WO2017117989A1 - 信道检测方法、信道检测装置、终端和基站 - Google Patents

信道检测方法、信道检测装置、终端和基站 Download PDF

Info

Publication number
WO2017117989A1
WO2017117989A1 PCT/CN2016/092468 CN2016092468W WO2017117989A1 WO 2017117989 A1 WO2017117989 A1 WO 2017117989A1 CN 2016092468 W CN2016092468 W CN 2016092468W WO 2017117989 A1 WO2017117989 A1 WO 2017117989A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
channel
starting point
terminal
detection time
Prior art date
Application number
PCT/CN2016/092468
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to EP16883123.8A priority Critical patent/EP3402281B1/en
Priority to US16/068,648 priority patent/US10667298B2/en
Publication of WO2017117989A1 publication Critical patent/WO2017117989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a channel detection method channel detecting apparatus, and a base station.
  • LAA Licensed-Assisted Access
  • LTE Long Term Evolution
  • LBT Listening Before Talk
  • the LTE system needs an LBT mechanism. In this way, if the channel is busy on the unlicensed spectrum, LTE cannot occupy the frequency band, and if the channel is detected to be idle, LTE can occupy the frequency band.
  • the LBT mechanism of the load-based equipment is proposed in the related art.
  • the LBT mechanism of the LBE is cycle-free. As long as the service arrives, the channel clear detection (Clear Channel Assessment, CCA) is triggered. ) Detection.
  • the uplink scheduling grant (UpLink, UL grant) is sent in the subframe n
  • the user equipment User Equipment, UE
  • the uplink data is transmitted in the subframe n+i using the resource block (RB) indicated in the UL grant.
  • the uplink transmission of the UE on the subframe n+4 is performed based on the UL grant sent by the base station on the subframe n, if the uplink LBT is based on the load, when the scheduled UE starts to perform the uplink CCA detection, that is, How to configure the starting CCA time of the scheduled UE to the UL grant is still unclear.
  • the present disclosure proposes a channel detection scheme when an LTE system operates in an unlicensed frequency band, so that the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, thereby preventing the terminal from blindly performing CCA detection.
  • the problem of high power consumption can also increase the probability that the terminal will preempt the channel.
  • the present disclosure provides a channel detection method when an LTE system operates in an unlicensed frequency band, including:
  • the uplink scheduling instruction is set to instruct the terminal to use the allocated resource to transmit uplink data on the subframe n+i; after being located in the subframe n, and located at the location
  • the channel detection time is set in the subframe before the subframe n+i to detect the idle state of the uplink channel to be occupied by the terminal.
  • the terminal can clearly determine the CCA detection time based on the load in the scheduling-based uplink transmission.
  • the starting point can further avoid the problem that the terminal blindly performs CCA detection, resulting in high power consumption, and can improve the probability that the terminal preempts the channel.
  • setting the channel detection time includes:
  • the starting point of the channel detection time is set after the subframe n and the starting point of any subframe before the subframe n+i.
  • setting the channel detection time includes:
  • the start point of the channel detection time is set at a starting point of the designated symbol located after the subframe n and in any subframe preceding the subframe n+i.
  • the designated symbol includes: a first symbol in any one of the subframes, a fourth symbol in the any one of the subframes, a seventh symbol in the any one of the subframes, and a location The tenth symbol in any one subframe, the eleventh symbol in any one of the subframes, the twelfth symbol in any one of the subframes, and the thirteenth in any one of the subframes symbol.
  • the starting point of the channel detection time may be set at the beginning of any subframe, that is, the first symbol in any subframe; or may be the last subframe sent in the downlink, and is a partial subframe (ending partial The uplink CCA detection is started at the end of the subframe.
  • DwPTS Downlink Pilot Time Slot
  • the starting point of the channel detection time is set at the starting point of the 4th, 7th, 10th, 11th, 12th or 13th symbol of any subframe.
  • the method further includes: if the uplink channel is detected to be in an idle state before the starting point of the subframe n+i, sending an initial signal or a reserved signal, and in the subframe n+i The starting point occupies the uplink channel to send the uplink data; or
  • the channel detection process of the predetermined duration detects that the uplink channel is in a busy state, the uplink data is not sent.
  • the method further includes:
  • Radio Resource Control (RRC) signaling for indicating a starting point of the channel detection time, to determine a starting point of the channel detection time according to the RRC signaling;
  • Configuration manner determines the starting point of the channel detection time
  • the starting point of the channel detection time of the terminal may be set by the base station by using signaling, that is, the channel detection time of the terminal is controlled by the base station, and the base station may set the channel detection time of the terminal to save the terminal while saving power. To ensure that the probability of the terminal preempting the channel is maximized.
  • the value of i is 1, 2, 3 or 4.
  • the method further includes: when the uplink data is sent by using the uplink channel in any subframe, the time starting point of sending the uplink data is a starting point of any one of the subframes, and any one of the subframes is continuously occupied. 14 symbol lengths or 13 symbol lengths of the frame.
  • the present disclosure also provides a channel detection method when an LTE system works in an unlicensed frequency band, including:
  • the base station notifies the terminal of the start of the channel detection time, so that the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, that is, the channel detection time of the terminal is controlled by the base station, and further
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the step of notifying the terminal of the start of the channel detection time includes:
  • the terminal Transmitting signaling indicating the end of the subframe to the terminal, where the signaling indicating the end of the subframe is used to indicate the number of symbols occupied by the last subframe and the last subframe sent by the downlink, so that the terminal Determining a starting point of the channel detection time according to the number of symbols occupied by the last subframe and the last subframe.
  • the present disclosure further provides a channel detecting apparatus when an LTE system works in an unlicensed frequency band, including:
  • the receiving unit is configured to receive an uplink scheduling instruction sent by the base station on the subframe n, where the uplink scheduling instruction is used to instruct the terminal to use the allocated resource to transmit the uplink data on the subframe n+i;
  • a channel detecting unit configured to set a channel detection time in a subframe located after the subframe n and before the subframe n+i, to detect a busy state of an uplink channel to be occupied by the terminal .
  • the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission.
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the channel detecting unit includes: a first setting subunit, configured to set a start point of the channel detection time after the subframe n, and before any of the subframes n+i The starting point of the sub-frame.
  • the channel detecting unit includes: a second setting subunit, configured to set a starting point of the channel detecting time after the subframe n, and before any of the subframes n+i The starting point of the specified symbol within the sub-frame.
  • the designated symbol includes: a first symbol in any one of the subframes, a fourth symbol in the any one of the subframes, a seventh symbol in the any one of the subframes, and the The 10th symbol in one subframe, the 11th symbol in any one of the subframes, the 12th symbol in any one of the subframes, and the 13th symbol in any one of the subframes.
  • the starting point of the channel detection time may be set at the beginning of any subframe, that is, the first symbol in any subframe; or may be in the downlink final partial subframe (ie, the last subframe of the downlink transmission, and
  • the uplink CCA detection is started at the end of the partial subframe.
  • the structure of the DwPTS Downlink Pilot Time Slot
  • the start of the channel detection time can be set at the start of the 4th, 7th, 10th, 11th, 12th or 13th symbol of any subframe.
  • the device further includes: a first processing unit or a second processing unit, where
  • the first processing unit is configured to send an initial signal or a reserved signal when the channel detecting unit detects that the uplink channel is in an idle state before a starting point of the subframe n+i, and in the sub The starting point of the frame n+i occupies the uplink channel to send the uplink data;
  • the second processing unit is configured to perform a self-deferral process when the channel detecting unit detects that the uplink channel is in an idle state before a starting point of the subframe n+i, and execute the self After the -deferral process, and before the starting point of the subframe n+i, a channel detection process of a predetermined duration is performed and set to
  • the uplink channel When the channel detection process of the predetermined duration detects that the uplink channel is in an idle state, the uplink channel is occupied by the uplink channel, and is used to detect that the uplink channel is busy during the channel detection process of the predetermined duration. In the state, the uplink data is not sent.
  • the device further includes:
  • a first receiving unit configured to receive RRC signaling sent by the base station to indicate a starting point of the channel detection time, to determine a starting point of the channel detection time according to the RRC signaling;
  • the second receiving unit is configured to receive multiple configuration manners of the starting point of the channel detection time sent by the base station by using the RRC signaling, and an identifier corresponding to each configuration mode, and receive the base station to send by using DCI signaling a target identification code, to determine a starting point of the channel detection time according to a configuration manner corresponding to the target identification code; or
  • a third receiving unit configured to receive a target identification code that is sent by the base station by using the DCI signaling, to determine a configuration manner corresponding to the target identification code according to a correspondence between the identifier code stored by the base station and a channel detection time start configuration manner, and Determining a starting point of the channel detection time according to a configuration manner corresponding to the target identification code;
  • the monitoring unit is configured to monitor the signaling indicating the end of the subframe sent by the base station, to use the symbol occupied by the last subframe and the last subframe of the downlink indication according to the signaling indicating the end of the subframe The number determines the starting point of the channel detection time.
  • the starting point of the channel detection time of the terminal may be set by the base station by using signaling, that is, the channel detection time of the terminal is controlled by the base station, and the base station may set the channel detection time of the terminal to save the terminal while saving power. To ensure that the probability of the terminal preempting the channel is maximized.
  • the value of i is 1, 2, 3 or 4.
  • the device further includes:
  • the data sending unit is configured to: when any of the subframes occupy the uplink channel and send the uplink data, the time starting point of sending the uplink data is a starting point of the any subframe, and continuously occupy 14 of the any subframe. Symbol length or 13 symbol length.
  • the present disclosure further provides a channel detecting apparatus when an LTE system operates in an unlicensed frequency band, including:
  • a sending unit configured to send an uplink scheduling instruction to the terminal on the subframe n, to instruct the terminal to use the allocated resource to transmit uplink data on the subframe n+i;
  • the notifying unit is configured to notify the terminal of the start point of the channel detection time, so that the terminal sets the channel detection time in the subframe located after the subframe n and before the subframe n+i.
  • the base station notifies the terminal of the start of the channel detection time, so that the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, that is, the channel detection time of the terminal is controlled by the base station, and further
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the notification unit is set to:
  • the terminal Transmitting signaling indicating the end of the subframe to the terminal, where the signaling indicating the end of the subframe is used to indicate the number of symbols occupied by the last subframe and the last subframe sent by the downlink, so that the terminal Determining a starting point of the channel detection time according to the number of symbols occupied by the last subframe and the last subframe.
  • the present disclosure further provides a terminal, comprising: a channel detecting apparatus when the LTE system according to the foregoing third aspect works in an unlicensed frequency band.
  • the present disclosure further provides a base station, comprising: a channel detecting apparatus when the LTE system according to the fourth aspect described above operates in an unlicensed frequency band.
  • the present disclosure further provides a non-transitory computer readable storage medium, configured on a terminal side, storing computer executable instructions, the computer executable instructions being set as the instruction according to the first aspect described above A channel detection method when an LTE system operates in an unlicensed band.
