的准备。
在一种可能的设计中,上述的小区为支持NB-IoT通信的小区。
另一方面,本发明实施例提供了一种基站,该基站具有实现上述方法设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,基站的结构中包括处理器和发射器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发射器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,也可以通 过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述模块可以是软件和/或硬件
在一个可能的设计中,终端的结构中包括接收器和处理器,所述处理器被配置为支持终端执行上述方法中相应的功能。所述发射器用于支持终端与基站之间的通信,接收基站发送的上述方法中所涉及的信息或者指令。所述终端还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中基站的设计功能。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中终端的设计功能。
本发明实施例提供的技术方案,通过基站向终端指示第一频率偏差的第一信息,使得终端获得实际的小区载波中心频率,在该实际的小区载波中心频率上终端和基站进行同步等通信流程,将避免因终端 对该小区载波中心频率的认知偏差导致的不利影响,例如上行同步失败等。有效提高了终端和基站之间的通信质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1(a)为本发明实施例提供窄带物联网支持的独立操作模式的示意图;
图1(b)为本发明实施例提供窄带物联网支持的保护带操作模式的示意图;
图1(c)为本发明实施例提供窄带物联网支持的带内操作模式的示意图;
图2为本发明实施例提供的一种系统架构图;
图3为本发明实施例提供的一种应用场景;
图4为本发明实施例提供的一种信息指示方法的流程示意图;
图5为本发明实施例提供的一种信息参数对照示意图;
图6为本发明实施例提供的另一种信息指示方法的流程示意图;
图7为本发明实施例提供的基站的一种结构示意图;
图8为本发明实施例提供的终端的一种结构示意图;
图9为本发明实施例提供的基站的另一种结构示意图;
图10为本发明实施例提供的终端的另一种结构示意图。
具体实施方式
蜂窝物联网(cellular internet of things,CIoT)是基于现有的无线通信系统实现物联网通信的,也即,其系统运行的系统构架与无线通信系统,例如长期演进(long term evolution,LTE)系统,相类似。本发明所涉及的NB-IoT源自第三代合作伙伴计划(3rd generation partnership project,3GPP)无线接入网(radio access network,RAN)#69次会议的提案,NB-IoT的目标是规定一种蜂窝物联网的无线接入方式,以实现大覆盖,低延时和低成本通信。
在3GPP RAN#69次会议与NB-IoT相关的提案中指出,NB-IoT应当支持三种不同的操作模式:
1、独立操作(stand-alone operation):NB-IoT工作在独立的载波频带工作,如图1(a)所示。
2、保护带操作(guard band operation):NB-IoT工作在LTE载波保护带中未利用的资源块上,如图1(b)所示。
3、带内操作(in-band operation):NB-IoT工作在LTE载波频带(即信道带宽)的资源块上,如图1(c)所示。在该种操作模式下,例如,NB-IoT可以使用LTE载波频带内的某个资源块作为NB-IoT的上行载波频带,使用LTE载波频带内的另一个资源块作为NB-IoT的下行载波频带。
图2为本发明实施例提供的一种系统架构图。如图2所示,终端通过无线接入网(radio access network,RAN)以及核心网(core network,CN)接入外部网络(external network)。本发明描述的技术可以适用于NB-IoT系统。当然还可以适用于其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,后续的演进系统, 如第五代5G系统等。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。为清楚起见,这里以LTE系统为例进行说明。在LTE系统中,演进的UMTS陆面无线接入(evolved universal terrestrial radio access,E-UTRA)网作为无线接入网,演进分组核心网(evolved packet core,EPC)作为核心网,因为NB-IoT系统运行的系统构架与LTE系统相类似,所以上述对LTE系统架构的描述同样适用于NB-IoT系统。
图3示出了本发明实施例的一种应用场景,图3中包括基站和终端1至终端6。基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为演进的节点B(evolved NodeB,eNodeB),在第三代网络中,称为节点B(Node B)等等。终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的移动台(Mobile station,MS),用户设备(User Equipment,UE)等等。如图3所示,基站可以与终端1至终端6中的任一个进行通信。此外,终端4,终端5,和终端6能够组成一个小系统,在该小系统中,终端5可以分别与终端4、终端6实现通信。
现对与本申请相关的名词和概念做出一些解释。
本申请中涉及的小区载波中心频率,即为小区载波中心频点,在某些场合也能被简称为小区载波频率。小区载波中心频率包括小区上行载波中心频率和小区下行载波中心频率。
本申请中支持NB-IoT的小区被简称为NB-IoT小区。
