WO2017118000A1 - 机器人轮径补偿方法和装置 - Google Patents

机器人轮径补偿方法和装置 Download PDF

Info

Publication number
WO2017118000A1
WO2017118000A1 PCT/CN2016/093113 CN2016093113W WO2017118000A1 WO 2017118000 A1 WO2017118000 A1 WO 2017118000A1 CN 2016093113 W CN2016093113 W CN 2016093113W WO 2017118000 A1 WO2017118000 A1 WO 2017118000A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
position point
wheel diameter
tire
deviation
Prior art date
Application number
PCT/CN2016/093113
Other languages
English (en)
French (fr)
Inventor
徐珏晶
朱建强
Original Assignee
杭州亚美利嘉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610006147.0A external-priority patent/CN105437261B/zh
Priority claimed from CN201610008143.6A external-priority patent/CN105573322B/zh
Application filed by 杭州亚美利嘉科技有限公司 filed Critical 杭州亚美利嘉科技有限公司
Priority to EP16883133.7A priority Critical patent/EP3401064B1/en
Priority to JP2018553277A priority patent/JP6671506B2/ja
Priority to US15/326,624 priority patent/US10416674B2/en
Priority to KR1020187020565A priority patent/KR102136016B1/ko
Publication of WO2017118000A1 publication Critical patent/WO2017118000A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/006Indicating maintenance
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a robot wheel diameter compensation method and device.
  • the automated robot is a versatile integrated system that integrates environmental awareness, route planning, dynamic decision making, behavior control, and alarm modules to enable timed, mobile self-service. Automated robots can replace the manpower for goods transportation, handling, sorting, storage and packaging. Automated robots can greatly improve the efficiency of the logistics industry and reduce the cost of work.
  • automated robots have also been widely used in the express sorting industry to replace the work of sorting and transporting people.
  • the background server controls each robot to follow the control instructions to ensure that all robots in the site work in order.
  • the robot determines the number of tire rotations required to travel from the current position point to another position point by the following steps, mainly: according to the distance traveled by the server from the current position point to another position point and pre-stored by itself
  • the tire wheel diameter calculates the number of tire rotations required to travel from the current position point to another position point. Then, the robot walks to another position point according to the calculated number of tire rotation turns, but the robot travels for a long time, the robot's
  • the running process causes the tire to wear out, and the calculated number of tire rotations will have a large error.
  • the inventors have found that at least the following problems exist in the related art: Since the tire wears during the use of the robot, the actual wheel diameter has a certain deviation from the pre-stored tire wheel diameter, and thus is pre-stored by itself.
  • the tire wheel diameter calculation has the low accuracy of the number of tire rotations required for the robot to travel from the current position point to another position point. On the one hand, the robot's walking distance accuracy is low, which makes it impossible to accurately position the robot, even On the other hand, when the tire of the robot wears to a certain extent, it is prone to travel errors and collide with other robots.
  • the present invention provides a robot wheel diameter compensation method and device to solve the problem that the robot has a low walking distance due to the presence of tire friction during the walking of the robot, thereby failing to achieve accurate positioning of the robot and collision between the robots.
  • the problem when the robot tire wears to a certain extent, can prompt to replace the tire, further alleviating the collision between the robots.
  • an embodiment of the present invention provides a method for compensating a wheel diameter of a robot, where the method includes: a robot that is located at a first position in the work site receives a travel command sent by the server, the travel command instructs the robot to travel to a second location point, wherein the work site is provided with a plurality of location points, the travel instruction And including a distance between the first location point and the second location point and a direction of travel of the second location point relative to the first location point;
  • the robot acquires a walking deviation corresponding to the second position point from the first position point, and the walking deviation is a difference between a theoretical distance and an actual distance corresponding to the actual number of revolutions of the robot tire;
  • the robot corrects its current wheel diameter based on the distance between the first position point and the second position point and the walking deviation.
  • the embodiment of the present invention provides the first possible implementation manner of the first aspect, wherein the acquiring, by the robot, the walking deviation corresponding to the second position point from the first position point, includes: The robot acquires a first displacement deviation between the robot and the first position point, and walks to the second position point according to the distance and the traveling direction in the driving instruction;
  • the robot When the robot walks to the second position point, the robot acquires a second displacement deviation between itself and the second position point;
  • the robot calculates the walking deviation corresponding to the second position point from the first position point to the second position point based on the first displacement deviation and the second displacement deviation.
  • an embodiment of the present invention provides a second possible implementation manner of the first aspect, wherein the robot is based on a distance between the first location point and the second location point and the walking deviation Fix your current current wheel diameter, including:
  • the robot calculates its own unit distance walking deviation according to the distance between the first position point and the second position point and the walking deviation;
  • the robot searches for a wheel diameter compensation value corresponding to the unit distance walking deviation in a preset list
  • the robot corrects its current wheel diameter based on the found wheel diameter compensation value.
  • an embodiment of the present invention provides a third possible implementation manner of the first aspect, wherein the robot is based on a distance between the first location point and the second location point and the walking deviation Correcting the current wheel diameter of the robot, including:
  • the robot determines the number of rotations of the first tire according to the distance between the first position point and the second position point and the pre-existing current wheel diameter
  • the robot determines the second number of rotations of the second tire according to the distance between the first position point and the second position point, the walking deviation, and the corrected current wheel diameter;
  • the robot calculates the corrected current wheel diameter by using the relationship between the number of rotations of the first tire and the number of rotations of the second tire, and updates the current wheel diameter of the current wheel diameter by using the corrected current wheel diameter .
  • the embodiment of the present invention provides a fourth possible implementation manner of the first aspect, where the method further includes:
  • the robot calculates a required number of tire rotations to go to the second position point according to the second displacement deviation between itself and the second position point;
  • the robot is controlled to travel to the second position point in accordance with the required number of rotations of the tire to correct the final position of the robot.
  • the embodiment of the present invention provides a fifth possible implementation manner of the first aspect, where The method further includes: determining whether the robot needs to replace the tire according to the corrected current wheel diameter, and performing the tire replacement warning when determining that the robot needs to replace the tire.
  • the embodiment of the present invention provides a sixth possible implementation manner of the first aspect, wherein determining, according to the corrected current wheel diameter, whether the robot needs to replace the tire, includes:
  • an embodiment of the present invention provides a robot wheel diameter compensation device, where the device includes: a receiving module, configured to receive a driving instruction sent by a server, where the driving instruction instructs the robot to walk from a first position to a second position point, wherein a plurality of position points are disposed in the work site, and the driving instruction includes a distance between the first position point and the second position point and the second position point is relative to a direction of travel of the first location point;
  • a walking deviation calculation module configured to acquire a walking deviation corresponding to walking from the first position point to the second position point, where the walking deviation is a difference between a theoretical distance and an actual distance corresponding to the actual number of rotations of the robot tire ;
  • a correction module configured to correct a current wheel diameter of the robot according to a distance between the first position point and the second position point and the walking deviation.
  • the embodiment of the present invention provides the first possible implementation manner of the second aspect, where the walking deviation calculation module includes:
  • a first acquiring unit configured to acquire a first displacement deviation between the robot and the first position point, and walk to the second position point according to the distance and the traveling direction in the driving instruction ;
  • a second acquiring unit configured to acquire a second displacement deviation between the robot and the second position point when the robot walks to the second position point
  • a walking deviation calculating unit configured to calculate, according to the first displacement deviation and the second displacement deviation, the walking deviation corresponding to the robot walking from the first position point to the second position point.
  • the embodiment of the present invention provides a second possible implementation manner of the second aspect, where the modifying module includes:
  • a unit distance deviation calculation subunit configured to calculate a unit distance walking deviation of the robot according to a distance between the first position point and the second position point and the walking deviation;
  • a wheel diameter compensation value finding subunit configured to find a wheel diameter compensation value corresponding to the unit distance walking deviation in a preset list
  • the current wheel diameter correction subunit is configured to correct the current wheel diameter of the robot according to the found wheel diameter compensation value.
  • the embodiment of the present invention provides a third possible implementation manner of the second aspect, where the modifying module includes:
  • a first determining subunit configured to determine a first tire rotation number of the robot according to a distance between the first position point and the second position point and a pre-stored current wheel diameter
  • a second determining subunit configured to: according to a distance between the first location point and the second location point, Determining a walking deviation, and a corrected current wheel diameter, determining a second tire rotation number of the robot; a current wheel diameter update subunit for utilizing the first tire rotation number and the second tire rotation circle The equal number of relationships is calculated, and the corrected current wheel diameter is calculated, and the current wheel diameter of the robot is updated by using the corrected current wheel diameter.
  • the embodiment of the present invention provides a fourth possible implementation manner of the second aspect, where the device further includes:
  • a compensation rotation number calculation module configured to calculate, according to the second displacement deviation between the robot and the second position point, a required number of rotations of the tire to the second position point;
  • a control module configured to control the robot to walk to the second position point according to the number of rotations of the tire, thereby correcting a final position of the robot.
  • the embodiment of the present invention provides a fifth possible implementation manner of the first aspect, where the device further includes:
  • the judging module is configured to judge whether the robot needs to replace the tire according to the corrected current wheel diameter, and when the robot is required to replace the tire, perform a tire replacement warning.
  • the embodiment of the present invention provides a sixth possible implementation manner of the second aspect, where the determining module includes:
  • a first determining unit configured to determine whether the corrected current wheel diameter reaches a preset wheel diameter range, and if yes, determining that the robot needs to replace the tire
  • the second determining unit is configured to determine whether the difference between the corrected current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold, and if yes, determine that the robot needs to replace the tire.
  • an embodiment of the present invention provides another method for compensating a wheel diameter of a robot, the method comprising: acquiring a walking deviation corresponding to a robot walking from a first position point to a second position point in a work site, and the first a distance between the position point and the second position point; wherein, the work site is provided with a plurality of position points, wherein the walking deviation is a difference between a theoretical distance and an actual distance corresponding to the actual number of revolutions of the robot tire;
  • the embodiment of the present invention provides the first possible implementation manner of the third aspect, wherein: the walking deviation of the acquiring robot from the first position point to the second position point in the work site includes:
  • the embodiment of the present invention provides the second possible implementation manner of the third aspect, wherein the updating the location according to the distance between the first location point and the second location point and the walking deviation
  • the current wheel diameter of the robot including:
  • the embodiment of the present invention provides a third possible implementation manner of the third aspect, wherein the updating the location according to the distance between the first location point and the second location point and the walking deviation
  • the current wheel diameter of the robot including:
  • the updated wheel diameter of the robot is calculated by the relationship between the number of rotations of the first tire and the number of rotations of the second tire.
  • the embodiment of the present invention provides a fourth possible implementation manner of the third aspect, further comprising: determining, according to the updated current wheel diameter, whether the robot needs to replace the tire, when determining that the robot needs When replacing tires, perform tire replacement warning.
  • the embodiment of the present invention provides a fifth possible implementation manner of the third aspect, wherein determining, according to the updated current wheel diameter, whether the robot needs to replace the tire, includes:
  • an embodiment of the present invention provides another robot wheel diameter compensation device, where the device includes: an acquisition module, configured to acquire a walking deviation corresponding to a robot walking from a first position point to a second position point in a work site And a distance between the first location point and the second location point; wherein, the working site is provided with a plurality of location points, where the walking deviation is a theoretical distance and actual distance corresponding to the actual number of revolutions of the robot tire The difference in distance;
  • a wheel diameter updating module configured to update a current wheel diameter of the robot according to a distance between the first position point and the second position point and the traveling deviation.
  • the embodiment of the present invention provides the first possible implementation manner of the fourth aspect, where the acquiring module includes:
  • a displacement deviation receiving unit configured to receive a first displacement deviation between the first position point and the reported position when the robot is located at the first position point, and report the a second displacement deviation between the second position points;
  • the walking deviation calculating unit is configured to calculate, according to the first displacement deviation and the second displacement deviation, a walking deviation corresponding to the robot walking from the first position point to the second position point.
  • the embodiment of the present invention provides a second possible implementation manner of the fourth aspect, where the wheel diameter update module includes: a unit distance walking deviation calculating unit, configured to calculate a unit distance walking deviation according to the unit distance walking deviation calculating unit according to the distance between the first position point and the second position point and the walking deviation ;
  • a wheel diameter compensation value searching unit configured to search, in a preset list, a wheel diameter compensation value corresponding to a unit distance deviation of the robot
  • the current wheel diameter updating unit is configured to update the current wheel diameter of the robot according to the wheel diameter compensation value obtained by the searching.
  • the embodiment of the present invention provides a third possible implementation manner of the fourth aspect, where the wheel diameter update module includes:
  • a first determining unit configured to determine a first tire rotation number of the robot according to a distance between the first position point and the second position point and a current wheel diameter of the robot
  • a second determining unit configured to determine a second tire rotation circle of the robot according to a distance between the first position point and the second position point, the walking deviation, and an updated wheel diameter of the robot
  • the wheel diameter calculation unit is configured to calculate the updated wheel diameter of the robot by using the relationship between the number of rotations of the first tire and the number of rotations of the second tire.
  • the embodiment of the present invention provides a fourth possible implementation manner of the fourth aspect, where the device further includes:
  • the judging module is configured to judge whether the robot needs to replace the tire according to the updated current wheel diameter, and when determining that the robot needs to replace the tire, perform a tire replacement warning.
  • the embodiment of the present invention provides a fifth possible implementation manner of the fourth aspect, where the determining module includes:
  • a first determining unit configured to determine whether the updated current wheel diameter reaches a preset wheel diameter range, and if yes, determining that the robot needs to replace the tire
  • the second determining unit is configured to determine whether the difference between the updated current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold, and if yes, determine that the robot needs to replace the tire.
  • the robot located at the first position point in the work site receives the driving instruction sent by the server, and the driving instruction instructs the robot to walk to the second position point, wherein the working site is provided with a plurality of position points, and the driving The command includes a distance between the first position point and the second position point and a traveling direction of the second position point relative to the first position point; the robot acquires a walking deviation corresponding to the walking from the first position point to the second position point, the walking deviation The difference between the theoretical distance and the actual distance corresponding to the actual number of revolutions of the robot tire; the robot corrects the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation; or acquires the point from the first position of the robot The walking deviation corresponding to the second position point and the distance between the first position point and the second position point are corrected, and then the current wheel diameter of the robot is corrected according to the distance between the first position point and the second position point and the walking deviation.