  • the present disclosure further provides a non-transitory computer readable storage medium, configured on a base station side, storing computer executable instructions, the computer executable instructions being set as the instruction as described in the second aspect above A channel detection method when an LTE system operates in an unlicensed band.
  • the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, thereby avoiding the problem that the terminal blindly performs CCA detection and causing high power consumption, and can improve the terminal preempting the channel.
  • the probability is the probability.
  • FIG. 1 illustrates an LTE system operating in an unlicensed band according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic block diagram of a channel detecting apparatus when an LTE system operates in an unlicensed band according to a first embodiment of the present disclosure
  • FIG. 3 shows a schematic block diagram of a hardware structure of a terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flow chart showing a channel detecting method when an LTE system operates in an unlicensed band according to a second embodiment of the present disclosure
  • FIG. 5 is a schematic block diagram of a channel detecting apparatus when an LTE system operates in an unlicensed band according to a second embodiment of the present disclosure
  • FIG. 6 shows a schematic block diagram of a hardware structure of a base station according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of a CCA setting position according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic flow chart of a channel detecting method when an LTE system operates in an unlicensed band according to a first embodiment of the present disclosure.
  • a channel detecting method when an LTE system according to a first embodiment of the present disclosure operates in an unlicensed frequency band includes:
  • step 102 the terminal receives an uplink scheduling instruction sent by the base station on the subframe n, where the uplink scheduling instruction is set to instruct the terminal to use the allocated resource to transmit uplink data on the subframe n+i;
  • a channel detection time is set in a subframe located after the subframe n and before the subframe n+i to detect a busy state of an uplink channel to be occupied by the terminal.
  • the terminal sets the channel detection time after the subframe n and in the subframe before the subframe n+i, so that the terminal can clearly determine the load-based CCA detection in the scheduling-based uplink transmission.
  • the starting point of time can further avoid the problem that the terminal blindly performs CCA detection, resulting in high power consumption, and can improve the probability that the terminal preempts the channel.
  • the step of setting the channel detection time by the terminal may include:
  • the terminal sets the starting point of the channel detection time to a starting point of any subframe located after the subframe n and before the subframe n+i.
  • the step of setting the channel detection time by the terminal may further include:
  • the terminal sets the starting point of the channel detection time to a starting point of the designated symbol located after the subframe n and located in any subframe before the subframe n+i.
  • the designated symbol may include: a first symbol in any one of the subframes, a fourth symbol in the any one of the subframes, a seventh symbol in the any one of the subframes, and the The tenth symbol in any one subframe, the eleventh symbol in any one of the subframes, the twelfth symbol in any one of the subframes, or the thirteenth symbol in any one of the subframes.
  • the terminal may set the starting point of the channel detection time at the beginning of any subframe, that is, the first symbol in any subframe; or may start the uplink CCA detection at the end of the downlink ending partial subframe, because the ending partial subframe
  • the terminal can occupy the 3rd, 6th, 9th, 10th, 11th or 12th symbols in any subframe, so the terminal can set the starting point of the channel detection time to the 4th and 7th of any subframe.
  • the starting point of 10, 11, 12 or 13 symbols.
  • the method may further include:
  • the terminal If it is detected that the uplink channel is in an idle state before the starting point of the subframe n+i, the terminal sends an initial signal or a reserved signal, and when the starting point of the subframe n+i occupies the uplink channel, Sending the uplink data; or
  • the terminal If it is detected that the uplink channel is in an idle state before the starting point of the subframe n+i, the terminal performs a self-deferral process, and after performing the self-deferral process, and in the subframe n+ Before the starting point of i, the terminal performs a channel detecting process of a predetermined duration;
  • the terminal When the channel detection process of the predetermined duration detects that the uplink channel is in an idle state, the terminal occupies the uplink channel to send the uplink data;
  • the terminal When the channel detection process of the predetermined duration detects that the uplink channel is in a busy state, the terminal does not send the uplink data.
  • the method may further include:
  • Configuration manner determines the starting point of the channel detection time
  • the starting point of the channel detection time of the terminal may be set by the base station by using signaling, that is, the channel detection time of the terminal is controlled by the base station, and the base station may set the channel detection time of the terminal to save the terminal while saving power. To ensure that the probability of the terminal preempting the channel is maximized.
  • the value of i is 1, 2, 3 or 4.
  • the method may further include:
  • the time starting point of sending the uplink data is the starting point of any one of the subframes, and the 14 symbol lengths or 13 of the any subframe are continuously occupied. Symbol length.
  • FIG. 2 is a schematic block diagram of a channel detecting apparatus when an LTE system operates in an unlicensed band according to a first embodiment of the present disclosure.
  • the channel detecting apparatus 200 when the LTE system according to the first embodiment of the present disclosure operates in an unlicensed frequency band includes: a receiving unit 202 and a channel detecting unit 204.
  • the receiving unit 202 is configured to receive an uplink scheduling instruction sent by the base station in the subframe n, where the uplink scheduling instruction is used to instruct the terminal to use the allocated resource to transmit uplink data on the subframe n+i.
  • the channel detecting unit 204 is configured to set a channel detection time in a subframe located after the subframe n and before the subframe n+i to perform a busy state of an uplink channel to be occupied by the terminal. Detection.
  • the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission.
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the channel detecting unit 204 includes: a first setting unit sub 2042, configured to set a starting point of the channel detecting time after the subframe n, and The starting point of any subframe before the subframe n+i.
  • the channel detecting unit 204 includes: a second setting unit 2044, configured to set a starting point of the channel detecting time after the subframe n, and located at the location The starting point of the specified symbol in any sub-frame before the sub-frame n+i.
  • the designated symbol includes: a first symbol in any one of the subframes, a fourth symbol in the any one of the subframes, a seventh symbol in the any one of the subframes, and the The tenth symbol in one subframe, the eleventh symbol in any one of the subframes, the twelfth symbol in any one of the subframes, or the thirteenth symbol in any one of the subframes.
  • the starting point of the channel detection time may be set at the beginning of any subframe, that is, the first symbol in any subframe; or the downlink partial subframe may be started at the end, because the ending partial subframe is started.
  • the structure of multiplexing the DwPTS can occupy the 3rd, 6th, 9th, 10th, 11th or 12th symbols in any subframe, so the terminal can set the starting point of the channel detection time to the 4th, 7th, and 10th of any subframe.
  • the device further includes: a first processing unit 206 or a second processing unit 208, where
  • the first processing unit 206 is configured to: when the channel detecting unit 204 detects that the uplink channel is in an idle state before the starting point of the subframe n+i, send an initial signal or a reserved signal, and The starting point of the sub-frame n+i occupies the uplink channel to send the uplink data;
  • the second processing unit 208 is configured to perform a self-deferral process when the channel detecting unit 204 detects that the uplink channel is in an idle state before the starting point of the subframe n+i, and execute the After the self-deferral process, and before the starting point of the subframe n+i, a channel detection process of a predetermined duration is performed, and is set to
  • the uplink channel When the channel detection process of the predetermined duration detects that the uplink channel is in an idle state, the uplink channel is occupied by the uplink channel, and is used to detect that the uplink channel is busy during the channel detection process of the predetermined duration. In the state, the uplink data is not sent.
  • the device may further include:
  • the first receiving unit 210 is configured to receive RRC signaling sent by the base station to indicate a starting point of the channel detection time, to determine a starting point of the channel detection time according to the RRC signaling; or
  • the second receiving unit 212 is configured to receive multiple configurations of the start point of the channel detection time that the base station sends by using the RRC signaling, and an identifier corresponding to each configuration mode, and receive the base station to pass DCI signaling.
  • the target identification code sent according to the configuration manner corresponding to the target identification code Determining the starting point of the channel detection time; or
  • the third receiving unit 218 is configured to receive a target identification code that is sent by the base station by using the DCI signaling, to determine a configuration manner corresponding to the target identification code according to a correspondence between the identifier code stored by the base station and the channel detection time starting point configuration manner. And determining, according to a configuration manner corresponding to the target identification code, a starting point of the channel detection time; or
  • the monitoring unit 214 is configured to monitor the signaling indicating the end of the subframe sent by the base station, to occupy the last subframe and the last subframe according to the signaling indicated by the signaling indicating the end of the subframe.
  • the number of symbols determines the starting point of the channel detection time.
  • the starting point of the channel detection time of the terminal may be set by the base station by using signaling, that is, the channel detection time of the terminal is controlled by the base station, and the base station may set the channel detection time of the terminal to save the terminal while saving power. To ensure that the probability of the terminal preempting the channel is maximized.
  • the value of i is 1, 2, 3 or 4.
  • the device further includes:
  • the data sending unit 216 is configured to: when any subframe occupies the uplink channel to send uplink data, the time starting point of sending the uplink data is a starting point of any one of the subframes, and continuously occupying 14 of the any subframe. Symbol length or 13 symbol length.
  • FIG. 3 shows a schematic block diagram of a terminal in accordance with an embodiment of the present disclosure.
  • the terminal may include:
  • One or more processors 301, one processor 301 is taken as an example in FIG. 3;
  • the terminal may further include: an input device 303 and an output device 304.
  • the processor 301, the memory 302, the input device 303, and the output device 304 in the terminal may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 302 is used as a non-transitory computer readable storage medium, and can be used for storing software programs, computer executable programs, and modules, such as channel detection when the LTE system configured on the terminal side operates in an unlicensed frequency band in the embodiment of the present disclosure.
  • the program corresponds to a program instruction/module (for example, receiving unit 202, channel detecting unit 204 shown in FIG. 2).
  • the processor 301 executes various software applications, instructions, and modules stored in the memory 302 to perform various functional applications and data processing of the server, that is, when the LTE system configured on the terminal side of the foregoing method is working in an unlicensed frequency band. Channel detection method.
  • the memory 302 can include a storage program area and a storage data area, wherein the storage program area can be stored The operating system, an application required for at least one function; the storage data area can store data created according to the use of the terminal device, and the like.
  • memory 302 can include high speed random access memory, and can also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory 302 can optionally include a memory remotely located relative to the processor 301 that can be connected to the terminal device over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 303 can be arranged to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • Output device 304 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 302, and when executed by the one or more processors 301, perform the configuration in the foregoing method embodiment when the LTE system on the terminal side operates in an unlicensed frequency band.
  • Channel detection method