现有的LTE系统中,通信仅在被专门分配使用的载波频带上进行,也即类似于上述独立操作模式的形式。根据现有的3GPP技术标准(technical standard,TS)36.104,小区载波中心频率必须为100千赫兹(kHz)的整数倍,也即满足信道栅格(channel raster)规则。小区上行载波中心频率(以下简称上行载波频率)和小区下行载波中心频率(以下简称下行载波频率)由E-UTRA绝对无线频道号(absolute radio frequency channel number,EARFCN)标识,EARFCN取值范围为0-65535。EARFCN与下行载波频率(单位:兆赫兹(MHz))之间的关系由公式(1):FDL=FDL_low+0.1(NDL–NOffs-DL)给出,其中,FDL_low和NOffs-DL由3GPP TS36.104中表5.7.3-1给出,FDL为下行载波频率,NDL即为下行EARFCN;EARFCN与上行载波频率(单位:兆赫兹(MHz))之间的关系由公式(2):FUL=FUL_low+0.1(NUL–NOffs-UL)给出,其中,FUL_low和NOffs-UL由3GPP TS36.104中表5.7.3-1给出,FUL即为上行载波频率,NUL即为上行EARFCN。
终端在小区搜索时,会在100kHz的整数倍的载波频率上进行搜索,一旦搜索到小区便会尝试驻留到该小区并读取基站通过该小区发送的广播消息,该广播消息中包含了该小区的上行EARFCN,终端可以根据公式(2)获得该小区上行载波中心频率进而在该载波中心频率上发起随机接入流程与网络建立连接。此外,该广播消息中还可以包含其它异频小区的下行EARFCN,类似的,基于其它异频小区的下行EARFCN,终端可以确定这些异频小区的下行载波中心频率,快速搜索到这些异频小区,执行后续的小区重选或者小区切换流程。
以上的流程对于NB-IoT系统来说将会存在如下问题:工作在操作模式2或者3时,NB-IoT小区载波中心频率无法落在100kHz的整数倍上,也即NB-IoT小区载波中心频率的值(该频率可以称为实际 的小区载波中心频率)与原先LTE系统中可以作为小区载波中心频率的值存在偏差。因此,终端在搜索NB-IoT小区时,虽然在NB-IoT小区载波中心频率上与基站进行下行同步,但是终端会将NB-IoT小区载波中心频率误认为100kHz的整数倍进行存储(该频率可以称为为终端获取的小区载波中心频率),后续可能导致采样频率同步等的失败;并且根据广播消息中EARFCN计算获得的NB-IoT小区上行载波中心频率(该频率也可以称为为终端获取的小区载波中心频率)和该NB-IoT小区上行载波中心频率(该频率也可以称为实际的小区载波中心频率)存在偏差,那么终端根据计算获得的NB-IoT小区上行载波中心频率发起随机接入流程,将很可能导致随机接入失败,进而导致终端与基站的上行同步失败。类似的,终端获得的NB-IoT异频小区下行载波中心频率和实际该NB-IoT异频小区下行载波中心频率存在偏差,这也将会导致后续小区重选或者小区切换的失败。这样,NB-IoT的通信质量受到严重影响。
基于上述问题,图4提供了一种信息指示方法的流程示意图。该方法可以应用于图2所示的系统架构以及图3所示的应用场景。该方法包括:
401、基站确定指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的频率偏差。
402、基站向终端发送第一信息,所述第一信息用于获取实际的小区载波中心频率。
403、终端根据所述第一信息获取实际的小区载波中心频率。
以下,以该小区为NB-IoT系统中的小区,且NB-IoT系统工作在操作模式2或者3为例,进行详细说明。
基站本身可以获知实际的小区载波中心频率。基站根据实际的小区载波中心频率获得与实际的小区载波中心频率最接近的100KHz整数倍的频率,还可以根据公式(1)或者(2)以及3GPP TS36.104中表5.7.3-1获得与该最接近的100KHz整数倍的频率所对应的EARFCN,其中,实际的小区载波中心频率可以分为实际的小区下行载波中心频率和实际的小区上行载波中心频率;EARFCN包括下行EARFCN和上行EARFCN。根据实际的小区载波中心频率和实际的小区载波中心频率最接近的100KHz整数倍的频率,基站可以获得第一载波频率偏差的值。
需要说明的是,上文中的与实际的小区载波中心频率最接近的100KHz整数倍的频率,即为终端获取的小区载波中心频率,它可以通过携带在广播消息或者专用消息中由终端获取,还可以为终端在接收同步信号时获取。当通过携带在广播消息或者专用消息中由终端获取时,基站可以在广播消息中携带上述获得的EARFCN的方式告知终端。
基站需要把以上获得的第一载波频率偏差的值通知给终端,以便终端能够在准确地获知实际的小区载波中心频率。基站可以将第一载波频率偏差值对应的第一载波频率偏差的第一信息发送给终端。
作为第一种示例,基站确定的第一信息即包括第一载波频率偏差的值。这种方式的好处是方便易行,终端不需要做额外的处理便可直接获得第一载波频率偏差的值。
作为第二种示例,基站确定的第一信息包括第一载波频率偏差的指示参数,该第一载波频率偏差的指示参数与第一载波频率偏差的值相对应,该对应关系可以由基站和终端预先约定,也可以是预先分别被配置在基站和终端当中。例如:
根据对NB-IoT系统和LTE系统的研究,基站可以预置第一载波频率偏差的值可能的若干种数值,并将该若干种数值一一映射到第一载波频率偏差的指示参数。
表1
如表1所示,第一载波频率偏差的指示参数和第一载波频率偏差的值分别从左至右一一对应。作为具体示例的一种,从上表可知,第一载波频率偏差的指示参数为“2”对应的是-47.5kHz的第一载波频率偏差的值,依次类推。基站获得第一载波频率偏差的值之后,便可以根据表1确定出第一载波频率偏差的指示参数,作为第一信息。以上方法的优点是,由于第一载波频率偏差的值可能数据量比较大,如果直接将它作为第一信息给到终端,存在系统资源浪费的问题,而数据量相对较小的第一载波频率偏差的指示参数刚好能解决这个问题,提高了系统资源的利用率。
作为第三种示例,基站确定的第一信息包括同步信号的根指数取值。举例来说,第一载波频率偏差信息可以通过辅同步信号(secondary synchronization signal,SSS)中的根指数的取值。例如,由组成SSS的SSS1和SSS2的根指数u1和u2的集合{u1,u2},该集合与第一载波频率偏差的值相对应,该对应关系可以由基站和终端预先约定,也可以是预先分别被配置在基站和终端当中。
