WO2017121097A1 - 非授权频谱上指示上行子帧的方法及装置 - Google Patents

非授权频谱上指示上行子帧的方法及装置 Download PDF

Info

Publication number
WO2017121097A1
WO2017121097A1 PCT/CN2016/092471 CN2016092471W WO2017121097A1 WO 2017121097 A1 WO2017121097 A1 WO 2017121097A1 CN 2016092471 W CN2016092471 W CN 2016092471W WO 2017121097 A1 WO2017121097 A1 WO 2017121097A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication
uplink subframe
subframe
period
timing position
Prior art date
Application number
PCT/CN2016/092471
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to US16/070,242 priority Critical patent/US10637626B2/en
Priority to EP16884651.7A priority patent/EP3404960B1/en
Publication of WO2017121097A1 publication Critical patent/WO2017121097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications technologies, for example, to a method and apparatus for indicating an uplink subframe on an unlicensed spectrum.
  • LAA Licensed Assisted Access
  • SDL Supplemental Downlink
  • TDD Time Division Duplexing
  • CSMA/CA Carrier Sense Multiple Access/Collision Detection
  • the interception detects that there is no AP around or the terminal is transmitting/receiving signaling or data
  • a random number is generated as the backoff time.
  • the AP or the terminal still does not detect, there is an AP nearby or the terminal is transmitting.
  • Receiving signaling or data then after the end of the backoff time, the AP or terminal can start sending signaling or data.
  • the uplink and downlink transmissions between the base station and the user do not need to consider whether there is a base station or a user transmitting. If LTE is on an unlicensed band It does not consider whether there are other devices in the surrounding use of unlicensed frequency bands, which will cause great interference to the WiFi devices. Because LTE transmits as long as there is a service, and there is no monitoring rule, the WiFi device cannot transmit when the LTE has a service transmission, and can only transmit when the LTE service transmission is completed, and the channel idle state can be detected.
  • LTE uses unlicensed frequency bands, it is necessary to ensure that the LAA can coexist with related access technologies, such as WiFi access technologies, on a fair and friendly basis.
  • related access technologies such as WiFi access technologies
  • LTE requires an LBT mechanism. In this way, if the LTE detects that the channel is busy on the unlicensed spectrum, the LTE cannot occupy the frequency band, and if the channel is detected to be idle, it can be occupied.
  • the inventors have found that when the unlicensed spectrum is used in the TDD manner in the related art, since the uplink and downlink configurations of the conventional TDD are fixed, the uplink and downlink time slot ratios are not flexible enough, if the downlink data is transmitted, Due to the uplink and downlink transitions caused by the fixed uplink and downlink configuration, the channel resources may be robbed by the WiFi device, and the downlink data transmission process may be frequently interrupted. Therefore, the uplink and downlink configuration of the TDD method in the related art is not flexible, and the transmission efficiency is not high.
  • An embodiment of the present disclosure provides a method for indicating an uplink subframe on an unlicensed spectrum, including:
  • an indication position preset in a current indication period where the indication position is a timing position of one or more downlink subframes preset;
  • the indication signaling is sent in the downlink subframe corresponding to the indication location, and the terminal receiving the downlink subframe acquires the current indication period according to the indication signaling or The timing position of the uplink subframe within the time range of the next indication period.
  • the timing position of the downlink subframe includes: a timing position of the special subframe including the downlink pilot time slot DwPTS.
  • the indication signaling is downlink control information DCI signaling.
  • the DCI signaling is carried by a common search space of a downlink physical control channel PDCCH, where the DCI signaling is a format 1C format, and the cyclic redundancy check code of the DCI signaling is CRC scrambling code authorized auxiliary access.
  • the wireless network temporarily identifies the LAA-RNTI.
  • the preset period duration is: 5 ms, 10 ms, 20 ms, 40 ms, or 80 ms.
  • the indicating location in the current indication period of the preset includes at least one of the following configurations:
  • the method further includes:
  • the terminal acquiring the indication location by receiving the RRC signaling, and detecting the indication signaling at the indication location.
  • the indication signaling includes a bit sequence, the number of bits in the bit sequence is the same as the number of subframes in the preset period duration, and the positions of 0/1 in the bit sequence are respectively Corresponding timing positions of the uplink subframes in the indication period.
  • the indication signaling includes the identifier information corresponding to the preset uplink subframe allocation configuration, where the uplink subframe allocation configuration includes a timing position of the uplink and downlink subframes in one TDD frame.
  • the preset uplink subframe allocation configuration includes one of: DDDDDDDDDD, DDDDDDDDDU, DDDDDDDDUU, DDDDDDDUUU, DDDDDDUUUU, DDDDDUUUU, and DDDDUUUUU, where D is a timing position of the downlink subframe in the TDD frame, and U is The timing position of the uplink subframe in the TDD frame.
  • the preset uplink subframe allocation configuration includes: one of a DDDDDDDDDS, a DDDDDDDDSU, a DDDDDDDSUU, a DDDDDDSUUU, a DDDDDSUUUU, a DDDDSUUUU, and a DDDSUUUUU, where D is a timing position of the downlink subframe in the TDD frame, and U is The timing position of the uplink subframe in the TDD frame, and S is the timing position of the special subframe in the TDD frame.
  • the last 1 or 2 of the previous subframe set as the timing position of the first uplink subframe The symbol is the location of the UpPTS of the special subframe, and the terminal is in the previous position of the timing position of the uplink subframe or the first uplink subframe after receiving the timing position indicating the uplink subframe of the allocated signaling.
  • the location of the last 1 or 2 symbols of the frame transmits the PRACH and/or SRS.
  • an embodiment of the present disclosure also provides an apparatus for indicating an uplink subframe on an unlicensed spectrum.
  • an apparatus for indicating an uplink subframe on an unlicensed spectrum include:
  • the indication period determining module is configured to determine the current indication period and the next indication period according to the preset period duration
  • a location acquisition module configured to acquire a preset indication location in a current indication period, where the indication location is a timing location of a preset one or more downlink subframes;
  • the instruction signaling module is configured to: when the indication location in the current indication period arrives, send indication signaling in a downlink subframe corresponding to the indication location, and the terminal receiving the downlink subframe according to the indication The timing position of the uplink subframe in the time range of the current indication period or the next indication period is obtained.
  • the timing position of the downlink subframe further includes: a timing position of the special subframe that includes the DwPTS.
  • the indication signaling is downlink control information DCI signaling.
  • the DCI signaling is carried by a common search space of a downlink physical control channel PDCCH, where the DCI signaling is a format 1C format, and the cyclic redundancy check code of the DCI signaling is CRC scrambling code authorized auxiliary access.
  • the wireless network temporarily identifies the LAA-RNTI.
  • the preset period duration is: 5 ms, 10 ms, 20 ms, 40 ms, or 80 ms.
  • the preset indication location comprises at least one of the following configurations:
  • the indication signaling corresponds to indicating an uplink subframe in a next indication period
  • the indication signaling includes a bit sequence, the number of bits in the bit sequence is the same as the number of subframes in the preset period duration, and the positions of 0/1 in the bit sequence are respectively Corresponding timing positions of the uplink subframes in the indication period.
  • the indication signaling includes the identifier information corresponding to the preset uplink subframe allocation configuration, where the uplink subframe allocation configuration includes a timing position of the uplink and downlink subframes in one TDD frame.
  • the preset uplink subframe allocation configuration includes one of: DDDDDDDDDD, DDDDDDDDDU, DDDDDDDDUU, DDDDDDDUUU, DDDDDDUUUU, DDDDDUUUU, and DDDDUUUUU, where D is a timing position of the downlink subframe in the TDD frame, and U is The timing position of the uplink subframe in the TDD frame.
  • the preset uplink subframe allocation configuration includes: one of a DDDDDDDDDS, a DDDDDDDDSU, a DDDDDDDSUU, a DDDDDDSUUU, a DDDDDSUUUU, a DDDDSUUUU, and a DDDSUUUUU, where D is a timing position of the downlink subframe in the TDD frame, and U is The timing position of the uplink subframe in the TDD frame, and S is the timing position of the special subframe in the TDD frame.
  • the last one or two symbols of the previous subframe set as the timing position of the first uplink subframe are locations of the UpPTS of the special subframe, and the terminal receives the uplink indicating that the signaling is allocated.
  • the physical random access channel PRACH and/or the interception reference signal SRS are transmitted at the position of the last 1 or 2 symbols of the previous subframe of the uplink subframe or the timing position of the first uplink subframe.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium storing computer executable instructions for performing the method for indicating an uplink subframe on any of the unlicensed spectrums.
  • Embodiments of the present disclosure also provide a terminal including one or more processors, a memory, and one or more programs, the one or more programs being stored in a memory, when executed by one or more processors, The processor performs the method of indicating an uplink subframe on any of the unlicensed spectrums described above.
  • the frame structure of the TDD frame is no longer limited to the seven frame structures in the related art, and the base station can set the current indication period or the next indication period in each indication period.
  • the frame structure in the middle that is, the allocation information of the sequence position order of the uplink and downlink subframes. Therefore, even if a transmission scenario in which the seven frame structures defined in the conventional technology are not applicable is present, the uplink subframe can be dynamically allocated or adjusted periodically, and the terminal is notified to adapt the transmission scenario by using the foregoing manner.
  • the method and device for indicating an uplink subframe on the unlicensed spectrum can make the frame structure of the TDD frame more dynamic and flexible, so that more transmission scenarios can be adapted and the transmission efficiency is improved.
  • 1 is a frame structure diagram of a TDD frame in the related art
  • FIG. 2 is a flowchart of a method for indicating an uplink subframe on an unlicensed spectrum according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an apparatus for indicating an uplink subframe on an unlicensed spectrum according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing the hardware structure of a terminal in an embodiment of the present disclosure.
  • the frame structure of the TDD in the related art may be as shown in FIG. 1.
  • the length of a TDD frame may be 10 ms, and is divided into 10 subframes.
  • the duration of each subframe is 1 ms, and the number is subframe 0 to Subframe 9.