  • the walking deviation of the robot from the first position point to the second position point in the work site and the distance between the first position point and the second position point are obtained; wherein, the working site is provided with a plurality of position points
  • the walking deviation is the difference between the theoretical distance and the actual distance corresponding to the actual number of revolutions of the robot tire; and the current wheel diameter of the robot is updated according to the distance between the first position point and the second position point and the walking deviation.
  • FIG. 1 is a flow chart of a method for compensating a wheel diameter of a robot according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a wheel diameter compensating device for a robot according to Embodiment 2 of the present invention
  • a first schematic flowchart of another robot wheel diameter compensation method according to Embodiment 3 of the present invention is shown;
  • FIG. 4 is a second schematic flow chart showing another robot wheel diameter compensation method according to Embodiment 3 of the present invention.
  • Fig. 5 is a view showing the first structure of another robot wheel diameter compensating device according to Embodiment 4 of the present invention.
  • Fig. 6 is a view showing a second configuration of another robot wheel diameter compensating device according to a fourth embodiment of the present invention.
  • the present invention provides a method and device for compensating the wheel diameter of the robot.
  • the tire is compensated, the accuracy of the robot's driving distance is improved, and the accurate positioning of the robot is realized.
  • the tire wears to a certain extent, the tire can be prompted to be replaced, thereby alleviating the prior art due to the robot tire.
  • a problem of wear and collision with other robots The following is a detailed description in conjunction with the embodiments.
  • FIG. 1 is a flowchart of a method for compensating a wheel diameter of a robot according to an embodiment of the present invention.
  • the execution body of the method is located in a robot.
  • the method includes steps 102-106, as follows:
  • a robot that is located at a first position in the work site receives a travel command sent by the server, where the travel command instructs the robot to travel to a second location, wherein the work site is provided with a plurality of location points, and the driving instruction includes the foregoing a distance between the first position point and the second position point and the second a traveling direction of the position point relative to the first position point;
  • the robot acquires a walking deviation corresponding to the second position point from the first position point, where the walking deviation is a difference between the theoretical distance and the actual distance corresponding to the actual number of revolutions of the robot tire;
  • the robot corrects its current wheel diameter according to the distance between the first position point and the second position point and the walking deviation.
  • the server delivers the walking distance and the traveling direction from the first position point in the work site to the second position point in the designated position point to the robot.
  • the robot acquires the walking deviation corresponding to the walking from the first position point to the second position point, and includes the following process: (1) the first displacement deviation between the robot and the first position point is acquired by the robot And walking to the second position point according to the above distance in the driving instruction and the traveling direction, wherein the first displacement deviation is obtained by: when the robot is in the first position, the robot passes the optical at the bottom
  • the identifier collects an optical identification code corresponding to the first location point.
  • the center of the image represents the center of the position of the robot.
  • the robot identifies the center of the optical identification code in the acquired image, and determines the distance between the center of the optical identification code and the center of the image, thereby determining the first displacement deviation between itself and the first position point; (2) When the robot walks to the second position point, the robot acquires a second displacement deviation between itself and the second position point; wherein the second displacement deviation is acquired by the same manner as the first displacement deviation; (3) The robot calculates a walking deviation corresponding to the second position point from the first position point to the second position point based on the first displacement deviation and the second displacement deviation.
  • the field in which the robot works is divided into a plurality of grids of equal areas in a tabular form, and each grid serves as a position point.
  • An optical identification code is provided in each of the grids, the center of the optical identification code coincides with the center of the corresponding position point, and the optical identification code may be a two-dimensional code.
  • the bottom of the robot is provided with an optical identifier for identifying an optical identification code, which may be a camera.
  • the robot acquires the optical identification code corresponding to the first position point through the optical identifier at the bottom.
  • the center of the image represents the center of the position of the robot.
  • the robot identifies the center of the optical identification code in the acquired image, and determines the distance between the center of the optical identification code and the center of the image, thereby determining the first displacement deviation between itself and the first position point, and A displacement deviation is stored.
  • the robot determines the second displacement deviation between itself and the second position point in the same manner, and stores the second displacement deviation.
  • the robot calculates the walking corresponding to the distance from the first position point to the second position point according to the first displacement deviation, the second displacement deviation, and the distance between the first position point and the second position point. deviation.
  • the robot walks from the first position point to the second position.
  • the corresponding deviation of the point is -5 cm, that is, the robot moves 5 cm less.
  • the specific calculation process of correcting the current wheel diameter is performed by the robot, acquiring the first displacement deviation and acquiring the second displacement deviation and according to the first displacement deviation and the second displacement deviation.
  • the distance between the first position point and the second position point is calculated to be that the walking deviation corresponding to the second position point is performed on the robot side, and the server is only responsible for issuing the driving instruction to the corresponding robot. Therefore, the server has a small amount of computation, especially for the same server to control multiple machines. Human work scene.
  • the method specifically includes: (1) the robot calculates its own unit distance walking deviation according to the distance between the first position point and the second position point and the walking deviation; (2) the robot finds in the preset list. The wheel diameter compensation value corresponding to the walking deviation per unit distance; (3) The robot corrects its current wheel diameter based on the found wheel diameter compensation value.
  • the walking deviation of the robot is 5 cm
  • the distance between the first position point and the second position point is 5 meters
  • 5 position spacing is taken as an example
  • the unit distance walking of the robot can be calculated through the above process (1)
  • the deviation is 5 cm to 5 m, that is, 1 cm per meter
  • the value is 0.01, or 1 centimeter deviation from each position.
  • a corresponding list of the unit distance walking deviation and the wheel diameter compensation value is pre-set in the robot, taking the unit distance walking deviation 0.011 as an example, or taking the position spacing deviation of 1 cm as an example, The list can be found to get a wheel diameter compensation of 2 cm.
  • the process (2) may also determine the wheel diameter compensation value by using a preset value judgment.
  • the wheel diameter compensation value is 5 cm, and the unit distance travel deviation is less than or equal to 0.
  • the wheel diameter compensation value is 2 cm.
  • the current wheel diameter of the robot can be utilized by taking the wheel diameter compensation value of 2 cm and the current wheel diameter of the robot as 28 cm. Corrected to 26 cm.
  • the robot determines the wheel diameter compensation value by means of table lookup, and has the advantages of simple operation and small amount of server calculation, and is particularly suitable for the case where the same server controls a large number of robots.
  • the robot corrects the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation. It can also be realized by the following process: (1) The robot determines its own first tire rotation number according to the distance between the first position point and the second position point and the pre-stored current wheel diameter; (2) the robot according to the first position point The distance from the second position point, the deviation of the walking, and the corrected wheel diameter determine the number of rotations of the second tire; (3) the robot uses the relationship between the number of rotations of the first tire and the number of rotations of the second tire, The corrected wheel diameter is calculated, and the current wheel diameter is updated by using the corrected wheel diameter.
  • M denote the distance between the first position point and the second position point
  • Y denote the walking deviation of the robot
  • R0 denotes the current wheel diameter of the robot (ie, the current wheel diameter pre-stored)
  • R1 denotes the corrected wheel diameter of the robot.
  • pi is the pi. It can be known that M is the theoretical walking distance of the robot and M+Y is the actual walking distance of the robot. Since the principle of robot walking is based on the theoretical walking distance of the robot and the current wheel diameter of the robot, the number of rotations of the tire of the robot is calculated, and the robot moves according to the number of turns, so the robot moves from the first position point to the second position point.
  • the corrected wheel diameter of the robot can be accurately calculated, thereby accurately correcting the wheel diameter of the robot.
  • the above method further includes:
  • the robot calculates a number of tire rotations required to travel to the second position point according to the second displacement deviation between itself and the second position point;
  • the robot moves to the second position point according to the required number of rotations of the tire, thereby correcting The final position of the robot.
  • the robot acquires the optical identification code corresponding to the second position point through the optical identifier of the bottom, and determines the distance between the center of the optical identification code and the image center of the collected second position point. That is, the second displacement deviation between itself and the second position point, when the second displacement deviation is X cm and the center of the optical identification code is in front of the image center of the second position point in the traveling direction, the robot needs to walk It is only possible for the X cm to be accurately positioned to the center of the second position point. At this time, it is necessary to calculate the number of rotations of the tire reaching the center of the second position point, so that the robot continues to walk to the second position point. In the embodiment of the present invention, the robot positioning is made more accurate by adopting the robot to continue walking to the center of the second position point.
  • the method further includes: determining whether the robot needs to replace the tire according to the corrected current wheel diameter, specifically comprising: (1) determining whether the corrected current wheel diameter reaches a preset wheel diameter range, if Yes, determine that the robot needs to replace the tire; or, (2) determine whether the difference between the corrected current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold, and if so, determine that the robot needs to replace the tire. For example, when the wheel diameter of the robot is worn to 25 cm, or the difference between the current wheel diameter of the robot and the initial wheel diameter of the robot exceeds 5 cm, it is determined that the robot needs to change the tire. In the present embodiment, it is possible to quickly and easily determine whether or not the tire of the robot needs to be replaced by the processes (1) and (2), thereby avoiding collision with other robots due to severe wear of the robot tire.
  • the tire replacement warning when it is judged that the robot needs to replace the tire, the tire replacement warning is performed, and the tire replacement warning information may be displayed through the display, or the tire replacement warning information may be sent to the staff's mobile phone.
  • the method provided in this embodiment adopts the method of automatically compensating for the wheel diameter, thereby improving the accuracy of the robot travel distance, thereby realizing accurate positioning of the robot; and further, two ways of correcting the current wheel diameter of the robot are given.
  • the kind of determining the wheel diameter compensation value by means of look-up table has the advantages of simple operation and small amount of server calculation, especially suitable for the case where the same server controls a large number of robots, and the other is based on the theoretical rotation number and actuality of the robot tire.
  • the principle of equal number of turns can accurately calculate the updated wheel diameter of the robot, thus accurately updating the wheel diameter of the robot.
  • the robot can determine whether it needs to change the tires, effectively preventing the cause.
  • the robot malfunction caused by the wear of the robot tires improves the smoothness of the overall robot operation, improves the safety of the robot operation, and ensures the safety of a large number of robots.
  • the present embodiment provides a robot wheel diameter compensation device, wherein the device can be disposed in the robot.
  • the device includes: a receiving module 202,
  • the driving instruction is used to receive the driving command sent by the server, and the driving instruction indicates that the robot travels from the first position point to the second position point, wherein the working site is provided with a plurality of position points, and the driving instruction includes the first position point to the second position point The distance between the second position and the direction of travel of the second position point relative to the first position point;
  • the travel deviation calculation module 204 is configured to acquire a walking deviation corresponding to the point from the first position point to the second position point, where the walking deviation is the actual robot tire The difference between the theoretical distance and the actual distance corresponding to the number of revolutions;
  • the correction module 206 is configured to correct the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation.
  • the walking deviation calculation module 204 includes:
  • a first acquiring module configured to acquire a first displacement deviation between the robot and the first position point, and walk to the second position point according to the distance in the driving instruction and the traveling direction;
  • a second acquiring module configured to: when the robot walks to the second position point, acquire a second displacement deviation between the robot and the second position point;
  • the walking deviation calculating unit is configured to calculate, according to the first displacement deviation and the second displacement deviation, the walking deviation corresponding to the robot walking from the first position point to the second position point.
  • correction module 206 includes:
  • a unit distance deviation calculation subunit configured to calculate a unit distance walking deviation of the robot according to a distance between the first position point and the second position point and the walking deviation;
  • a wheel diameter compensation value finding subunit configured to search for a wheel diameter compensation value corresponding to the unit distance walking deviation in the preset list
  • the current wheel diameter correction subunit is configured to correct the current wheel diameter of the robot according to the found wheel diameter compensation value.
  • correction module 206 includes:
  • a first determining subunit configured to determine a first tire rotation number of the robot according to a distance between the first position point and the second position point and a pre-stored current wheel diameter
  • a second determining subunit configured to determine a second tire rotation number of the robot according to a distance between the first position point and the second position point, the walking deviation, and the corrected current wheel diameter
  • the current wheel diameter update subunit is configured to calculate the current wheel diameter after the correction by using the relationship between the number of rotations of the first tire and the number of rotations of the second tire, and update the current wheel diameter of the robot by using the current wheel diameter.
  • the above apparatus further includes:
  • a compensation rotation number calculation module configured to calculate a required number of rotations of the tire to travel to the second position point according to the second displacement deviation between the robot and the second position point;
  • the control module is configured to control the robot to walk to the second position point according to the required number of rotations of the tire, thereby correcting the final position of the robot.
  • the above apparatus further includes:
  • the judging module is configured to judge whether the robot needs to replace the tire according to the corrected current wheel diameter, and when the robot needs to replace the tire, perform the tire replacement warning.
  • the foregoing determining module includes:
  • a first determining unit configured to determine whether the corrected current wheel diameter reaches a preset wheel diameter range, and if so, determining that the robot needs to replace the tire
  • the second determining unit is configured to determine whether the difference between the corrected current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold. If yes, it is determined that the robot needs to replace the tire.
  • the first judging unit and the second judging unit can easily and quickly determine whether it is necessary to replace the tire of the robot, thereby avoiding collision with other robots due to severe wear of the robot.
  • the robot wheel diameter compensation device provided by the embodiment of the present invention may be specific hardware on the device or software or firmware installed on the device.
  • the implementation principle and the technical effects of the device provided by the embodiments of the present invention are the same as those of the foregoing method embodiments.
  • the device embodiment is not mentioned, reference may be made to the corresponding content in the foregoing method embodiments.
  • a person skilled in the art can clearly understand that, for the convenience and brevity of the description, the specific working processes of the foregoing system, the device and the unit can refer to the corresponding processes in the foregoing method embodiments, and details are not described herein again.