在NB-IoT系统中,SSS为一对ZC(Zadoff-Chu)序列,SSS1 和SSS2。长度为L的ZC序列的基本表达式为:
zc(n)=e-jπun(n+1+2q)/L,n=0,1,...,L-1,q∈Z,u∈Z
其中,u为ZC序列的根指数,q为偏移参数。对于每个SSS来说,u的取值存在L-1种可能。那么可以用ZC序列的不同根指数来区别不同的第一下行载波频率偏差的值。具体的,可以将基站预先获知的第一载波频率偏的差值可能的若干种数值一一映射到SSS1的根指数u1和SSS2的根指数u2组成的集合{u1,u2}作为第一信息,也即每个第一下行载波频率偏差的值对应到一种可能的{u1,u2}。例如,{1,2}对应-47.5kHz。
作为第四种示例,基站确定的第一信息包括信道带宽参数和资源块(resource block,RB)索引(index);例如,所述信道带宽参数为LTE系统的信道带宽的值,所述资源块索引为该小区的载波在LTE系统信道带宽内所处的资源块索引。进一步地,可以参照图3(c),LTE系统信道带宽划分成16个资源块,从左至右由频点低到高对这些资源块进行编号,形成0-15的索引。图中,小区的载波在LTE系统载波的信道带宽上占用的是第4资源块,那么此时,对应的资源块索引为3。
信道带宽参数和资源块索引与第一载波频率偏差的值相对应,该对应关系可以由基站和终端预先约定,也可以是预先分别被配置在基站和终端当中。例如:
LTE系统的信道带宽有如下几种取值:1.4MHz,3MHz,5MHz,10MHz,15MHz,以及20MHz。由3GPP TS36.101中表5.6-1可以获得对应信道带宽的可用RB数目。
信道带宽(MHz) 1.4 3 5 10 15 20
可用的RB数目NRB 6 15 25 50 75 100
3GPP TS36.101表5.6-1
可以按照频率的高低的顺序(例如,从低到高的顺序(即如图3(c)从左至右)对这些RB进行索引编号,例如,0,1,......,NRB-1。
当LTE系统的信道带宽BLTE为3MHz,5MHz或者15MHz时,
若第一载波频率偏差信息中的资源块索引号
Figure PCTCN2016070509-appb-000002
则第一载波频率偏差的值Δf=0;
Figure PCTCN2016070509-appb-000003
Figure PCTCN2016070509-appb-000004
Figure PCTCN2016070509-appb-000005
Figure PCTCN2016070509-appb-000006
其中,round100{x}表示一种计算,计算得到数值是100的整倍数,且与x的差的绝对值最小。
当LTE系统的信道带宽BLTE为1.4MHz,10MHz或者20MHz时,
Figure PCTCN2016070509-appb-000007
Figure PCTCN2016070509-appb-000008
Figure PCTCN2016070509-appb-000009
Figure PCTCN2016070509-appb-000010
基站本身获知LTE系统的带宽和资源块索引,将其作为第一信息发送给终端。信道带宽参数,对于终端来说是一个重要的参数,在本发明技术方案实施的过程中就将其发送给终端,便于终端根据带宽参数实现其它功能。
本申请中所述的第一信息可以用于指示第一下行载波频率偏差,第一上行载波频率偏差,或者第一下行载波频率偏差和第一上行载波频率偏差。
在本申请的实际应用过程中,实际的小区载波中心频率与终端获取的载波中心频率的第一载波频率偏差的值可能并没有表1第二行第二列中所列的值的那么多,可能是该所列的值的子集。那么对第二种或者第三种示例,可以进一步简化。
例如,对于第二种示例,表1可以简化为表2,也即,这里的第一频率偏差值取原先的一部分,该部分为实际应用中最常出现的第一频率偏差值:
第一载波频率偏差的指示参数 1,2,3,4
第一载波频率偏差值(kHz) -7.5,-2.5,2.5,7.5
表2
又例如,对于第三种示例,如图5所示,集合{u1,u2}存在4种取值,分别对应-7.5kHz,-2.5kHz,2.5kHz,7.5kHz4种第一载波频率偏差值。
以上做法优点是,根据实际系统情况,使得资源利用率最大化, 避免不必要的系统开销。
根据基站所确定的第一信息包括的内容,基站可以通过以下方式向终端发送第一信息。
基站可以将该第一信息携带在基站向小区发送的广播消息或者专用消息中发送给终端。
需要说明的是,实际运用中,第一信息可以包括第一载波频率偏差的值,第一载波频率偏差的指示参数,SSS的根指数取值以及无线移动网的信道带宽和所述无线移动网的资源块索引中的至少一种。
作为一种示例,当第一信息包括SSS的根指数取值时,基站向所述终端发送第一信息包括:基站向终端发送该SSS信号。该SSS信号,是通过一个特定的根指数生成的,基站可以通过向所述终端发送SSS即能够指示第一频率偏差的第一信息。例如,当SSS由SSS1和SSS2组成时,当基站向终端发送辅同步信号时,终端根据SSS1和SSS2的根指数所组成的集合,就可以对应获得第一载波频率偏差的值。终端在同步过程中会依据同步估计结果对载波频率偏差和采样频率偏差进行补偿,然而由于NB-IoT系统的载波频率偏差问题,导致对采样频偏的补偿是一种过度补偿而非正确补偿,从而可能导致无法接收基站发送的消息,而以上两种示例的方式最后都是需要通过终端在取得下行同步后,接收基站发送的消息来进行第一载波频率偏差信息的指示的,在这种情况下,如果将第一信息提前到下行同步阶段的SSS发送阶段,保证终端尽可能早的获得第一信息,在下行同步阶段就获得实际的小区下行载波中心频率,避免了后续通信过程的失败。
此时,基站还能够通过SSS的位置(例如SSS位于的不同子帧编号分别对应不同的第一载波频率偏差的值,或者多个SSS之间不 同的相对位置对应不同的第一载波频率偏差的值等),序列类型(例如SSS序列采用的不同类型分别对应不同的第一载波频率偏差的值)或者其它参数作为第一信息向终端指示第一频率偏差。
终端接收基站发送的第一信息。
获得第一信息的终端,能够还原第一载波频率偏差的值,进而获得实际的小区载波中心频率。