  • the subframe may include an uplink subframe U, a downlink subframe D, and a special subframe S.
  • the sequence position of the subframe sequence is the timing position of the time division resource allocated by the subframe. For example, if a TDD frame is defined as DSUUUDSUUU, time division resource allocation is used for downlink transmission in the first 1 ms of the TDD frame transmission in the timing sequence, and time division resource allocation is performed in the third 1 ms. Used for uplink transmission.
  • the allocation of the uplink and downlink subframes in the TDD subframe is relatively fixed, and generally includes seven forms of TDD frame structures, and the seven types of TDD frame structures define seven different timing sequences of uplink and downlink subframes in TDD.
  • the order in which the frames are arranged As shown in Table 1, seven forms of TDD frame structure in the related art are given.
  • Up and down subframe configuration in:
  • the downlink-to-uplink transition point period is a period in which the location of the special subframe occurs. Since the downlink-to-uplink transition is susceptible to neighboring base stations and terminals, it is necessary to set a special subframe S in the TDD subframe or in the TDD frame. To avoid interference from neighboring base stations and terminals.
  • the uplink/downlink subframe conversion occurs, and other WIFI devices may preempt the time division resources in the uplink subframe.
  • the base station needs to detect that the other WIFI device does not preempt the TDD subframe or the TDD frame.
  • the time division resource is available, the downlink subframe transmission can be started. Therefore, the uplink and downlink configuration of the TDD mode in the related art is not flexible, and the transmission efficiency is not high.
  • a method for indicating an uplink subframe on an unlicensed spectrum is proposed.
  • the method can be implemented by a base station supporting the LAA system.
  • the method includes:
  • the preset period duration may be an integer multiple of the subframe length, if the subframe length is 1 ms, the preset period duration is N 1 ms, where N is a positive integer greater than or equal to 1.
  • the current indication period is the length of 10 subframes.
  • the end time position of the current indication period may be known, and the end time position may be Indicates the start time position of the cycle for the next.
  • S120 acquiring an indication position preset in a current indication period, where the indication position is a timing position of a preset one or more downlink subframes.
  • the indication signaling is sent in the downlink subframe corresponding to the indication location, so that the terminal acquires the current indication period according to the received indication signaling or The timing position of the uplink subframe within the time range of the next indication period.
  • the indication location is the time position at which the base station sends the indication signaling to the terminal through the downlink subframe, that is, the sequence number of the downlink subframe in which the base station sends the indication signaling.
  • a downlink subframe in which one or more timing positions can be set in advance in the current indication period can be used for transmission indication signaling.
  • the indicated position in the retaining wall indication period may be determined according to the business demand at the starting position of each current indication period.
  • the indication position preset in the current indication period may include a configuration manner in which the base station selects a downlink subframe as a timing position of the transmission indication signaling, for example:
  • Manner 1 The timing position of the first downlink subframe in the current indication period.
  • the indication signaling may be sent at the timing position of the first downlink subframe in each TDD frame.
  • the base station sends indication signaling at a time position of subframe 0, and the indication signaling indicates an uplink subframe position in the current indication period. .
  • the first downlink of each time slot in each TDD frame may be used.
  • the timing position of the frame is sent to indicate signaling. Referring to FIG. 1, if the first subframe subframe 0 or subframe5 of each slot in the TDD frame is a downlink subframe, the base station sends indication signaling at a time position of subframe 0 or subframe 5, and the indication signaling indicates that the current Indicates the position of the uplink subframe in the period.
  • Manner 2 The timing position of one or more downlink subframes other than the first downlink subframe in the current indication period.
  • the current indication period is 10 ms
  • the start position of the current indication period is the same as the start position of the TDD frame
  • one or more than the first downlink subframe in each TDD frame may be used.
  • the timing position of the downlink subframe transmits the indication signaling.
  • the uplink and downlink subframes of the TDD frame are configured as DSUDDDSUDD, except that the subframe subframe 0 is a downlink subframe, and the subframe subframe 3 in the TDD frame is a downlink subframe, the base station may be in the subframe 3
  • the time position sends indication signaling, and the indication signaling indicates the next indication period, that is, the uplink subframe position in the next radio frame.
  • the first one may be included in each time slot in each TDD frame.
  • the timing information of the downlink subframes other than the timing position of the downlink subframe transmits the indication signaling.
  • the base station may send a notification message at the time position of the subframe 3. Let, and the indication signaling indicates the uplink subframe position of the subframe5-subframe9 in the current frame in the next indication period.
  • Manner 3 The timing position of one or more downlink subframes in the last frame in the current indication period.
  • the indication signaling is sent at a timing position of any downlink subframe in the mT/10 frame, and the indication signaling indicates a next indication period, where the next indication period may be a radio frame (mT/10)+1. , (mT/10)+2, . . . , or the location of the uplink subframe of (m+1)T/10.
  • the next indication period may be a radio frame (mT/10)+1. , (mT/10)+2, . . . , or the location of the uplink subframe of (m+1)T/10.
  • the current indication period T is 20 ms
  • the current indication period includes radio frames 0 and 1
  • the next indication period includes radio frames 2 and 3.
  • the base station sends indication signaling at any one or more downlink subframe timing positions of the current periodic radio frame 1 , such as subframe 4 and/or 5, indicating the next indication period, and the uplink subframes of the radio frames 2 and 3 Frame position.
  • Manner 4 The timing position of one or more downlink subframes before the first uplink subframe in the current indication period.
  • the current indication period is 10 ms
  • the starting position of the current indication period is from the start of the TDD frame
  • the starting position is the same.
  • the uplink and downlink subframes of the TDD frame are configured as DDDDSUUUUU
  • the subframe 5 of the TDD frame corresponding to the current indication period is the first uplink subframe
  • the downlink subframe before the uplink subframe ( The subframe 0-subframe 3) or one or more timing positions in the subframe 4 transmits the indication signaling
  • the indication signaling indicates the uplink subframe position of the current indication period.
  • Manner 5 The timing position of one or more downlink subframes before each uplink subframe in the current indication period.
  • the start position of the current indication period is the same as the start position of the TDD frame.
  • the uplink and downlink subframes of the TDD frame are configured as DSUUDDSUUD
  • the subframes 2, 3, 7, and 8 of the TDD frame corresponding to the current indication period are uplink subframes, and then in subframe 0, 1 and subframe 4, 5, and 6.
  • the indication signaling is sent by one or more timing positions, and the indication signaling indicates an uplink subframe position of the current indication period.
  • the downlink subframe mentioned above includes not only the downlink subframe D defined in the TDD frame structure shown in FIG. 1 but also the downlink pilot slot of the special subframe S defined in the TDD frame structure.
  • the timing position of the DwPTS (the base station can also transmit data downstream in the DwPTS). That is, the base station may transmit the indication signaling at the timing position of the downlink subframe D, or may transmit the indication signaling at the timing position of the DwPTS of the special subframe.
  • the indication positions in each indication period may be different. As described above, it may be determined at a start position of an indication period, which downlink subframes are selected as the transmission indication signaling in the indication period. Indicate the location. After entering the next indication period, the indication information can be sent by replacing the indication position. For example, in the chronological order, the transmission process of the base station may go through multiple indication periods. In the first indication period, the base station may select the first downlink subframe transmission indication signaling of the first indication period in a manner of mode 1. In the second indication period, the base station may also select all the downlink subframes in the second indication period to send the indication signaling according to the service requirement.
  • the base station may notify the terminal of the indication location by using RRC signaling after obtaining the preset indication position in the current indication period, according to the service requirement, to indicate that the terminal receives the RRC letter by receiving the RRC message. Acquiring the indication location and detecting indication signaling at the indication location.
  • the time-division of the corresponding downlink subframe is utilized.
  • the source sends indication signaling.
  • the indication signaling is Downlink Control Information (DCI) signaling.
  • the DCI signaling used to indicate the terminal may be transmitted through the licensed frequency band or the unlicensed frequency band, and may be carried by a common search space of a Physical Downlink Control Channel (PDCCH), which may be a format 1C format.
  • the Cyclic Redundancy Check (CRC) of the DCI signaling may be a Licensed-Assistance Access-Radio Network Temporary Identity (LAA-RNTI).
  • LAA-RNTI Licensed-Assistance Access-Radio Network Temporary Identity
  • two ways may be used to define a semantic format of DCI signaling, which is used to indicate the location of an uplink subframe in a current indication period or a next indication period of a terminal.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the indication signaling includes a bit sequence, such as a DCI bit sequence, the number of bits in the bit sequence is the same as the number of subframes in the preset period duration, and 0/ in the bit sequence.
  • the positions of 1 correspond to the relative timing positions of the uplink subframes in the indication period.
  • the DCI bit sequence is a 10-bit bit sequence, for example, 1 indicates an uplink subframe, and 0 indicates a downlink subframe and a special subframe. If the subframes 3 and 8 in the next allocated period of the pre-assigned are uplink subframes, corresponding The DCI bit sequence is: 0001000010, wherein the fourth bit of the sequence corresponds to the subframe 3, and the ninth bit corresponds to the subframe 8, and the sequence order in the DCI bit sequence corresponds to the timing sequence of the subframe in the TDD frame.
