WO2017119552A1 - 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템 - Google Patents

다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템 Download PDF

Info

Publication number
WO2017119552A1
WO2017119552A1 PCT/KR2016/003953 KR2016003953W WO2017119552A1 WO 2017119552 A1 WO2017119552 A1 WO 2017119552A1 KR 2016003953 W KR2016003953 W KR 2016003953W WO 2017119552 A1 WO2017119552 A1 WO 2017119552A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
plasma
beam pulse
signal
optical system
Prior art date
Application number
PCT/KR2016/003953
Other languages
English (en)
French (fr)
Inventor
조규만
박준규
윤승현
안화근
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Priority to EP16883938.9A priority Critical patent/EP3401920B1/en
Priority to US16/068,268 priority patent/US20190019584A1/en
Publication of WO2017119552A1 publication Critical patent/WO2017119552A1/ko
Priority to US16/519,588 priority patent/US10803996B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/23Optical systems, e.g. for irradiating targets, for heating plasma or for plasma diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/057Tokamaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a plasma diagnostic system using thomson scattering, and more particularly, to a thomson scattering signal and a background scattering noise signal in plasma in a fusion reactor using an optical system configured to rotate the polarization 90 degrees according to the number of round trips.
  • the present invention relates to a plasma diagnostic system using multiple round-trip thomson scattering, which can measure and use the same thomson scattering signal from which the background scattering noise signal is removed.
  • Tokamak-type nuclear fusion typically heats high temperatures to deuterium and tritium atoms, resulting in an ionized plasma state in which atoms with free mobility in each of the nuclei and electrons are ionized, using a strong toroidal magnetic field.
  • the nuclei at sufficiently high temperatures overcome the Coulomb force and get close enough to cause a nuclear fusion reaction.
  • the temperature and density of the plasma must be known and therefore precise measurement of them is required. Due to these demands, various types of plasma diagnostic apparatuses have been developed and used. One of them is a diagnostic apparatus using Thomson Scattering, which is an essential diagnostic apparatus for measuring electron temperature and density in plasma.
  • FIG. 1 is a block diagram schematically illustrating a diagnostic apparatus using a conventional thomson scattering for diagnosing the plasma state inside the tokamak of the fusion reactor.
  • the diagnostic equipment 1 using the aforementioned conventional Thomson scattering for diagnosing the plasma state inside the tokamak 5 of the fusion reactor is a strong pulsed laser light polarized in a direction perpendicular to the plane of FIG. 1.
  • the light collecting system 130 collects light scattered by the laser light.
  • the above-described thomson scattering diagnostic equipment 1 uses a light source 100 and an optical system 110 to measure the temperature and density of electrons in a plasma.
  • Laser pulses having a strong electric field intensity of wavelength (1064 nm) are focused inside the tokamak filled with plasma. Due to the temporal change in the strong single direction electric field intensity (polarization) of the focused light, the nuclei and electrons constituting the plasma are vibrated in the direction of the polarization of the laser light and emit light of the same frequency as the incident laser light. Thompson is spawning out. In this case, the light scattered by Thompson is not scattered in the direction parallel to the polarization direction of the laser light.
  • the diagnostic apparatus using thomson scattering can know the temperature of the electron in the plasma by measuring the wavelength shift due to the Doppler effect, and also the density of the electron according to the intensity of light distribution measured. That is, if the thomson scattered light signal in the plasma can be measured accurately, the temperature and density of the plasma can be known accurately.
  • An object of the present invention for solving the above-mentioned problems is a plasma diagnostic system using a multi-round thompson scattering system capable of measuring the accurate thomson scattering signal from which the background scattering noise signal is removed using an optical system.
  • Plasma diagnostic system using thomson scattering in accordance with a feature of the present invention for achieving the above technical problem is a light source for providing a laser beam pulse of a predetermined polarization and wavelength;
  • An optical system for sequentially providing a laser beam pulse in a vertical polarization state and a laser beam pulse in a horizontal polarization state to the plasma by using the laser beam pulse provided from the light source;
  • Condensing meter for measuring;
  • a controller configured to measure a Thompson scattering signal for plasma using the first and second condensed signals measured by the condenser, wherein the first condensed signal is a mixture of a Thompson scattered signal and a background scattered noise signal.
  • the second condensed signal consists of
  • a plasma diagnostic system using thomson scattering comprising: a polarizing beam splitter disposed on an optical path of a laser beam pulse provided from the light source; A first reflecting mirror providing a laser beam pulse transmitted from the polarizing beam splitter back to the polarizing beam splitter; A Faraday polarization rotor disposed on an optical path of a laser beam pulse transmitted through the polarization beam splitter and rotating the polarization state by 45 degrees; A half-wave plate disposed on an optical path of a laser beam pulse output from the Faraday rotor; A focusing lens for focusing the laser beam pulses provided from the half-wave plate into plasma; A second reflecting mirror which reflects the focused laser beam pulses back to the focusing lens; It is preferable to provide a laser beam pulse of the vertical polarization state and the laser beam pulse of the horizontal polarization state to the plasma sequentially.
  • the plasma diagnostic system using thomson scattering it is more preferable to include a half-wave plate between the light source and the optical system.
  • the plasma diagnostic system uses thomson scattering according to the above-described feature, the plasma diagnostic system generates and outputs trigger signals when the laser beam pulse in the horizontal polarization state and the laser beam pulse in the vertical polarization state are provided from the optical system, respectively. It is preferably provided with a trigger module, the light collecting meter is driven in accordance with the trigger signals output from the trigger module,
  • the trigger module is disposed between the light source and the optical system or at an arbitrary position of the optical system to detect that a laser beam pulse is provided from the light source to the optical system or that a laser beam pulse is provided from the optical system to the tokamak. If it is detected that the laser beam pulse is provided at any position of the optical system, it is more preferable to generate and output a trigger signal.
  • the plasma diagnostic system is applied to the Tokamak-type fusion reactor, the optical system focuses the laser beam pulses in the Tokamak, the condenser system is The scattered light signals in the tokamak are collected and measured for each wavelength band using a polychrometer, and the controller preferably measures and provides a Thompson scattering signal in the tokamak.
  • the plasma diagnostic system provides a focused laser beam pulse in a vertically polarized state and a laser beam pulse in a horizontally polarized state by sequentially supplying and focusing the tokamak through multiple reciprocating paths, thereby accurately detecting the Thomson scattering signal from which the background scattering noise signal is removed. It can be measured and provided.
  • FIG. 1 is a block diagram schematically illustrating a diagnostic apparatus using a conventional single path Thomson scattering for diagnosing the plasma state inside the tokamak of the fusion reactor.
  • Figure 2 is a schematic diagram showing a plasma diagnostic system using multiple reciprocating Thomson scattering in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a polarization state of a laser beam pulse in each stage in a plasma diagnostic system using multiple reciprocating Thomson scattering according to a preferred embodiment of the present invention.
  • Plasma diagnostic system using thomson scattering by sequentially providing the laser beam pulse of the vertically polarized state and the laser beam pulse of the horizontally polarized state through multiple reciprocating path to the inside of the Tokamak of the fusion reactor to measure the scattering signals inside the Tokamak As a result, the thomson scattering signal from which the background scattering noise signal is removed can be accurately measured.
  • Figure 2 is a schematic diagram showing a plasma diagnostic system using multiple reciprocating Thomson scattering in accordance with a preferred embodiment of the present invention.
  • the plasma diagnostic system 2 is installed outside the tokamak 5 of the fusion reactor, the light source 200, the vertically polarized beam and horizontally polarized beam of the laser beam pulse sequentially
  • An optical system 220 provided as a tokamak, a light collecting system 230 for collecting scattered light inside the tokamak, a trigger module 240 and a controller 250 are provided.