  • FIG. 4 is a schematic flow chart of a channel detecting method when an LTE system operates in an unlicensed band according to a second embodiment of the present disclosure.
  • a channel detecting method when an LTE system according to a second embodiment of the present disclosure operates in an unlicensed frequency band includes:
  • step 402 the base station sends an uplink scheduling instruction to the terminal on the subframe n to instruct the terminal to transmit the uplink data by using the allocated resource on the subframe n+i.
  • step 404 the base station notifies the terminal of the start of the channel detection time, so that the terminal sets the channel detection time in the subframe located after the subframe n and before the subframe n+i.
  • the base station notifies the terminal of the start of the channel detection time, so that the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, that is, the channel detection time of the terminal is controlled by the base station, and further
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the step of the base station notifying the terminal of the starting point of the channel detection time includes:
  • the base station sends, by using RRC signaling, a plurality of configuration manners of the starting point of the channel detection time, and an identification code corresponding to each configuration mode, and sends a target identification code to the terminal by using DCI signaling, so that the Determining, by the terminal, the channel detection according to a configuration manner corresponding to the target identification code Starting point between; or
  • the base station sends the target identification code to the terminal by using the DCI signaling, so that the terminal determines the configuration manner corresponding to the target identification code according to the correspondence between the stored identification code and the channel detection time starting point configuration manner, and according to the The configuration manner corresponding to the target identification code determines the starting point of the channel detection time; or
  • the base station sends signaling indicating the end of the subframe to the terminal, where the signaling indicating the end of the subframe is used to indicate the number of symbols occupied by the last subframe and the last subframe sent by the downlink, so that the The terminal determines a starting point of the channel detection time according to the number of symbols occupied by the last subframe and the last subframe.
  • FIG. 5 shows a schematic block diagram of a channel detecting apparatus when an LTE system operates in an unlicensed band according to a second embodiment of the present disclosure.
  • the channel detecting apparatus 500 when the LTE system according to the second embodiment of the present disclosure operates in an unlicensed band includes a transmitting unit 502 and a notifying unit 504.
  • the sending unit 502 is configured to send an uplink scheduling instruction to the terminal on the subframe n to instruct the terminal to use the allocated resource to transmit uplink data in the subframe n+i.
  • the notifying unit 504 is configured to notify the terminal of the start point of the channel detection time, so that the terminal sets the channel detection time in the subframe located after the subframe n and before the subframe n+i.
  • the base station notifies the terminal of the start of the channel detection time, so that the terminal can clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, that is, the channel detection time of the terminal is controlled by the base station, and further
  • the problem that the terminal blindly performs CCA detection and causes high power consumption can be avoided, and the probability that the terminal preempts the channel can be improved.
  • the notification unit 504 is configured to:
  • the terminal Transmitting signaling indicating the end of the subframe to the terminal, where the signaling indicating the end of the subframe is used to indicate the number of symbols occupied by the last subframe and the last subframe sent by the downlink, so that the terminal Determining a starting point of the channel detection time according to the number of symbols occupied by the last subframe and the last subframe.
  • FIG. 6 shows a schematic block diagram of a base station in accordance with an embodiment of the present disclosure.
  • the base station may include:
  • One or more processors 601, one processor 601 is taken as an example in FIG. 6;
  • the base station may further include: an input device 603 and an output device 604.
  • the processor 601, the memory 602, the input device 603, and the output device 604 in the base station may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 602 is used as a non-transitory computer readable storage medium, and can be used for storing software programs, computer executable programs, and modules, such as channel detection when the LTE system configured on the base station side operates in an unlicensed frequency band in the embodiment of the present disclosure.
  • the program corresponds to a program instruction/module (for example, the transmitting unit 502, the notifying unit 504 shown in FIG. 5).
  • the processor 601 performs the various functional applications and data processing of the server by running the software programs, the instructions, and the modules stored in the memory 602, that is, when the LTE system configured on the base station side of the foregoing method is working in an unlicensed band. Channel detection method.
  • the memory 602 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like.
  • memory 602 can include high speed random access memory, and can also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 602 can optionally include memory remotely located relative to processor 601 that can be connected to the terminal device over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 603 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • Output device 604 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 602, and when executed by the one or more processors 601, performing the configuration in the foregoing method embodiment is performed on the LTE system of the base station side. Channel detection method when the band operates.
  • the technical solution of the present disclosure is mainly directed to the configuration of the CCA time start of the physical uplink shared channel (PUSCH) transmission of the scheduled UE that receives the UL grant.
  • the proposed configuration scheme is as follows:
  • the scheduled UE receives the UL grant in subframe n, and the starting point of the uplink CCA time is after the subframe n and before the start boundary of the subframe n+i. That is, the uplink CCA time start point is set after the end boundary of the subframe n and before the start boundary of the subframe n+i, where i may be 1, 2, 3 or 4.
  • the CCA time can be set after subframe n and in any subframe before subframe n+4.
  • options are a few examples of options:
  • the CCA starting point is configured at the time immediately after receiving the UL grant. For example, the subframe n receives the UL grant, and the starting boundary of the subframe n+1 starts the CCA detection.
  • the start boundary of the subframe n+3 starts the CCA detection. This situation represents a time up to 1 ms for the load-based CCA detection process.
  • the start boundary of the mth symbol (symbol) of subframe n+1 or subframe n+2 or subframe n+3 starts CCA detection.
  • the value of m is 1, 4, 7, 10, 11, 12, 13 (note that the mth symbol is numbered m-1 in the subframe).
  • the value of m is 1 from the beginning of the subframe, and the other value is the number of symbols of the multiple structure of the DwPTS multiplexed by the ending partial subframe, that is, the uplink CCA detection can be started when the downlink ending partial subframe ends.
  • the structure of the DwPTS Downlink Pilot Time Slot
  • the start of the channel detection time can be set at the start of the 4th, 7th, 10th, 11th, 12th or 13th symbol of any subframe.
  • the initial signal or the reservation signal is sent, and then the PUSCH is started at the starting point of n+i; or
  • RRC signaling configuration This situation applies to semi-static CCA time start configuration, such as fixed Start with a symbol of subframe n+1 or n+2 or n+3.
  • RRC signaling + DCI signaling This situation applies to dynamic CCA time start configuration. For example, it is not sure which symbol of which subframe to start from, and DCI signaling is required to indicate.
  • the RRC signaling gives a plurality of possible configurations and a bit sequence of the DCI corresponding to each configuration, and the DCI signaling gives a bit sequence.
  • the corresponding CCA time start configuration is known. It should also be noted that if the CCA time start is configured in a certain symbol of the subframe n+3, the DCI signaling needs to be sent in the subframe n+2, and the subframe n+3 may need to send the same DCI signaling again. This multiple transmission mode can ensure that the UE receives the DCI signaling, and avoids the problem that some UEs cannot receive the DCI signaling.
  • the various possible configurations and the DCI signaling bit sequence for each configuration of the RRC signaling may be as shown in Table 1:
  • DCI signaling sends a bit sequence 0011 in subframe n+2, indicating that the UE is in the child.
  • DCI bit sequence CCA starting point configuration 0000 configuration 1
  • the first symbol of the next sub-frame begins 0001 configuration 2
  • the 4th symbol of the next sub-frame begins 0010 configuration 3
  • the 7th symbol of the next sub-frame begins 0011 Configuration 4
  • the 10th symbol of the next subframe begins 0100 configuration 5
  • the 11th symbol of the next subframe begins 0101 Configuration 6
  • the 12th symbol of the next sub-frame begins 0110 Configuration 7
  • the 13th symbol of the next sub-frame begins 0111 Configuration 8
  • the first symbol of the current subframe begins 1000 configuration 9
  • the 4th symbol of the current subframe begins 1001 configuration 10
  • the 7th symbol of the current subframe begins 1010 Configuration 11
  • the 10th symbol of the current subframe begins 1011 Configuration 12
  • the 11th symbol of the current subframe begins 1100 configuration 13
  • the 12th symbol of the current subframe begins 1101 Configuration 14
  • the 13th symbol of the current subframe begins 1110 Reserved 1111 Reserved
  • the 10th symbol of frame n+3 starts CCA detection.
  • the DCI signaling may use a PDCCH (Physical Downlink Control Channel) common signaling (public signal) No.) Send on the unlicensed spectrum, specifically using DCI format 1C or 1A.
  • PDCCH Physical Downlink Control Channel
  • common signaling public signal
  • the corresponding relationship between the multiple start point configurations sent by the RRC signaling and the corresponding DCI identification code in the above 2 may be sent without using RRC signaling, but stored directly in the chip of the terminal. And only need to send the DCI signaling to the terminal, and indicate the target identification code, so that the terminal determines the configuration manner corresponding to the target identification code according to the correspondence between the stored identification code and the channel detection time starting point configuration manner (which may be a table), and according to The configuration mode corresponding to the target identification code determines the starting point of the channel detection time.
  • the scheduled UE behavior needs to be defined: after receiving the UL grant, the scheduled UE listens to the signaling sent by the base station indicating the ending partial subframe structure, and the signaling is sent in the PDCCH common signaling, indicating which subframe is sent downstream.
  • the last subframe also indicates which DwPTS structure is used by the subframe, that is, it takes several symbols.
  • the starting point of the CCA time of the UE starts at the beginning of the next symbol after the end of the number of symbols occupied by the ending partial subframe. For example, if the ending partial subframe occupies 3 symbols, the CCA time starting point starts from the 4th symbol.
  • the foregoing technical solution of the present disclosure proposes an uplink CCA time start configuration method and related signaling indication, and explicitly informs the scheduled UE to detect relevant signaling after receiving the UL grant, obtain CCA time start location configuration information, and according to the configuration.
  • the information turns on the CCA detection, so that the time for the UE to perform uplink channel detection is controlled by the base station, so that the probability of the terminal preempting the channel is maximized while the terminal is saving power.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium, configured on the terminal side, storing computer executable instructions, the computer executable instructions being configured to perform the terminal side according to any one of the above A channel detection method when an LTE system operates in an unlicensed band.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium, configured on a base station side, storing computer executable instructions, the computer executable instructions being configured to perform the base station side according to any one of the above A channel detection method when an LTE system operates in an unlicensed band.
  • the present disclosure proposes a channel detection scheme when a new LTE system operates in an unlicensed frequency band, so that the terminal can clear the load-based CCA in the scheduling-based uplink transmission.
  • the starting point of the detection time can avoid the problem that the terminal blindly performs CCA detection and causes high power consumption, and can improve the probability that the terminal preempts the channel.
  • the technical solution of the present disclosure enables the terminal to clear the starting point of the CCA detection time based on the load in the scheduling-based uplink transmission, thereby avoiding the problem that the terminal blindly performs CCA detection and causing high power consumption, and can improve the terminal preemption to the channel.
  • the probability is the probability.