  • the bits in the DCI bit sequence contain all the possibilities of allocating the uplink subframe, so this method is more flexible. However, if the preset indication period is long, for example, 80 ms, the length of the DCI bit sequence will reach 80 bits, so that the data to be transmitted is increased, which will affect the transmission efficiency.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the indication signaling includes the identifier information corresponding to the preset uplink subframe allocation configuration, where the uplink subframe allocation configuration includes a timing position of the uplink and downlink subframes in one TDD frame.
  • the frame structure of the TDD frame can be extended in advance, and the 7 frame structures are expanded into a plurality of frame knots.
  • the method for pre-expanding the frame structure of the TDD frame may optionally only change the timing sequence and/or the allocation ratio of the uplink and downlink subframes, and then use each of the frame structures with less digits of identification information. Number, and notify the terminal of the mapping relationship between the identifier and the frame structure in advance.
  • the terminal can be instructed to receive the indication signaling, and the frame structure corresponding to the corresponding identification information is found according to the mapping relationship, so that the terminal can be Obtaining the position of the uplink subframe in the current indication period or the next indication period according to the frame structure.
  • the extended frame structure that is, the uplink subframe allocation configuration of the TDD frame, may include:
  • the eighth frame structure DDDDDDDD or DDDDDDDDDS,
  • the ninth frame structure DDDDDDDDDU or DDDDDDDDSU,
  • the 10th frame structure DDDDDDDDUU or DDDDDDDSUU,
  • the eleventh frame structure DDDDDDDUUU or DDDDDDSUUU,
  • the 12th frame structure DDDDDDUUUU or DDDDDSUUUU,
  • the 13th frame structure DDDDDUUUUU or DDDDSUUUUU,
  • the 14th frame structure DDDDUUUUU or DDDSUUUUUU.
  • D is the timing position of the downlink subframe in the TDD frame
  • U is the timing position of the uplink subframe in the TDD frame
  • S is the timing position of the special subframe in the TDD frame.
  • the embodiment of the present disclosure has 14 frame structures to be selected. Therefore, the frame structure and the identification information can be established by using the value of 4 bits as the identification information.
  • the base station can transmit shorter identification information, and the amount of data transmitted is smaller, and the transmission efficiency is higher. .
  • the extended frame structure that is, the expression of the uplink subframe allocation configuration in different embodiments and application scenarios may not be limited to the above-mentioned U, D, and S representations.
  • the various extended TDD frame structures are described in the form of U, D, and S, which are only used to describe the timing sequence of the uplink subframe in the extended frame structure, and do not limit the representation or storage form of the frame structure itself. .
  • the extended frame structure may further include: DDDDDDDDDS, DDDDDDDDSU, DDDDDDDSUU, DDDDDDSUUU, DDDDDSUUUU, DDDDSUUUU, and DDDSUUUUU.
  • part of the downlink subframe may be It is set as a special subframe, but since the DwPTS of the special subframe can also be used and the transmission indication signaling, the special subframe S in the configuration can also be regarded as a downlink subframe in a broad sense.
  • the terminal receives the RRC signaling before the start time of the current indication period, and determines, according to the RRC signaling, that the indication information of the one or more subframes needs to be received in the current indication period, and then the PDCCH is de-PDCCHed in the subframes.
  • the common search space in the middle detects the DCI signaling of the CRC scrambling code LAA-RNTI.
  • the last one or two symbols of the subframe before the uplink subframe that first appears when the downlink subframe is converted into the uplink subframe in each indication period may be set as the UpPTS of the special subframe (refer to FIG. 1 Show) location. Because the UpPTS can be used to send the PRACH and the SRS, the terminal can obtain the timing position of the uplink subframe and the location of the UpPTS according to the indication signaling, so that the uplink subframe or the first uplink subframe can be obtained.
  • the PRACH and/or SRS are transmitted in the last one or two symbol positions of a subframe (which may be a downlink subframe or a timing position of a special subframe).
  • the method includes: an indication period determining module 210, an indication location obtaining module 220, and an indication signaling sending module 230, where:
  • the indication period determining module 210 is configured to determine the current indication period and the next indication period according to the preset period duration.
  • the indication position obtaining module 220 is configured to acquire a preset indication position in the current indication period, where the indication position is a timing position of the preset one or more downlink subframes.
  • the indication signaling sending module 230 is configured to send the indication signaling in the downlink subframe corresponding to the indicated location when the indicated location in the current indication period arrives.
  • the timing position of the downlink subframe further includes: a timing position of the special subframe that includes the DwPTS.
  • the indication signaling is downlink control information DCI signaling.
  • the DCI signaling is carried by a common search space of the downlink physical control channel PDCCH, the DCI signaling is a format 1C format, and the cyclic redundancy check code CRC scrambling code of the DCI signaling is used.
  • the preset period duration is: 5 ms, 10 ms, 20 ms, 40 ms, or 80 ms.
  • the indication position preset in the current indication period includes at least one of the following configurations:
  • the indication signaling corresponds to indicating an uplink subframe in a next indication period
  • the apparatus further includes: an indication location notification module 240, configured to notify the terminal by the radio resource control RRC signaling, where the terminal receives The RRC signaling acquires the indicated location, and the indication signaling is detected at the indicated location.
  • an indication location notification module 240 configured to notify the terminal by the radio resource control RRC signaling, where the terminal receives The RRC signaling acquires the indicated location, and the indication signaling is detected at the indicated location.
  • the indication signaling includes a bit sequence, the number of bits in the bit sequence is the same as the number of subframes in the period duration, and the location of 0/1 in the bit sequence Corresponding to the timing position of the uplink subframe in the indicated period.
  • the indication signaling includes the identifier information corresponding to the preset uplink subframe allocation configuration, where the uplink subframe allocation configuration includes the timing of the uplink and downlink subframes in one TDD frame. position.
  • the preset uplink subframe allocation configuration includes one of: DDDDDDDDDD, DDDDDDDDDU, DDDDDDDDUU, DDDDDDDUUU, DDDDDDUUUU, DDDDDUUUU, and DDDDUUUUU, where D is a timing sequence of the downlink subframe in the TDD frame.
  • Position, U is the timing position of the uplink subframe in the TDD frame.
  • the preset uplink subframe allocation configuration includes: DDDDDDDDDS, One of DDDDDDDDSU, DDDDDDDSUU, DDDDDDSUUU, DDDDDSUUUU, DDDDSUUUU, and DDDSUUUUU, where D is the timing position of the downlink subframe in the TDD frame, U is the timing position of the uplink subframe in the TDD frame, and S is a special subframe at The timing position in the TDD frame.
  • the last one or two symbols of the previous subframe that are set as the timing position of the first uplink subframe when the downlink subframe is converted into the uplink subframe is the UpPTS of the special subframe.
  • a timing position after the terminal receives the timing position of the uplink subframe in which the indication signaling is allocated, the last one or two symbols of the previous subframe in the timing position of the uplink subframe or the first uplink subframe The location sends PRACH and/or SRS.
  • the embodiment of the present disclosure further provides a non-transitory computer readable storage medium storing computer executable instructions for performing an unlicensed spectrum indication uplink as described in any of the above embodiments.
  • the method of the frame is not limited to any of the above embodiments.
  • the embodiment of the present disclosure further provides a schematic diagram of a hardware structure of a base station.
  • the base station includes:
  • One or more processors 310, one processor 310 is taken as an example in FIG. 4;
  • the base station may further include: an input device 330 and an output device 340.
  • the processor 310, the memory 320, the input device 330, and the output device 340 in the base station may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 320 is used as a non-transitory computer readable storage medium, and can be used to store a software program, a computer executable program, and a module, such as a program instruction/module corresponding to a method for indicating an uplink subframe on an unlicensed spectrum in the embodiment of the present disclosure.
  • a module such as a program instruction/module corresponding to a method for indicating an uplink subframe on an unlicensed spectrum in the embodiment of the present disclosure.
  • the processor 310 performs the various functional applications and data processing of the server by running the software programs, the instructions, and the modules stored in the memory 320, that is, the method for indicating the uplink subframe on the unlicensed spectrum of the foregoing method embodiment.
  • the memory 320 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may be stored according to the terminal device Use the data created, etc.
  • memory 320 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • memory 320 can optionally include memory remotely located relative to processor 310, which can be connected to the terminal device over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 330 can be used to receive input digital or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the output device 340 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 320, and when executed by the one or more processors 310, perform a method of indicating an uplink subframe on an unlicensed spectrum in the foregoing method embodiment.
  • the frame structure of the TDD frame is no longer limited to the seven frame structures defined in the conventional technology, and the base station may set the current indication period in each indication period or The frame structure in the next indication period, that is, the allocation information of the timing position order of the uplink and downlink subframes. Therefore, even if a transmission scenario in which the seven frame structures defined in the conventional technology are not applicable is present, the uplink subframe can be dynamically allocated or adjusted periodically, and the terminal is notified to adapt the transmission scenario by using the foregoing manner.
  • the method and device for indicating an uplink subframe on the unlicensed spectrum can make the frame structure of the TDD frame more dynamic and flexible, so that more transmission scenarios can be adapted and the transmission efficiency is improved.
  • the method and apparatus for indicating an uplink subframe on the unlicensed spectrum provided by the embodiment of the present disclosure extend the TDD frame structure, so that the TDD frame structure is more flexible, can adapt to more transmission environments, and improve transmission efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