  • the light source 200 outputs a laser beam pulse in a horizontal polarization state having a strong electric field intensity of a single wavelength of 1064 nm.
  • the first half wave plate 'HWP' 214 is disposed on an optical path of a laser beam pulse output from the light source, and selects and maintains a polarization state of an ongoing laser beam pulse.
  • the optical system 220 is installed between the light source and the toca film 5 to sequentially provide the laser beam pulse in the vertical polarization state and the laser beam pulse in the horizontal polarization state to the toka film.
  • the optical system 220 is sequentially disposed on an optical path of a polarizing beam splitter ('PBS') 221 disposed on an optical path of a laser beam pulse provided from the light source, and a laser beam pulse transmitted through the PBS.
  • a second reflecting mirror (Mirror) 227 provided to reflect back to the PBS, and a first reflecting mirror (Mirror) 229 disposed in the reflecting path of the PBS.
  • the second reflection mirror uses a concave lens to focus light back to the Thompson scattering position, and the first reflection mirror uses a convex lens to collimate the reflected light.
  • the polarizing beam splitter PBS 221 transmits a beam in a horizontal polarization state and reflects a beam in a vertical polarization state.
  • the Faraday rotor 222, the second half-wave plate 224, and the focusing lens 226 are sequentially disposed on an optical path of a laser beam pulse passing through the PBS 220.
  • the Faraday rotor 222 rotates the polarization state of the laser beam pulse transmitted through the PBS 221 by 45 degrees, and the second half-wave plate 224 outputs the beam output from the Faraday rotor 222.
  • the laser beam pulse in the horizontally polarized state is brought into the vertically polarized state by the Faraday rotor 222 and the second half-wave plate 224.
  • the first half wave plate 214 may be removed when the polarization of the laser light source is completely horizontally polarized.
  • the second half-wave plate 224 may be removed depending on the position of the Thompson scattering light collector.
  • the laser beam pulses in the vertically polarized state are focused by a focusing lens 226 at a predetermined position inside the tokamak in the fusion reactor.
  • the first thomson scattering strongly occurs in the direction of the condenser.
  • the first-first condensing signal in which the background scattering noise signal and the thomson scattering signal are mixed is collected. Collected by the polychromator and measured by the wavelength band.
  • the second reflection mirror 227 may be installed inside or outside the tokamak, and reflects the light passing through the tokamak back to provide the focusing lens.
  • the first and second condensed signals in which the background scattering noise signal and the Thomson scattering signal are mixed are measured by the condenser.
  • the first reflection mirror 229 is disposed in the reflection path of the PBS 221.
  • the laser beam pulse of the vertically polarized state reflected from the PBS proceeds, is reflected by the first reflecting mirror 229, and enters the PBS again.
  • the optical system 220 having the above-described configuration sequentially provides the laser beam pulses in the vertical polarization state and the laser beam pulses in the horizontal polarization state to the inside of the toka film in the fusion reactor.
  • the condenser 230 collects light scattered in the tokamak and measures the intensity.
  • the condenser collects the signals according to the trigger signal of the trigger module and provides the collected signals to the controller.
  • the trigger module 240 generates a trigger signal when the laser beam pulses in the horizontal polarization state and the laser beam pulses in the vertical polarization state are provided from the optical system and outputs a trigger signal to the condenser and / or the controller.
  • the trigger module may detect an extra laser beam signal passing through a folding mirror disposed at a trigger point set between a light source and the optical system or at an arbitrary position of the optical system and use the trigger signal as a trigger signal. .
  • the condenser is driven according to a trigger signal output from the trigger module to condense and provide light scattered inside the tokamak.
  • the controller 250 measures and provides a Thompson scattering signal without a background scattering noise signal using the first and second condensed signals provided from the condenser.
  • the controller measures the first condensed signal in which the thomson scattering signal and the background scattering noise signal are mixed by causing the thomson scattering to occur inside the tokamak by the laser beam pulse of the vertically polarized state of the optical system, and the optical system
  • the second condensed signal composed of only the background scattering noise signal is measured by preventing the Thomson scattering from occurring in the direction of the condenser within the tokamak by the laser beam pulse in the horizontally polarized state. Accordingly, the controller can accurately measure only pure Thompson scattered signals by removing the second condensed signal consisting of only the background scattered noise signals from the first condensed signal mixed with the Thompson scattered signal and the background scattered noise signal.
  • FIG. 3 is a diagram illustrating a polarization state of a laser beam pulse in each stage in a plasma diagnostic system using multiple reciprocating Thomson scattering according to a preferred embodiment of the present invention.
  • the beam focused inside the tokamak proceeds after Thompson scattering and is reflected by the second reflecting mirror 227, whereby a first reverse process is performed.
  • the first reverse process the second thomson scattering occurs as it is focused again inside the tokamak, and the second lumped signal in which the background scattering noise signal and the thomson scattering signal are mixed by the second thomson scattering is measured by the condenser.
  • the laser beam pulse of the vertically polarized state having passed through the tokamak is rotated 45 degrees backward through the second HWP 224 to be returned to the original state, and again by the FR 222. As it rotates, it becomes a vertically polarized state.
  • the laser beam pulse in the vertically polarized state is reflected by the PBS 221 and proceeds to the first reflecting mirror 229.
  • the laser beam pulses of the vertically polarized state reflected by the first reflection mirror are incident to the PBS 221 and then reflected.
  • the laser beam pulse of the vertically polarized state incident from the first reflecting mirror to the PBS is reflected by the PBS, rotates 45 degrees through the FR 222, and is rotated by the second HWP 224. It becomes a horizontal polarization state.
  • the laser beam pulses in the horizontally polarized state are focused inside the tokamak, thomson scattering does not occur in the direction of the condenser 230, and the condenser measures the 2-1 condensed signal composed of only the background scattering noise signal.
  • the beam focused in the tokamak proceeds and is reflected by the second reflecting mirror 227, and a second reverse process is performed.
  • the laser beam pulses in the horizontally polarized state are focused again inside the tokamak and proceed to the focusing lens without Thompson scattering toward the condenser 230.
  • the condenser measures the second condensed signal composed of only the background scattering noise signal.
  • the control unit receives the first-first and first-second condensed signals in which the background scattering noise signal and the Thomson scattering signal are mixed from the condenser, and receives the second-first and second-second condensed signals composed of only the background scattering noise signals. These condensed signals can be used to accurately measure only the Thompson scattered signal.
  • the plasma diagnostic system using the multiple reciprocating thomson scattering according to the present invention can accurately measure the thomson scattering signal.
  • the plasma diagnostic system according to the present invention can be applied to the nuclear fusion reactor of the Tokamak method, in which case the optical system focuses the laser beam pulse into the tokamak, the light collecting system to scatter the scattered light signals in the Tokamak The light is collected, and the controller measures the Thomson scattering signal in the tokamak.
  • Plasma diagnostic system can be used in a variety of devices that require the measurement of the temperature and density of the plasma, in particular can be used to diagnose the state of the plasma inside the Tokamak fusion reactor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템에 관한 것이다. 상기 플라즈마 진단 시스템은, 광원으로부터 제공된 레이저 빔 펄스를 이용하여, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 플라즈마로 제공하는 광학계; 상기 광학계로부터 제공된 수직 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 산란된 제1 집광 신호를 측정하고, 상기 광학계로부터 제공된 수평 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 여기된 제2 집광 신호를 측정하는 집광계; 및 상기 집광계에 의해 측정된 제1 및 제2 집광 신호들을 이용하여, 플라즈마에 대한 톰슨 산란 신호를 측정하는 제어부;를 구비하고, 상기 제1 집광 신호는 톰슨 산란 신호와 배경 산란 잡음 신호가 혼합된 신호이며, 제2 집광 신호는 배경 산란 잡음 신호로 구성된다. 본 발명에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템은 플라즈마 내부로 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 제공하여 플라즈마로부터 산란된 신호들을 측정함으로써, 배경 산란 잡음 신호가 제거된 톰슨 산란 신호를 정확하게 측정하는 것을 특징으로 한다.