根据401中的第一种示例,第一信息包括第一下行载波频率偏差的值。
终端通过广播消息或者专用消息接收第一信息。此时第一载波频率偏差的值即为需要还原的第一载波频率偏差的值。
此时,终端在获取的小区载波中心频率上加上该第一载波频率偏差的值即可获得实际的小区载波中心频率。具体的,可以参照如下公式(7):
小区的载波中心频率fNB-IoT=f0+Δf
其中,f0为终端获得的小区载波中心频率,Δf为第一载波频率偏差的值。
根据401中的第二种示例,第一信息包括第一载波频率偏差的指示参数。
由402可知,终端通过广播消息或者专用消息接收第一信息。此时,终端根据第一载波频率偏差的指示参数查表1或者表2找到与第一载波频率偏差的指示参数对应的第一载波频率偏差的值。再根据公式(7)即可获得实际的小区载波中心频率。
根据401中的第三种示例,第一信息包括SSS的根指数取值。这里用第一载波频率偏差信息通过组成SSS的一对辅同步信号SSS1和SSS2中的一对根指数u1和u2指示来举例说明。
当终端通过广播消息或者专用消息接收该第一信息时,可以根据预先与基站约定的对应关系,获得第一载波频率偏差的值。再根据公式(7)即可获得实际的小区载波中心频率。
终端接收SSS1和SSS2,SSS1和SSS2的类型可以是ZC序列,终端用不同的根指数进行匹配尝试还原接收到的这两个ZC序列,最终获得可以还原这两个ZC序列的根指数作为SSS1和SSS2的根指数,其中,SSS1的根指数为u1,SSS2的根指数u2,终端根据{u1,u2}和第一载波频率偏差的值的对应关系,可以获得第一载波频率偏差的值,终端根据获得的该第一载波频率偏差的值对同步估计的结果和同步误差补偿操作进行修正,即运用公式(7),获得实际的小区载波中心频率。此时实际的小区载波中心频率为实际的小区下行载波中心频率。
根据401中的第四种示例,第一信息包括带宽参数(例如所述LTE系统的信道带宽)和RB索引参数。
由402可知,终端通过广播消息或者专用消息接收第一信息。此时,终端根据LTE系统的信道带宽和RB索引号,对照公式(3)-(6)即可还原出第一下行载波频率偏差的值。再根据公式(7)即可获得实际的小区载波中心频率。
终端获得了实际的小区载波中心频率,就可以在实际的小区载波中心频率上与基站进行上行同步、完成采样频率的同步等流程,进而和基站实现高质量的通信。
本实施例提供的技术方案,通过基站向终端指示第一频率偏差的第一信息,使得终端获得实际的小区载波中心频率,在该实际的小区载波中心频率上终端和基站进行同步等通信流程,将避免因终端对该小区载波中心频率的认知偏差导致的不利影响,例如上行同步失败 等。有效提高了终端和基站之间的通信质量。
图6提供了另一种信息指示方法的流程示意图。该方法可以应用于图2所示的系统架构以及图3所示的应用场景,并且该方法包括了图4所示方法的步骤401-403,由于上文已经详细介绍过步骤401-403,这里不再赘述,可以参照在介绍步骤401-403时的内容。该方法还包括:
601、基站确定指示第二载波频率偏差的第二信息;所述第二载波频率偏差为实际的异频小区载波中心频率和终端获取的异频小区载波中心频率的频率偏差。
602、基站向所述终端发送所述第二信息,所述第二信息用于获取所述实际的异频小区载波中心频率。
603、终端根据所述第二信息获取所述实际的异频小区载波中心频率。
以下仍以该小区为NB-IoT系统中的小区,且NB-IoT系统工作在操作模式2或者3为例,进行详细说明。
本方法可以应用于小区切换流程,类似地,终端在进行异频小区的搜索以进行小区切换时,终端所获得的异频小区的载波中心频率会与实际值存在偏差。该步骤的执行方式与401基本一致。这里确定的是该小区的异频小区的第二信息,用于指示第二载波频率偏差,第二载波频率偏差为实际的异频小区载波中心频率和终端获取的异频小区载波中心频率的频率偏差。该第二信息可以通过该小区的广播消息或者专用消息发送给终端。
异频小区的上行载波中心频率的第二载波频率偏差的值或者第二频率偏差的指示参数,可以等到终端切换至异频小区后,通过异频小区的广播消息或者专用消息获得。
终端接收基站发送的第二信息。
终端根据所述第二信息,获得第二载波频率偏差的值,进而获得异频小区的载波中心频率。
该步骤的具体执行方式和403基本一致,此处不再赘述。
终端根据第二信息确定实际的异频小区载波中心频率,能够快速,准确地对异频小区进行搜索,为后续可能的小区切换做好充分的准备。
当然终端获取实际的异频小区的载波中心频率也可以用于小区切换外的其它流程,这里不做任何限定。
上述主要从各个基站和终端之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,基站,终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图7示出了上述实施例中所涉及的基站的一种可能的结构示意图。
基站包括发射器/接收器701,控制器/处理器702,存储器703以及通信单元704。所述发射器/接收器701用于支持基站与终端之间收发信息,以及支持所述终端与其他终端之间进行无线电通信。所述 控制器/处理器702执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器701进行调解,并进一步由控制器/处理器702进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器702进行处理,并由发射器701进行调解来产生下行链路信号,并经由天线发射给终端。控制器/处理器702还执行图4和图6中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程。存储器703用于存储基站的程序代码和数据。通信单元704用于支持基站与其他网络设备进行通信。
可以理解的是,图7仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图8示出了上述实施例中所涉及的终端的一种可能的结构示意图。所述终端包括发射器801,接收器802,控制器/处理器803,存储器804和调制解调处理器805。
