WO2017117962A1 - 压力感应面板及检测方法、3d触控面板、触控显示面板 - Google Patents

压力感应面板及检测方法、3d触控面板、触控显示面板 Download PDF

Info

Publication number
WO2017117962A1
WO2017117962A1 PCT/CN2016/089908 CN2016089908W WO2017117962A1 WO 2017117962 A1 WO2017117962 A1 WO 2017117962A1 CN 2016089908 W CN2016089908 W CN 2016089908W WO 2017117962 A1 WO2017117962 A1 WO 2017117962A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensing
resistor
resistors
voltage
voltage value
Prior art date
Application number
PCT/CN2016/089908
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
陈小川
王海生
刘英明
刘伟
王鹏鹏
杨盛际
赵卫杰
任涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/329,933 priority Critical patent/US10216310B2/en
Publication of WO2017117962A1 publication Critical patent/WO2017117962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pressure sensing panel and a detecting method thereof, a 3D touch panel, and a touch display panel.
  • the touch display panel generally includes a display panel and a touch panel.
  • the most basic solution is to first prepare the display panel and the touch panel, and then attach the display panel and the touch panel to form the touch display panel.
  • On-cell there are two options for On-cell and In-cell.
  • the On-cell solution refers to forming a touch circuit on the surface of the display panel, so that the bonding process is not required, and the thickness of the touch display panel can be reduced compared with the above-described display panel and touch panel bonding solution.
  • the so-called In-cell scheme refers to forming a touch circuit in a display panel (for example, between an array substrate and a color filter substrate), and the thickness of the touch display panel formed by such a scheme is greater than the On-cell scheme. Be smaller.
  • the touch display panel prepared according to the above various schemes generally only recognizes the coordinates of the X direction and the Y direction, that is, only the position of the screen pressed by the user can be determined, and the determination of the strength of the user pressing the screen cannot be made. This brings limitations to the further development and application of touch control.
  • the present disclosure is directed to at least one of the technical problems existing in the prior art, and provides a pressure sensing panel and a detecting method thereof, a 3D touch panel, and a touch display panel, which can detect a user's touch operation. Press the force to respond to the corresponding operation, thus achieving a richer touch experience.
  • a pressure sensing panel that includes a pressure sensing layer formed on a substrate; the pressure sensing layer includes a plurality of pressure sensing units distributed in various regions of the substrate, each pressure The sensing unit includes two resistors and a first voltage detecting unit; each of the resistors has a long axis and a short axis; in each of the pressure sensing units, the two short sides of the first resistor are respectively associated with the first fixed voltage terminal and a long side of the second resistor is connected, and the other long side of the second resistor is connected to the second fixed voltage end; the first voltage detecting unit is connected to the connecting end of the first resistor and the second resistor, To detect the voltage at the connection between them.
  • the electrical resistance is elongated or elliptical.
  • the second fixed voltage terminal is a ground terminal.
  • the distribution density of the pressure sensing unit is increased along the direction from the central region to the edge region of the substrate.
  • the material of the resistor is indium tin oxide or carbon nano material.
  • the present disclosure also provides a method of detecting pressure according to the above pressure sensing panel, comprising:
  • the pressing pressure of the user is determined according to the correspondence between the difference between the first voltage value and the second voltage value and the pressing pressure of the user.
  • the present disclosure also provides another pressure sensing panel including a pressure sensing layer formed on a substrate; the pressure sensing layer includes a plurality of pressure sensing units distributed in respective regions of the substrate, each pressure sensing unit including Four resistors, and a first voltage detecting unit and a second voltage detecting unit; each of the resistors has a long axis and a short axis; four resistors of each pressure sensing unit are sequentially connected, and two of the first resistors The short sides are respectively connected to one long side of the second and fourth resistors adjacent thereto, and the two short sides of the third resistor opposite to the first resistor are respectively and the second and fourth resistors The other long side is connected; the connection between the first and fourth resistors is connected to the first fixed voltage end; the connection between the second and third resistors is connected to the second fixed voltage An end connection; a connection between the first voltage detecting unit and the first and second resistors for detecting a voltage at a connection end thereof; and a second voltage detecting unit and the
  • the electrical resistance is elongated or elliptical.
  • the second fixed voltage terminal is a ground terminal.
  • the distribution density of the pressure sensing unit is increased along the direction from the central region to the edge region of the substrate.
  • the material of the resistor is indium tin oxide or carbon nano material.
  • the present disclosure also provides a method of detecting pressure according to the above pressure sensing panel, comprising:
  • the pressing pressure of the user is determined according to the correspondence between the difference between the first voltage value and the second voltage value and the pressing pressure of the user.
  • the present disclosure also provides a 3D touch panel including the above pressure sensing panel provided by the present disclosure.