Description

다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템
본 발명은 톰슨 산란을 이용한 플라즈마 진단 시스템에 관한 것으로서, 더욱 구체적으로는, 왕복 진행 횟수에 따라 편광이 90도 회전하도록 구성된 광학계를 이용하여 핵융합로 내의 플라즈마에서의 톰슨 산란 신호와 배경 산란 잡음 신호를 측정하고, 이를 이용하여 배경 산란 잡음 신호가 제거된 정확한 톰슨 산란 신호를 측정해 낼 수 있는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템에 관한 것이다.
토카막(Tokamak) 방식의 핵융합은 대표적으로 중수소 원자와 삼중수소 원자에 높은 온도를 가열하여 원자핵들과 전자들 각각이 자유로운 이동도를 갖는 원자들이 이온화된 플라즈마 상태가 되며, 강한 토로이드 자기장을 이용하여 이들을 구속시킴으로써 충분히 높은 온도의 원자핵들이 쿨롱 힘을 극복하고 충분히 가까워져 핵 융합 반응이 일어난다. 이 고온 고밀도의 플라즈마 상태를 안정적으로 운영 및 컨트롤하기 위해 플라즈마의 온도와 밀도를 알아야 하며, 따라서 이들에 대한 정밀한 측정이 요구된다. 이러한 요구에 의해, 다양한 방식의 플라즈마 진단 장치들이 개발되어 사용되고 있으며, 그 중 하나가 톰슨 산란(Thomson Scattering)을 이용한 진단 장비이며 플라즈마에서 전자의 온도와 밀도를 측정하는 데 필수적인 기초진단장치 이다.
도 1은 핵융합로의 토카막 내부의 플라즈마 상태를 진단하기 위한 종래의 톰슨 산란을 이용한 진단 장비를 개략적으로 도시한 구성도이다.
도 1을 참조하면, 핵융합로의 토카막(5) 내부의 플라즈마 상태를 진단하기 위한 전술한 종래의 톰슨 산란을 이용한 진단 장비(1)는, 도1 면에 수직한 방향으로 편광된 강한 펄스 레이저 빛을 출력하는 광원(100), 수직 편광 상태의 레이저 빛을 토카막 내부의 플라즈마로 집속시키는 광학계(110), 상기 토카막 외부에 장착되어 토카막으로부터 나온 레이저 빔을 흡수하여 제거하는 레이저 빔 덤프(120), 레이저 빛에 의해 산란된 빛들을 집광하는 집광계(130)를 구비한다.
이를 보다 구체적으로 설명하면, 전술한 톰슨 산란을 이용한 진단 장비(1)는 플라즈마에서 전자의 온도와 밀도를 측정하기 위해, 광원(100)과 광학계(110)를 이용하여 토카막(5) 외부에서 단일파장(1064nm)의 강한 전기장 세기를 갖는 레이저 펄스를 플라즈마로 채워진 토카막 내부에 집속(focusing)을 한다. 집속된 광의 강한 단일 방향의 전기장 세기(편광)의 시간적인 변화에 의해, 플라즈마를 구성하는 원자핵들과 전자들은 레이저 빛의 전기장 편광 방향으로 진동되게 되며, 입사된 레이저 빛과 같은 진동수의 빛을 방출하고 톰슨 산란되어 나간다. 이 경우, 레이저 빛의 편광 방향에 평행한 방향으로는 톰슨 산란되는 빛이 산란되지 않는다. 따라서 도 1의 토카막 단면으로 들어오는 레이저 빛의 편광이 이 면에 대하여 수직인 경우는 집광계(collection optics) 방향으로 방출된 톰슨 산란광을 받아들일 수 있다. 그에 반해, 도 1의 토카막 단면에 대하여 수평으로 편광 된 레이저 빛의 경우에는 집광계 방향으로 톰슨 산란광이 방출되지 않기 때문에 집광계로 받아들여지는 톰슨 산란 빛이 없다.
한편, 플라즈마들이 가만히 있는 것이 아니라 빠르게 이동하고 있으므로 산란되는 빛은 도플러효과에 의해서 파장의 도플러 이동(Doppler shift)이 일어나게 된다. 따라서, 톰슨 산란을 이용한 진단 장비는 도플러 효과에 의한 파장 변이를 측정함으로써 플라즈마에서 전자의 온도를 알 수 있으며, 또한 측정되는 빛의 분포 세기에 따라 전자의 밀도도 알 수 있다. 즉, 플라즈마에서 톰슨 산란 빛의 신호를 정확히 측정할 수 있다면, 플라즈마의 온도와 밀도를 정확하게 알 수 있게 된다.
하지만, 완전치 않은 광부품 등에 의해 반사되어 토카막으로 입사된 빛과 토카막의 벽면 등에서 산란된 다수의 산란된 빛들이 존재하는데, 이를 미광(stray light)이라 한다. 종래의 톰슨 산란을 이용한 진단 장비에 의해 측정되는 톰슨 산란 신호에 전술한 미광(stray light)에 의한 배경 산란 잡음 신호(Background noise)가 포함됨에 따라, 측정된 톰슨 산란 신호의 정확도가 떨어지게 되는 문제점이 발생한다.
전술한 문제점을 해결하기 위한 본 발명의 목적은 광학계를 이용하여 배경 산란 잡음 신호가 제거된 정확한 톰슨 산란 신호를 측정할 수 있는 다중 왕복경로 톰슨 산란시스템을 이용한 플라즈마 진단 시스템에 관한 것이다.