  • FIG. 1 is a schematic diagram of a first flow chart of another method for compensating a wheel diameter of a robot according to an embodiment of the present invention.
  • the execution body of the method may be a background server for controlling the operation of the robot.
  • the method includes at least the following steps:
  • Step 302 Acquire a walking deviation corresponding to the robot walking from the first position point to the second position point in the work site, and a distance between the first position point and the second position point; wherein, the working site is provided with multiple positions Point, the running deviation is the difference between the theoretical distance and the actual distance corresponding to the actual number of revolutions of the robot tire; Step 304, updating the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation.
  • the server acquires the walking deviation corresponding to the robot walking from the first position point to the second position point in the work site, and can have various implementation manners.
  • the distance S1 between the first location point and the second location point is pre-stored in the server.
  • the robot reports the actual walking distance S2 to the server, and the server according to the SI.
  • S2 can calculate the walking deviation of the robot.
  • the walking deviation of the robot from the first position point to the second position point in the work site is included, and the following process is included: (1) the receiving robot is reported and located at the first position point.
  • the field in which the robot works is divided into a plurality of equal-sized grids in the form of a table, and each grid serves as a position point.
  • An optical identification code is provided in each of the grids, the center of the optical identification code coincides with the center of the corresponding position point, and the optical identification code may be a two-dimensional code.
  • the bottom of the robot is provided with an optical identifier for identifying the optical identification code, which may be a camera.
  • the robot acquires the optical identification code corresponding to the first position point through the optical identifier at the bottom.
  • the center of the image represents the center of the position of the robot.
  • the robot identifies the center of the optical identification code in the acquired image, and determines the distance between the center of the optical identification code and the center of the image, thereby determining the first displacement deviation between itself and the first position point, and A displacement deviation is reported to the server.
  • the robot determines the second displacement deviation between itself and the second position point in the same manner and reports it to the server.
  • the server calculates the first displacement deviation and the second displacement deviation, and determines the walking deviation of the robot from the first position point to the second position point.
  • the server can receive the first displacement deviation and the second displacement deviation reported by the robot, and accurately calculate the walking deviation of the robot based on the first displacement deviation and the second displacement deviation.
  • the server has a small amount of computation, especially for the same server to control the working scene of multiple robots.
  • the server also obtains the distance between the first location point and the second location point.
  • the server in this embodiment can obtain the following manner.
  • the distance between the first location point and the second location point the server numbers each location point in advance, and pre-stores location information corresponding to each location point; the robot reports the sequence number of the first location point and the second location point to the server The sequence number may be performed when the first displacement deviation and the second displacement deviation are reported to the server; the server determines the location information of the first location point according to the sequence number of the first location point, and determines the second location according to the sequence number of the second location point.
  • Position information of the position point determines the distance between the first position point and the second position point.
  • the distance between the first location point and the second location point can be expressed by a physical unit such as meters, and can also be represented by a spacing position interval, such as a distance between the first location point and the second location point of 5 meters.
  • the first position point is the 1st position point
  • the second position point is the 6th position point
  • the distance between the two is 5 positions.
  • the distance between the first location point and the second location point is obtained by acquiring the location point number, which has the advantages of small calculation amount of the server and simple and convenient implementation.
  • the server updates the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation, and specifically includes: (1) according to the distance between the first position point and the second position point and walking Deviation calculates the unit distance travel deviation of the robot; (2) Finds the wheel diameter compensation value corresponding to the unit distance travel deviation of the robot in the preset list; (3) Updates the current wheel diameter of the robot according to the wheel diameter compensation value obtained by the search. .
  • the walking deviation of the robot is 5 cm
  • the distance between the first position point and the second position point is 5 meters
  • 5 position spacing is taken as an example
  • the unit distance walking of the robot can be calculated through the above process (1)
  • the deviation is 5 cm to 5 m, that is, 1 cm per meter
  • the value is 0.01, or 1 centimeter deviation from each position.
  • a corresponding list of the unit distance walking deviation and the wheel diameter compensation value is pre-set in the server, taking the unit distance walking deviation 0.01 as an example, or taking the position deviation of each position by 1 cm as an example, The list can be found to get a wheel diameter compensation of 2 cm.
  • the process (2) may also determine the wheel diameter compensation value by using a preset value judgment.
  • the wheel diameter compensation value is 5 cm, and the unit distance travel deviation is less than or equal to 0.
  • the wheel diameter compensation value is 2 cm.
  • the current wheel diameter of the robot can be utilized by taking the wheel diameter compensation value of 2 cm and the current wheel diameter of the robot as 28 cm. Updated to 26 cm.
  • determining the wheel diameter compensation value by means of table look has the advantages of simple operation and small amount of server calculation, and is particularly suitable for the case where the same server controls a large number of robots.
  • the server updates the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation. It can also be realized by the following process: (1) determining the number of rotations of the first tire of the robot according to the distance between the first position point and the second position point and the current wheel diameter of the robot; (2) according to the first position point and the first position The distance between the two position points, the deviation of the walking, and the wheel diameter after the robot is updated, determine the number of rotations of the second tire of the robot; (3) Calculate the relationship between the number of rotations of the first tire and the number of rotations of the second tire, Get the updated wheel diameter of the robot.
  • M denote the distance between the first position point and the second position point
  • Y denote the walking deviation of the robot
  • R0 denotes the current wheel diameter of the robot (ie, the current wheel diameter pre-stored)
  • R1 denotes the updated wheel diameter of the robot.
  • pi is the pi.
  • the updated wheel diameter of the robot can be accurately calculated to accurately update the wheel diameter of the robot.
  • the method further includes, in step 306, determining whether the robot needs to replace the tire according to the updated current wheel diameter, and performing the tire replacement warning when determining that the robot needs to replace the tire.
  • determining whether the robot needs to replace the tire according to the updated current wheel diameter specifically includes: (1) determining whether the updated current wheel diameter reaches a preset wheel diameter range, and if so, determining that the robot needs to replace the tire; Or, (2) determining whether the difference between the updated current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold, and if so, determining that the robot needs to replace the tire.
  • the wheel diameter of the robot when the wheel diameter of the robot is worn to 25 cm, or the difference between the current wheel diameter of the robot and the initial wheel diameter of the robot exceeds 5 cm, it is determined that the robot needs to change the tire.
  • the tire replacement warning when it is judged that the robot needs to replace the tire, the tire replacement warning is performed, and the tire replacement warning information may be displayed through the display, or the tire replacement warning information may be sent to the staff's mobile phone.
  • the method provided in this embodiment can be applied to a work scene in which a large number of robots are controlled by one server, and the server controls the work of each robot in the same manner, and updates the wheel diameter of each robot to realize accurate positioning of the robot;
  • Two ways to update the current wheel diameter are given.
  • One is to determine the wheel diameter compensation value by means of table lookup, which has the advantages of simple operation and less server operation. It is especially suitable for the same server to control a large number of robots.
  • the updated wheel diameter of the robot can be accurately calculated, thereby accurately updating the wheel diameter of the robot; the server controls the tire update.
  • the method in the embodiment can effectively prevent the robot malfunction caused by the wear of the robot tire, improve the fluency of the overall robot operation, and improve the safety of the robot operation, and ensure A large number of robots work safely.
  • the method includes:
  • Step 311 When the robot is located at the first location point, report the first displacement deviation between itself and the first location point to the server, and report the sequence number of the first location point;
  • Step 312 When the robot is located at the second location point, report the second displacement deviation between itself and the second location point to the server, and report the sequence number of the second location point;
  • Step 313 the server receives the first displacement deviation and the second displacement deviation reported by the robot, and the sequence number of the first location point and the sequence number of the second location point;
  • Step 314 the server calculates the walking deviation of the robot according to the first displacement deviation and the second displacement deviation, and calculates the first according to the serial number of the first position point and the serial number of the second position point and the position information of each position point stored in advance. The distance between the location point and the second location point;
  • Step 315 The server updates the current wheel diameter of the robot according to the distance between the first position point and the second position point and the walking deviation.
  • the specific updating method may be updated by using the foregoing table lookup method, or may be The way the calculation is updated;
  • Step 316 the server determines whether the robot needs to replace the tire according to the updated current wheel diameter. If yes, step 317 is performed; otherwise, return to step 311;
  • Step 317 the server displays the tire replacement warning information through the display screen.
  • the accuracy of the robot travel distance due to wear of the robot tire can be effectively prevented, the position cannot be accurately positioned or even faulty, the fluency and accuracy of the overall robot operation can be improved, and the robot operation can be improved.
  • the safety guarantees the safety of a large number of robots.
  • an embodiment of the present invention further provides another robot wheel diameter compensation device for performing the above-described another robot wheel diameter compensation method.
  • Another robot wheel diameter compensating device in this embodiment can be disposed in a server that controls the operation of the robot.
  • another robot wheel diameter compensation device in this embodiment includes:
  • the obtaining module 41 is configured to acquire a walking deviation corresponding to the robot walking from the first position point to the second position point in the work site, and a distance between the first position point and the second position point; wherein, the working site is provided with multiple Position difference, the deviation of the deviation is the difference between the theoretical distance and the actual distance corresponding to the actual number of revolutions of the robot tire; the wheel diameter update module 42 is configured to update the current state of the robot according to the distance between the first position point and the second position point and the walking deviation Wheel diameter.
  • the obtaining module 41 includes: a displacement deviation receiving unit 411, configured to receive a first displacement deviation between the first position point and the reported position when the robot is located at the first position point, And a second displacement deviation between the second position point and the second position point when the robot is located at the second position point; the walking deviation calculation unit 412 is configured to calculate the robot walking from the first position point according to the first displacement deviation and the second displacement deviation The walking deviation corresponding to the second position point.
  • the server can receive the first displacement deviation and the second displacement deviation reported by the robot through the displacement deviation receiving unit 411 and the walking deviation calculation unit 412, and accurately calculate the first displacement deviation and the second displacement deviation.
  • the walking deviation of the robot has a small amount of computation, and is especially suitable for working scenarios where multiple servers are controlled by the same server.
  • the wheel diameter updating module 42 includes: a unit distance walking deviation calculating unit 421, configured to calculate the robot according to the distance between the first position point and the second position point and the walking deviation
  • the unit wheel distance compensation value searching unit 422 is configured to search for a wheel diameter compensation value corresponding to the unit distance walking deviation of the robot in the preset list;
  • the current wheel diameter updating unit 423 is configured to obtain the wheel according to the search.
  • the path compensation value updates the current wheel diameter of the robot.
  • the unit distance deviation calculation unit 421, the wheel diameter compensation value search unit 422, and the current wheel diameter update unit 423 determine the wheel diameter compensation value by means of table lookup, and the server has a small amount of calculation. Especially suitable for the case where the same server controls a large number of robots.
  • the wheel diameter updating module 42 includes: a first determining unit 424, configured to determine, according to a distance between the first location point and the second location point, and a current wheel diameter of the robot.
  • the first tire rotation number of the robot; the second determining unit 425 is configured to determine the second tire rotation circle of the robot according to the distance between the first position point and the second position point, the walking deviation, and the updated wheel diameter of the robot
  • the wheel diameter calculation unit 426 is configured to calculate the wheel diameter after the robot is updated by using the relationship between the number of rotations of the first tire and the number of rotations of the second tire.
  • the updated robot can be accurately calculated.
  • the wheel diameter thus accurately updating the wheel diameter of the robot.
  • the foregoing apparatus further includes:
  • the determining module 43 is configured to determine, according to the updated current wheel diameter, whether the robot needs to replace the tire, and when determining that the robot needs to replace the tire, perform a tire replacement warning. Further, as shown in FIG. 6, the foregoing determining module 43 includes:
  • the first determining unit 431 is configured to determine whether the updated current wheel diameter reaches a preset wheel diameter range, and if yes, determine that the robot needs to replace the tire;
  • the second determining unit 432 is configured to determine whether the difference between the updated current wheel diameter and the initial wheel diameter of the robot reaches a preset difference threshold. If yes, it is determined that the robot needs to replace the tire.
  • the first judging unit 431 and the second judging unit 432 can easily and quickly determine whether the tire of the robot needs to be replaced, thereby avoiding collision with other robots due to severe wear of the robot.
  • the apparatus provided in this embodiment can be applied to a work scene in which a large number of robots are controlled by one server, and the server controls the work of each robot in the same manner, and updates the wheel diameter of each robot to realize the accuracy of the robot. Positioning; Furthermore, two ways of updating its current wheel diameter are given. One is to determine the wheel diameter compensation value by means of table lookup, which has the advantages of simple operation and small amount of server operation, and is particularly suitable for controlling the same server.
  • the other is based on the principle that the theoretical number of revolutions of the robot tire is equal to the actual number of revolutions, and the updated wheel diameter of the robot can be accurately calculated, thereby accurately updating the wheel diameter of the robot; Based on the update of the wheel diameter, it can be judged whether the robot needs to replace the tire.
  • the device in the embodiment can effectively prevent the robot malfunction caused by the wear of the robot tire, improve the fluency of the overall robot operation, improve the safety of the robot operation, and ensure the safety of a large number of robots.
  • the device provided by the embodiment of the present invention may be specific hardware on the device or software or firmware installed on the device.
  • the implementation principle and the technical effects of the device provided by the embodiments of the present invention are the same as those of the foregoing method embodiments.
  • a person skilled in the art can clearly understand that, for the convenience and brevity of the description, the specific working processes of the system, the device and the unit described above can refer to the corresponding processes in the foregoing method embodiments, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some communication interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in the embodiment provided by the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention is The portion contributing to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium including a plurality of instructions for causing a computer device ( It may be a personal computer, a server, or a network device, etc.) performing all or part of the steps of the method described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. Introduction ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机器人轮径补偿方法和装置,其中,补偿方法包括:位于工作场地内第一位置点的机器人接收服务器发送的行驶指令,行驶指令指示机器人行走至第二位置点,其中,工作场地内设置有多个位置点,行驶指令包括第一位置点与第二位置点之间的距离和第二位置点相对于所述第一位置点的行驶方向;机器人获取从所述第一位置点行走至第二位置点对应的行走偏差,行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差值;机器人根据第一位置点与第二位置点之间的距离和行走偏差修正机器人的当前轮径。通过该补偿方法和装置,有效实现机器人的准确定位;进一步地当机器人轮胎磨损到一定程度时,能够提示更换轮胎,从而解决由于机器人轮胎磨损而与其他机器人发生碰撞的问题。