Abstract

LTE系统在非授权频段工作时的信道检测方法、信道检测装置、终端和基站,其中,LTE系统在非授权频段工作时的信道检测方法,包括:接收基站在子帧n上发送的上行调度指令,所述上行调度指令用于指示终端在子帧n+i上使用所分配的资源传输上行数据;在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。

Description

信道检测方法、信道检测装置、终端和基站
本申请要求于2016年1月8日提交中国专利局,申请号为201610013298.9、发明名称为“信道检测方法、信道检测装置、终端和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,例如涉及一种信道检测方法信道检测装置、和基站。
背景技术
目前,第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)提出了授权辅助接入(Licensed-Assisted Access,LAA)的概念,用于借助长期演进(Long Term Evolution,LTE)授权频谱的帮助来使用未授权频谱。而LTE网络在使用非授权频段时,需要确保LAA系统能够在公平友好的基础上和相关的接入技术(比如Wi-Fi)共存。而传统的LTE系统中没有先听后说(Listen Before Talk,LBT)的机制来避免碰撞,为了与Wi-Fi更好的共存,LTE系统需要一种LBT机制。这样,在非授权频谱上如果检测到信道忙,则LTE不能占用该频段,如果检测到信道闲,则LTE才能占用该频段。
基于上述问题,相关技术中提出了一种基于负载的设备(Load based equipment,LBE)的LBT机制,LBE的LBT机制是无周期的,只要业务到达,则触发信道空闲检测(Clear Channel Assessment,CCA)检测。
对于LAA系统的上行发送来说,由于上行发送是基于调度的,如果是在子帧n发送了上行调度授权(UpLink,UL grant)(),那么说明被调度用户设备(User Equipment,UE)可以在子帧n+i使用UL grant中指示的资源块(Resource Block,RB)发送上行数据。
由于UE在子帧n+4上的上行发送是基于基站在子帧n上发送的UL grant进行的,如果上行的LBT是基于负载的,那么被调度UE什么时候开始进行上行CCA检测,即收到UL grant的被调度UE的上行CCA时间起点该如何进行配置,目前还不明确。
发明内容
本公开提出了一种LTE系统在非授权频段工作时的信道检测方案,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
第一方面,本公开提出了一种LTE系统在非授权频段工作时的信道检测方法,包括:
接收基站在子帧n上发送的上行调度指令,所述上行调度指令设置为指示终端在子帧n+i上使用所分配的资源传输上行数据;在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
在该技术方案中,通过在子帧n之后,且位于子帧n+i之前的子帧中,设置信道检测时间,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
可选地,在所述子帧n之后,且位于所述子帧n+i之前的子帧中,设置信道检测时间包括:
将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧的起始点。
可选地,在所述子帧n之后,且位于所述子帧n+i之前的子帧中,设置信道检测时间包括:
将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
可选地,所述指定符号包括:所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11个符号、所述任一子帧内的第12个符号,以及所述任一子帧内的第13个符号。
可选地,可以将信道检测时间的起点设置在任一子帧的起点,即任一子帧内的第1个符号;也可以在下行发送的最后一个子帧,且为部分子帧(ending partial subframe)结束时开始上行CCA检测,由于ending partial subframe复用下行导频时隙(Downlink Pilot Time Slot,DwPTS)的结构时,可占用3、6、9、10、11、12个符号,因此可以将信道检测时间的起点设置在任一子帧的第4、7、10、11、12或13个符号的起始点。
可选地,所述方法还包括:若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道发送所述上行数据;或
若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,进行预定时长的信道检测过程;
在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,占用所述上行信道发送所述上行数据;以及
在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,不发送所述上行数据。
可选地,所述预定时长为16us+M×9us,其中,M=1或2。
可选地,所述方法还包括:
接收所述基站发送的用于指示所述信道检测时间的起点的无线资源控制协议(Radio Resource Control,RRC)信令,以根据所述RRC信令确定所述信道检测时间的起点;或
接收所述基站通过RRC信令发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过下行控制信息(Downlink Control Information,DCI)信令发送的目标标识码,以根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
接收所述基站通过DCI信令发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
监听所述基站发送的指示子帧结束的信令,以根据所述指示子帧结束的信令指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
在该技术方案中,终端的信道检测时间的起点可以由基站通过信令来设置,即终端的信道检测时间受到基站的控制,进而基站可以通过设置终端的信道检测时间使终端在省电的同时,确保终端抢占到信道的概率最大化。
可选地,所述i的值为1、2、3或4。
可选地,所述还包括:当在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
第二方面,本公开还提出了一种LTE系统在非授权频段工作时的信道检测方法,包括:
在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
在该技术方案中,基站通过向终端通知信道检测时间的起点,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,即终端的信道检测时间受到基站的控制,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
可选地,向所述终端通知信道检测时间的起点的步骤,具体包括:
向所述终端发送用于指示所述信道检测时间的起点的RRC信令,以使所述终端根据所述RRC信令确定所述信道检测时间的起点;或
通过RRC信令向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信令向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
通过DCI信令向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
向所述终端发送指示子帧结束的信令,所述指示子帧结束的信令用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
第三方面,,本公开还提出了一种LTE系统在非授权频段工作时的信道检测装置,包括:
接收单元,设置为接收基站在子帧n上发送的上行调度指令,所述上行调度指令用于指示终端在子帧n+i上使用所分配的资源传输上行数据;
信道检测单元,设置为在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
在该技术方案中,通过在子帧n之后,且位于子帧n+i之前的子帧中设置信道检测时间,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
可选地,所述信道检测单元包括:第一设置子单元,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧的起始点。
可选地,所述信道检测单元包括:第二设置子单元,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
其中,所述指定符号包括:所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11个符号、所述任一子帧内的第12个符号,以及所述任一子帧内的第13个符号。
可选地,可以将信道检测时间的起点设置在任一子帧的起点,即任一子帧内的第1个符号;也可以在下行ending partial subframe(即下行发送的最后一个子帧,且是部分子帧)结束时开始上行CCA检测,由于ending partial subframe复用DwPTS(Downlink Pilot Time Slot,下行导频时隙)的结构时可占用3、6、9、10、11、12个符号,因此可以将信道检测时间的起点设置在任一子帧的第4、7、10、11、12或13个符号的起始点。
可选地,所述装置还包括:第一处理单元或第二处理单元,其中,
所述第一处理单元,设置为在所述信道检测单元在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道发送所述上行数据;
所述第二处理单元,设置为在所述信道检测单元在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,进行预定时长的信道检测过程,并设置为
在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,占用所述上行信道发送所述上行数据,并用于在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,不发送所述上行数据。
可选地,所述预定时长为16us+M×9us,其中,M=1或2。
可选地,所述装置还包括:
第一接收单元,设置为接收所述基站发送的用于指示所述信道检测时间的起点的RRC信令,以根据所述RRC信令确定所述信道检测时间的起点;或
第二接收单元,设置为接收所述基站通过RRC信令发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过DCI信令发送的目标标识码,以根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
第三接收单元,设置为接收所述基站通过DCI信令发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
监听单元,设置为监听所述基站发送的指示子帧结束的信令,以根据所述指示子帧结束的信令指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
在该技术方案中,终端的信道检测时间的起点可以由基站通过信令来设置,即终端的信道检测时间受到基站的控制,进而基站可以通过设置终端的信道检测时间使终端在省电的同时,确保终端抢占到信道的概率最大化。
可选地,所述i的值为1、2、3或4。
可选地,所述装置还包括:
数据发送单元,设置为在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
第四方面,,本公开还提出了一种LTE系统在非授权频段工作时的信道检测装置,包括:
发送单元,设置为在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
通知单元,设置为向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
在该技术方案中,基站通过向终端通知信道检测时间的起点,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,即终端的信道检测时间受到基站的控制,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
可选地,所述通知单元设置为:
向所述终端发送用于指示所述信道检测时间的起点的RRC信令,以使所述终端根据所述RRC信令确定所述信道检测时间的起点;或
通过RRC信令向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信令向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
通过DCI信令向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
向所述终端发送指示子帧结束的信令,所述指示子帧结束的信令用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
第五方面,,本公开还提出了一种终端,包括:如上述第三方面所述的LTE系统在非授权频段工作时的信道检测装置。
第六方面,根,本公开还提出了一种基站,包括:如上述第四方面所述的LTE系统在非授权频段工作时的信道检测装置。
第七方面,本公开还提供了一种非瞬时性计算机可读存储介质,配置于终端侧,存储有计算机可执行指令,所述计算机可执行指令可设置为指令如上述第一方面所述的LTE系统在非授权频段工作时的信道检测方法。
第八方面,本公开还提供了一种非瞬时性计算机可读存储介质,配置于基站侧,存储有计算机可执行指令,所述计算机可执行指令可设置为指令如上述第二方面所述的LTE系统在非授权频段工作时的信道检测方法。
通过以上技术方案,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
附图说明
图1示出了根据本公开的第一个实施例的LTE系统在非授权频段工作时的 信道检测方法的示意流程图;
图2示出了根据本公开的第一个实施例的LTE系统在非授权频段工作时的信道检测装置的示意框图;
图3示出了根据本公开的实施例的终端的硬件结构示意框图;
图4示出了根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测方法的示意流程图;
图5示出了根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测装置的示意框图;
图6示出了根据本公开的实施例的基站的硬件结构示意框图;
图7示出了根据本公开的实施例的CCA设置位置示意图。
实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和体可选实施方式对本公开进行相关描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本公开的第一个实施例的LTE系统在非授权频段工作时的信道检测方法的示意流程图。
如图1所示,根据本公开的第一个实施例的LTE系统在非授权频段工作时的信道检测方法,包括:
在步骤102中,终端接收基站在子帧n上发送的上行调度指令,所述上行调度指令设置为指示终端在子帧n+i上使用所分配的资源传输上行数据;
在步骤104中,在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
在该技术方案中,通过在子帧n之后,且位于子帧n+i之前的子帧中,终端设置信道检测时间,以使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
在上述技术方案中,可选地,在所述子帧n之后,且位于所述子帧n+i之前的子帧中,终端设置信道检测时间的步骤,可包括:
终端将所述信道检测时间的起点设置在位于所述子帧n之后,且位于所述子帧n+i之前的任一子帧的起始点。
在上述任一技术方案中,可选地,在所述子帧n之后,且位于在所述子帧n+i之前的子帧中,终端设置信道检测时间的步骤,还可包括:
终端将所述信道检测时间的起点设置在位于所述子帧n之后,且位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
其中,所述指定符号可包括:所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11个符号、所述任一子帧内的第12个符号或者所述任一子帧内的第13个符号。
可选地,终端可以将信道检测时间的起点设置在任一子帧的起点,即任一子帧内的第1个符号;也可以在下行ending partial subframe结束时开始上行CCA检测,由于ending partial subframe复用DwPTS的结构时,终端可占用任一子帧内的第3、6、9、10、11或12个符号,因此终端可以将信道检测时间的起点设置在任一子帧的第4、7、10、11、12或13个符号的起始点。
在上述任一技术方案中,可选地,该方法还可以包括:
若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则终端发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道时发送所述上行数据;或
若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则终端执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,终端进行预定时长的信道检测过程;
在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,终端占用所述上行信道发送所述上行数据;以及
在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,终端不发送所述上行数据。
可选地,所述预定时长为16us+M×9us,其中,M=1或2。
在上述任一技术方案中,可选地,该方法还可包括:
接收所述基站发送的用于指示所述信道检测时间的起点的RRC信令,以根据所述RRC信令确定所述信道检测时间的起点;或
接收所述基站通过RRC信令发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过DCI信令发送的目 标标识码,以根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
接收所述基站通过DCI信令发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
监听所述基站发送的指示子帧结束的信令,以根据所述指示子帧结束的信令指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
在该技术方案中,终端的信道检测时间的起点可以由基站通过信令来设置,即终端的信道检测时间受到基站的控制,进而基站可以通过设置终端的信道检测时间使终端在省电的同时,确保终端抢占到信道的概率最大化。
在上述任一技术方案中,可选地,所述i的值为1、2、3或4。
在上述任一技术方案中,可选地,该方法还可包括:
当在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
图2示出了根据本公开的第一个实施例的LTE系统在非授权频段工作时的信道检测装置的示意框图。
如图2所示,根据本公开的第一个实施例的LTE系统在非授权频段工作时的信道检测装置200,包括:接收单元202和信道检测单元204。
其中,接收单元202,设置为接收基站在子帧n上发送的上行调度指令,所述上行调度指令用于指示终端在子帧n+i上使用所分配的资源传输上行数据;
信道检测单元204,设置为在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
在该技术方案中,通过在子帧n之后,且位于子帧n+i之前的子帧中设置信道检测时间,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
在上述技术方案中,可选地,所述信道检测单元204包括:第一设置单元子2042,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及 位于所述子帧n+i之前的任一子帧的起始点。
在上述任一技术方案中,可选地,所述信道检测单元204包括:第二设置单元子2044,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
其中,所述指定符号包括:所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11个符号、所述任一子帧内的第12个符号或者所述任一子帧内的第13个符号。
可选地,可以将信道检测时间的起点设置在任一子帧的起点,即任一子帧内的第1个符号;也可以在下行ending partial subframe(结束时开始上行CCA检测,由于ending partial subframe复用DwPTS的结构时可占用任一子帧内的第3、6、9、10、11或12个符号,因此终端可以将信道检测时间的起点设置在任一子帧的第4、7、10、11、12或13个符号的起始点。
在上述任一技术方案中,可选地,该装置还包括:第一处理单元206或第二处理单元208,其中,
所述第一处理单元206,设置为在所述信道检测单元204在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道发送所述上行数据;
所述第二处理单元208,设置为在所述信道检测单元204在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,进行预定时长的信道检测过程,并设置为
在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,占用所述上行信道发送所述上行数据,并用于在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,不发送所述上行数据。
可选地,所述预定时长为16us+M×9us,其中,M=1或2。
在上述任一技术方案中,可选地,该装置还可包括:
第一接收单元210,设置为接收所述基站发送的用于指示所述信道检测时间的起点的RRC信令,以根据所述RRC信令确定所述信道检测时间的起点;或
第二接收单元212,设置为接收所述基站通过RRC信令发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过DCI信令发送的目标标识码,以根据所述目标标识码对应的配置方式确 定所述信道检测时间的起点;或
第三接收单元218,设置为接收所述基站通过DCI信令发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
监听单元214,设置为监听所述基站发送的指示子帧结束的信令,以根据所述指示子帧结束的信令指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
在该技术方案中,终端的信道检测时间的起点可以由基站通过信令来设置,即终端的信道检测时间受到基站的控制,进而基站可以通过设置终端的信道检测时间使终端在省电的同时,确保终端抢占到信道的概率最大化。
在上述任一技术方案中,可选地,所述i的值为1、2、3或4。
在上述任一技术方案中,可选地,该装置还包括:
数据发送单元216,设置为在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
图3示出了根据本公开的实施例的终端的示意框图。
如图3所示,根据本公开的实施例的终端300,该终端可包括:
一个或多个处理器301,图3中以一个处理器301为例;
存储器302;
该终端还可以包括:输入装置303和输出装置304。
该终端中的处理器301、存储器302、输入装置303和输出装置304可以通过总线或者其他方式连接,图3中以通过总线连接为例。
存储器302作为一种非瞬时性计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本公开实施例中的配置于终端侧的LTE系统在非授权频段工作时的信道检测方法对应的程序指令/模块(例如,附图2所示的接收单元202、信道检测单元204)。处理器301通过运行存储在存储器302中的软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例的配置于终端侧的LTE系统在非授权频段工作时的信道检测方法。
存储器302可以包括存储程序区和存储数据区,其中,存储程序区可存储 操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器302可以包括高速随机存取存储器,还可以包括非瞬时性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器302可选包括相对于处理器301远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置303可设置为接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。输出装置304可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器302中,当被所述一个或者多个处理器301执行时,执行上述方法实施例中的配置在终端侧的LTE系统在非授权频段工作时的信道检测方法。