전술한 기술적 과제를 달성하기 위한 본 발명의 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템은, 사전 설정된 편광과 파장의 레이저 빔 펄스를 제공하는 광원; 상기 광원으로부터 제공된 레이저 빔 펄스를 이용하여, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 플라즈마로 제공하는 광학계; 상기 광학계로부터 제공된 수직 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 산란된 제1 집광 신호를 측정하고, 상기 광학계로부터 제공된 수평 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 산란된 제2 집광 신호를 측정하는 집광계; 및 상기 집광계에 의해 측정된 제1 및 제2 집광 신호들을 이용하여, 플라즈마에 대한 톰슨 산란 신호를 측정하는 제어부;를 구비하고, 상기 제1 집광 신호는 톰슨 산란 신호와 배경 산란 잡음 신호가 혼합된 신호이며, 제2 집광 신호는 배경 산란 잡음 신호로 구성된다.
전술한 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 상기 광학계는, 상기 광원으로부터 제공된 레이저 빔 펄스의 광경로상에 배치된 편광 빔 스플리터; 상기 편광 빔 스플리터로부터 투과된 레이저 빔 펄스를 다시 편광 빔 스플리터로 제공하는 제1 반사 거울; 상기 편광 빔 스플리터를 투과한 레이저 빔 펄스의 광 경로상에 배치되어, 편광 상태를 45도 회전시켜 출력하는 패러데이 편광 회전자; 상기 패러데이 회전자로부터 출력된 레이저 빔 펄스의 광 경로상에 배치된 반파장판; 상기 반파장판으로부터 제공된 레이저 빔 펄스를 플라즈마로 집속시키는 집속 렌즈; 상기 집속된 레이저 빔 펄스를 되반사시켜 상기 집속 렌즈로 제공하는 제2 반사 거울; 을 구비하여, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 플라즈마로 제공하는 것이 바람직하다.
전술한 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 상기 수직으로 편광된 펄스가 왕복하는 동안 측정된 톰슨 신호를 동기시켜 더해줌으로써 신호 대 잡음비를 향상시키는 것이 바람직하다.
전술한 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 상기 광원과 광학계의 사이에 반파장판;을 구비하는 것이 더욱 바람직하다.
전술한 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 상기 플라즈마 진단 시스템은 상기 광학계로부터 수평 편광 상태의 레이저 빔 펄스와 수직 편광 상태의 레이저 빔 펄스가 제공될 때 각각 트리거 신호들을 생성하여 출력하는 트리거 모듈을 구비하고, 상기 집광계는 트리거 모듈로부터 출력되는 트리거 신호들에 따라 구동되는 것이 바람직하며,
상기 트리거 모듈은 상기 광원과 상기 광학계의 사이 또는 광학계의 임의의 위치에 배치되어, 상기 광원으로부터 상기 광학계로 레이저 빔 펄스가 제공되는 것을 감지하거나 상기 광학계로부터 토카막으로 레이저 빔 펄스가 제공되는 것을 감지하거나 상기 광학계의 임의의 위치에서 레이저 빔 펄스가 제공되는 것을 감지하면, 트리거 신호를 생성하여 출력하는 것이 더욱 바람직하다.
전술한 특징에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 상기 플라즈마 진단 시스템은 토카막(Tokamak) 방식의 핵융합로에 적용되며, 상기 광학계는 토카막 내부로 레이저 빔 펄스를 집속시키며, 상기 집광계는 상기 토카막 내의 산란된 빛 신호들을 집광시키고 폴리크로메터(polychrometer)를 사용하여 파장대역 별로 측정하며, 상기 제어부는 토카막 내의 톰슨 산란 신호를 측정하여 제공하는 것이 바람직하다.
본 발명에 따른 플라즈마 진단 시스템은 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 다중 왕복경로를 통해 순차적으로 토카막으로 제공하여 집속함으로써, 배경 산란 잡음 신호가 제거된 톰슨 산란 신호를 정확하게 측정하여 제공할 수 있다.
도 1은 핵융합로의 토카막 내부의 플라즈마 상태를 진단하기 위한 종래의 단일 경로 톰슨 산란을 이용한 진단 장비를 개략적으로 도시한 구성도이다.
도 2는 본 발명의 바람직한 실시예에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템을 개략적으로 도시한 구성도이다.
도 3은 본 발명의 바람직한 실시예에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 각 단계에서의 레이저 빔 펄스의 편광 상태를 설명하는 도표이다.
본 발명에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템은 핵융합로의 토카막 내부로 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 다중 왕복경로를 통해 순차적으로 제공하여 토카막 내부의 산란 신호들을 측정함으로써, 배경 산란 잡음 신호가 제거된 톰슨 산란 신호를 정확하게 측정하는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 톰슨 산란을 이용한 플라즈마 진단 시스템의 구조 및 동작에 대하여 구체적으로 설명한다.