发射器801调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中接入网设备发射的下行链路信号。接收器802调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令 消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器809处理(例如,解调)该输入采样并提供符号估计。解码器808处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器806、调制器807、解调器809和解码器808可以由合成的调制解调处理器805来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器803对终端的动作进行控制管理,用于执行上述实施例中由终端进行的处理,并控制发射器801以及接收器802完成图4和图6中终端所执行的动作。存储器804用于存储用于终端的程序代码和数据。
图9为本发明实施例提供的基站900,基站900可以包括处理单元910和收发单元920。其中,处理单元910能够实现图7中基站的控制器/处理器702的功能;收发单元920能够实现图7中基站的发射器/接收器701的功能。
图10为本发明实施例提供的终端1000,终端1000可以包括处理单元1010和收发单元1020。其中,处理单元1010能够实现图8中终端的控制器/处理器803的功能;收发单元1020能够实现图8中终端的发射器801以及接收器802的功能。
本领域技术人员还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative  components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理单元,数字信号处理单元,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理单元可以为微处理单元,可选地,该通用处理单元也可以为任何传统的处理单元、控制器、微控制器或状态机。处理单元也可以通过计算装置的组合来实现,例如数字信号处理单元和微处理单元,多个微处理单元,一个或多个微处理单元联合一个数字信号处理单元核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理单元执行的软件模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理单元连接,以使得处理单元可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理单元中。处理单元和存储媒介可以配置于ASIC中,ASIC可以配置于用户终端中。可选地,处理单元和存储媒介也可以配置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令 或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理单元读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (20)

  1. 一种信息发送方法,其特征在于,该方法包括:
    基站确定指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的载波频率偏差;
    所述基站向所述终端发送所述第一信息,所述第一信息用于获取所述实际的小区载波中心频率。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息包括第一载波频率偏差的值和第一载波频率偏差的指示参数中的至少一种;其中,所述第一载波频率偏差的指示参数与所述第一载波频率偏差的值相对应。
  3. 如权利要求1所述的方法,其特征在于,所述第一信息包括同步信号的根指数取值,所述根指数的取值与所述第一载波频率偏差的值相对应。
  4. 如权利要求1所述的方法,其特征在于,所述第一信息包括带宽参数和资源块索引参数,所述带宽参数和所述资源块索引参数与所述第一载波频率偏差的值相对应。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述基站向所述终端发送所述第一信息包括:所述基站向所述终端发送广播消息或者专用消息,所述广播消息或者专用消息携带所述第一信息。
  6. 如权利要求3所述的方法,其特征在于,所述基站向所述终端发送所述第一信息包括:所述基站向所述终端发送与所述第一信息对应的所述同步信号。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述终端获取的小区载波中心频率为所述终端在接收同步信号时获取的。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述终端获取的小区载波中心频率为所述终端通过接收广播消息或者专用消息获取的。
  9. 如权利要求1-8任一所述的方法,其特征在于,还包括:
    所述基站确定指示第二载波频率偏差的第二信息;所述第二载波频率偏差为实际的异频小区载波中心频率和终端获取的异频小区载波中心频率的载波频率偏差;
    所述基站向所述终端发送所述第二信息,所述第二信息用于获取所述实际的异频小区载波中心频率。
  10. 一种基站,其特征在于,包括:
    处理单元,用于确定指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和终端获取的小区载波中心频率的载波频率偏差;
    收发单元,用于向所述终端发送所述第一信息,所述第一信息用于获取所述实际的小区载波中心频率。
  11. 如权利要求10所述的基站,其特征在于,所述第一信息包括第一载波频率偏差的值和第一载波频率偏差的指示参数中的至少一种;其中,所述第一载波频率偏差的指示参数与所述第一载波频率偏差的值相对应。
  12. 如权利要求10所述的基站,其特征在于,所述第一信息包括同步信号的根指数取值,所述根指数的取值与所述第一载波频率偏差的值相对应。
  13. 如权利要求10所述的基站,其特征在于,所述第一信息包括带宽参数和资源块索引参数,所述带宽参数和所述资源块索引参数与所述第一载波频率偏差的值相对应。