非授权频谱上指示上行子帧的方法,包括:根据预设的周期时长确定当前指示周期和下个指示周期;获取预设的在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置;在所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信令。

Description

非授权频谱上指示上行子帧的方法及装置
本申请要求于2016年1月15日提交中国专利局,申请号为201610032198.0、发明名称为“一种非授权频谱上指示上行子帧的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,例如涉及一种非授权频谱上指示上行子帧的方法及装置。
背景技术
随着通信业务量的急剧增加,3GPP授权频谱显得越来越不足以提供更高的网络容量。为了提高频谱资源的利用,相关技术中已可使用2.4GHz和5GHz频段等非授权频谱。这些未授权频谱目前主要是WiFi,蓝牙,雷达,医疗等系统在使用。为了让LTE标准在未授权频段上使用,3GPP提出了授权辅助访问(Licensed Assisted Access,LAA)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(Supplemental Downlink,SDL),即只有下行包含传输子帧;另一种是时分双工(Time Division Duplexing,TDD)模式,上下行都包含传输子帧。
另外,在非授权频谱上使用的接入技术,如WiFi接入技术,该WiFi系统具有较弱的抗干扰能力。为了避免干扰,WiFi系统设计了很多抗干扰规则,如载波监听多路访问/冲突检测(Carrier Sense Multiple Access/Collision Detection,CSMA/CA)方法。这个方法的基本原理是WiFi的接入点(Access Point,AP)或者终端在发送信令或者数据之前,要先监听检测周围是否有AP或者终端在发送/接收信令或数据,如果监听检测到周围有AP或终端在发送/接收信令或数据,则该AP或终端继续监听,直到监听到没有为止。如果监听检测到周围没有AP或终端在发送/接收信令或数据,则生成一个随机数作为退避时间,在这个退避时间内,如果AP或终端仍没有监听检测到有周围有AP或终端在发送/接收信令或数据,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。
而LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有基站或用户在进行传输。如果LTE在非授权频段上使 用时也不考虑周围是否有别的设备在使用非授权频段,那么将对WiFi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么WiFi设备在LTE有业务传输时就没法传输,只能等到LTE业务传输完成,才能检测到信道空闲状态,才能进行传输。
所以LTE在使用非授权频段时,需要保证LAA能够在公平友好的基础上和相关的接入技术,比如WiFi接入技术,共存。而传统的LTE系统中没有LBT的机制来避免碰撞。为了与WiFi系统更好的共存,LTE需要一种LBT机制。这样,LTE在非授权频谱上如果检测到信道忙,则不能占用该频段,如果检测到信道闲,才能占用。
然而,发明人经研究发现,相关技术中以TDD的方式使用非授权频谱时,由于传统的TDD的上下行配置是固定的,使得上下行时隙配比不够灵活,若在发送下行数据时,由于固定的上下行配置的原因而发生上下行转换,则信道资源可能会被WiFi设备抢夺,而导致下行数据的发送进程有可能被频繁中断。因此,相关技术中的TDD方式的上下行配置不灵活,传输效率不高。
发明内容
基于此,为解决上述提到的相关技术中的TDD方式的上下行配置不灵活的,传输效率不高的问题。
本公开实施例提出一种非授权频谱上指示上行子帧的方法,包括:
根据预设的周期时长确定当前指示周期和下个指示周期;
获取预设在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置;以及
当所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信令,接收所述下行子帧的终端根据所述指示信令获取所述当前指示周期或下个指示周期的时间范围内的上行子帧的时序位置。
可选地,所述下行子帧的时序位置包括:包含下行导频时隙DwPTS的特殊子帧的时序位置。
可选地,所述指示信令为下行链路控制信息DCI信令。
可选地,所述DCI信令由下行物理控制信道PDCCH的公共搜索空间承载,所述DCI信令为format 1C格式,所述DCI信令的循环冗余校验码CRC扰码授权辅助接入无线网络临时标识LAA-RNTI。
可选地,所述预设的周期时长为:5ms、10ms、20ms、40ms或80ms。
可选地,所述预设在当前指示周期中的指示位置包括下述配置中的至少一种:
当前指示周期中首个下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;
当前指示周期中的最后一个帧中的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;或
当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧。
可选地,在获取预设在当前指示周期中的指示位置之后,该方法还包括:
通过无线资源控制RRC信令将所述指示位置通知给终端,所述终端通过接收RRC信令获取所述指示位置,在所述指示位置检测指示信令。
可选地,所述指示信令包括位序列,所述位序列中的位数与所述预设的周期时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
可选地,所述指示信令中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
可选地,所述预设的上行子帧分配配置包括:DDDDDDDDDD、DDDDDDDDDU、DDDDDDDDUU、DDDDDDDUUU、DDDDDDUUUU、DDDDDUUUUU和DDDDUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置。
可选地,所述预设的上行子帧分配配置包括:DDDDDDDDDS、DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。
可选地,所述被设置为首个上行子帧的时序位置的前一个子帧的最后1或2 个符号为特殊子帧的UpPTS的位置,所述终端在接收到指示信令得到分配的上行子帧的时序位置后,在所述上行子帧或首个上行子帧的时序位置的前一个子帧的最后1或2个符号的位置发送PRACH和/或SRS。
此外,本公开实施例还提出了一种非授权频谱上指示上行子帧的装置。包括:
指示周期确定模块,设置为根据预设的周期时长确定当前指示周期和下个指示周期;
指示位置获取模块,设置为获取预设的在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置;以及
指示信令发送模块,设置为在所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信令,接收所述下行子帧的终端根据所述指示信令获取所述当前指示周期或下个指示周期的时间范围内的上行子帧的时序位置。
可选地,所述下行子帧的时序位置还包括:包含DwPTS的特殊子帧的时序位置。
可选地,所述指示信令为下行链路控制信息DCI信令。
可选地,所述DCI信令由下行物理控制信道PDCCH的公共搜索空间承载,所述DCI信令为format 1C格式,所述DCI信令的循环冗余校验码CRC扰码授权辅助接入无线网络临时标识LAA-RNTI。
可选地,所述预设的周期时长为:5ms、10ms、20ms、40ms或80ms。
可选地,所述预设的指示位置包括下述配置中的至少一种:
当前指示周期中首个下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;或
当前指示周期中的最后一个帧中的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;或
当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序 位置,所述指示信令对应指示当前指示周期中的上行子帧。可选地,所述指示信令包括位序列,所述位序列中的位数与所述预设的周期时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
可选地,所述指示信令中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
可选地,所述预设的上行子帧分配配置包括:DDDDDDDDDD、DDDDDDDDDU、DDDDDDDDUU、DDDDDDDUUU、DDDDDDUUUU、DDDDDUUUUU和DDDDUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置。
可选地,所述预设的上行子帧分配配置包括:DDDDDDDDDS、DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。
可选地,所述被设置为首个上行子帧的时序位置的前一个子帧的最后1或2个符号为特殊子帧的UpPTS的位置,所述终端在接收到指示信令得到分配的上行子帧的时序位置后,在所述上行子帧或首个上行子帧的时序位置的前一个子帧的最后1或2个符号的位置发送物理随机接入信道PRACH和/或监听参考信号SRS。
本公开实施例还提出了一种非瞬时性计算机可读存储介质,存储有计算机可执行指令,用于执行上述任意一种非授权频谱上指示上行子帧的方法。
本公开实施例还提出了一种终端,包括一个或多个处理器,存储器以及一个或多个程序,所述一个或多个程序存储在存储器中,当被一个或多个处理器执行时,该处理器执行上述任意一种非授权频谱上指示上行子帧的方法。