도 2는 본 발명의 바람직한 실시예에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템을 개략적으로 도시한 구성도이다.
도 2를 참조하면, 본 발명에 따른 플라즈마 진단 시스템(2)은 핵융합로의 토카막(5)의 외부에 설치되는 것으로서, 광원(200), 레이저 빔 펄스의 수직 편광 빔과 수평 편광 빔을 순차적으로 토카막으로 제공하는 광학계(220), 토카막 내부의 산란 빛을 집광하는 집광계(230), 트리거 모듈(240) 및 제어부(250)를 구비한다.
상기 광원(200)은 1064nm의 단일 파장의 강한 전기장 세기를 갖는 수평 편광 상태의 레이저 빔 펄스를 출력한다.
상기 제1 반파장판(Half Wave Plate:'HWP', 214)은 상기 광원으로부터 출력된 레이저 빔 펄스의 광 경로상에 배치되어, 진행하는 레이저 빔 펄스의 편광 상태를 선택하여 유지시키게 된다.
상기 광학계(220)는 광원과 토카막(5)의 사이에 설치되어, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 토카막으로 제공하게 된다.
상기 광학계(220)는 상기 광원으로부터 제공된 레이저 빔 펄스의 광경로상에 배치된 편광 빔 스플리터(Polarizing Beam Splitter;'PBS', 221), PBS을 투과한 레이저 빔 펄스의 광경로상에 순차적으로 배치되는 패러데이 회전자(Faraday Rotator;'FR', 222), 제2 반파장판(HWP, 224), 및 집속 렌즈(Focusing Lens, 226), 그리고 상기 집속 렌즈(226)에 의해 집속된 광을 집속 렌즈로 다시 반사시켜 제공하는 제2 반사 거울(Mirror, 227), 상기 PBS의 반사 경로에 배치되는 제1 반사 거울(Mirror, 229)를 구비한다.
상기 제2 반사거울은 빛을 톰슨 산란 위치에 다시 집속시키기 위하여 오목 거울(Concave Lens)를 사용하고, 제1 반사 거울은 반사된 빛을 시준시키기 위하여 볼록 거울(Convex Lens)를 사용한다.
상기 편광 빔 스플리터(PBS, 221)는 수평 편광 상태의 빔은 투과시키고 수직 편광 상태의 빔은 반사시킨다.
상기 패러데이 회전자(222), 제2 반파장판(224), 및 집속 렌즈(226)가 상기 PBS(220)를 투과하는 레이저 빔 펄스의 광 경로상에 순차적으로 배치된다. 상기 패러데이 회전자(222)는 상기 PBS(221)를 투과한 레이저 빔 펄스의 편광 상태를 45도 회전시켜 출력하며, 상기 제2 반파장판(224)은 패러데이 회전자(222)로부터 출력된 빔을 45도 회전시킴으로써, 수평 편광 상태의 레이저 빔 펄스는 패러데이 회전자(222) 및 제2 반파장판(224)에 의해 수직 편광 상태가 된다. 제1 반파장판(214)는 레이저 광원의 편광이 완벽히 수평 편광상태일 경우 제거하여도 무방하다. 제2 반파장판(224)는 경우에 따라서 톰슨산란 집광기의 위치에 따라 제거하여도 원리적으로 무방하다. 수직 편광 상태의 레이저 빔 펄스는 집속 렌즈(226)에 의해 핵융합로 내의 토카막 내부의 정해진 위치에서 집속(focusing)된다. 상기 집속 렌즈에 의해 토카막 내부에서 광 집속됨에 따라 첫번째 톰슨 산란이 집광계 방향으로 강하게 일어나게 되고, 그 결과 배경 산란 잡음 신호와 톰슨 산란 신호가 혼합된 제1-1 집광 신호가 집광계(230)에 의해 모아져서 폴리크로메타로 전달되어 파장 대역별로 측정된다.
상기 제2 반사 거울(227)는 토카막의 내부 또는 외부에 설치될 수 있으며, 상기 토카막을 통과한 광을 되반사시켜 다시 집속 렌즈로 제공한다. 이 과정에서 다시 배경 산란 잡음 신호와 톰슨 산란 신호가 혼합된 제1-2 집광 신호가 집광계에 의해 측정된다.
제1 반사 거울(229)는 상기 PBS(221)의 반사 경로에 배치된다. PBS로부터 반사된 수직 편광 상태의 레이저 빔 펄스가 진행하여 제1 반사 거울(229)에 의해 반사되어 PBS로 다시 입사하게 된다.
전술한 구성을 갖는 광학계(220)는 수직 편광 상태의 레이저 빔 펄스 및 수평 편광 상태의 레이저 빔 펄스를 순차적으로 핵융합로 내의 토카막 내부로 제공하게 된다.
상기 집광계(230)는 토카막 내부에서 산란되는 빛을 집광하여 세기를 측정한다. 상기 집광계는 트리거 모듈의 트리거 신호에 따라 집광하고, 집광된 신호들을 제어부로 제공하게 된다.
상기 트리거 모듈(240)은 상기 광학계로부터 수평 편광 상태의 레이저 빔 펄스와 수직 편광 상태의 레이저 빔 펄스가 제공될 때 트리거 신호(trigger signal)를 생성하여 집광계 및/또는 제어부로 출력하게 된다. 상기 트리거 모듈은 상기 광원과 상기 광학계의 사이, 또는 광학계의 임의의 위치에 설정되는 트리거 포인트 지점(trigger point)에 배치된 폴딩 거울을 투과하는 여분의 레이저 빔 신호를 감지하여 트리거 신호로 사용할 수 있다.
상기 집광계는 트리거 모듈로부터 출력되는 트리거 신호에 따라 구동되어, 토카막 내부에 산란된 빛을 집광하여 제공하게 된다.