  14. 如权利要求10-13任一所述的基站,其特征在于,所述收发单元具体用于,向所述终端发送广播消息或者专用消息,所述广播消息或者专用消息携带所述第一信息。
  15. 如权利要求12所述的基站,其特征在于,所述收发单元具体用于,向所述终端发送与所述第一信息对应的所述同步信号。
  16. 一种终端,其特征在于,包括:
    收发单元,用于接收基站发送的指示第一载波频率偏差的第一信息;所述第一载波频率偏差为实际的小区载波中心频率和所述终端获取的小区载波中心频率的载波频率偏差;
    处理单元,用于根据所述第一信息获取所述实际的小区载波中心频率。
  17. 如权利要求16所述的终端,其特征在于,所述第一信息包括第一载波频率偏差的值和第一载波频率偏差的指示参数中至少一种;其中,所述第一载波频率偏差的指示参数与所述第一载波频率偏差的值相对应。
  18. 如权利要求16所述的终端,其特征在于,所述第一信息包括同步信号的根指数取值,所述根指数的取值与所述第一载波频率偏差的值相对应。
  19. 如权利要求16所述的终端,其特征在于,所述第一信息包括带宽参数和资源块索引参数,所述带宽参数和所述资源块索引参数与所述第一载波频率偏差的值相对应。
  20. 如权利要求18所述的终端,其特征在于,所述收发单元具体用于,接收所述基站发送的与所述第一信息对应的所述同步信号。
PCT/CN2016/070509 2016-01-08 2016-01-08 信息发送方法、装置和系统 WO2017117812A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2016/070509 WO2017117812A1 (zh) 2016-01-08 2016-01-08 信息发送方法、装置和系统
CN202011505323.8A CN113163373A (zh) 2016-01-08 2016-01-08 信息发送方法、装置和系统
EP21180007.3A EP3958635A1 (en) 2016-01-08 2016-01-08 Information sending method, apparatus, and system
CN201680076901.6A CN108432318B (zh) 2016-01-08 2016-01-08 信息发送方法、装置和系统
EP16882957.0A EP3399815B1 (en) 2016-01-08 2016-01-08 Information sending method, apparatus and system
US16/029,635 US11678277B2 (en) 2016-01-08 2018-07-08 Method, apparatus and system for indicating carrier frequency offset
US18/302,086 US20230300762A1 (en) 2016-01-08 2023-04-18 Information sending method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070509 WO2017117812A1 (zh) 2016-01-08 2016-01-08 信息发送方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/029,635 Continuation US11678277B2 (en) 2016-01-08 2018-07-08 Method, apparatus and system for indicating carrier frequency offset

Publications (1)

Publication Number Publication Date
WO2017117812A1 true WO2017117812A1 (zh) 2017-07-13

Family

ID=59273347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070509 WO2017117812A1 (zh) 2016-01-08 2016-01-08 信息发送方法、装置和系统

Country Status (4)

Country Link
US (2) US11678277B2 (zh)
EP (2) EP3399815B1 (zh)
CN (2) CN113163373A (zh)
WO (1) WO2017117812A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194723A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for at least reducing an image interference for uplink transmission
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721695B2 (en) * 2016-01-08 2020-07-21 Nokia Technologies Oy Method and apparatus for performing frequency synchronization for carriers
WO2017121462A1 (en) * 2016-01-12 2017-07-20 Nokia Solutions And Networks Oy Cell selection for exception reporting for wireless networks
ES2774717T3 (es) * 2016-03-16 2020-07-22 Ericsson Telefon Ab L M Dispositivo inalámbrico, nodo y métodos de red en un sistema de comunicaciones inalámbricas