上述基于非授权频谱上指示上行子帧的方法及装置,TDD帧的帧结构不再仅限于相关技术中的7种帧结构,基站可在每个指示周期中设置当前指示周期或下一个指示周期中的帧结构,即设置上下行子帧的时序位置顺序的分配信息。 使得即使出现了传统技术中所限定的7种帧结构不适用的传输场景,仍然可通过周期性地动态分配或调整上行子帧,并通过上述方式通知终端来对传输场景进行适配,因此,上述非授权频谱上指示上行子帧的方法及装置可使得TDD帧的帧结构更加动态灵活,从而可适配更多的传输场景,提高传输效率。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对可选实施例描述中所需要使用的附图作简单地介绍。其中:
图1为相关技术中的TDD帧的帧结构图;
图2为本公开实施例中一种非授权频谱上指示上行子帧的方法的流程图;
图3为本公开实施例中一种非授权频谱上指示上行子帧的装置的示意图;
图4是本公开实施例中一种终端的硬件结构示意图。
实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行相关描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。
相关技术中的TDD的帧结构可如图1所示,一个TDD帧的时间长度可为10ms,被分为10个子帧(subframe),则每个子帧的时长为1ms,编号分别为subframe 0至subframe 9。子帧可包括上行子帧U,下行子帧D和特殊子帧S,在一个TDD帧中,子帧序列的序列位置即为子帧所分配的时分资源的时序位置。例如,若一个TDD的帧被定义为DSUUUDSUUU,则在时序顺序上,在该TDD帧传输的第一个1ms内,将时分资源分配用于下行传输,在第三个1ms内,将时分资源分配用于上行传输。
相关技术中,TDD子帧中的上下行子帧的分配较固定,一般包括7种形式的TDD帧结构,该7种形式的TDD帧结构定义了7种不同时序顺序的上下行子帧在TDD帧内的排列顺序。如表1所示,给出了相关技术中的7种形式的TDD帧结构 中的上下行子帧配置:
表1
Figure PCTCN2016092471-appb-000001
其中,下行到上行转换点周期即为特殊子帧的位置出现的周期,由于下行到上行的转换容易受到邻近基站和终端的影响,因此需要在TDD子帧内或TDD帧内设置特殊子帧S来避免邻近基站和终端的干扰。
若需要将一个TDD子帧内或者TDD帧内的时分资源全部分配用于传输下行子帧,则由相关技术中的7种形式的TDD帧结构可看出,在该下行子帧传输过程中会出现上下行子帧转换,而在上行子帧中可能有其他WIFI设备抢占时分资源,那么当再次需要传输下行子帧时,基站需要再次检测其他WIFI设备没有抢占该TDD子帧内或者TDD帧内的时分资源时,方可开始进行下行子帧传输,因此,相关技术中的TDD方式的上下行配置不灵活,传输效率不高。
因此,为解决上述提到的相关技术中的TDD方式的上下行配置不灵活,传输效率不高的问题,在本公开实施例中,提出了一种非授权频谱上指示上行子帧的方法,该方法可由支持LAA系统的基站实现。
可选地,如图2所示,该方法包括:
在S110中:根据预设的周期时长确定当前指示周期和下个指示周期。
在本实施例中,预设的周期时长可选为子帧长度的整数倍,若子帧长度为 1ms,则预设的周期时长为N个1ms,其中N为大于等于1的正整数。为了适配相关技术中7种的TDD帧结构,该预设的周期时长可以为5ms(N=5)、10ms(N=10)、20ms(N=20)、40ms(N=40)或80ms(N=80)。
例如,若预设的周期时长为10ms,则当前指示周期为10个子帧的长度,结合当前指示周期的起始时间位置以及当前时间,可知晓当前指示周期的结束时间位置,该结束时间位置可为下个指示周期的起始时间位置。
在S120中:获取预设在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置。
在S130中:当所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信令,以使得终端根据接收到的指示信令获取所述当前指示周期或下个指示周期的时间范围内的上行子帧的时序位置。
指示位置即为基站通过下行子帧向终端发送指示信令的时间位置,亦即基站发送指示信令的下行子帧的序列编号。可预先在当前指示周期中设定一个或多个时序位置的下行子帧可用于传输指示信令。在本实施例中,可在每个当前指示周期的起始位置根据业务需求确定挡墙指示周期中的指示位置。
在本实施例中,预设在当前指示周期中的指示位置可包括基站选择下行子帧作为传输指示信令的时序位置的配置方式,例如:
方式一:当前指示周期中的首个下行子帧的时序位置。
例如,若当前指示周期为10ms,且该当前指示周期的起始位置与TDD帧的起始位置相同,则可在每个TDD帧中的第一个下行子帧的时序位置发送指示信令。参考图1所示,若TDD帧中的首个子帧subframe 0为下行子帧,则基站在subframe 0的时间位置发送指示信令,且指示信令指示的是当前指示周期中的上行子帧位置。
或者,例如,若当前指示周期为5ms,且该当前指示周期的起始位置与TDD帧中时隙的起始位置相同,则可在每个TDD帧中每个时隙的第一个下行子帧的时序位置发送指示信令。参考图1所示,若TDD帧中每个时隙的首个子帧subframe 0或subframe5为下行子帧,则基站在subframe 0或subframe5的时间位置发送指示信令,且指示信令指示的是当前指示周期中的上行子帧位置。
方式二:当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置。
例如,若当前指示周期为10ms,且当前指示周期的起始位置与TDD帧的起始位置相同,则可在每个TDD帧中的除第一个下行子帧之外的一个或一个以上的下行子帧的时序位置发送指示信令。参考图1所示,若TDD帧的上下行子帧配置为DSUDDDSUDD,除子帧subframe 0为下行子帧之外,TDD帧中的子帧subframe 3为下行子帧,则基站可在subframe 3的时间位置发送指示信令,且指示信令指示的是下个指示周期,即下一个无线帧中,上行子帧位置。
或者,例如,若当前指示周期为5ms,且当前指示周期的起始位置与TDD帧中每个时隙的起始位置相同,则可在每个TDD帧中每个时隙内除第一个下行子帧的时序位置之外的下行子帧的时序位置发送指示信令。参考图1所示,若TDD帧的上下行子帧配置为DSUDDDSUDD,TDD的子帧subframe 3为除了子帧subframe 0之外的一个下行子帧,则基站可在subframe 3的时间位置发送指示信令,且指示信令指示的是下个指示周期中即当前帧中subframe5-subframe9的上行子帧位置。
方式三:当前指示周期中的最后一个帧中一个或一个以上的下行子帧的时序位置。
例如,若当前指示周期为20ms/40ms/80ms,且当前指示周期的起始位置与TDD帧的起始位置相同。则在mT/10帧中的任一下行子帧的时序位置发送指示信令,且该指示信令指示的是下个指示周期,该下个指示周期可为无线帧(mT/10)+1,(mT/10)+2,……,或(m+1)T/10的上行子帧所在位置。参考图1所示,若TDD帧的上下行子帧配置为DSUUDDSUUD,当前指示周期T为20ms,当前指示周期包含无线帧0和1,下一指示周期包含无线帧2和3。基站在当前指示周期无线帧1中的任意一个或一个以上的下行子帧时序位置,如subframe 4和/或5,发送指示信令,指示下一指示周期,无线帧2和3,的上行子帧位置。
方式四:当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置。
例如,若当前指示周期为10ms,且当前指示周期的起始位置与TDD帧的起 始位置相同。参考图1所示,若TDD帧的上下行子帧配置为DDDDSUUUUU,当前指示周期对应的TDD帧的子帧subframe 5为第一个上行子帧,则在该上行子帧前的下行子帧(subframe 0-subframe 3)或特殊子帧(subframe 4)中的一个或一个以上的时序位置发送指示信令,且指示信令指示的是当前指示周期的上行子帧位置。
方式五:当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序位置。
例如,若当前指示周期为10ms,且当前指示周期的起始位置与TDD帧的起始位置相同。参考图1所示,若TDD帧的上下行子帧配置为DSUUDDSUUD,当前指示周期对应的TDD帧的subframe2、3、7和8为上行子帧,则在subframe0、1以及subframe4、5、6的一个或一个以上时序位置发送指示信令,且指示信令指示的是当前指示周期的上行子帧位置。
需要说明的是,上述提到的下行子帧中不仅包括如图1所示的TDD帧结构中定义的下行子帧D,还包括TDD帧结构中定义的特殊子帧S的下行导频时隙DwPTS(基站也可在DwPTS中下行传输数据)的时序位置。也就是说,基站可在下行子帧D的时序位置发送指示信令,也可以在特殊子帧的DwPTS的时序位置发送指示信令。
另外,需要说明的是,每个指示周期中的指示位置可以不相同,如前所述,可在一个指示周期的起始位置决策在该指示周期中选择哪些下行子帧作为传输指示信令的指示位置。而进入下个指示周期之后,可更换指示位置发送指示信令。例如,按照时间顺序,基站的传输过程可经历多个指示周期,在第一个指示周期中,基站可采用方式一的方式选择第一个指示周期的首个下行子帧发送指示信令。而在第二个指示周期中,基站也可根据业务需要采用方式三的方式选择第二个指示周期中的所有下行子帧发送指示信令。
而在本实施例中,根据业务需要,基站通过决策获取预设在当前指示周期中的指示位置之后还可通过RRC信令将所述指示位置通知给终端,以指示所述终端通过接收RRC信令获取所述指示位置以及在所述指示位置检测指示信令。
在本实施中,在指示位置的时刻抵达时,则利用相应的下行子帧的时分资 源发送指示信令。可选的,指示信令为下行链路控制信息(Downlink Control Information,DCI)信令。用于指示终端的DCI信令可通过授权频段发送也可通过非授权频段发送,可由下行物理控制信道(Physical Downlink Control Channel,PDCCH)的公共搜索空间承载,可以是format 1C格式。该DCI信令的循环冗余校验码(Cyclic Redundancy Check,CRC)可扰码授权辅助接入无线网络临时标识(Licensed-Assistance Access-Radio Network Temporary Identity,LAA-RNTI)。
在本公开中,可使用两种方式来定义DCI信令的语义格式,用于指示终端当前指示周期或下个指示周期中的上行子帧的位置。
实施例一:
在本实施例中,指示信令包括位序列,例如DCI bit序列,该位序列中的位数与所述预设的周期时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
例如,若当前的指示周期为10ms,且起始位置与TDD帧的起始位置相同。则DCI bit序列为一个10位的位序列,例如采用1表示上行子帧,0表示下行子帧和特殊子帧,若预分配的下个指示周期中的subframe 3和8为上行子帧,相应的DCI bit序列即为:0001000010,其中,序列的第4位即对应了subframe 3,第9位即对应了subframe 8,DCI bit序列中的序列顺序与TDD帧中的subframe的时序顺序相对应。
本实施例定义DCI bit序列的方式中,DCI bit序列中的位包含了分配上行子帧的所有可能,因此此方式较灵活。但若预设的指示周期较长,例如80ms,则DCI bit序列的长度将达到80位,使得需要传输的数据增加,将影响传输效率。
实施例二:
在本实施例中,指示信令中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
也就是说,可预先扩展TDD帧的帧结构,将由7种帧结构扩展为多种帧结 构,而该预先扩展TDD帧的帧结构的方法,可选只需要更改上下行子帧的时序顺序和/或分配比例),然后可使用较少位数的标识信息对每一种帧结构进行编号,并预先将该标识与帧结构的映射关系通知终端。然后在指示信令中,仅需要发送相应的帧结构的配置的标识信息,便可指示终端接收到该指示信令以及根据该映射关系查找到相应的标识信息对应的帧结构,从而使得终端可根据该帧结构获取当前指示周期或下个指示周期中上行子帧的位置。
可选地,在本实施例中,扩展的帧结构,即TDD帧的上行子帧分配配置,可包括:
第8种帧结构:DDDDDDDDDD或DDDDDDDDDS、
第9种帧结构:DDDDDDDDDU或DDDDDDDDSU、
第10种帧结构:DDDDDDDDUU或DDDDDDDSUU、
第11种帧结构:DDDDDDDUUU或DDDDDDSUUU、
第12种帧结构:DDDDDDUUUU或DDDDDSUUUU、
第13种帧结构:DDDDDUUUUU或DDDDSUUUUU、
第14种帧结构:DDDDUUUUUU或DDDSUUUUUU。
其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。结合前述表1中所列举的相关技术中的7种TDD帧结构,本公开实施例有14种帧结构可供选择,因此,使用4个bit的数值作为标识信息即可建立帧结构与标识信息的一一对应的关系,与前述本公开实施例一的技术方案相比,本公开实施例二的技术方案中,基站可传输较短的标识信息,传输的数据量较小,传输效率更高。
需要说明的是,扩展的帧结构即上行子帧分配配置在不同实施例以及应用场景中的表现形式可不限于上述采用U、D、S的表现形式。此处以U、D、S的表现形式阐述该多种扩展的TDD帧结构仅用于说明上行子帧在扩展的帧结构中的时序顺序,而并不对帧结构本身的表现形式或存储形式进行限定。
可选地,在另一个实施例中,扩展的帧结构,即上行子帧分配配置,还可包括:DDDDDDDDDS、DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU。在该实施例的扩展的帧结构中,可将部分下行子帧 设置为特殊子帧,但由于特殊子帧的DwPTS也可用与传输指示信令,因此该配置中的特殊子帧S也可认为是广义上的下行子帧。
终端在当前指示周期的起始时刻之前接收到了RRC信令,根据RRC信令确定了需要在当前指示周期中一个或多个子帧的时序位置接收指示信令,然后才会在这些子帧去PDCCH中的公共搜索空间检测CRC扰码LAA-RNTI的DCI信令。
另外,在每个指示周期中下行子帧转换为上行子帧时首次出现的上行子帧之前的子帧的最后1个或是2个符号,可设置为特殊子帧的UpPTS(参考图1所示)位置。因为UpPTS是可以用来发送PRACH和SRS的,因此,终端根据指示信令既可以获取上行子帧的时序位置,也能获得UpPTS的位置,从而可在上行子帧或首个上行子帧的前一子帧(可以是下行子帧也可以是特殊子帧的时序位置)的最后1个或是2个符号位置发送PRACH和/或SRS。
为解决上述提到的相关技术中的TDD方式的上下行配置,传输效率不高的问题,在本实施例中,如图3所示,提出了一种非授权频谱上指示上行子帧的装置,包括:指示周期确定模块210、指示位置获取模块220和指示信令发送模块230,其中:
指示周期确定模块210,设置为根据预设的周期时长确定当前指示周期和下个指示周期。
指示位置获取模块220,设置为获取预设的在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置。
指示信令发送模块230,设置为在所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信令。
可选地,在本实施例中,下行子帧的时序位置还包括:包含DwPTS的特殊子帧的时序位置。
可选地,在本实施例中,指示信令为下行链路控制信息DCI信令。
可选地,在本实施例中,DCI信令由下行物理控制信道PDCCH的公共搜索空间承载,所述DCI信令为format 1C格式,所述DCI信令的循环冗余校验码CRC扰码授权辅助接入无线网络临时标识LAA-RNTI。
可选地,在本实施例中,预设的周期时长为:5ms、10ms、20ms、40ms或80ms。
可选地,在本实施例中,预设在当前指示周期中的指示位置包括下述配置中的至少一种:
当前指示周期中首个下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;或
当前指示周期中的最后一个帧中的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示下个指示周期中的上行子帧;或
当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧;或
当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信令对应指示当前指示周期中的上行子帧。
可选地,在本实施例中,如图3所示,该装置还包括:指示位置通知模块240,设置为通过无线资源控制RRC信令将所述指示位置通知给终端,所述终端通过接收RRC信令获取所述指示位置,在所述指示位置检测指示信令。
可选地,在本实施例中,指示信令包括位序列,所述位序列中的位数与所述周期时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
可选地,在本实施例中,指示信令中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
可选地,在一个实施例中,预设的上行子帧分配配置包括:DDDDDDDDDD、DDDDDDDDDU、DDDDDDDDUU、DDDDDDDUUU、DDDDDDUUUU、DDDDDUUUUU和DDDDUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置。
可选地,在另一个实施例中,预设的上行子帧分配配置包括:DDDDDDDDDS、 DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。
可选地,在本实施例中,被设置为下行子帧转换为上行子帧时的首个上行子帧的时序位置的前一个子帧的最后1或2个符号为特殊子帧的UpPTS的时序位置,所述终端在接收到指示信令得到分配的上行子帧的时序位置后,在所述上行子帧或首个上行子帧的时序位置的前一个子帧的最后1或2个符号的位置发送PRACH和/或SRS。
本公开实施例还提供了一种非瞬时性计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一实施例中所述的非授权频谱上指示上行子帧的方法。
本公开实施例还提供可一种基站的硬件结构示意图,如图4所示,该基站包括:
一个或多个处理器310,图4中以一个处理器310为例;
存储器320;
所述基站还可以包括:输入装置330和输出装置340。
所述基站中的处理器310、存储器320、输入装置330和输出装置340可以通过总线或者其他方式连接,图4中以通过总线连接为例。
存储器320作为一种非瞬时性计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本公开实施例中的非授权频谱上指示上行子帧的方法对应的程序指令/模块(例如,附图2所示的指示周期确定模块210、指示位置获取模块220和指示信令发送模块230)。处理器310通过运行存储在存储器320中的软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例的非授权频谱上指示上行子帧的方法。
存储器320可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据终端设备 的使用所创建的数据等。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时性固态存储器件。在一些实施例中,存储器320可选包括相对于处理器310远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置330可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。输出装置340可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器320中,当被所述一个或者多个处理器310执行时,执行上述方法实施例中的非授权频谱上指示上行子帧的方法。
在上述基于非授权频谱上指示上行子帧的方法及装置后,TDD帧的帧结构不再仅限于传统技术中所限定的7种帧结构,基站可在每个指示周期中设置当前指示周期或下一个指示周期中的帧结构,即上下行子帧的时序位置顺序的分配信息。使得即使出现了传统技术中所限定的7种帧结构不适用的传输场景,仍然可通过周期性地动态分配或调整上行子帧,并通过上述方式通知终端来对传输场景进行适配,因此,上述非授权频谱上指示上行子帧的方法及装置可使得TDD帧的帧结构更加动态灵活,从而可适配更多的传输场景,提高传输效率。
工业实用性
本公开实施例提供的非授权频谱上指示上行子帧的方法和装置,对TDD帧结构进行了扩展,使得TDD帧结构更加灵活,能够适配更多的传输环境,提高了传输效率。