상기 제어부(250)는 집광계로부터 제공된 제1 집광 신호 및 제2 집광 신호를 이용하여 배경 산란 잡음 신호가 없는 톰슨 산란 신호를 측정하여 제공한다. 좀 더 구체적으로 설명하면, 상기 제어부는 광학계의 수직 편광 상태의 레이저 빔 펄스에 의해 토카막 내부에서 톰슨 산란이 일어나도록 하여 톰슨 산란 신호와 배경 산란 잡음 신호가 혼합된 제1 집광 신호를 측정하고, 광학계의 수평 편광 상태의 레이저 빔 펄스에 의해 토카막 내부에 집광계 방향으로 톰슨 산란이 일어나지 않도록 하여 배경 산란 잡음 신호만으로 구성된 제2 집광 신호를 측정하게 된다. 따라서, 상기 제어부는 톰슨 산란 신호와 배경 산란 잡음 신호가 혼합된 제1 집광 신호로부터 배경 산란 잡음 신호만으로 구성된 제2 집광 신호를 제거함으로써, 순수한 톰슨 산란 신호만을 정확하게 측정할 수 있게 된다.
이하, 도 3을 참조하여, 전술한 구성을 갖는 본 발명의 바람직한 실시예에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템의 동작에 대하여 구체적으로 설명한다.
도 3은 본 발명의 바람직한 실시예에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템에 있어서, 각 단계에서의 레이저 빔 펄스의 편광 상태를 설명하는 도표이다.
도 3을 참조하면, 광원으로부터 수평 편광 상태의 레이저 빔 펄스가 출력되어 제공되면, 첫번째 정방향 과정에 있어서, PBS(221)를 투과하여 FR(222)을 통과하면서 45도 회전되며, 다시 제2 HWP(224)에 의해 45도 회전되어, 수직 편광 상태가 된다. 수직 편광 상태의 레이저 빔 펄스가 토카막 내부의 정해진 위치에 집속되면, 첫번째 톰슨 산란이 집광계(230) 방향으로 강하게 일어나게 되고 배경 산란 잡음 신호와 톰슨 산란 신호가 혼합된 제1-1 집광 신호가 집광계에 의해 측정된다.
다음, 토카막 내부에 집속된 빔은 톰슨 산란 이후 진행되어 제2 반사 거울(227)에 의해 반사되어, 첫번째 역방향 과정이 진행된다. 첫번째 역방향 과정에 있어서, 토카막 내부에서 다시 집속됨에 따라 두번째 톰슨 산란이 일어나게 되고 두번째 톰슨 산란에 의해 배경 산란 잡음 신호와 톰슨 산란 신호가 혼합된 제1-2 집광 신호가 집광계에 의해 측정된다.
다음, 첫번째 역방향 과정에 있어서, 토카막을 통과한 수직 편광 상태의 레이저 빔 펄스가 제2 HWP(224)를 통과하여 45도 역방향 회전하여 원래의 상태로 되돌아오게 되고, 다시 FR(222)에 의해 45도 회전함에 따라 수직 편광 상태가 된다. 수직 편광 상태의 레이저 빔 펄스는 PBS(221)에서 반사되어 제1 반사 거울(229)로 진행하게 된다. 제1 반사 거울에서 반사된 수직 편광 상태의 레이저 빔 펄스는 다시 PBS(221)로 입사된 후 반사된다.
다음, 두번째 정방향 과정에 있어서, 제1 반사 거울에서 PBS로 입사된 수직 편광 상태의 레이저 빔 펄스는 PBS에서 반사되어 FR(222)을 통과하여 45도 회전하게 되며, 제2 HWP(224)에 의해 수평 편광 상태가 된다. 수평 편광 상태의 레이저 빔 펄스가 토카막 내부에 집속됨에 따라 집광계(230) 방향으로 톰슨 산란이 일어나지 않게 되고, 집광계는 배경 산란 잡음 신호만으로 구성된 제2-1 집광 신호를 측정하게 된다.
다음, 토카막 내부에 집속된 빔은 진행되어 제2 반사 거울(227)에 의해 반사되어, 두번째 역방향 과정이 진행된다. 두번째 역방향 과정에 있어서, 수평 편광 상태의 레이저 빔 펄스가 토카막 내부에서 다시 집속되고 집광계(230) 방향으로 톰슨 산란 없이 집속 렌즈로 진행한다. 이 때, 집광계는 배경 산란 잡음 신호만으로 구성된 제2-2 집광 신호를 측정하게 된다.
상기 제어부는 집광계로부터 배경 산란 잡음 신호와 톰슨 산란 신호가 혼합된 제1-1 및 제1-2 집광 신호들을 제공받고, 배경 산란 잡음 신호만으로 구성된 제2-1 및 제2-2 집광 신호들을 제공받게 되며, 이들 집광 신호들을 이용하여 톰슨 산란 신호만을 정확하게 측정할 수 있게 된다.
전술한 바와 같이, 본 발명에 따른 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템은 톰슨 산란 신호를 정확하게 측정할 수 있게 된다.
한편, 본 발명에 따른 플라즈마 진단 시스템은 토카막(Tokamak) 방식의 핵융합로에 적용될 수 있으며, 이 경우 상기 광학계는 토카막 내부로 레이저 빔 펄스를 집속시키며, 상기 집광계는 상기 토카막 내의 산란된 빛 신호들을 집광하며, 상기 제어부는 토카막 내의 톰슨 산란 신호를 측정하게 된다.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 따른 플라즈마 진단 시스템은 플라즈마의 온도 및 밀도의 측정이 필요한 장치에 다양하게 사용될 수 있으며, 특히 토카막 방식의 핵융합로 내부의 플라즈마의 상태를 진단하기 위하여 사용될 수 있다.