  • the present disclosure further provides a touch display panel comprising the above pressure sensing panel provided by the present disclosure or the above-mentioned 3D touch panel provided by the present disclosure.
  • the first pressure sensing panel provided by the present disclosure, in each of the pressure sensing units, the first and second resistors are connected in series between the first fixed voltage terminal and the second fixed voltage terminal, and the first resistor is The long axis is connected between the first fixed voltage terminal and the second fixed voltage terminal, and the second resistor is connected with the short axis between the first fixed voltage terminal and the second fixed voltage terminal, so that the user presses the pressure.
  • the sensing unit the magnitudes of the resistances of the first and second resistors are changed differently, so that the voltage between the first and second resistors changes, and the magnitude of the change and the user's pressing The force is related.
  • the voltage between the first and second resistors is detected by the first voltage detecting unit, and the amount of change between the voltage values between the first and second resistors before and after the user presses the pressure sensing unit is performed.
  • the pressing force of the user can be determined.
  • the method for detecting pressure according to the first pressure sensing panel detects the change of the resistance value generated by the deformation of the resistance in the pressure sensing unit before and after the user presses, and detects between the first and second resistances.
  • the voltage value obtains the first voltage value and the second voltage value respectively, and the pressing pressure of the user can be determined according to the correspondence between the difference between the first voltage value and the second voltage value and the user pressing pressure.
  • the second pressure sensing panel provided by the present disclosure, in each of the pressure sensing units, the first and second resistors and the third and fourth resistors form a parallel two branches connected to the first fixed voltage Between the terminal and the second fixed voltage terminal; and in the branch where the first and second resistors are located, the first resistor is connected with the long axis between the first fixed voltage terminal and the second fixed voltage terminal, The second resistor is connected with its short axis between the first fixed voltage terminal and the second fixed voltage terminal; and in the branch where the third and fourth resistors are located, the third resistor is connected with its short axis Between the first fixed voltage terminal and the second fixed voltage terminal, the fourth resistor is connected with the long axis between the first fixed voltage terminal and the second fixed voltage terminal; thus, when the user presses the pressure sensing unit, The voltage value between one and the second resistor, the voltage value between the third and fourth resistors varies in different amplitudes, and the magnitude of the change is related to the pressing force of the user, and therefore, the first The
  • the method for detecting pressure according to the second pressure sensing panel detects the change of the resistance value generated by the deformation of the resistance in the pressure sensing unit before and after the user presses, and detects the first and the first before and after the user presses The voltage value between the two resistors, and the voltage value between the third and fourth resistors, and calculating the difference between the two before and after the user presses, respectively obtaining the first voltage value and the second voltage value,
  • the pressing pressure of the user can be determined according to the correspondence between the difference between the first voltage value and the second voltage value and the pressing pressure of the user.
  • the 3D touch panel provided by the present disclosure includes the pressure sensing panel, and the touch display panel provided by the present disclosure includes the 3D touch panel or the pressure sensing panel, which can detect the pressing of the user during the touch operation.
  • the strength so that the user can respond to the corresponding operation according to the pressing force, thereby improving the richer touch experience.
  • FIG. 1 is a schematic diagram of first and second pressure sensing panels provided by embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a pressure sensing layer in the first and second pressure sensing panels provided by the embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a pressure sensing unit in a first pressure sensing panel according to an embodiment of the present disclosure
  • Figure 4 is an equivalent circuit diagram of the pressure sensing unit shown in Figure 3 (when the second voltage fixed terminal is zero voltage);
  • FIG. 5 is a flowchart of a method for detecting pressure according to a first pressure sensing panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a pressure sensing unit in a second pressure sensing panel according to an embodiment of the present disclosure
  • Figure 7 is an equivalent circuit diagram of the pressure sensing unit shown in Figure 6 (when the second voltage fixed terminal is zero voltage);
  • FIG. 8 is a flowchart of a method for detecting pressure according to a second pressure sensing panel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a manner of setting a pressure sensing panel according to an embodiment of the present disclosure.
  • the pressure sensing panel includes a pressure sensing layer 11 formed on the substrate 10.
  • the pressure sensing layer 11 includes a plurality of pressure sensing units 12 distributed in various regions of the substrate 10.
  • each pressure sensing unit 12 includes two electric The resistor 120 and the first voltage detecting unit 121.
  • the two resistors 120 are identical, and each of the resistors 120 has a major axis and a minor axis.
  • the resistor 120 may be elongated or elliptical.
  • the resistor 120 has an elongated shape, and the long axis is a long longitudinal direction and the short axis is a long strip. The short side of the shape.
  • the two resistors 120 may not be identical, and the disclosure is not limited thereto.
  • the two short sides of the first resistor 120 are respectively connected to the first fixed voltage terminal V1 and one long side of the second resistor 120, and the second resistor 120 is The other long side is connected to the second fixed voltage terminal V2.