Description

机器人轮径补偿方法和装置
技术领域
本发明涉及机器人技术领域, 尤其涉及机器人轮径补偿方法和装置。
背景技术
目前, 随着社会经济的快速发展, 智能化产品的广泛应用, 超级市场、 机场、 车站、 会展中心及物流仓库等大型人流、 物流场所的规模和数量不断扩大, 以往以 人为主的模式已满足不了实际的需求, 因此, 越来越多的能够自主工作的自动化机 器人参与到机场行李运输、 物流配送等领域。 自动化机器人是一个集成环境感知、 路线规划、 动态决策、 行为控制以及报警模块为一体的多功能综合系统, 能够实现 定时、 流动自助工作。 自动化机器人能够代替人力进行物品运输、 搬运、 分拣、 存 储以及打包等工作, 通过自动化机器人能够极大地提高物流行业的工作效率, 降低 工作成本。
随着分拣行业的蓬勃发展, 自动化机器人也开始广泛应用于快递分拣行业, 进 而取代人员进行物品分拣、 运送的相关工作。 当前, 利用自动化机器人在物流配送 中心进行物品运输、 分拣以及打包时, 通常会在场地内设置大量机器人, 后台服务 器控制每个机器人按照控制指令行走, 以保证场地内所有机器人按秩序工作。同时, 机器人通过如下步骤来确定从当前位置点行走至另一位置点所需的轮胎转动圈数, 主要是: 根据服务器下发的从当前位置点行走至另一位置点的距离和自身预先存储 的轮胎轮径计算得到从当前位置点行走至另一位置点所需的轮胎转动圈数, 然后, 机器人根据计算得到的轮胎转动圈数行走至另一位置点, 但是机器人长时间行驶, 机器人的行驶过程导致轮胎会出现磨损, 计算得到的轮胎转动圈数会出现较大的误 差。
在实现本发明的过程中, 发明人发现相关技术中至少存在以下问题: 由于机器 人使用过程中存在轮胎磨损的情况, 导致实际轮径与预先存储的轮胎轮径存在一定 偏差, 因而通过自身预先存储的轮胎轮径计算得到机器人从当前位置点行走至另一 位置点所需的轮胎转动圈数的准确度低,一方面,导致机器人的行走距离准确度低, 造成无法实现机器人的准确定位, 甚至出现机器人间相互碰撞; 另一方面, 当机器 人的轮胎磨损到一定程度时, 容易出现行走失误, 从而与其他机器人发生碰撞。
然而, 现有技术中, 对于如何避免由于机器人轮胎磨损而导致的无法实现机器 人的准确定位以及会出现机器人间相互碰撞的问题, 并没有很好的解决方案。
发明内容
有鉴于此, 本发明提供了机器人轮径补偿方法和装置, 以解决由于机器人行走 过程中存在轮胎摩擦, 导致机器人的行走距离准确度低, 从而无法实现机器人的准 确定位以及机器人之间发生碰撞的问题, 同时当机器人轮胎磨损到一定程度时, 能 够提示更换轮胎, 进一步緩解机器人之间发生碰撞的问题。
为达到上述目的, 第一方面, 本发明实施例提供了一种机器人轮径补偿方法, 所述方法包括: 位于工作场地内第一位置点的机器人接收服务器发送的行驶指令, 所述行驶指 令指示所述机器人行走至第二位置点, 其中, 所述工作场地内设置有多个位置点, 所述行驶指令包括所述第一位置点与所述第二位置点之间的距离和所述第二位置 点相对于所述第一位置点的行驶方向;
所述机器人获取从所述第一位置点行走至所述第二位置点对应的行走偏差, 所 述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的差值;
所述机器人根据所述第一位置点与所述第二位置点之间的距离和所述行走偏 差修正自身的当前轮径。
结合第一方面, 本发明实施例提供了第一方面第一种可能的实施方式, 其中, 所述机器人获取从所述第一位置点行走至所述第二位置点对应的行走偏差, 包括: 所述机器人获取所述机器人与所述第一位置点之间的第一位移偏差, 并按照所 述行驶指令中的所述距离和所述行驶方向行走至所述第二位置点;
当所述机器人行走至所述第二位置点时, 所述机器人获取自身与所述第二位置 点之间的第二位移偏差;
所述机器人根据所述第一位移偏差和所述第二位移偏差计算得到自身从所述 第一位置点行走至所述第二位置点对应的所述行走偏差。
结合第一方面, 本发明实施例提供了第一方面第二种可能的实施方式, 其中, 所述机器人根据所述第一位置点与所述第二位置点之间的距离和所述行走偏差修 正自身的当前轮径, 包括:
所述机器人根据所述第一位置点与所述第二位置点之间的距离和所述行走偏 差计算自身的单位距离行走偏差;
所述机器人在预设的列表内查找得到所述单位距离行走偏差对应的轮径补偿 值;
所述机器人根据查找到的所述轮径补偿值修正自身的当前轮径。
结合第一方面, 本发明实施例提供了第一方面第三种可能的实施方式, 其中, 所述机器人根据所述第一位置点至所述第二位置点之间的距离和所述行走偏差修 正所述机器人的当前轮径, 包括:
所述机器人根据所述第一位置点与所述第二位置点之间的距离以及预存的当 前轮径, 确定自身的第一轮胎转动圈数;
所述机器人根据所述第一位置点与所述第二位置点之间的距离、 所述行走偏 差, 以及修正后的当前轮径, 确定自身的第二轮胎转动圈数;
所述机器人利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等的关系, 计算得到修正后的当前轮径, 并利用所述修正后的当前轮径更新自身的当前轮径。
结合第一方面, 本发明实施例提供了第一方面第四种可能的实施方式, 其中, 所述方法还包括:
所述机器人根据自身与所述第二位置点之间的所述第二位移偏差计算得到行 走至所述第二位置点的所需的轮胎转动圈数;
控制所述机器人根据所述所需的轮胎转动圈数行走至所述第二位置点, 从而修 正所述机器人的最终位置。
结合第一方面, 本发明实施例提供了第一方面第五种可能的实施方式, 其中, 还包括, 根据修正后的当前轮径大小判断所述机器人是否需要更换轮胎, 当判断所 述机器人需要更换轮胎时, 进行轮胎更换预警。
结合第一方面, 本发明实施例提供了第一方面第六种可能的实施方式, 其中, 所述根据修正后的当前轮径大小判断所述机器人是否需要更换轮胎, 包括:
判断所述修正后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定所述 机器人需要更换轮胎;
或者,
判断所述修正后的当前轮径大小与所述机器人的初始轮径的差值是否达到预 设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
第二方面, 本发明实施例提供了一种机器人轮径补偿装置, 所述装置包括: 接收模块, 用于接收服务器发送的行驶指令, 所述行驶指令指示所述机器人由 第一位置点行走至第二位置点, 其中, 所述工作场地内设置有多个位置点, 所述行 驶指令包括所述第一位置点至所述第二位置点之间的距离和所述第二位置点相对 于所述第一位置点的行驶方向;
行走偏差计算模块, 用于获取从所述第一位置点行走至所述第二位置点对应的 行走偏差, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的 差值;
修正模块, 用于根据所述第一位置点与所述第二位置点之间的距离和所述行走 偏差修正所述机器人的当前轮径。
结合第二方面, 本发明实施例提供了第二方面第一种可能的实施方式, 其中, 所述行走偏差计算模块包括:
第一获取单元, 用于获取所述机器人与所述第一位置点之间的第一位移偏差, 并按照所述行驶指令中的所述距离和所述行驶方向行走至所述第二位置点;
第二获取单元, 用于当所述机器人行走至所述第二位置点时, 获取所述机器人 与所述第二位置点之间的第二位移偏差;
行走偏差计算单元, 用于根据所述第一位移偏差和所述第二位移偏差计算得到 所述机器人从所述第一位置点行走至所述第二位置点对应的所述行走偏差。
结合第二方面, 本发明实施例提供了第二方面第二种可能的实施方式, 其中, 所述修正模块包括:
单位距离偏差计算子单元, 用于根据所述第一位置点与所述第二位置点之间的 距离和所述行走偏差计算所述机器人的单位距离行走偏差;
轮径补偿值查找子单元, 用于在预设的列表内查找得到所述单位距离行走偏差 对应的轮径补偿值;
当前轮径修正子单元, 用于根据查找到的所述轮径补偿值修正所述机器人的当 前轮径。
结合第二方面,本发明实施例提供了第二方面的第三种可能的实施方式,其中, 所述修正模块包括:
第一确定子单元, 用于根据所述第一位置点与所述第二位置点之间的距离以及 预存的当前轮径, 确定所述机器人的第一轮胎转动圈数;
第二确定子单元, 用于根据所述第一位置点与所述第二位置点之间的距离、 所 述行走偏差, 以及修正后的当前轮径, 确定所述机器人的第二轮胎转动圈数; 当前轮径更新子单元, 用于利用所述第一轮胎转动圈数与所述第二轮胎转动圈 数相等的关系, 计算得到修正后的当前轮径, 并利用所述修正后的当前轮径更新所 述机器人的当前轮径。
结合第二方面, 本发明实施例提供了第二方面第四种可能的实施方式, 其中, 所述装置还包括:
补偿转动圈数计算模块, 用于根据所述机器人与所述第二位置点之间的所述第 二位移偏差计算得到行走至所述第二位置点的所需的轮胎转动圈数;
控制模块, 用于控制所述机器人根据所述轮胎转动圈数行走至所述第二位置 点, 从而修正所述机器人的最终位置。
结合第二方面, 本发明实施例提供了第一方面第五种可能的实施方式, 其中, 所述装置还包括:
判断模块, 用于根据修正后的当前轮径大小判断所述机器人是否需要更换轮 胎, 当判断所述机器人需要更换轮胎时, 进行轮胎更换预警。
结合第二方面, 本发明实施例提供了第二方面第六种可能的实施方式, 其中, 所述判断模块包括:
第一判断单元, 用于判断所述修正后的当前轮径大小是否达到预设的轮径范 围, 如果是, 确定所述机器人需要更换轮胎;
或者,
第二判断单元, 用于判断所述修正后的当前轮径大小与所述机器人的初始轮径 的差值是否达到预设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
第三方面, 本发明实施例提供了另一种机器人轮径补偿方法, 所述方法包括: 获取机器人在工作场地内从第一位置点行走至第二位置点对应的行走偏差以 及所述第一位置点与所述第二位置点间的距离; 其中, 所述工作场地内设置有多个 位置点, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的差 值;
根据所述第一位置点与所述第二位置点间的距离和所述行走偏差更新所述机 器人的当前轮径。
结合第三方面, 本发明实施例提供了第三方面第一种可能的实施方式, 其中, 所述获取机器人在工作场地内从第一位置点行走至第二位置点对应的行走偏差, 包 括:
接收所述机器人位于第一位置点时上报的与所述第一位置点之间的第一位移 偏差, 以及, 所述机器人位于第二位置点时上报的与所述第二位置点之间的第二位 移偏差;
根据所述第一位移偏差和所述第二位移偏差计算所述机器人从所述第一位置 点行走至所述第二位置点对应的行走偏差。
结合第三方面, 本发明实施例提供了第三方面第二种可能的实施方式, 其中, 所述根据所述第一位置点与所述第二位置点间的距离和所述行走偏差更新所述机 器人的当前轮径, 包括:
根据所述第一位置点与所述第二位置点间的距离和所述行走偏差计算所述机 器人的单位距离行走偏差;
在预设的列表内查找得到所述机器人的单位距离行走偏差对应的轮径补偿值; 根据所述查找得到的轮径补偿值更新所述机器人的当前轮径。
结合第三方面, 本发明实施例提供了第三方面第三种可能的实施方式, 其中, 所述根据所述第一位置点与所述第二位置点间的距离和所述行走偏差更新所述机 器人的当前轮径, 包括:
根据所述第一位置点与所述第二位置点间的距离以及所述机器人的当前轮径, 确定所述机器人的第一轮胎转动圈数;
根据所述第一位置点与所述第二位置点间的距离、 所述行走偏差以及所述机器 人更新后的轮径, 确定所述机器人的第二轮胎转动圈数;
利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等的关系, 计算得到所 述机器人更新后的轮径。
结合第三方面, 本发明实施例提供了第三方面第四种可能的实施方式, 其中, 还包括, 根据更新后的当前轮径大小判断所述机器人是否需要更换轮胎, 当判断所 述机器人需要更换轮胎时, 进行轮胎更换预警。
结合第三方面, 本发明实施例提供了第三方面第五种可能的实施方式, 其中, 所述根据更新后的当前轮径大小判断所述机器人是否需要更换轮胎, 包括:
判断所述更新后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定所述 机器人需要更换轮胎;
或者,
判断所述更新后的当前轮径大小与所述机器人的初始轮径的差值是否达到预 设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
第四方面, 本发明实施例提供了另一种机器人轮径补偿装置, 所述装置包括: 获取模块, 用于获取机器人在工作场地内从第一位置点行走至第二位置点对应 的行走偏差以及所述第一位置点与所述第二位置点间的距离; 其中, 所述工作场地 内设置有多个位置点, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与 实际距离的差值;
轮径更新模块, 用于根据所述第一位置点与所述第二位置点间的距离和所述行 走偏差更新所述机器人的当前轮径。
结合第四方面, 本发明实施例提供了第四方面第一种可能的实施方式, 其中, 所述获取模块包括:
位移偏差接收单元, 用于接收所述机器人位于第一位置点时上报的与所述第一 位置点之间的第一位移偏差, 以及, 所述机器人位于第二位置点时上报的与所述第 二位置点之间的第二位移偏差;
行走偏差计算单元, 用于根据所述第一位移偏差和所述第二位移偏差计算所述 机器人从所述第一位置点行走至所述第二位置点对应的行走偏差。
结合第四方面, 本发明实施例提供了第四方面第二种可能的实施方式, 其中, 所述轮径更新模块包括: 单位距离行走偏差计算单元, 用于根据单位距离行走偏差计算单元, 用于根据 所述第一位置点与所述第二位置点间的距离和所述行走偏差计算所述机器人的单 位距离行走偏差;
轮径补偿值查找单元, 用于在预设的列表内查找得到所述机器人的单位距离行 走偏差对应的轮径补偿值;
当前轮径更新单元, 用于根据所述查找得到的轮径补偿值更新所述机器人的当 前轮径。
结合第四方面, 本发明实施例提供了第四方面第三种可能的实施方式, 其中, 所述轮径更新模块包括:
第一确定单元, 用于根据所述第一位置点与所述第二位置点间的距离以及所述 机器人的当前轮径, 确定所述机器人的第一轮胎转动圈数;
第二确定单元, 用于根据所述第一位置点与所述第二位置点间的距离、 所述行 走偏差, 以及所述机器人更新后的轮径, 确定所述机器人的第二轮胎转动圈数; 轮径计算单元, 用于利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等 的关系, 计算得到所述机器人更新后的轮径。
结合第四方面, 本发明实施例提供了第四方面第四种可能的实施方式, 其中, 所述装置还包括:
判断模块, 用于根据更新后的当前轮径大小判断所述机器人是否需要更换轮 胎, 当判断所述机器人需要更换轮胎时, 进行轮胎更换预警。
结合第四方面, 本发明实施例提供了第四方面第五种可能的实施方式, 其中, 所述判断模块包括:
第一判断单元, 用于判断所述更新后的当前轮径大小是否达到预设的轮径范 围, 如果是, 确定所述机器人需要更换轮胎;
或者,
第二判断单元, 用于判断所述更新后的当前轮径大小与所述机器人的初始轮径 的差值是否达到预设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
本发明实施例中, 一方面, 位于工作场地内第一位置点的机器人接收服务器发 送的行驶指令, 行驶指令指示机器人行走至第二位置点, 其中, 工作场地内设置有 多个位置点, 行驶指令包括第一位置点与第二位置点之间的距离和第二位置点相对 于第一位置点的行驶方向; 机器人获取从第一位置点行走至第二位置点对应的行走 偏差, 行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差值; 机器人 根据第一位置点与第二位置点之间的距离和行走偏差修正机器人的当前轮径; 或者 获取机器人从第一位置点行走至第二位置点对应的行走偏差, 以及第一位置点与第 二位置点间的距离, 然后根据第一位置点与第二位置点间的距离和行走偏差修正机 器人的当前轮径。 另一方面, 获取机器人在工作场地内从第一位置点行走至第二位 置点对应的行走偏差以及第一位置点与第二位置点间的距离; 其中, 工作场地内设 置有多个位置点, 行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差 值; 根据第一位置点与第二位置点间的距离和行走偏差更新机器人的当前轮径。 通 过本实施例中的方法和装置, 当机器人轮胎出现磨损时, 对轮胎进行补偿, 提高了 机器人行驶距离的准确度, 实现机器人的准确定位; 进而当机器人轮胎磨损到一定 程度时, 能够提示更换轮胎, 进一步緩解现有技术中由于机器人轮胎磨损而与其他 机器人发生碰撞的问题。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要使用的 附图作简单地介绍, 应当理解, 以下附图仅示出了本发明的某些实施例, 因此不应 被看作是对范围的限定, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前 提下, 还可以根据这些附图获得其他相关的附图。