Claims (7)

  1. 사전 설정된 편광과 파장의 레이저 빔 펄스를 제공하는 광원;
    상기 광원으로부터 제공된 레이저 빔 펄스를 이용하여, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 플라즈마로 제공하는 광학계;
    상기 광학계로부터 제공된 수직 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 산란된 제1 집광 신호를 측정하고, 상기 광학계로부터 제공된 수평 편광 상태의 레이저 빔 펄스가 집속되었을 때 플라즈마에서 산란된 제2 집광 신호를 측정하는 집광계; 및
    상기 집광계에 의해 측정된 제1 및 제2 집광 신호들을 이용하여, 플라즈마에 대한 톰슨 산란 신호를 측정하는 제어부;
    를 구비하고, 상기 제1 집광 신호는 톰슨 산란 신호와 배경 산란 잡음 신호가 혼합된 신호이며, 제2 집광 신호는 배경 산란 잡음 신호인 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  2. 제1항에 있어서, 상기 광학계는,
    상기 광원으로부터 제공된 레이저 빔 펄스의 광경로상에 배치된 편광 빔 스플리터;
    상기 편광 빔 스플리터로부터 반사된 레이저 빔 펄스를 다시 편광 빔 스플리터로 제공하는 제1 반사 거울;
    상기 편광 빔 스플리터를 투과한 레이저 빔 펄스의 광 경로상에 배치되어, 편광 상태를 45도 회전시켜 출력하는 패러데이 회전자;
    상기 패러데이 회전자로부터 제공된 레이저 빔 펄스를 플라즈마로 집속시키는 집속 렌즈;
    상기 집속된 레이저 빔 펄스를 되반사시켜 상기 집속 렌즈로 제공하는 제2 반사 거울;
    을 구비하여, 수직 편광 상태의 레이저 빔 펄스와 수평 편광 상태의 레이저 빔 펄스를 순차적으로 플라즈마로 제공하는 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  3. 제1항에 있어서, 상기 광원과 광학계의 사이에 광 차폐 모듈을 더 구비하고,
    상기 광 차폐 모듈은 상기 광원으로부터 제공된 레이저 빔 펄스가 광학계로 진행하도록 하되, 상기 광학계로부터 출력된 광이 광원으로 들어가지 못하게 하는 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  4. 제1항에 있어서, 상기 플라즈마 진단 시스템은 상기 광학계로부터 수평 편광 상태의 레이저 빔 펄스와 수직 편광 상태의 레이저 빔 펄스가 제공될 때 각각 트리거 신호들을 생성하여 출력하는 트리거 모듈을 더 구비하고,
    상기 집광계는 트리거 모듈로부터 출력되는 트리거 신호들에 따라 구동되는 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  5. 제4항에 있어서, 상기 트리거 모듈은 상기 광원과 상기 광학계의 사이 또는 광학계의 임의의 위치에 배치되어, 상기 광원으로부터 상기 광학계로 레이저 빔 펄스가 제공되는 것을 감지하거나 상기 광학계로부터 플라즈마로 레이저 빔 펄스가 제공되는 것을 감지하거나 상기 광학계의 임의의 위치에서 레이저 빔 펄스가 제공되는 것을 감지하면, 트리거 신호를 생성하여 출력하는 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 광학계는 플라즈마 내부로 레이저 빔 펄스를 집속시키며, 상기 집광계는 상기 플라즈마 내의 산란된 빛 신호들을 집광하여 측정하며, 상기 제어부는 플라즈마 내의 톰슨 산란 신호를 측정하여 제공하는 것을 특징으로 하는 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템.
  7. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 플라즈마 진단 시스템은 전자의 온도와 밀도 측정이 필요한 플라즈마 장치에 적용되는 것을 특징으로 하는 다중 왕복 경로 톰슨 산란을 이용한 플라즈마 진단 시스템
PCT/KR2016/003953 2016-01-08 2016-04-15 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템 WO2017119552A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16883938.9A EP3401920B1 (en) 2016-01-08 2016-04-15 Plasma diagnostic system using multiple reciprocating path thomson scattering
US16/068,268 US20190019584A1 (en) 2016-01-08 2016-04-15 Plasma diagnosis system using multiple-reciprocating-path thompson scattering
US16/519,588 US10803996B2 (en) 2016-01-08 2019-07-23 Plasma diagnosis system using multiple-reciprocating-pass Thompson scattering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0002627 2016-01-08
KR1020160002627A KR101647063B1 (ko) 2016-01-08 2016-01-08 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/068,268 A-371-Of-International US20190019584A1 (en) 2016-01-08 2016-04-15 Plasma diagnosis system using multiple-reciprocating-path thompson scattering
US16/519,588 Continuation US10803996B2 (en) 2016-01-08 2019-07-23 Plasma diagnosis system using multiple-reciprocating-pass Thompson scattering
US16/519,588 Continuation-In-Part US10803996B2 (en) 2016-01-08 2019-07-23 Plasma diagnosis system using multiple-reciprocating-pass Thompson scattering