CN111757363B (zh) * 2019-03-29 2022-07-12 中国移动通信有限公司研究院 一种通信方法和终端、网络设备
CN112584412B (zh) * 2019-09-30 2023-10-03 华为技术有限公司 一种波束切换的方法、装置及通信设备
CN112040541B (zh) * 2020-09-15 2023-06-20 Oppo广东移动通信有限公司 频率调整方法、装置、终端以及存储介质
CN117294372B (zh) * 2023-11-23 2024-02-09 上海芯袖微电子科技有限公司 一种转频控制方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038090A2 (en) * 2006-09-29 2008-04-03 Nokia Corporation Flexible spectral sharing
CN101272586A (zh) * 2007-03-23 2008-09-24 华为技术有限公司 无线通信系统、接入网络、接入终端及其获取信息的方法
CN101534558A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 非后向兼容载波的发送方法及发送非后向兼容载波的基站
WO2011054316A1 (en) * 2009-11-06 2011-05-12 Huawei Technologies Co., Ltd. Method and system for location update in mobile network

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457242A (en) 2008-02-05 2009-08-12 Nec Corp Resource allocation in a communication system
JP2009239766A (ja) * 2008-03-28 2009-10-15 Fujitsu Ltd 無線基地局、移動局および無線通信方法
CN101778482B (zh) * 2009-01-09 2012-08-15 华为技术有限公司 初始网络接入的方法及装置
US9642105B2 (en) * 2009-11-17 2017-05-02 Qualcomm Incorporated Access terminal-assisted time and/or frequency tracking
CN103581991B (zh) * 2012-08-09 2019-04-30 中兴通讯股份有限公司 测量参数的指示方法及装置
EP2950494B1 (en) * 2013-08-27 2017-11-15 Huawei Device Co., Ltd. Machine-type communication downlink data transmission method, base station and use equipment
EP3216254B1 (en) * 2014-11-03 2020-05-06 Telefonaktiebolaget LM Ericsson (publ) Small bandwidth cell configuration, for reducing interference with overlapping large bandwidth cell
US9474014B2 (en) * 2014-12-23 2016-10-18 Intel Corporation Method of processing received digitized signals and mobile radio communication terminal device
EP3326390A1 (en) * 2015-07-24 2018-05-30 Intel Corporation Synchronization signals and channel structure for narrowband lte deployments
EP3329625A1 (en) * 2015-07-27 2018-06-06 Intel Corporation Downlink reference signal patterns
WO2017039374A1 (en) * 2015-09-02 2017-03-09 Lg Electronics Inc. Method and apparatus for performing random access procedure in nb-iot carrier in wireless communication system
US10560208B2 (en) * 2015-09-15 2020-02-11 Lg Electronics Inc. Cell search method in wireless communication system and apparatus therefor
US11212141B2 (en) * 2016-01-07 2021-12-28 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT)
WO2017119925A1 (en) * 2016-01-08 2017-07-13 Intel IP Corporation Nb-iot synchronization signals with offset information
WO2017123279A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods for communication of a channel raster frequency offset

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038090A2 (en) * 2006-09-29 2008-04-03 Nokia Corporation Flexible spectral sharing