图 1示出了本发明实施例 1所提供的一种机器人轮径补偿方法的流程图; 图 2示出了本发明实施例 2所提供的一种机器人轮径补偿装置的结构示意图; 图 3示出了本发明实施例 3所提供的另一种机器人轮径补偿方法的第一种流程 示意图;
图 4示出本发明实施例 3所提供的另一种机器人轮径补偿方法的第二种流程示 意图;
图 5示出本发明实施例 4所提供的另一种机器人轮径补偿装置的第一种结构示 意图;
图 6示出本发明实施例 4所提供的另一种机器人轮径补偿装置的第二种结构示 意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施 例中附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的 实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 通常在此处附图中描述 和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。 因此, 以下对 在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范 围, 而是仅仅表示本发明的选定实施例。 基于本发明的实施例, 本领域技术人员在 没有做出创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护的范 围。
考虑到现有技术中, 对于如何避免由于机器人轮胎磨损而无法实现机器人的准 确定位以及与其他机器人发生碰撞的问题, 并没有很好的解决方案, 本发明提供了 机器人轮径补偿方法和装置, 当机器人出现磨损时, 对轮胎进行补偿, 提高了机器 人行驶距离的准确度, 实现机器人的准确定位; 进而当机器人轮胎磨损到一定程度 时, 能够提示更换轮胎, 从而緩解现有技术中由于机器人轮胎磨损而与其他机器人 发生碰撞的问题。 下面结合实施例进行具体描述。
实施例 1
如图 1所示的本发明实施例所提供的一种机器人轮径补偿方法的流程图, 该方 法的执行主体位于机器人内, 该方法包括步骤 102-106, 具体如下:
102 : 位于工作场地内第一位置点的机器人接收服务器发送的行驶指令, 上述 行驶指令指示上述机器人行走至第二位置点, 其中, 上述工作场地内设置有多个位 置点, 上述行驶指令包括上述第一位置点至上述第二位置点之间的距离和上述第二 位置点相对于上述第一位置点的行驶方向;
104: 机器人获取从第一位置点行走至第二位置点对应的行走偏差, 该行走偏 差为机器人轮胎实际转数对应的理论距离与实际距离的差值;
106: 机器人根据第一位置点与第二位置点之间的距离和行走偏差修正自身的 当前轮径。
上述步骤 102中, 具体的, 服务器向机器人下发由工作场地内第一位置点行驶 至指定位置点第二位置点的行走距离和行驶方向。
上述步骤 104中, 具体地, 机器人获取从所述第一位置点行走至第二位置点对 应的行走偏差, 包括以下过程: (1 ) 机器人获取自身与第一位置点之间的第一位 移偏差, 并按照上述行驶指令中的上述距离和上述行驶方向行走至上述第二位置 点, 其中, 该第一位移偏差是通过如下方式获得的: 当机器人处于第一位置点时, 机器人通过底部的光学识别器采集第一位置点对应的光学识别码。 在采集得到的图 像中, 图像中心表示机器人的位置中心。 机器人在采集得到的图像中识别出光学识 别码的中心, 并确定光学识别码的中心与图像中心之间的距离, 从而确定自身与第 一位置点之间的第一位移偏差; (2) 当上述机器人行走至上述第二位置点时, 上 述机器人获取自身与上述第二位置点之间的第二位移偏差; 其中, 该第二位移偏差 通过与第一位移偏差相同的方式获取; (3) 机器人根据上述第一位移偏差和上述 第二位移偏差计算得到自身从上述第一位置点行走至所述第二位置点对应的行走 偏差。
具体地, 在本发明实施例中, 将机器人工作的场地按照表格形式划分为面积相 等的若干格子, 每个格子作为一个位置点。 在每个格子内设置光学识别码, 该光学 识别码的中心与对应的位置点的中心重合, 该光学识别码可以是二維码。 机器人底 部设置用来识别光学识别码的光学识别器, 该光学识别器可以是摄像头。 过程 (1 ) 中, 当机器人处于第一位置点时, 机器人通过底部的光学识别器采集第一位置点对 应的光学识别码。 在采集得到的图像中, 图像中心表示机器人的位置中心。 机器人 在采集得到的图像中识别出光学识别码的中心, 并确定光学识别码的中心与图像中 心之间的距离, 从而确定自身与第一位置点之间的第一位移偏差, 并将该第一位移 偏差进行存储。 同理, 过程 (2) 中, 当机器人处于第二位置点时, 机器人采用相 同的方式确定自身与第二位置点之间的第二位移偏差, 并将该第二位移偏差进行存 储。 然后, 过程 (3) 中, 机器人根据第一位移偏差、 第二位移偏差和第一位置点 至第二位置点之间的距离计算得到自身从第一位置点行走至第二位置点对应的行 走偏差。
例如, 以前方为正方向, 第一位移偏差为超过第一位置点 10厘米, 第二位移偏 差为超过第二位置点 5厘米, 则能够计算得到, 机器人从第一位置点行走至第二位 置点对应的行走偏差为 -5厘米, 即机器人少移动 5厘米。
其中, 在本发明提供的实施例中, 具体的修正当前轮径的相关计算过程是由机 器人去执行的, 获取第一位移偏差和获取第二位移偏差以及根据第一位移偏差、 第 二位移偏差和第一位置点至第二位置点之间的距离计算得到从第一位置点行走至 第二位置点对应的行走偏差是在机器人侧执行的, 服务器只负责将行驶指令下发至 相应的机器人, 因此, 服务器的运算量较小, 尤其适用于同一服务器控制多个机器 人的工作场景。
上述步骤 106中, 具体包括: (1 ) 上述机器人根据第一位置点与第二位置点之 间的距离和行走偏差计算自身的单位距离行走偏差; ( 2 ) 机器人在预设的列表内 查找得到单位距离行走偏差对应的轮径补偿值; (3) 机器人根据查找到的轮径补 偿值修正自身的当前轮径。
具体地, 以机器人的行走偏差为 5厘米, 第一位置点与第二位置点间的距离为 5 米, 或者 5个位置间距为例, 通过上述过程( 1 )能够计算得到机器人的单位距离行走 偏差为 5厘米比 5米, 即每米偏差 1厘米, 数值表示为 0.01, 或者用每个位置间距偏差 1厘米表示。 上述过程(2 )中, 机器人内预设有单位距离行走偏差与轮径补偿值的对 应列表, 以单位距离行走偏差 0 .01为例, 或者以每个位置间距偏差 1厘米为例, 通 过上述列表能够查找得到轮径补偿值为 2厘米。过程(2 )还可以采用预设值判断的方 式确定轮径补偿值, 例如, 当单位距离行走偏差超过 0 .05时, 轮径补偿值为 5厘米, 当单位距离行走偏差小于或者等于 0 .05时, 轮径补偿值为 2厘米。 上述过程(3 )中, 由于机器人的轮胎随着运动时间的增长而磨损变小, 因此以轮径补偿值 2厘米、 机 器人的当前轮径为 28厘米为例, 能够利用将机器人的当前轮径修正为 26厘米。
在本发明提供的实施例中, 机器人通过查表的方式确定轮径补偿值具有搡作简 单, 服务器运算量少的优点, 尤其适用于同一服务器控制大量机器人工作的情况。
为了能够精确的对机器人的轮径进行补偿, 确定精准的修正后的轮径, 上述步 骤 106中, 机器人根据第一位置点与第二位置点间的距离和行走偏差修正机器人的 当前轮径, 还能够通过以下过程实现: ( 1 )机器人根据第一位置点与第二位置点间 的距离以及预存的当前轮径, 确定自身的第一轮胎转动圈数; (2 )机器人根据第一 位置点与第二位置点间的距离、 行走偏差以及修正后的轮径, 确定自身的第二轮胎 转动圈数; (3 )机器人利用第一轮胎转动圈数与第二轮胎转动圈数相等的关系, 计 算得到修正后的轮径, 并利用上述修正后的轮径更新自身的当前轮径。
具体地, 设 M表示第一位置点与第二位置点间的距离, Y表示机器人的行走偏 差, R0表示机器人的当前轮径 (即预存的当前轮径) , R1表示机器人修正后的轮径
(即磨损后的实际轮径) , pi为圆周率。 能够知道, M为机器人的理论行走距离, M+Y为机器人的实际行走距离。由于机器人行走的原理是根据机器人的理论行走距 离以及机器人的当前轮径, 计算出机器人的轮胎转动圈数, 机器人按照该圈数进行 移动, 因此机器人从第一位置点移动至第二位置点的过程中, 其轮胎的理论转动圈 数与实际转动圈数是相等的, 也就是, (M+Y )/( pi*Rl ) = M/( pi*R0 ), 由于 M、 Y、 pi、 RO都为已知量, 因此能够求得机器人修正后的轮径R1 = (( M+Y )*R0 )/M, 简化 为 Rl =R0+( Y*R0 )/M。
本实施例中, 根据机器人轮胎的理论转动圈数与实际转动圈数相等的原理, 能 够准确计算得到机器人的修正后的轮径, 从而准确修正机器人的轮径。
进一步地, 为了保证机器人每次行走均可以准确地停止到第二位置点处, 进一 步确保机器人定位的准确性, 上述方法还包括:
上述机器人根据自身与上述第二位置点之间的上述第二位移偏差计算得到行 走至上述第二位置点所需的轮胎转动圈数;
上述机器人根据上述所需的轮胎转动圈数行走至上述第二位置点, 从而修正上 述机器人的最终位置。
例如, 当机器人到达第二位置点时, 机器人通过底部的光学识别器采集第二位 置点对应的光学识别码, 确定光学识别码的中心与采集的第二位置点的图像中心之 间的距离, 即自身与第二位置点之间的第二位移偏差, 当第二位移偏差为 X厘米且 在行驶方向上光学识别码的中心位于第二位置点的图像中心的前方时, 说明机器人 还需要行走 X厘米才可能准确定位到第二位置点中心, 此时, 需要计算得到到达第 二位置点中心的轮胎转动圈数, 以使机器人继续行走至上述第二位置点。 在本发明 实施例中,通过采用使机器人继续行走至第二位置点中心,使机器人定位更加准确。
更近一步地, 上述方法还包括, 根据修正后的当前轮径大小判断机器人是否需 要更换轮胎, 具体地包括: (1 ) 判断修正后的当前轮径大小是否达到预设的轮径 范围, 如果是, 确定机器人需要更换轮胎; 或者, (2) 判断修正后的当前轮径大 小与机器人的初始轮径的差值是否达到预设的差值阈值, 如果是, 确定机器人需要 更换轮胎。 例如, 当机器人的轮径磨损到 25厘米, 或者机器人修正后的当前轮径大 小与机器人的初始轮径的差值超过 5厘米时, 确定机器人需要更换轮胎。 本实施例 中, 通过过程( 1 )和(2 )能够简单快速地判断是否需要更换机器人的轮胎, 从而避免 由于机器人轮胎磨损严重而与其他机器人发生碰撞。
其中, 当判断机器人需要更换轮胎时, 进行轮胎更换预警, 可以是通过显示器 显示轮胎更换预警信息, 或者将轮胎更换预警信息发送至工作人员的手机中。
本实施例中提供的方法采用自动对轮径进行补偿的方式, 提高了机器人行驶距 离的准确度, 从而实现机器人的准确定位; 进而, 给出了两种修正自身的当前轮径 的方式, 一种是通过查表的方式确定轮径补偿值具有搡作简单, 服务器运算量少的 优点, 尤其适用于同一服务器控制大量机器人工作的情况, 另一种是根据机器人轮 胎的理论转动圈数与实际转动圈数相等的原理, 能够准确计算得到机器人的更新后 的轮径, 从而准确更新机器人的轮径; 机器人在对自身的轮胎进行修正的基础上, 可以判断自身是否需要更换轮胎, 有效防止因机器人轮胎磨损导致的机器人故障的 情况, 提高整体机器人运行的流畅性, 并且提高机器人运行的安全性, 保证大量机 器人的工作安全。
实施例 2
为了进一步说明上述提到的机器人轮径补偿方法, 本实施例提供了一种机器人 轮径补偿装置, 其中, 该装置能够设置于机器人内, 如图 2所示, 该装置包括: 接收模块 202, 用于接收服务器发送的行驶指令, 行驶指令指示机器人由第一 位置点行走至第二位置点, 其中, 工作场地内设置有多个位置点, 行驶指令包括第 一位置点至第二位置点之间的距离和第二位置点相对于第一位置点的行驶方向; 行走偏差计算模块 204, 用于获取从第一位置点行走至第二位置点对应的行走 偏差, 上述行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差值; 修正模块 206, 用于根据第一位置点与第二位置点之间的距离和上述行走偏差 修正机器人的当前轮径。
进一步地, 上述行走偏差计算模块 204包括:
第一获取模块, 用于获取机器人与第一位置点之间的第一位移偏差, 并按照上 述行驶指令中的上述距离和上述行驶方向行走至第二位置点; 第二获取模块, 用于当机器人行走至第二位置点时, 机器人获取机器人与第二 位置点之间的第二位移偏差;
行走偏差计算单元, 用于根据第一位移偏差和第二位移偏差计算得到机器人从 第一位置点行走至第二位置点对应的上述行走偏差。
进一步地, 上述修正模块 206包括:
单位距离偏差计算子单元, 用于根据第一位置点与第二位置点之间的距离和上 述行走偏差计算上述机器人的单位距离行走偏差;
轮径补偿值查找子单元, 用于在预设的列表内查找得到上述单位距离行走偏差 对应的轮径补偿值;
当前轮径修正子单元, 用于根据查找到的上述轮径补偿值修正上述机器人的当 前轮径。
进一步地, 修正模块 206包括:
第一确定子单元, 用于根据第一位置点与第二位置点之间的距离以及预存的当 前轮径, 确定上述机器人的第一轮胎转动圈数;
第二确定子单元, 用于根据第一位置点与第二位置点之间的距离、 上述行走偏 差, 以及修正后的当前轮径, 确定所述机器人的第二轮胎转动圈数;
当前轮径更新子单元, 用于利用第一轮胎转动圈数与第二轮胎转动圈数相等的 关系, 计算得到修正后的当前轮径, 并利用当前轮径更新上述机器人的当前轮径。
进一步地, 上述装置还包括:
补偿转动圈数计算模块, 用于根据机器人与第二位置点之间的第二位移偏差计 算得到行走至第二位置点的所需的轮胎转动圈数;
控制模块, 用于控制机器人根据所需的轮胎转动圈数行走至第二位置点, 从而 修正所述机器人的最终位置。
进一步地, 上述装置还包括:
判断模块, 用于根据修正后的当前轮径大小判断机器人是否需要更换轮胎, 当 判断机器人需要更换轮胎时, 进行轮胎更换预警。
进一步地, 上述判断模块包括:
第一判断单元, 用于判断修正后的当前轮径大小是否达到预设的轮径范围, 如 果是, 确定机器人需要更换轮胎;
或者,
第二判断单元, 用于判断修正后的当前轮径大小与机器人的初始轮径的差值是 否达到预设的差值阈值, 如果是, 确定机器人需要更换轮胎。
本实施例中通过第一判断单元和第二判断单元能够简单快速地判断是否需要 更换机器人的轮胎, 从而避免由于机器人严重磨损而与其他机器人发生碰撞。
本发明实施例所提供的机器人轮径补偿装置可以为设备上的特定硬件或者安 装于设备上的软件或固件等。 本发明实施例所提供的装置, 其实现原理及产生的技 术效果和前述方法实施例相同, 为简要描述, 装置实施例部分未提及之处, 可参考 前述方法实施例中相应内容。 所属领域的技术人员可以清楚地了解到, 为描述的方 便和简洁, 前述描述的系统、 装置和单元的具体工作过程, 均可以参考上述方法实 施例中的对应过程, 在此不再赘述。 实施例 3
如图 1所示的本发明实施例所提供的另一种机器人轮径补偿方法的第一种流程 示意图, 该方法的执行主体可以是控制机器人工作的后台服务器, 该方法至少包括 以下步骤:
步骤 302, 获取机器人在工作场地内从第一位置点行走至第二位置点对应的行 走偏差以及该第一位置点与该第二位置点间的距离; 其中, 工作场地内设置有多个 位置点, 行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差值; 步骤 304, 根据上述第一位置点与上述第二位置点间的距离和上述行走偏差更 新机器人的当前轮径。
上述步骤 302中, 服务器获取机器人在工作场地内从第一位置点行走至第二位 置点对应的行走偏差, 能够有多种实现方式。 例如, 服务器内预先存储有第一位置 点与第二位置点之间的距离 Sl, 当机器人从第一位置点行走至第二位置点时, 机器 人向服务器上报其实际行走距离 S2,服务器根据 SI和 S2能够计算得到机器人的行走 偏差。 一种优选的实施方式中, 获取机器人在工作场地内从第一位置点行走至第二 位置点对应的行走偏差, 包括以下过程: ( 1 )接收机器人位于第一位置点时上报的 与第一位置点之间的第一位移偏差, 以及, 机器人位于第二位置点时上报的与第二 位置点之间的第二位移偏差; (2 )根据第一位移偏差和第二位移偏差计算机器人从 第一位置点行走至第二位置点对应的行走偏差。