Publications (1)

Publication Number Publication Date
WO2017119552A1 true WO2017119552A1 (ko) 2017-07-13

Family

ID=56713563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003953 WO2017119552A1 (ko) 2016-01-08 2016-04-15 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템

Country Status (4)

Country Link
US (2) US20190019584A1 (ko)
EP (1) EP3401920B1 (ko)
KR (1) KR101647063B1 (ko)
WO (1) WO2017119552A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478428B (zh) * 2016-06-03 2024-03-08 阿尔法能源技术公司 高温等离子体中的低磁场和零点磁场的非微扰测量
KR102099119B1 (ko) * 2018-11-07 2020-04-10 서강대학교 산학협력단 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312712A (ja) * 1992-05-11 1993-11-22 Mitsubishi Electric Corp 微細粒子測定方法及び微細粒子測定装置
JPH06102086A (ja) * 1992-09-17 1994-04-12 Toshiba Corp レ−ザ計測装置
US5760388A (en) * 1995-05-24 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Biomedical imaging by optical phase conjugation
JP2003240715A (ja) * 2002-02-15 2003-08-27 Japan Atom Energy Res Inst マルチパスレーザ散乱測定方法
KR20130099641A (ko) * 2012-02-29 2013-09-06 제주대학교 산학협력단 톰슨 산란 분광 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231583A1 (en) 2007-09-14 2009-09-17 Roger Smith Local non-perturbative remote sensing devices and method for conducting diagnostic measurements of magnetic and electric fields of optically active mediums
KR101358996B1 (ko) 2012-07-09 2014-02-06 한국기초과학지원연구원 톰슨 산란 플라즈마 진단을 위한 렌즈 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312712A (ja) * 1992-05-11 1993-11-22 Mitsubishi Electric Corp 微細粒子測定方法及び微細粒子測定装置
JPH06102086A (ja) * 1992-09-17 1994-04-12 Toshiba Corp レ−ザ計測装置
US5760388A (en) * 1995-05-24 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Biomedical imaging by optical phase conjugation
JP2003240715A (ja) * 2002-02-15 2003-08-27 Japan Atom Energy Res Inst マルチパスレーザ散乱測定方法
KR20130099641A (ko) * 2012-02-29 2013-09-06 제주대학교 산학협력단 톰슨 산란 분광 장치

Also Published As

Publication number Publication date
KR101647063B1 (ko) 2016-08-10
US20190019584A1 (en) 2019-01-17
US20190378625A1 (en) 2019-12-12
EP3401920A4 (en) 2019-06-19
EP3401920A1 (en) 2018-11-14
US10803996B2 (en) 2020-10-13
EP3401920B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2017119551A1 (ko) 다중경로 톰슨 산란을 이용한 플라즈마 진단 시스템
CN102175594B (zh) 三波长脉冲激光共同作用下损伤阈值测量装置和装调方法
US10811145B2 (en) Plasma diagnosis system using multiple-path Thomson scattering
CN106604511B (zh) 一种测量高密度等离子体运动速度的方法
JP6533532B2 (ja) レーザーコンプトンx線源およびレーザーコンプトンγ線源を用いた超低放射線量フィードバック撮影
WO2017119552A1 (ko) 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템
Zhao et al. An angular-resolved scattered-light diagnostic for laser-plasma instability studies
CN107624170B (zh) 测量设备和方法
Donné et al. Chapter 4: Laser-aided plasma diagnostics
KR102099119B1 (ko) 다중 왕복경로 톰슨 산란을 이용한 플라즈마 진단 시스템
JP3699682B2 (ja) マルチパスレーザ散乱測定方法
EP2164308B1 (en) X-ray metering apparatus, and x-ray metering method
JPH09218155A (ja) 2次元蛍光寿命測定方法および装置
CN113552611B (zh) 一种超快中子脉冲能谱探测系统及方法
Pan et al. Synchronization scheme of a bunch profile monitor based on electro-optic spectral decoding
Fernández et al. Improved optical diagnostics for the NOVA laser
Corbett et al. Injected Beam Dynamics in SPEAR3
Jones Z Diagnostic Update.
Kirita et al. Search for sub-eV axion-like particles in a quasi-parallel stimulated resonant photon-photon collider with" coronagraphy"
JPH09229859A (ja) 蛍光寿命測定装置および方法
Bolkhovitinov et al. A three-channel polarointerferometer for diagnostics of magnetic fields in high-temperature plasma
Moody et al. Polarimetry of uncoupled light on the NIF
Qing et al. Multipulse Nd: YAG Laser Thomson scattering diagnostics on HT-7 tokamak
CN118549337A (zh) 偏振诊断系统
Corbett et al. Injection beam dynamics in SPEAR3'

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883938

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883938

Country of ref document: EP

Effective date: 20180808