Claims (25)

  1. 一种非授权频谱上指示上行子帧的方法,,包括:
    根据预设的周期时长确定当前指示周期和下个指示周期;
    获取预设在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置;以及
    当所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信今,接收所述下行子帧的终端根据所述指示信今获取所述当前指示周期或下个指示周期的时间范围内的上行子帧的时序位置。
  2. 根据权利要求1所述的非授权频谱上指示上行子帧的方法,其中,所述下行子帧的时序位置还包括:包含下行导频时隙DwPTS的特殊子帧的时序位置。
  3. 根据权利要求1所述的非授权频谱上指示上行子帧的方法,其中,所述指示信今为下行链路控制信息DCI信今。
  4. 根据权利要求3所述的非授权频谱上指示上行子帧的方法,其中,所述DCI信今由下行物理控制信道PDCCH的公共搜索空间承载,所述DCI信今为format 1C格式,所述DCI信今的循环冗余校验码CRC扰码授权辅助接入无线网络临时标识LAA-RNTI。
  5. 根据权利要求1所述的非授权频谱上指示上行子帧的方法,其中,所述预设的周期时长为:5ms、10ms、20ms、40ms或80ms。
  6. 根据权利要求1所述的非授权频谱上指示上行子帧的方法,其中,所述预设在当前指示周期中的指示位置包括下述配置中的至少一种:
    当前指示周期中首个下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧;或
    当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示下个指示周期中的上行子帧;或
    当前指示周期中的最后一个帧中的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示下个指示周期中的上行子帧;或
    当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧;或
    当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧。
  7. 根据权利要求1所述的非授权频谱上指示上行子帧的方法,在获取预设在当前指示周期中的指示位置之后,该方法还包括:
    通过无线资源控制RRC信今将所述指示位置通知给终端,所述终端通过接收RRC信今获取所述指示位置,在所述指示位置检测指示信今。
  8. 根据权利要求1至7任一项所述的非授权频谱上指示上行子帧的方法,其中,所述指示信今包括位序列,所述位序列中的位数与所述预设的周期时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
  9. 根据权利要求1至7任一项所述的非授权频谱上指示上行子帧的方法,其中,所述指示信今中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
  10. 根据权利要求9所述的非授权频谱上指示上行子帧的方法,其中,所述预设的上行子帧分配配置包括:DDDDDDDDDD、DDDDDDDDDU、DDDDDDDDUU、DDDDDDDUUU、DDDDDDUUUU、DDDDDUUUUU和DDDDUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置。
  11. 根据权利要求9所述的非授权频谱上指示上行子帧的方法,其中,所述预设的上行子帧分配配置包括:DDDDDDDDDS、DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。
  12. 根据权利要求1至7任一项所述的非授权频谱上指示上行子帧的方法,其中,被设置为首个上行子帧的时序位置的前一个子帧的最后1或2个符号为特殊子帧的UpPTS的时序位置,所述终端在接收到指示信今得到分配的上行子帧的时序位置后,在所述上行子帧或首个上行子帧的时序位置的前一个子帧的最后1或2个符号的位置发送PRACH和/或SRS。
  13. 一种非授权频谱上指示上行子帧的装置,包括:
    指示周期确定模块,设置为根据预设的周期时长确定当前指示周期和下个指示周期;
    指示位置获取模块,设置为获取预设的在当前指示周期中的指示位置,所述指示位置为预设的一个或一个以上的下行子帧的时序位置;以及
    指示信今发送模块,设置为当所述当前指示周期中的指示位置抵达时,在所述指示位置对应的下行子帧中发送指示信今,接收所述下行子帧的终端根据 所述指示信今获取所述当前指示周期或下个指示周期的时间范围内的上行子帧的时序位置。
  14. 根据权利要求13所述的非授权频谱上指示上行子帧的装置,其中,所述下行子帧的时序位置还包括:包含DwPTS的特殊子帧的时序位置。
  15. 根据权利要求13所述的非授权频谱上指示上行子帧的装置,其中,所述指示信今为下行链路控制信息DCI信今。
  16. 根据权利要求15所述的非授权频谱上指示上行子帧的装置,其中,所述DCI信今由下行物理控制信道PDCCH的公共搜索空间承载,所述DCI信今为format 1C格式,所述DCI信今的循环冗余校验码CRC扰码授权辅助接入无线网络临时标识LAA-RNTI。
  17. 根据权利要求13所述的非授权频谱上指示上行子帧的装置,其中,所述预设的周期时长为:5ms、10ms、20ms、40ms或80ms。
  18. 根据权利要求13所述的非授权频谱上指示上行子帧的装置,其中,所述预设在当前指示周期中的指示位置包括下述配置中的至少一种:
    当前指示周期中首个下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧;或
    当前指示周期中除首个下行子帧之外的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示下个指示周期中的上行子帧;或
    当前指示周期中的最后一个帧中的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示下个指示周期中的上行子帧;或
    当前指示周期中的第一个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧;或
    当前指示周期中的每个上行子帧之前的一个或一个以上的下行子帧的时序位置,所述指示信今对应指示当前指示周期中的上行子帧。
  19. 根据权利要求13所述的非授权频谱上指示上行子帧的装置,所述装置还包括:
    指示位置通知模块,设置为通过无线资源控制RRC信今将所述指示位置通知给终端,所述终端通过接收RRC信今获取所述指示位置,在所述指示位置检测指示信今。
  20. 根据权利要求13至19任一项所述的非授权频谱上指示上行子帧的装置,其中,所述指示信今包括位序列,所述位序列中的位数与所述预设的周期 时长中的子帧个数相同,且所述位序列中的0/1的位置分别对应上行子帧在指示周期中相对的时序位置。
  21. 根据权利要求13至19任一项所述的非授权频谱上指示上行子帧的装置,其中,所述指示信今中包括与预设的上行子帧分配配置对应的标识信息,所述上行子帧分配配置中包含有一个TDD帧中的上下行子帧的时序位置。
  22. 根据权利要求21所述的非授权频谱上指示上行子帧的装置,其中,所述预设的上行子帧分配配置包括:DDDDDDDDDD、DDDDDDDDDU、DDDDDDDDUU、DDDDDDDUUU、DDDDDDUUUU、DDDDDUUUUU和DDDDUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置。
  23. 根据权利要求21所述的非授权频谱上指示上行子帧的装置,其中,所述预设的上行子帧分配配置包括:DDDDDDDDDS、DDDDDDDDSU、DDDDDDDSUU、DDDDDDSUUU、DDDDDSUUUU、DDDDSUUUUU和DDDSUUUUUU中的一种,其中D为下行子帧在TDD帧中的时序位置,U为上行子帧在该TDD帧中的时序位置,S为特殊子帧在该TDD帧中的时序位置。
  24. 根据权利要求13至19任一项所述的非授权频谱上指示上行子帧的装置,其中,所述被设置为首个上行子帧的时序位置的前一个子帧的最后1或2个符号为特殊子帧的UpPTS的时序位置,所述终端在接收到指示信今得到分配的上行子帧的时序位置后,在所述上行子帧或首个上行子帧的时序位置的前一个子帧的最后1或2个符号的位置发送PRACH和/或SRS。
  25. 一种非瞬时性计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-12任一项所述的非授权频谱上指示上行子帧的方法。
PCT/CN2016/092471 2016-01-15 2016-07-30 非授权频谱上指示上行子帧的方法及装置 WO2017121097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/070,242 US10637626B2 (en) 2016-01-15 2016-07-30 Method for indicating uplink subframe on unlicensed spectrum and base station
EP16884651.7A EP3404960B1 (en) 2016-01-15 2016-07-30 Method and device for indicating uplink subframe over unlicensed spectrum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610032198.0 2016-01-15
CN201610032198.0A CN105517061B (zh) 2016-01-15 2016-01-15 一种非授权频谱上指示上行子帧的方法及装置