图4示出了根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测方法的示意流程图。
如图4所示,根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测方法,包括:
在步骤402中,基站在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
在步骤404中,基站向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
在该技术方案中,基站通过向终端通知信道检测时间的起点,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,即终端的信道检测时间受到基站的控制,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
在上述技术方案中,可选地,基站向所述终端通知信道检测时间的起点的步骤,包括:
基站向所述终端发送用于指示所述信道检测时间的起点的RRC信令,以使所述终端根据所述RRC信令确定所述信道检测时间的起点;或
基站通过RRC信令向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信令向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时 间的起点;或
基站通过DCI信令向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
基站向所述终端发送指示子帧结束的信令,所述指示子帧结束的信令用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
图5示出了根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测装置的示意框图。
如图5所示,根据本公开的第二个实施例的LTE系统在非授权频段工作时的信道检测装置500,包括:发送单元502和通知单元504。
其中,发送单元502,设置为在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
通知单元504,设置为向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
在该技术方案中,基站通过向终端通知信道检测时间的起点,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,即终端的信道检测时间受到基站的控制,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
在上述技术方案中,可选地,所述通知单元504设置为:
向所述终端发送用于指示所述信道检测时间的起点的RRC信令,以使所述终端根据所述RRC信令确定所述信道检测时间的起点;或
通过RRC信令向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信令向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
通过DCI信令向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点; 或
向所述终端发送指示子帧结束的信令,所述指示子帧结束的信令用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
图6示出了根据本公开的实施例的基站的示意框图。
如图6所示,根据本公开的实施例的基站600,该基站可包括:
一个或多个处理器601,图6中以一个处理器601为例;
存储器602;
该基站还可以包括:输入装置603和输出装置604。
该基站中的处理器601、存储器602、输入装置603和输出装置604可以通过总线或者其他方式连接,图6中以通过总线连接为例。
存储器602作为一种非瞬时性计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本公开实施例中的配置于基站侧的LTE系统在非授权频段工作时的信道检测方法对应的程序指令/模块(例如,附图5所示的发送单元502、通知单元504)。处理器601通过运行存储在存储器602中的软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例的配置于基站侧的LTE系统在非授权频段工作时的信道检测方法。
存储器602可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非瞬时性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器602可选包括相对于处理器601远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置603可设置为接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。输出装置604可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器602中,当被所述一个或者多个处理器601执行时,执行上述方法实施例中的配置在基站侧的LTE系统在非授 权频段工作时的信道检测方法。
综上所述,本公开的技术方案主要针对收到UL grant的被调度UE的上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送的CCA时间起点的配置,提出的配置方案如下:
一、被调度UE在子帧n接收到UL grant,上行CCA时间起点位于子帧n之后以及子帧n+i的起始边界之前。也就是将上行CCA时间起点设置在子帧n的结束边界之后、以及子帧n+i的起始边界之前,其中,i可以是1、2、3或4。
如图7所示,若i=4,则可以将CCA时间设置在子帧n之后,以及子帧n+4之前的任一子帧内。下面给出几个可选示例:
1、CCA起点配置在紧接着收到UL grant之后的时间,比如子帧n收到UL grant,子帧n+1的起始边界即开始CCA检测。
2、子帧n+2的起始边界开始CCA检测。
3、子帧n+3的起始边界开始CCA检测。这种情况表示给基于负载的CCA检测过程最多1ms的时间。
4、子帧n+1或者子帧n+2或者子帧n+3的第m个symbol(符号)的起始边界开始CCA检测。m取值为:1、4、7、10、11、12、13(需要注意的是,第m个symbol在子帧中的编号是m-1)。其中,m取值为1是从子帧起点开始,其它值是ending partial subframe复用DwPTS多种结构的符号数,也就是说可以在下行ending partial subframe结束时开启上行CCA检测。可选地,由于ending partial subframe复用DwPTS(Downlink Pilot Time Slot,下行导频时隙)的结构时可占用任一子帧内的第3、6、9、10、11或12个符号,因此可以将信道检测时间的起点设置在任一子帧的第4、7、10、11、12或13个符号的起始点。
二、若在子帧n+i的起始边界之前就检测信道空闲,则发送initial signal(初始信号)或reservation signal(保留信号),然后在n+i的起始点时开始发送PUSCH;或者
在子帧n+i的起始边界之前就检测信道空闲时,进行self-deferral(自我延迟)过程,然后在子帧n+i的起始边界之前进行一个长达16us+M×9ms的CCA检测,其中,M=1或2,若检测信道空闲,则发送,若检测到信道忙,则不发送。
三、CCA起点配置信令:
1、RRC信令配置:这种情况适用于半静态的CCA时间起点配置,比如固定 在子帧n+1或n+2或n+3的某个符号开始。
2、RRC信令+DCI信令:这种情况适用于动态的CCA时间起点配置。比如不确定从哪个子帧的哪个符号开始,则需要DCI信令来指示。可选地,RRC信令给出多种可能的配置以及每种配置对应的DCI的bit序列,DCI信令给出bit序列。当用户收到RRC信令和DCI信令后,即得知相对应的CCA时间起点配置。另外需要指出的是如果CCA时间起点配置在子帧n+3的某个符号,则需要在子帧n+2发送DCI信令,子帧n+3可能需要再次发送同样的DCI信令。这种多次发送的方式可以确保UE接收到DCI信令,避免某些UE接收不到DCI信令的问题。
作为一个实施例而非限定,RRC信令包含的多种可能的配置和每种配置对于的DCI信令bit序列可以如表1所示:
表1
如表1所示,DCI信令在子帧n+2发送bit序列0011,则表示告知UE在子
DCI bit序列 CCA起点配置
0000 配置1 下一个子帧的第1个符号开始
0001 配置2 下一个子帧的第4个符号开始
0010 配置3 下一个子帧的第7个符号开始
0011 配置4 下一个子帧的第10个符号开始
0100 配置5 下一个子帧的第11个符号开始
0101 配置6 下一个子帧的第12个符号开始
0110 配置7 下一个子帧的第13个符号开始
0111 配置8 当前子帧的第1个符号开始
1000 配置9 当前子帧的第4个符号开始
1001 配置10 当前子帧的第7个符号开始
1010 配置11 当前子帧的第10个符号开始
1011 配置12 当前子帧的第11个符号开始
1100 配置13 当前子帧的第12个符号开始
1101 配置14 当前子帧的第13个符号开始
1110 预留
1111 预留
帧n+3的第10个符号开始CCA检测。该DCI信令可以使用PDCCH(Physical Downlink Control Channel,物理下行控制信道)common signaling(公共信 号)在非授权频谱上发送,具体可使用DCI format 1C或1A。
3、对于上述2中由RRC信令发送的多种起始点配置与相应的DCI标识码的对应关系,可以不用RRC信令发送,而是直接存储在终端的芯片中。而只需要向终端发送DCI信令,指示目标标识码,以使终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系(可以是表格)确定目标标识码对应的配置方式,并根据目标标识码对应的配置方式确定信道检测时间的起点。
4、不需要额外的显示信令指示,直接复用已有的用来指示ending partial subframe的信令。那么需要定义被调度的UE行为:被调度UE在收到UL grant之后,要监听基站发送的指示ending partial subframe结构的信令,该信令在PDCCH common signaling发送,即指出哪个subframe是下行发送的最后一个subframe,还会指出该subframe使用哪一种DwPTS结构,即占用几个符号数。那么UE的CCA时间起点即在ending partial subframe所占用的符号数结束之后的下一个符号起点开始。比如ending partial subframe占用3个符号,则CCA时间起点从第4个符号开始。
本公开的上述技术方案提出了上行CCA时间起始配置方法和相关信令指示,明确告知被调度UE在收到UL grant之后,检测相关信令,获得CCA时间起始位置配置信息,并依照配置信息开启CCA检测,从而使得UE进行上行信道检测的时间受基站控制,实现了在终端省电的同时使得终端抢占到信道的概率最大化。
本公开实施例还提供了一种非瞬时性计算机可读存储介质,配置于终端侧,存储有计算机可执行指令,所述计算机可执行指令设置为执行如上述任一项所述的终端侧的LTE系统在非授权频段工作时的信道检测方法。
本公开实施例还提供了一种非瞬时性计算机可读存储介质,配置于基站侧,存储有计算机可执行指令,所述计算机可执行指令设置为执行如上述任一项所述的基站侧的LTE系统在非授权频段工作时的信道检测方法。
以上结合附图详细说明了本公开的技术方案,本公开提出了一种新的LTE系统在非授权频段工作时的信道检测方案,使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。
以上所述仅为本公开的可选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开的技术方案使得终端在基于调度的上行发送中,能够明确基于负载的CCA检测时间的起点,进而能够避免终端盲目进行CCA检测而导致功耗较高的问题,同时能够提高终端抢占到信道的概率。