具体地, 本实施例中, 将机器人工作的场地按照表格形式划分为面积相等的若 干格子, 每个格子作为一个位置点。 在每个格子内设置光学识别码, 该光学识别码 的中心与对应的位置点的中心重合, 该光学识别码可以是二維码。 机器人底部设置 用来识别光学识别码的光学识别器, 该光学识别器可以是摄像头。 过程( 1 )中, 当 机器人处于第一位置点时, 机器人通过底部的光学识别器采集第一位置点对应的光 学识别码。 在采集得到的图像中, 图像中心表示机器人的位置中心。 机器人在采集 得到的图像中识别出光学识别码的中心, 并确定光学识别码的中心与图像中心之间 的距离, 从而确定自身与第一位置点之间的第一位移偏差, 并将该第一位移偏差上 报至服务器。 同理, 当机器人处于第二位置点时, 机器人采用相同的方式确定自身 与第二位置点之间的第二位移偏差, 并上报至服务器。 过程(2 )中, 服务器对第一 位移偏差和第二位移偏差进行计算, 确定机器人从第一位置点行走至第二位置点对 应的行走偏差。 例如, 通过上述过程(1 )和过程(2 ), 服务器能够接收机器人上报的 第一位移偏差和第二位移偏差, 并根据第一位移偏差和第二位移偏差准确地计算出 机器人的行走偏差。 服务器的运算量较小, 尤其适用于同一服务器控制多个机器人 的工作场景。
上述步骤 302中, 服务器还获取第一位置点与第二位置点间的距离, 结合前述 提到的位置点、 光学识别码及光学识别器的设置方式, 本实施例中服务器能够通过 以下方式获取第一位置点与第二位置点间的距离: 服务器预先对各个位置点进行编 号, 并预先存储有各个位置点对应的位置信息; 机器人向服务器上报第一位置点的 序号以及第二位置点的序号 (该上报过程可以在向服务器上报第一位移偏差和第二 位移偏差时进行) ; 服务器根据第一位置点的序号确定第一位置点的位置信息, 根 据第二位置点的序号确定第二位置点的位置信息, 根据第一位置点的位置信息和第 二位置点的位置信息确定第一位置点与第二位置点间的距离。 本实施例中, 第一位 置点与第二位置点间的距离能够用物理单位如米表示, 还能够用间隔的位置间距表 示, 如第一位置点与第二位置点间的距离为 5米, 第一位置点为 1号位置点, 第二位 置点为 6号位置点, 二者之间间隔 5个位置间距。 本实施例中, 通过获取位置点序号 的方式获取第一位置点与第二位置点间的距离, 具有服务器运算量小, 实现简单方 便的优点。
上述步骤 304中, 服务器根据第一位置点与第二位置点间的距离和行走偏差更 新机器人的当前轮径, 具体包括: ( 1 )根据第一位置点与第二位置点间的距离和行 走偏差计算机器人的单位距离行走偏差; (2 )在预设的列表内查找得到机器人的单 位距离行走偏差对应的轮径补偿值; (3 )根据查找得到的轮径补偿值更新机器人的 当前轮径。
具体地, 以机器人的行走偏差为 5厘米, 第一位置点与第二位置点间的距离为 5 米, 或者 5个位置间距为例, 通过上述过程( 1 )能够计算得到机器人的单位距离行走 偏差为 5厘米比 5米, 即每米偏差 1厘米, 数值表示为 0.01, 或者用每个位置间距偏差 1厘米表示。 上述过程(2 )中, 服务器内预设有单位距离行走偏差与轮径补偿值的对 应列表, 以单位距离行走偏差 0 .01为例, 或者以每个位置间距偏差 1厘米为例, 通 过上述列表能够查找得到轮径补偿值为 2厘米。过程( 2 )还可以采用预设值判断的方 式确定轮径补偿值, 例如, 当单位距离行走偏差超过 0 .05时, 轮径补偿值为 5厘米, 当单位距离行走偏差小于或者等于 0 .05时, 轮径补偿值为 2厘米。 上述过程(3 )中, 由于机器人的轮胎随着运动时间的增长而磨损变小, 因此以轮径补偿值 2厘米、 机 器人的当前轮径为 28厘米为例, 能够利用将机器人的当前轮径更新为 26厘米。
本实施例中, 通过查表的方式确定轮径补偿值具有搡作简单, 服务器运算量少 的优点, 尤其适用于同一服务器控制大量机器人工作的情况。
为了能够精确的对机器人的轮径进行补偿, 确定精准的更新后的轮径, 上述步 骤 304中, 服务器根据第一位置点与第二位置点间的距离和行走偏差更新机器人的 当前轮径, 还能够通过以下过程实现: ( 1 )根据第一位置点与第二位置点间的距离 以及机器人的当前轮径, 确定机器人的第一轮胎转动圈数; (2 )根据第一位置点与 第二位置点间的距离、 行走偏差, 以及机器人更新后的轮径, 确定机器人的第二轮 胎转动圈数; (3 )利用第一轮胎转动圈数与第二轮胎转动圈数相等的关系, 计算得 到机器人更新后的轮径。
具体地, 设 M表示第一位置点与第二位置点间的距离, Y表示机器人的行走偏 差, R0表示机器人的当前轮径 (即预存的当前轮径) , R1表示机器人更新后的轮径
(即磨损后的实际轮径) , pi为圆周率。 能够知道, M为机器人的理论行走距离, M+Y为机器人的实际行走距离。由于服务器控制机器人行走的原理是根据机器人的 理论行走距离以及机器人的当前轮径, 计算出机器人的轮胎转动圈数, 控制机器人 按照该圈数进行移动, 因此机器人从第一位置点移动至第二位置点的过程中, 其轮 胎的理论转动圈数与实际转动圈数是相等的, 也就是, (M+Y )/( pi*Rl )=
M/( pi*R0 ), 由于 M、 Y、 pi、 R0都为已知量, 因此能够求得机器人更新后的轮径 R1 =(( M+Y )*R0 )/M, 简化为 Rl =R0+( Y*R0 )/M。
本实施例中, 根据机器人轮胎的理论转动圈数与实际转动圈数相等的原理, 能 够准确计算得到机器人的更新后的轮径, 从而准确更新机器人的轮径。
更近一步地, 上述方法还包括, 步骤 306, 根据更新后的当前轮径大小判断机 器人是否需要更换轮胎, 当判断机器人需要更换轮胎时, 进行轮胎更换预警。其中, 根据更新后的当前轮径大小判断机器人是否需要更换轮胎, 具体地包括: ( 1 )判断 更新后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定机器人需要更换轮 胎; 或者, (2 )判断更新后的当前轮径大小与机器人的初始轮径的差值是否达到预 设的差值阈值, 如果是, 确定机器人需要更换轮胎。 例如, 当机器人的轮径磨损到 25厘米, 或者机器人更新后的当前轮径大小与机器人的初始轮径的差值超过 5厘米 时, 确定机器人需要更换轮胎。 本实施例中, 通过过程( 1 )和(2 )能够简单快速地判 断是否需要更换机器人的轮胎, 从而避免由于机器人轮胎磨损严重而与其他机器人 发生碰撞。
其中, 当判断机器人需要更换轮胎时, 进行轮胎更换预警, 可以是通过显示器 显示轮胎更换预警信息, 或者将轮胎更换预警信息发送至工作人员的手机中。
本实施例中提供的方法能够应用在由一个服务器控制大量机器人的工作场景 中,服务器采用相同的方式控制每个机器人的工作,对每个机器人的轮径进行更新, 实现机器人的准确定位; 进而, 给出了两种更新自身的当前轮径的方式, 一种是通 过查表的方式确定轮径补偿值具有搡作简单, 服务器运算量少的优点, 尤其适用于 同一服务器控制大量机器人工作的情况, 另一种是根据机器人轮胎的理论转动圈数 与实际转动圈数相等的原理, 能够准确计算得到机器人的更新后的轮径, 从而准确 更新机器人的轮径; 服务器在控制对轮胎进行更新的基础上, 可以判断机器人是否 需要更换轮胎。 在对机器人的轮径进行更新的基础上, 通过本实施例中的方法可有 效防止因机器人轮胎磨损导致的机器人故障的情况, 提高整体机器人运行的流畅 性, 并且提高机器人运行的安全性, 保证大量机器人的工作安全。
参考如图 4所示的本发明实施例所提供的另一种机器人轮径补偿方法的另一种 流程示意图, 该方法包括:
步骤 311, 机器人位于第一位置点时, 向服务器上报自身与第一位置点间的第 一位移偏差, 并上报第一位置点的序号;
步骤 312, 机器人位于第二位置点时, 向服务器上报自身与第二位置点间的第 二位移偏差, 并上报第二位置点的序号;
步骤 313, 服务器接收机器人上报的第一位移偏差和第二位移偏差, 以及第一 位置点的序号和第二位置点的序号;
步骤 314, 服务器根据第一位移偏差和第二位移偏差计算出机器人的行走偏差, 根据第一位置点的序号和第二位置点的序号以及预先存储的各个位置点的位置信 息, 计算出第一位置点与第二位置点间的距离;
步骤 315, 服务器根据第一位置点与第二位置点间的距离和上述行走偏差更新 机器人的当前轮径, 具体更新方法可以是通过前述提到的查表的方式更新, 也可以 是通过前述提到的计算的方式更新;
步骤 316, 服务器根据更新后的当前轮径大小判断机器人是否需要更换轮胎, 如果是, 则执行步骤 317, 否则, 返回步骤 311 ;
步骤 317, 服务器通过显示屏显示轮胎更换预警信息。 通过如图 4所示的方法, 能够有效防止因机器人轮胎磨损导致的机器人行驶距 离的准确度低、 无法准确定位甚至出现故障的情况, 提高整体机器人运行的流畅性 及准确性, 并且提高机器人运行的安全性, 保证大量机器人的工作安全。
实施例 4
为了进一步说明实施例 3中提到的另一种机器人轮径补偿方法, 本发明实施例 还提供了另一种机器人轮径补偿装置, 用于执行上述另一种机器人轮径补偿方法。 本实施例中的另一种机器人轮径补偿装置能够设置于控制机器人工作的服务器内。
如图 5所示, 本实施例中的另一种机器人轮径补偿装置, 包括:
获取模块 41, 用于获取机器人在工作场地内从第一位置点行走至第二位置点对 应的行走偏差以及第一位置点与第二位置点间的距离; 其中, 工作场地内设置有多 个位置点, 行走偏差为机器人轮胎实际转数对应的理论距离与实际距离的差值; 轮径更新模块 42, 用于根据第一位置点与第二位置点间的距离和行走偏差更新 机器人的当前轮径。
进一步地, 如图 6所示, 本实施例中, 获取模块 41包括: 位移偏差接收单元 411, 用于接收机器人位于第一位置点时上报的与第一位置点之间的第一位移偏差, 以 及, 机器人位于第二位置点时上报的与第二位置点之间的第二位移偏差; 行走偏差 计算单元 412, 用于根据第一位移偏差和第二位移偏差计算机器人从第一位置点行 走至第二位置点对应的行走偏差。 本实施例中, 通过上述位移偏差接收单元 411和 行走偏差计算单元 412, 服务器能够接收机器人上报的第一位移偏差和第二位移偏 差, 并根据第一位移偏差和第二位移偏差准确地计算出机器人的行走偏差。 服务器 的运算量较小, 尤其适用于同一服务器控制多个机器人的工作场景。
进一步地, 如图 6所示, 本实施例中, 轮径更新模块 42包括: 单位距离行走偏 差计算单元 421, 用于根据第一位置点与第二位置点间的距离和行走偏差计算机器 人的单位距离行走偏差; 轮径补偿值查找单元 422, 用于在预设的列表内查找得到 机器人的单位距离行走偏差对应的轮径补偿值; 当前轮径更新单元 423, 用于根据 查找得到的轮径补偿值更新机器人的当前轮径。 本实施例中, 通过单位距离行走偏 差计算单元 421、 轮径补偿值查找单元 422和当前轮径更新单元 423, 通过查表的方 式确定轮径补偿值具有搡作简单, 服务器运算量少的优点, 尤其适用于同一服务器 控制大量机器人工作的情况。
进一步地, 如图 6所示, 本实施例中, 轮径更新模块 42包括: 第一确定单元 424, 用于根据第一位置点与第二位置点间的距离以及机器人的当前轮径, 确定机器人的 第一轮胎转动圈数; 第二确定单元 425, 用于根据第一位置点与第二位置点间的距 离、 行走偏差, 以及机器人更新后的轮径, 确定机器人的第二轮胎转动圈数; 轮径 计算单元 426, 用于利用第一轮胎转动圈数与第二轮胎转动圈数相等的关系, 计算 得到机器人更新后的轮径。 本实施例中, 通过第一确定单元 424、 第二确定单元 425 和轮径计算单元 426, 根据机器人轮胎的理论转动圈数与实际转动圈数相等的原理, 能够准确计算得到机器人的更新后的轮径, 从而准确更新机器人的轮径。
进一步地, 如图 5所示, 上述装置还包括:
判断模块 43, 用于根据更新后的当前轮径大小判断机器人是否需要更换轮胎, 当判断机器人需要更换轮胎时, 进行轮胎更换预警。 进一步地, 如图 6所述, 上述判断模块 43包括:
第一判断单元 431, 用于判断更新后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定机器人需要更换轮胎;
或者,
第二判断单元 432, 用于判断更新后的当前轮径大小与机器人的初始轮径的差 值是否达到预设的差值阈值, 如果是, 确定机器人需要更换轮胎。
本实施例中通过第一判断单元 431和第二判断单元 432能够简单快速地判断是 否需要更换机器人的轮胎, 从而避免由于机器人严重磨损而与其他机器人发生碰 撞。
综上, 本实施例中提供的装置能够应用在由一个服务器控制大量机器人的工作 场景中, 服务器采用相同的方式控制每个机器人的工作, 对每个机器人的轮径进行 更新, 实现机器人的准确定位; 进而, 给出了两种更新自身的当前轮径的方式, 一 种是通过查表的方式确定轮径补偿值具有搡作简单, 服务器运算量少的优点, 尤其 适用于同一服务器控制大量机器人工作的情况, 另一种是根据机器人轮胎的理论转 动圈数与实际转动圈数相等的原理, 能够准确计算得到机器人的更新后的轮径, 从 而准确更新机器人的轮径; 服务器在控制对轮径进行更新的基础上, 可以判断机器 人是否需要更换轮胎。 通过本实施例中的装置可有效防止因机器人轮胎磨损导致的 机器人故障的情况,提高整体机器人运行的流畅性,并且提高机器人运行的安全性, 保证大量机器人的工作安全。
本发明实施例所提供的装置可以为设备上的特定硬件或者安装于设备上的软 件或固件等。 本发明实施例所提供的装置, 其实现原理及产生的技术效果和前述方 法实施例相同, 为简要描述, 装置实施例部分未提及之处, 可参考前述方法实施例 中相应内容。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 前述 描述的系统、 装置和单元的具体工作过程, 均可以参考上述方法实施例中的对应过 程, 在此不再赘述。
在本发明所提供的上述所有实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单 元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 又例如, 多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不 执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过 一些通信接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形 式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分 布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本 实施例方案的目的。
另外, 在本发明提供的实施例中的各功能单元可以集成在一个处理单元中, 也 可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可 以存储在一个计算机可读取存储介 ^中。 基于这样的理解, 本发明的技术方案本^ 上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形 式体现出来, 该计算机软件产品存储在一个存储介^中, 包括若干指令用以使得一 台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实 施例所述方法的全部或部分步骤。 而前述的存储介^包括: U盘、 移动硬盘、 只读 存储器 (ROM, Read-Only Memory) 、 随机存取存储器 (RAM, Random Access Memory) 、 磁碟或者光盘等各种可以存储程序代码的介^。
应注意到: 相似的标号和字母在下面的附图中表示类似项, 因此, 一旦某一项 在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外, 术语 "第一"、 "第二" 、 "第三 " 等仅用于区分描述, 而不能理解为指示或暗示 相对重要性。
最后应说明的是: 以上所述实施例, 仅为本发明的具体实施方式, 用以说明本 发明的技术方案, 而非对其限制, 本发明的保护范围并不局限于此, 尽管参照前述 实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 任何熟悉本 技术领域的技术人员在本发明揭露的技术范围内, 依然可以对前述实施例所记载的 技术方案进行修改或可轻易想到变化, 或者对其中部分技术特征进行等同替换; 而 这些修改、 变化或者替换, 并不使相应技术方案的本^脱离本发明实施例技术方案 的精神和范围。 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以 所述权利要求的保护范围为准。