Publications (1)

Publication Number Publication Date
WO2017121097A1 true WO2017121097A1 (zh) 2017-07-20

Family

ID=55724618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092471 WO2017121097A1 (zh) 2016-01-15 2016-07-30 非授权频谱上指示上行子帧的方法及装置

Country Status (4)

Country Link
US (1) US10637626B2 (zh)
EP (1) EP3404960B1 (zh)
CN (1) CN105517061B (zh)
WO (1) WO2017121097A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069586B2 (en) * 2010-06-28 2018-09-04 Lantiq Deutschland Gmbh Optical network power consumption mitigation
CN106160962B (zh) * 2015-03-23 2019-07-26 联想(北京)有限公司 信息处理方法及基站
CN105682232B (zh) * 2016-01-08 2018-03-16 宇龙计算机通信科技(深圳)有限公司 资源配置方法、资源配置装置和基站
CN105517061B (zh) 2016-01-15 2019-03-22 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置
CN107318166B (zh) * 2016-04-26 2021-03-05 华为技术有限公司 数据传输方法和装置
CN107360630A (zh) * 2016-05-10 2017-11-17 北京信威通信技术股份有限公司 一种上行探测参考信号的接入方法和装置
CN116321491A (zh) 2016-05-13 2023-06-23 中兴通讯股份有限公司 数据传输结构的配置方法及装置
EP3461198B1 (en) 2016-06-28 2020-06-03 Huawei Technologies Co., Ltd. Communication method on unlicensed frequency band, terminal device, and network device
CN106211347A (zh) * 2016-07-08 2016-12-07 深圳市金立通信设备有限公司 一种上行数据调度方法、用户设备及基站
CN107872804B (zh) * 2016-09-23 2019-11-08 电信科学技术研究院 一种数据传输方法和设备
MX2019003336A (es) 2016-09-23 2019-06-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de transmision de srs, dispositivo de red y dispositivo terminal.
CN115884403A (zh) * 2017-01-06 2023-03-31 中兴通讯股份有限公司 数据传输方法、设备及存储介质
CN108307419B (zh) * 2017-01-12 2021-09-03 华为技术有限公司 免授权传输的方法、终端设备和网络设备
CN109479284B (zh) * 2017-04-26 2020-12-25 华为技术有限公司 传输数据的方法和装置
CN109698738B (zh) * 2017-10-24 2022-04-29 华为技术有限公司 通信方法和通信装置
CN111107632B (zh) * 2018-10-26 2022-08-05 大唐移动通信设备有限公司 一种数据传输方法及其装置
CN111182633B (zh) * 2018-11-13 2022-06-10 华为技术有限公司 一种通信方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277529A (zh) * 2008-03-26 2008-10-01 中兴通讯股份有限公司 一种指示上行资源指示信令所对应的上行子帧的方法
CN103249153A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种tdd系统动态帧结构分配方法、系统及演进基站
US20140086126A1 (en) * 2012-09-27 2014-03-27 Electronics And Telecommunications Research Institute Method and apparatus for controlling signal transmission of wireless communication system
CN104519515A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 上下行配置信息通知、获取方法,基站和用户设备
CN105517061A (zh) * 2016-01-15 2016-04-20 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置
CN105722225A (zh) * 2016-01-15 2016-06-29 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680522B2 (en) * 2013-05-09 2017-06-13 Texas Instruments Incorporated Dynamic reconfiguration of uplink transmission in a TDD wireless communication system
JP6425891B2 (ja) * 2014-01-14 2018-11-21 株式会社Nttドコモ ユーザ端末および無線通信方法
EP2897318B1 (en) * 2014-01-21 2017-09-06 Panasonic Intellectual Property Corporation of America TDD uplink/downlink configuration enhancements
CN104936293B (zh) * 2014-03-20 2019-04-26 上海朗帛通信技术有限公司 一种非授权频谱上的通信方法和装置
CN104936189A (zh) * 2014-05-01 2015-09-23 上海朗帛通信技术有限公司 一种ue、基站中在非授权频带上的通信方法和设备
US10959197B2 (en) * 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
JP6618084B2 (ja) * 2014-11-06 2019-12-11 シャープ株式会社 端末装置、基地局装置および方法
US11006400B2 (en) * 2015-01-16 2021-05-11 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN107615863B (zh) * 2015-05-15 2021-11-02 夏普株式会社 终端装置
WO2017014560A1 (en) * 2015-07-20 2017-01-26 Lg Electronics Inc. Method and apparatus for handling tdd frame for short tti in wireless communication system
US10979206B2 (en) * 2015-09-12 2021-04-13 Lg Electronics Inc. Method for performing time-division duplex (TDD) communication by terminal in wireless communication system and terminal using same
EP3355646B1 (en) * 2015-09-21 2021-12-29 LG Electronics Inc. Method for transceiving data in unlicensed band and apparatus for same
EP3961968A1 (en) * 2015-11-06 2022-03-02 Apple Inc. Partial subframe transmission in licensed assisted access
EP3516785A4 (en) * 2016-09-19 2019-09-11 Telefonaktiebolaget LM Ericsson (PUBL) FIRST COMMUNICATION DEVICE AND METHODS EXECUTED THEREFOR TO TRANSMIT RADIO SIGNALS USING BEAM FORMATION TO A SECOND COMMUNICATION DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277529A (zh) * 2008-03-26 2008-10-01 中兴通讯股份有限公司 一种指示上行资源指示信令所对应的上行子帧的方法
CN103249153A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种tdd系统动态帧结构分配方法、系统及演进基站
US20140086126A1 (en) * 2012-09-27 2014-03-27 Electronics And Telecommunications Research Institute Method and apparatus for controlling signal transmission of wireless communication system
CN104519515A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 上下行配置信息通知、获取方法,基站和用户设备
CN105517061A (zh) * 2016-01-15 2016-04-20 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置
CN105722225A (zh) * 2016-01-15 2016-06-29 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404960A4 *

Also Published As

Publication number Publication date
EP3404960A4 (en) 2019-08-07
CN105517061B (zh) 2019-03-22
EP3404960A1 (en) 2018-11-21
US20190044670A1 (en) 2019-02-07
EP3404960B1 (en) 2022-08-24
US10637626B2 (en) 2020-04-28
CN105517061A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
US10764914B2 (en) Uplink information processing method and apparatus
US10645692B2 (en) Method and device for indicating uplink subframes on unlicensed frequency spectrum
KR101885449B1 (ko) 비면허 스펙트럼에서의 동작을 위한 채널 예약
US10667298B2 (en) Channel assessment method and apparatus, terminal, and base station
CN115362727A (zh) 用于基于突发的副链路传输的方法及设备
US11838795B2 (en) Method and apparatus for autonomous transmission
EP3334111B1 (en) Information processing method, apparatus and system
KR102032884B1 (ko) 물리적 다운링크 제어 채널의 전송 방법 및 장치
CN106455095B (zh) 一种数据传输方法及装置
EP3500041B1 (en) Method for transmitting service data, access point and station
US11316646B2 (en) Method and system for autonomous transmission in a wireless network
CN107926042B (zh) 一种用于无线通信系统的发送器和接收器
KR20170098891A (ko) 메시지 전송 방법 및 장치
CN114731696A (zh) 用于未经授权频谱上的多个pusch传输的方法及设备
CN105991274B (zh) 数据传输的方法、反馈信息传输方法及相关设备
CN109937603B (zh) 基于竞争的传输方法和设备
US11470628B2 (en) Method and system for scheduled uplink transmission in a wireless network
WO2021062824A1 (zh) 一种信息处理方法和通信设备
KR20240102049A (ko) 비면허 대역에서 사이드링크 통신 방법 및 이를 이용한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016884651

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016884651

Country of ref document: EP

Effective date: 20180816