Claims (26)

  1. 一种LTE系统在非授权频段工作时的信道检测方法,配置于终端,包括:
    接收基站在子帧n上发送的上行调度指令,所述上行调度指令设置为指示终端在子帧n+i上使用所分配的资源传输上行数据;
    在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中,设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
  2. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述在所述子帧n之后,且位于所述子帧n+i之前的子帧中,设置信道检测时间,包括:
    将所述信道检测时间的起点设置在位于所述子帧n之后,且位于所述子帧n+i之前的任一子帧的起始点。
  3. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述在所述子帧n之后,且位于所述子帧n+i之前的子帧中,设置信道检测时间,包括:
    将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
  4. 根据权利要求3所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述指定符号包括:
    所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11个符号、所述任一子帧内的第12个符号或者所述任一子帧内的第13个符号。
  5. 根据权利要求1至4中任一项所述的LTE系统在非授权频段工作时的信道检测方法,还包括:
    若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道发送所述上行数据;或
    若在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态,则执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,进行预定时长的信道检测过程;
    在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,占用所述上行信道发送所述上行数据;以及
    在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,不 发送所述上行数据。
  6. 根据权利要求5所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述预定时长为16us+M×9us,其中,M=1或2。
  7. 根据权利要求1至4中任一项所述的LTE系统在非授权频段工作时的信道检测方法,还包括:
    接收所述基站发送的用于指示所述信道检测时间的起点的RRC信今,以根据所述RRC信今确定所述信道检测时间的起点;或
    接收所述基站通过RRC信今发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过DCI信今发送的目标标识码,以根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    接收所述基站通过DCI信今发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    监听所述基站发送的指示子帧结束的信今,以根据所述指示子帧结束的信今指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
  8. 根据权利要求1至4中任一项所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述i的值为1、2、3或4。
  9. 根据权利要求1至4中任一项所述的LTE系统在非授权频段工作时的信道检测方法,还包括:
    当在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
  10. 一种LTE系统在非授权频段工作时的信道检测方法,配置于基站,包括:
    在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
    向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
  11. 根据权利要求10所述的LTE系统在非授权频段工作时的信道检测方法,其中,所述向所述终端通知信道检测时间的起点,包括:
    向所述终端发送用于指示所述信道检测时间的起点的RRC信今,以使所述终端根据所述RRC信今确定所述信道检测时间的起点;或
    通过RRC信今向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信今向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    通过DCI信今向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    向所述终端发送指示子帧结束的信今,所述指示子帧结束的信今用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
  12. 一种LTE系统在非授权频段工作时的信道检测装置,包括:
    接收单元,设置为接收基站在子帧n上发送的上行调度指令,所述上行调度指令用于指示终端在子帧n+i上使用所分配的资源传输上行数据;
    信道检测单元,设置为在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间,以对所述终端将要占用的上行信道的闲忙状态进行检测。
  13. 根据权利要求12所述的LTE系统在非授权频段工作时的信道检测装置,其中,所述信道检测单元包括:
    第一设置子单元,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧的起始点。
  14. 根据权利要求12所述的LTE系统在非授权频段工作时的信道检测装置,其中,所述信道检测单元包括:
    第二设置子单元,设置为将所述信道检测时间的起点设置在位于所述子帧n之后,以及位于所述子帧n+i之前的任一子帧内的指定符号的起始点。
  15. 根据权利要求14所述的LTE系统在非授权频段工作时的信道检测装置,其中,所述指定符号包括:
    所述任一子帧内的第1个符号、所述任一子帧内的第4个符号、所述任一子帧内的第7个符号、所述任一子帧内的第10个符号、所述任一子帧内的第11 个符号、所述任一子帧内的第12个符号,以及所述任一子帧内的第13个符号。
  16. 根据权利要求12至15中任一项所述的LTE系统在非授权频段工作时的信道检测装置,还包括:
    第一处理单元或第二处理单元,其中,
    所述第一处理单元,设置为在所述信道检测单元在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,发送初始信号或保留信号,并在所述子帧n+i的起始点占用所述上行信道发送所述上行数据;
    所述第二处理单元,设置为在所述信道检测单元在所述子帧n+i的起始点之前检测到所述上行信道处于空闲状态时,执行self-deferral过程,并在执行所述self-deferral过程后,以及在所述子帧n+i的起始点之前,进行预定时长的信道检测过程,并设置为
    在所述预定时长的信道检测过程检测到所述上行信道处于空闲状态时,占用所述上行信道发送所述上行数据,在所述预定时长的信道检测过程检测到所述上行信道处于繁忙状态时,不发送所述上行数据。
  17. 根据权利要求16所述的LTE系统在非授权频段工作时的信道检测装置,其中,所述预定时长为16us+M×9us,其中,M=1或2。
  18. 根据权利要求12至17中任一项所述的LTE系统在非授权频段工作时的信道检测装置,还包括:
    第一接收单元,设置为接收所述基站发送的用于指示所述信道检测时间的起点的RRC信今,以根据所述RRC信今确定所述信道检测时间的起点;或
    第二接收单元,设置为接收所述基站通过RRC信今发送的所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并接收所述基站通过DCI信今发送的目标标识码,以根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    第三接收单元,设置为接收所述基站通过DCI信今发送的目标标识码,以根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    监听单元,设置为监听所述基站发送的指示子帧结束的信今,以根据所述指示子帧结束的信今指示的下行发送的最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
  19. 根据权利要求12至17中任一项所述的LTE系统在非授权频段工作时 的信道检测装置,其中,所述i的值为1、2、3或4。
  20. 根据权利要求12至17中任一项所述的LTE系统在非授权频段工作时的信道检测装置,还包括:
    数据发送单元,设置为在任一子帧占用所述上行信道发送上行数据时,发送所述上行数据的时间起点为所述任一子帧的起点,且连续占用所述任一子帧的14个符号长度或13个符号长度。
  21. 一种LTE系统在非授权频段工作时的信道检测装置,包括:
    发送单元,设置为在子帧n上向终端发送上行调度指令,以指示所述终端在子帧n+i上使用所分配的资源传输上行数据;
    通知单元,设置为向所述终端通知信道检测时间的起点,以使所述终端在位于所述子帧n之后,且位于所述子帧n+i之前的子帧中设置信道检测时间。
  22. 根据权利要求21所述的LTE系统在非授权频段工作时的信道检测装置,其中,所述通知单元设置为:
    向所述终端发送用于指示所述信道检测时间的起点的RRC信今,以使所述终端根据所述RRC信今确定所述信道检测时间的起点;或
    通过RRC信今向所述终端发送所述信道检测时间的起点的多种配置方式,以及每种配置方式对应的标识码,并通过DCI信今向所述终端发送目标标识码,以使所述终端根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    通过DCI信今向所述终端发送目标标识码,以使所述终端根据自身存储的标识码与信道检测时间起点配置方式的对应关系确定所述目标标识码对应的配置方式,并根据所述目标标识码对应的配置方式确定所述信道检测时间的起点;或
    向所述终端发送指示子帧结束的信今,所述指示子帧结束的信今用于指示下行发送的最后一个子帧和所述最后一个子帧所占用的符号数,以使所述终端根据所述最后一个子帧和所述最后一个子帧所占用的符号数确定所述信道检测时间的起点。
  23. 一种终端,包括:如权利要求12至20中任一项所述的LTE系统在非授权频段工作时的信道检测装置。
  24. 一种基站,包括:如权利要求21或22所述的LTE系统在非授权频段工作时的信道检测装置。
  25. 一种非瞬时性计算机可读存储介质,配置于终端,存储有计算机可执 行指令,所述计算机可执行指令设置为执行如权利要求1-9任一项所述的LTE系统在非授权频段工作时的信道检测方法。
  26. 一种非瞬时性计算机可读存储介质,配置于基站,存储有计算机可执行指令,所述计算机可执行指令设置为执行如权利要求10-11任一项所述的LTE系统在非授权频段工作时的信道检测方法。
PCT/CN2016/092468 2016-01-08 2016-07-30 信道检测方法、信道检测装置、终端和基站 WO2017117989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16883123.8A EP3402281B1 (en) 2016-01-08 2016-07-30 Uplink laa channel access detaction
US16/068,648 US10667298B2 (en) 2016-01-08 2016-07-30 Channel assessment method and apparatus, terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610013298.9A CN105657847A (zh) 2016-01-08 2016-01-08 信道检测方法、信道检测装置、终端和基站
CN201610013298.9 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017117989A1 true WO2017117989A1 (zh) 2017-07-13