Claims

权利要求
1. 一种机器人轮径补偿方法, 其特征在于, 所述方法包括:
位于工作场地内第一位置点的机器人接收服务器发送的行驶指令, 所述行驶指 令指示所述机器人行走至第二位置点, 其中, 所述工作场地内设置有多个位置点, 所述行驶指令包括所述第一位置点与所述第二位置点之间的距离和所述第二位置 点相对于所述第一位置点的行驶方向;
所述机器人获取从所述第一位置点行走至所述第二位置点对应的行走偏差, 所 述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的差值;
所述机器人根据所述第一位置点与所述第二位置点之间的距离和所述行走偏 差修正自身的当前轮径。
2. 根据权利要求 1所述的方法, 其特征在于, 所述机器人获取从所述第一位置 点行走至所述第二位置点对应的行走偏差, 包括:
所述机器人获取所述机器人与所述第一位置点之间的第一位移偏差, 并按照所 述行驶指令中的所述距离和所述行驶方向行走至所述第二位置点;
当所述机器人行走至所述第二位置点时, 所述机器人获取自身与所述第二位置 点之间的第二位移偏差;
所述机器人根据所述第一位移偏差和所述第二位移偏差计算得到自身从所述 第一位置点行走至所述第二位置点对应的所述行走偏差。
3. 根据权利要求 2所述的方法, 其特征在于, 所述机器人根据所述第一位置点 与所述第二位置点之间的距离和所述行走偏差修正自身的当前轮径, 包括:
所述机器人根据所述第一位置点与所述第二位置点之间的距离和所述行走偏 差计算自身的单位距离行走偏差;
所述机器人在预设的列表内查找得到所述单位距离行走偏差对应的轮径补偿 值;
所述机器人根据查找到的所述轮径补偿值修正自身的当前轮径。
4. 根据权利要求 2所述的机器人轮径补偿的方法, 其特征在于, 所述机器人根 据所述第一位置点至所述第二位置点之间的距离和所述行走偏差修正所述机器人 的当前轮径, 包括:
所述机器人根据所述第一位置点与所述第二位置点之间的距离以及预存的当 前轮径, 确定自身的第一轮胎转动圈数;
所述机器人根据所述第一位置点与所述第二位置点之间的距离、 所述行走偏 差, 以及修正后的当前轮径, 确定自身的第二轮胎转动圈数;
所述机器人利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等的关系, 计算得到修正后的当前轮径, 并利用所述修正后的当前轮径更新自身的当前轮径。
5. 根据权利要求 1-4中任一项所述的机器人轮径补偿的方法, 其特征在于, 所 述方法还包括:
所述机器人根据自身与所述第二位置点之间的所述第二位移偏差计算得到行 走至所述第二位置点的所需的轮胎转动圈数; 控制所述机器人根据所述所需的轮胎转动圈数行走至所述第二位置点, 从而修 正所述机器人的最终位置。
6. 根据权利要求 5所述的方法, 其特征在于, 还包括, 根据修正后的当前轮径 大小判断所述机器人是否需要更换轮胎, 当判断所述机器人需要更换轮胎时, 进行 轮胎更换预警。
7. 根据权利要求 6所述的方法, 其特征在于, 所述根据修正后的当前轮径大小 判断所述机器人是否需要更换轮胎, 包括:
判断所述修正后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定所述 机器人需要更换轮胎;
或者,
判断所述修正后的当前轮径大小与所述机器人的初始轮径的差值是否达到预 设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
8. 一种机器人轮径补偿装置, 其特征在于, 所述装置包括:
接收模块, 用于接收服务器发送的行驶指令, 所述行驶指令指示所述机器人由 第一位置点行走至第二位置点, 其中, 所述工作场地内设置有多个位置点, 所述行 驶指令包括所述第一位置点至所述第二位置点之间的距离和所述第二位置点相对 于所述第一位置点的行驶方向;
行走偏差计算模块, 用于获取从所述第一位置点行走至所述第二位置点对应的 行走偏差, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的 差值;
修正模块, 用于根据所述第一位置点与所述第二位置点之间的距离和所述行走 偏差修正所述机器人的当前轮径。
9. 根据权利要求 8所述的装置, 其特征在于, 所述行走偏差计算模块包括: 第一获取单元, 用于获取所述机器人与所述第一位置点之间的第一位移偏差, 并按照所述行驶指令中的所述距离和所述行驶方向行走至所述第二位置点;
第二获取单元, 用于当所述机器人行走至所述第二位置点时, 获取所述机器人 与所述第二位置点之间的第二位移偏差;
行走偏差计算单元, 用于根据所述第一位移偏差和所述第二位移偏差计算得到 所述机器人从所述第一位置点行走至所述第二位置点对应的所述行走偏差。
10. 根据权利要求 9所述的装置, 其特征在于, 所述修正模块包括:
单位距离偏差计算子单元, 用于根据所述第一位置点与所述第二位置点之间的 距离和所述行走偏差计算所述机器人的单位距离行走偏差;
轮径补偿值查找子单元, 用于在预设的列表内查找得到所述单位距离行走偏差 对应的轮径补偿值;
当前轮径修正子单元, 用于根据查找到的所述轮径补偿值修正所述机器人的当 前轮径。
11. 根据权利要求 9所述的装置, 其特征在于, 所述修正模块包括:
第一确定子单元, 用于根据所述第一位置点与所述第二位置点之间的距离以及 预存的当前轮径, 确定所述机器人的第一轮胎转动圈数;
第二确定子单元, 用于根据所述第一位置点与所述第二位置点之间的距离、 所 述行走偏差, 以及修正后的当前轮径, 确定所述机器人的第二轮胎转动圈数; 当前轮径更新子单元, 用于利用所述第一轮胎转动圈数与所述第二轮胎转动圈 数相等的关系, 计算得到修正后的当前轮径, 并利用所述修正后的当前轮径更新所 述机器人的当前轮径。
12. 根据权利要求 8-11中任一项所述的装置, 其特征在于, 所述装置还包括: 补偿转动圈数计算模块, 用于根据所述机器人与所述第二位置点之间的所述第 二位移偏差计算得到行走至所述第二位置点的所需的轮胎转动圈数;
控制模块, 用于控制所述机器人根据所述轮胎转动圈数行走至所述第二位置 点, 从而修正所述机器人的最终位置。
13. 根据权利要求 12所述的装置, 其特征在于, 所述装置还包括:
判断模块, 用于根据修正后的当前轮径大小判断所述机器人是否需要更换轮 胎, 当判断所述机器人需要更换轮胎时, 进行轮胎更换预警。
14. 根据权利要求 13所述的装置, 其特征在于, 所述判断模块包括:
第一判断单元, 用于判断所述修正后的当前轮径大小是否达到预设的轮径范 围, 如果是, 确定所述机器人需要更换轮胎;
或者,
第二判断单元, 用于判断所述修正后的当前轮径大小与所述机器人的初始轮径 的差值是否达到预设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
15. 一种机器人轮径补偿方法, 其特征在于, 所述方法包括:
获取机器人在工作场地内从第一位置点行走至第二位置点对应的行走偏差以 及所述第一位置点与所述第二位置点间的距离; 其中, 所述工作场地内设置有多个 位置点, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与实际距离的差 值;
根据所述第一位置点与所述第二位置点间的距离和所述行走偏差更新所述机 器人的当前轮径。
16. 根据权利要求 15所述的方法, 其特征在于, 所述获取机器人在工作场地内 从第一位置点行走至第二位置点对应的行走偏差, 包括:
接收所述机器人位于第一位置点时上报的与所述第一位置点之间的第一位移 偏差, 以及, 所述机器人位于第二位置点时上报的与所述第二位置点之间的第二位 移偏差;
根据所述第一位移偏差和所述第二位移偏差计算所述机器人从所述第一位置 点行走至所述第二位置点对应的行走偏差。
17. 根据权利要求 16所述的方法, 其特征在于, 所述根据所述第一位置点与所 述第二位置点间的距离和所述行走偏差更新所述机器人的当前轮径, 包括:
根据所述第一位置点与所述第二位置点间的距离和所述行走偏差计算所述机 器人的单位距离行走偏差;
在预设的列表内查找得到所述机器人的单位距离行走偏差对应的轮径补偿值; 根据所述查找得到的轮径补偿值更新所述机器人的当前轮径。
18. 根据权利要求 16所述的方法, 其特征在于, 所述根据所述第一位置点与所 述第二位置点间的距离和所述行走偏差更新所述机器人的当前轮径, 包括: 根据所述第一位置点与所述第二位置点间的距离以及所述机器人的当前轮径, 确定所述机器人的第一轮胎转动圈数;
根据所述第一位置点与所述第二位置点间的距离、 所述行走偏差以及所述机器 人更新后的轮径, 确定所述机器人的第二轮胎转动圈数;
利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等的关系, 计算得到所 述机器人更新后的轮径。
19. 根据权利要求 15至 18中任一项所述的方法, 其特征在于, 还包括, 根据更 新后的当前轮径大小判断所述机器人是否需要更换轮胎, 当判断所述机器人需要更 换轮胎时, 进行轮胎更换预警。
20. 根据权利要求 19所述的方法, 其特征在于, 所述根据更新后的当前轮径大 小判断所述机器人是否需要更换轮胎, 包括:
判断所述更新后的当前轮径大小是否达到预设的轮径范围, 如果是, 确定所述 机器人需要更换轮胎;
或者,
判断所述更新后的当前轮径大小与所述机器人的初始轮径的差值是否达到预 设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
21. 一种机器人轮径补偿装置, 其特征在于, 所述装置包括:
获取模块, 用于获取机器人在工作场地内从第一位置点行走至第二位置点对应 的行走偏差以及所述第一位置点与所述第二位置点间的距离; 其中, 所述工作场地 内设置有多个位置点, 所述行走偏差为所述机器人轮胎实际转数对应的理论距离与 实际距离的差值;
轮径更新模块, 用于根据所述第一位置点与所述第二位置点间的距离和所述行 走偏差更新所述机器人的当前轮径。
22. 根据权利要求 21所述的装置, 其特征在于, 所述获取模块包括:
位移偏差接收单元, 用于接收所述机器人位于第一位置点时上报的与所述第一 位置点之间的第一位移偏差, 以及, 所述机器人位于第二位置点时上报的与所述第 二位置点之间的第二位移偏差;
行走偏差计算单元, 用于根据所述第一位移偏差和所述第二位移偏差计算所述 机器人从所述第一位置点行走至所述第二位置点对应的行走偏差。
23. 根据权利要求 22所述的装置, 其特征在于, 所述轮径更新模块包括: 单位距离行走偏差计算单元, 用于根据单位距离行走偏差计算单元, 用于根据 所述第一位置点与所述第二位置点间的距离和所述行走偏差计算所述机器人的单 位距离行走偏差;
轮径补偿值查找单元, 用于在预设的列表内查找得到所述机器人的单位距离行 走偏差对应的轮径补偿值;
当前轮径更新单元, 用于根据所述查找得到的轮径补偿值更新所述机器人的当 前轮径。
24. 根据权利要求 22所述的装置, 其特征在于, 所述轮径更新模块包括: 第一确定单元, 用于根据所述第一位置点与所述第二位置点间的距离以及所述 机器人的当前轮径, 确定所述机器人的第一轮胎转动圈数; 第二确定单元, 用于根据所述第一位置点与所述第二位置点间的距离、 所述行 走偏差, 以及所述机器人更新后的轮径, 确定所述机器人的第二轮胎转动圈数; 轮径计算单元, 用于利用所述第一轮胎转动圈数与所述第二轮胎转动圈数相等 的关系, 计算得到所述机器人更新后的轮径。
25. 根据权利要求 21至 24中任一项所述的装置, 其特征在于, 所述装置还包括: 判断模块, 用于根据更新后的当前轮径大小判断所述机器人是否需要更换轮 胎, 当判断所述机器人需要更换轮胎时, 进行轮胎更换预警。
26. 根据权利要求 25所述的装置, 其特征在于, 所述判断模块包括:
第一判断单元, 用于判断所述更新后的当前轮径大小是否达到预设的轮径范 围, 如果是, 确定所述机器人需要更换轮胎;
或者,
第二判断单元, 用于判断所述更新后的当前轮径大小与所述机器人的初始轮径 的差值是否达到预设的差值阈值, 如果是, 确定所述机器人需要更换轮胎。
PCT/CN2016/093113 2016-01-04 2016-08-03 机器人轮径补偿方法和装置 WO2017118000A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16883133.7A EP3401064B1 (en) 2016-01-04 2016-08-03 Wheel diameter compensation method and device for robot
JP2018553277A JP6671506B2 (ja) 2016-01-04 2016-08-03 ロボットホイール径補完方法及び装置
US15/326,624 US10416674B2 (en) 2016-01-04 2016-08-03 Wheel diameter compensation method and apparatus for robot
KR1020187020565A KR102136016B1 (ko) 2016-01-04 2016-08-03 로봇 휠 직경 보완 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610006147.0A CN105437261B (zh) 2016-01-04 2016-01-04 机器人轮胎磨损预警方法及装置
CN201610008143.6A CN105573322B (zh) 2016-01-04 2016-01-04 一种机器人轮径补偿的方法及装置
CN201610008143.6 2016-01-04
CN201610006147.0 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017118000A1 true WO2017118000A1 (zh) 2017-07-13