CN101272586A (zh) * 2007-03-23 2008-09-24 华为技术有限公司 无线通信系统、接入网络、接入终端及其获取信息的方法
CN101534558A (zh) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 非后向兼容载波的发送方法及发送非后向兼容载波的基站
WO2011054316A1 (en) * 2009-11-06 2011-05-12 Huawei Technologies Co., Ltd. Method and system for location update in mobile network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194723A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for at least reducing an image interference for uplink transmission
US11546904B2 (en) 2018-04-06 2023-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for at least reducing an image interference for uplink transmission
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备

Also Published As

Publication number Publication date
EP3399815A4 (en) 2019-01-09
CN113163373A (zh) 2021-07-23
US20180317185A1 (en) 2018-11-01
US20230300762A1 (en) 2023-09-21
US11678277B2 (en) 2023-06-13
CN108432318B (zh) 2021-01-01
EP3399815B1 (en) 2021-07-28
EP3399815A1 (en) 2018-11-07
EP3958635A1 (en) 2022-02-23
CN108432318A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017117812A1 (zh) 信息发送方法、装置和系统
TWI682684B (zh) 在無線通訊系統中用於隨機存取通道程序之方法和裝置
KR101993869B1 (ko) 동기 신호 송신 시스템 및 방법
RU2754866C1 (ru) Способы указания выделения ресурсов временной области для физического совместно используемого канала нисходящей линии связи до rrc-соединения
US10903926B2 (en) Terminal side and base station side device, terminal device, base station, and wireless communication method
JP6533530B2 (ja) セカンダリセルid選択のためのシステムおよび方法
EP3439380B1 (en) Terminal device, base station device, communication method, and control method
US20170353936A1 (en) Method and apparatus of synchronizing device to device terminals in time and frequency
US20230007603A1 (en) Methods for enabling a reduced bandwidth wireless device to access a cell
CN111527783B (zh) 一种信息的指示方法及装置、计算机存储介质
AU2020400880B2 (en) Methods providing information messages including RACH reports and related wireless devices
TW201841531A (zh) 用於在時序同步信號中傳送同步信號區塊索引的技術
CN107615857B (zh) 终端装置、集成电路以及通信方法
EP3076730B1 (en) Information transmission method, user equipment and base station
US20220264555A1 (en) User equipment, base station, and method
US9813180B2 (en) Method for identifying mobile cell causing interference in wireless communication system and device therefor
WO2014059591A1 (en) Initial access for standalone carrier type
CN114175562B (zh) 用户装备、基站装置和方法
KR20140120173A (ko) Nct에 기반한 무선 통신 시스템에서 제어채널의 구성정보를 획득하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016882957

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016882957

Country of ref document: EP

Effective date: 20180802