Family

ID=56484193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092468 WO2017117989A1 (zh) 2016-01-08 2016-07-30 信道检测方法、信道检测装置、终端和基站

Country Status (4)

Country Link
US (1) US10667298B2 (zh)
EP (1) EP3402281B1 (zh)
CN (1) CN105657847A (zh)
WO (1) WO2017117989A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657847A (zh) 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站
WO2017131470A1 (ko) * 2016-01-27 2017-08-03 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 지원하는 장치
EP3461198B1 (en) * 2016-06-28 2020-06-03 Huawei Technologies Co., Ltd. Communication method on unlicensed frequency band, terminal device, and network device
CN106301686B (zh) * 2016-08-16 2019-10-11 宇龙计算机通信科技(深圳)有限公司 基于动态帧结构的上行调度方法及上行调度装置和基站
CN107770872B (zh) * 2016-08-19 2023-07-18 华为技术有限公司 一种非授权频谱上的数据传输方法和设备
WO2018032915A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种非授权频谱上的数据传输方法和设备
EP3520527B1 (en) * 2016-09-30 2023-05-03 QUALCOMM Incorporated Multefire autonomous uplink channel clearance signaling
BR112019007887A2 (pt) * 2016-11-01 2019-07-02 Fg innovation co ltd equipamentos de usuário, estações-base e métodos
CN110999243B (zh) * 2017-08-14 2023-04-14 韩国电子通信研究院 用于在通信系统中发送和接收调度信息的方法
WO2019037830A1 (en) * 2017-08-21 2019-02-28 Nokia Technologies Oy METHOD, SYSTEM AND APPARATUS FOR EXTENDING TRANSMISSION DELAY IN FREE CHANNEL EVALUATION
JP7036196B2 (ja) 2017-08-29 2022-03-15 日本電気株式会社 第1のユーザ機器、基地局、第1のユーザ機器による方法、および基地局による方法
CN109729586B (zh) * 2017-10-30 2021-06-25 上海诺基亚贝尔股份有限公司 基于窗口的调度方法、设备和计算机可读介质
KR102233034B1 (ko) * 2018-03-30 2021-03-29 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 선점 지시의 사이즈 결정을 위한 방법 및 장치
CN108770064B (zh) * 2018-05-04 2023-01-10 宇龙计算机通信科技(深圳)有限公司 时隙格式的配置方法、确定方法、基站和用户侧设备
CN110890953B (zh) 2018-09-11 2022-07-19 华为技术有限公司 使用免授权频段的通信方法和通信装置
CN113228798A (zh) * 2018-12-21 2021-08-06 诺基亚技术有限公司 装置、方法和计算机程序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723009A2 (en) * 2011-06-15 2014-04-23 LG Electronics Inc. Method for receiving downlink control information in wireless access system and terminal therefor
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105657847A (zh) * 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站
CN105722097A (zh) * 2016-01-21 2016-06-29 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404315B1 (ko) * 2007-08-10 2014-06-05 후지쯔 가부시끼가이샤 무선 기지국 및 이동국
US9883404B2 (en) 2013-06-11 2018-01-30 Qualcomm Incorporated LTE/LTE—A uplink carrier aggregation using unlicensed spectrum
WO2016072685A2 (ko) * 2014-11-04 2016-05-12 엘지전자 주식회사 비면허 대역에서의 상향링크 전송 방법 및 이를 이용한 장치
CN104333902B (zh) * 2014-11-06 2018-05-15 东莞宇龙通信科技有限公司 数据同步方法、同步系统、具有基站功能的设备和终端
CN104507108B (zh) * 2014-12-19 2019-03-08 宇龙计算机通信科技(深圳)有限公司 信道空闲状态的指示或资源预留方法、系统、终端和基站
KR20180008462A (ko) * 2015-05-14 2018-01-24 케이블텔레비젼래버러토리즈,인코포레이티드 리슨 비포 토크 시스템에서의 하이브리드 자동 재송 요구
US10225859B2 (en) * 2015-05-14 2019-03-05 Qualcomm Incorporated Techniques for uplink transmission management
CN105101446B (zh) * 2015-06-30 2017-12-15 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置
EP3354099A1 (en) * 2015-09-24 2018-08-01 Intel IP Corporation Systems, methods and devices for sharing a wireless medium using listen before talk
JP6649481B2 (ja) * 2015-11-04 2020-02-19 株式会社Nttドコモ 無線通信方法及びユーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723009A2 (en) * 2011-06-15 2014-04-23 LG Electronics Inc. Method for receiving downlink control information in wireless access system and terminal therefor
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、终端和基站
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置
CN105072690A (zh) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
CN105657847A (zh) * 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站
CN105722097A (zh) * 2016-01-21 2016-06-29 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3402281A4 *

Also Published As

Publication number Publication date
EP3402281A4 (en) 2018-12-05
US10667298B2 (en) 2020-05-26
CN105657847A (zh) 2016-06-08
US20190029045A1 (en) 2019-01-24
EP3402281B1 (en) 2020-09-09
EP3402281A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
WO2017117989A1 (zh) 信道检测方法、信道检测装置、终端和基站
US9992787B2 (en) Sharing channels in a licensed-assisted access in long term evolution operation
US10764914B2 (en) Uplink information processing method and apparatus
US20190261255A1 (en) Data transmission method, terminal device, and network device
CN107548159B (zh) 处理上行链路传输的装置及方法
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
WO2017117991A1 (zh) 资源配置方法、装置和基站
EP3537677A1 (en) Uplink sending waveform configuration method, base station and user equipment
US10349425B2 (en) Resource obtaining method, station and computer storage medium
US20180279347A1 (en) Uplink transmission resource scheduling method an device, and uplink transmission method and device
WO2017117990A1 (zh) 随机接入方法、随机接入装置和终端
EP2941062A1 (en) Transmission control method, and transmission method and device
EP3372040B1 (en) Apparatus and method for listen before talk-based random access with partial subframes
WO2021062118A1 (en) Frame based equipment (fbe) in nr-u
WO2019128765A1 (zh) 一种信道侦听类型的指示方法及装置
US20130182668A1 (en) Method for processing carrier state in carrier aggregation system, and user equipment
US10462827B2 (en) Random access method and apparatus
US20190068338A1 (en) Timing Requirement Dependent Search Space Configuration For MTC Devices Of Different Categories
US11259267B2 (en) Downlink data transmission method and device
WO2020258048A1 (zh) 下行传输的检测方法、装置、设备及存储介质
WO2017193386A1 (zh) 一种计数方法及装置
EP3261279B1 (en) Communication device and method for decoding data from a network
EP2584857A1 (en) Method and device for controlling timer on buffer status report
KR102138111B1 (ko) 스케줄링 장치, 피스케줄링 장치, 및 자원 스케줄링 방법과 장치
CN106162836B (zh) 一种无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883123

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883123

Country of ref document: EP

Effective date: 20180808