Family

ID=59273531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093113 WO2017118000A1 (zh) 2016-01-04 2016-08-03 机器人轮径补偿方法和装置

Country Status (5)

Country Link
US (1) US10416674B2 (zh)
EP (1) EP3401064B1 (zh)
JP (1) JP6671506B2 (zh)
KR (1) KR102136016B1 (zh)
WO (1) WO2017118000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334075A (zh) * 2018-01-08 2018-07-27 浙江立石机器人技术有限公司 机器人轮胎绝对误差标定方法、装置及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11720122B1 (en) * 2022-10-27 2023-08-08 Tompkins Robotics, Inc. Robotic vehicle navigaton system and method
CN116383973B (zh) * 2023-06-05 2023-09-01 江铃汽车股份有限公司 一种基于catia的轻卡车轮单侧跳动校核方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535306A (en) * 1993-01-28 1996-07-09 Applied Materials Inc. Self-calibration system for robot mechanisms
EP0740982A2 (en) * 1995-05-03 1996-11-06 Faro Technologies Inc. Method of generating an error map for calibration of a robot or multi-axis machining center
WO2003101677A1 (fr) * 2002-05-30 2003-12-11 Rorze Corporation Procede d'apprentissage de position de reference automatique, procede de positionnement automatique, procede de port automatique d'objet en forme de disque, dispositif d'apprentissage de position de reference automatique, dispositif de positionnement automatique, dispositif de port automatique d'objet en forme de disque ass
CN102269995A (zh) * 2011-06-22 2011-12-07 重庆大学 轮式移动机器人的变结构控制方法
CN103487047A (zh) * 2013-08-06 2014-01-01 重庆邮电大学 一种基于改进粒子滤波的移动机器人定位方法
JP5428639B2 (ja) * 2009-08-19 2014-02-26 株式会社デンソーウェーブ ロボットの制御装置及びロボットのティーチング方法
CN204844150U (zh) * 2015-07-17 2015-12-09 徐州工业职业技术学院 一种自动精确定位移动机器人
CN105437261A (zh) * 2016-01-04 2016-03-30 杭州亚美利嘉科技有限公司 机器人轮胎磨损预警方法及装置
CN105573322A (zh) * 2016-01-04 2016-05-11 杭州亚美利嘉科技有限公司 一种机器人轮径补偿的方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2934770B2 (ja) 1989-10-24 1999-08-16 綜合警備保障株式会社 移動ロボットの車輪径計測方法及びその装置
US7283897B2 (en) * 2002-05-31 2007-10-16 Quantum Engineering, Inc. Method and system for compensating for wheel wear on a train
US6701228B2 (en) * 2002-05-31 2004-03-02 Quantum Engineering, Inc. Method and system for compensating for wheel wear on a train
US6970774B2 (en) * 2002-05-31 2005-11-29 Quantum Engineering, Inc. Method and system for compensating for wheel wear on a train
JP3923873B2 (ja) * 2002-09-06 2007-06-06 住友ゴム工業株式会社 タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
JP2004203214A (ja) * 2002-12-25 2004-07-22 Sumitomo Rubber Ind Ltd タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム
FI115161B (fi) * 2003-03-25 2005-03-15 Sandvik Tamrock Oy Järjestely kaivosajoneuvon paikannukseen
WO2005092632A1 (en) * 2004-03-27 2005-10-06 Microrobot Co., Ltd. Navigation system for position self control robot and floor materials for providing absolute coordinates used thereof
CN1925988A (zh) * 2004-03-27 2007-03-07 微型机器人株式会社 用于位置自控制机器人的导航系统以及用于提供该导航系统使用的绝对坐标的地板材料
KR101050512B1 (ko) * 2004-06-21 2011-07-21 이정철 이동로봇의 파라미터 보정방법
JP2006162384A (ja) * 2004-12-06 2006-06-22 Hitachi Ltd タイヤ磨耗警告装置
KR100839731B1 (ko) * 2005-01-19 2008-06-19 호야 가부시키가이샤 몰드 프레스 성형 몰드 및 광학소자의 제조방법
JP2007156576A (ja) * 2005-11-30 2007-06-21 Mitsubishi Heavy Ind Ltd 走行台車のオドメトリ(車輪距離計)パラメータ調整方法及び装置
JP2008033760A (ja) * 2006-07-31 2008-02-14 Secom Co Ltd 移動ロボット
JP4709804B2 (ja) * 2007-06-01 2011-06-29 本田技研工業株式会社 車輪径のばらつき検出装置
DE102007058193A1 (de) * 2007-12-04 2009-06-10 Continental Teves Ag & Co. Ohg Verfahren zur Kalibrierung eines Raddrehzahlerfassungssystems
JP2011118585A (ja) * 2009-12-02 2011-06-16 Nippon Sharyo Seizo Kaisha Ltd 自動搬送車
KR101222298B1 (ko) * 2010-09-08 2013-01-15 고려대학교 산학협력단 2-륜 이동 로봇의 오도메트리 오차 보정 방법
DE102011115668A1 (de) * 2011-09-28 2013-03-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Ermitteln einer Geschwindigkeit eines Fahrzeugs und Fahrzeug
US9170581B2 (en) * 2013-09-30 2015-10-27 Crown Equipment Limited Industrial vehicles with overhead light based localization
CN103707903B (zh) * 2013-12-05 2016-08-17 北京交控科技股份有限公司 一种列车自动轮径校正方法
US10101454B2 (en) * 2014-01-15 2018-10-16 University of Pittsburgh—of the Commonwealth System of Higher Education Pathway measurement devices, systems and methods
CN104181926B (zh) * 2014-09-17 2017-06-13 上海畔慧信息技术有限公司 机器人的导航控制方法
US9500565B2 (en) * 2015-03-24 2016-11-22 Ford Global Technologies, Llc Vehicle and method of using a spare tire
BR112017025109A2 (pt) * 2015-05-26 2018-03-20 Crown Equipment Corporation veículo de manuseio de materiais, e, método para calibrar odometria de um veículo de manuseio de materiais

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535306A (en) * 1993-01-28 1996-07-09 Applied Materials Inc. Self-calibration system for robot mechanisms
EP0740982A2 (en) * 1995-05-03 1996-11-06 Faro Technologies Inc. Method of generating an error map for calibration of a robot or multi-axis machining center
WO2003101677A1 (fr) * 2002-05-30 2003-12-11 Rorze Corporation Procede d'apprentissage de position de reference automatique, procede de positionnement automatique, procede de port automatique d'objet en forme de disque, dispositif d'apprentissage de position de reference automatique, dispositif de positionnement automatique, dispositif de port automatique d'objet en forme de disque ass
JP5428639B2 (ja) * 2009-08-19 2014-02-26 株式会社デンソーウェーブ ロボットの制御装置及びロボットのティーチング方法
CN102269995A (zh) * 2011-06-22 2011-12-07 重庆大学 轮式移动机器人的变结构控制方法
CN103487047A (zh) * 2013-08-06 2014-01-01 重庆邮电大学 一种基于改进粒子滤波的移动机器人定位方法
CN204844150U (zh) * 2015-07-17 2015-12-09 徐州工业职业技术学院 一种自动精确定位移动机器人
CN105437261A (zh) * 2016-01-04 2016-03-30 杭州亚美利嘉科技有限公司 机器人轮胎磨损预警方法及装置
CN105573322A (zh) * 2016-01-04 2016-05-11 杭州亚美利嘉科技有限公司 一种机器人轮径补偿的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3401064A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334075A (zh) * 2018-01-08 2018-07-27 浙江立石机器人技术有限公司 机器人轮胎绝对误差标定方法、装置及系统

Also Published As

Publication number Publication date
JP2019507447A (ja) 2019-03-14
EP3401064A4 (en) 2019-03-20
KR102136016B1 (ko) 2020-07-21
EP3401064B1 (en) 2019-10-23
US20180335782A1 (en) 2018-11-22
US10416674B2 (en) 2019-09-17
EP3401064A1 (en) 2018-11-14
KR20180096702A (ko) 2018-08-29
JP6671506B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
CN105573322B (zh) 一种机器人轮径补偿的方法及装置
CN103635779B (zh) 用于促进用于工业车辆导航的地图数据处理的方法和装置
CN107678405B (zh) 机器人行驶方法及其装置
CN105437261B (zh) 机器人轮胎磨损预警方法及装置
US11042161B2 (en) Navigation control method and apparatus in a mobile automation system
JPWO2018235239A1 (ja) 車両用情報記憶方法、車両の走行制御方法、及び車両用情報記憶装置
WO2017118000A1 (zh) 机器人轮径补偿方法和装置
CN113715814B (zh) 碰撞检测方法、装置、电子设备、介质及自动驾驶车辆
CN103268119A (zh) 无人搬运车导航控制系统及其导航控制方法
JP2018508087A (ja) ナビゲーション制御のための装置および方法
WO2020220604A1 (zh) 一种多agv系统动态障碍物实时避障方法及避障系统
CN113907645A (zh) 移动机器人的定位方法及装置、存储介质及电子装置
CN104482936A (zh) 提供路况信息的云端服务器和显示路况信息的装置
CN111189466A (zh) 机器人定位位置优化方法、电子设备及存储介质
US20200209881A1 (en) Method, System and Apparatus for Dynamic Loop Closure in Mapping Trajectories
US11015938B2 (en) Method, system and apparatus for navigational assistance
JP2021071909A (ja) 遠隔管制システム
AU2020289521B2 (en) Method, system and apparatus for dynamic task sequencing
US20200182623A1 (en) Method, system and apparatus for dynamic target feature mapping
CN110948478A (zh) 一种控制在指定区域活动的方法及机器人
CN110044365A (zh) 一种地图快速匹配方法及装置
US20220194428A1 (en) Systems and methods for calibrating sensors of autonomous vehicles
US11507103B2 (en) Method, system and apparatus for localization-based historical obstacle handling
KR102301842B1 (ko) 철골부재 생산공정을 관리하는 방법, 서버, 컴퓨터 프로그램, 및 컴퓨터 판독가능 기록 매체
WO2023218825A1 (ja) ロボット制御システム、搬送システム及びロボット制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15326624

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020565

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020565

Country of ref document: KR