  • the voltage value of the first fixed voltage terminal V1 is V1
  • the voltage value of the second fixed voltage terminal V2 is V2.
  • the first voltage detecting unit 121 is connected to the connection end of the first resistor 120 and the second resistor 120 for detecting the voltage of the connection ends of the two resistors 120.
  • each of the resistors 120 is deformed under the action of pressure, mainly in that the long axis direction of the resistor 120 becomes longer (here, the resistor 120)
  • the direction of the short axis is also deformed, but the deformation amplitude is smaller than the deformation amplitude in the long axis direction.
  • This causes the resistance between the two short sides of the resistor 120 to increase, and the resistance between the two long sides decreases. .
  • the resistance value of the first resistor 120 is increased, and the resistance value of the second resistor 120 is decreased.
  • the voltage value V1 of the first fixed voltage terminal V1 and the voltage value V2 of the second fixed voltage terminal V2 are set, and the first voltage detecting unit 121 detects the second voltage detecting unit 121 when the user does not press the pressure sensing unit 12.
  • the voltage V 12 between the first and second resistors 120 is:
  • R1 is a resistance value of the first resistor 120 when the pressure sensing unit 12 is not pressed
  • R2 is a resistance value of the second resistor 120 when the pressure sensing unit 12 is not pressed.
  • the resistance value of the first resistor 120 changes due to deformation becomes aR1, a>1; the resistance value of the second resistor 120 changes due to deformation becomes bR2, b ⁇ 1; then the voltage V' 12 between the first and second resistors 120 detected by the first detecting unit 121 becomes:
  • V' 12 >V 12 can be determined according to the formula (2).
  • the greater the user's pressing force the greater the deformation amplitude of the first and second resistors 120, the larger a, the smaller b; the larger the value of V' 12 according to formula (2);
  • the difference between V' 12 and V 12 is larger.
  • the smaller the user pressing force is the smaller the deformation amplitude of the first and second resistors 120 is, the smaller a is, the larger b is; the smaller the value of V' 12 is according to formula (2); thus, V' The difference between 12 and V 12 is smaller. Therefore, the value of V' 12 - V 12 can reflect the pressing force of the user, and further, the pressing force of the user can be determined according to the corresponding closing of the pressing force of the user and the value of V' 12 - V 12 .
  • the second fixed voltage terminal V2 is grounded, so that the second resistor 120 can be directly grounded, and no need to provide a separate voltage terminal, thereby reducing the number of voltage terminals required and making the circuit
  • the setup is much simpler.
  • the edge portion of the substrate 10 is fixed by a fixing member such as a bezel to fix the pressure sensing panel. Therefore, when the user presses the edge portion of the pressure sensing panel, the pressure sensing panel generates a relatively small deformation amount; and when the user presses the central portion of the pressure sensing panel, the pressure sensing panel generates a relatively large deformation amount.
  • the distribution density of the pressure sensing unit 12 is increased along the direction from the central region to the edge region of the substrate 10, so that on the one hand, the number of the pressure sensing units 12 provided can be reduced, and the other
  • the central portion of the pressure sensing panel has a large deformation amount when pressed, a small pressure sensing unit 12 is disposed in the central portion, and the resistance in the pressure sensing unit 12 can also be sufficiently deformed to determine The strength of the user's pressing.
  • the deformation of the resistance of the resistor 120 when it is pressed is also affected by temperature.
  • the distance between the resistors 120 in each of the pressure sensing units 12 is relatively close, and the temperature difference between the respective regions is small, which can generally be ignored. Therefore, the detection of the user's pressing force by the pressure sensing unit in the present embodiment is not affected by the temperature. Therefore, the accuracy of the detection result is high; and, in detecting the pressing force of the user, the detection method and the process can be made simpler without considering the influence of the temperature.
  • the substrate 10 is preferably a transparent substrate, and the resistor 120 is preferably transparent.
  • the resistor is such that when the pressure sensing panel is used in the display panel, the resistor 120 can be disposed not only in the non-display area but also in the pixel area for display, thereby improving the distribution of the pressure sensing unit. Density, which helps to improve the accuracy of identifying the user's pressing pressure.
  • the material of the resistor 120 may specifically be indium tin oxide (ITO) or carbon nano material.
  • the first and second resistors 120 are connected in series between the first fixed voltage terminal V1 and the second fixed voltage terminal V2.
  • the first resistor 120 is connected between the first fixed voltage terminal V1 and the second fixed voltage terminal V2 with its long axis
  • the second resistor 120 is connected to the first fixed voltage terminal V1 to the second fixed by its short axis.
  • the resistance values of the first and second resistors 120 are changed differently, so that the voltage between the first and second resistors 120 changes, and The magnitude of the change is related to the pressing force of the user.
  • the voltage between the first and second resistors 120 is detected by the first voltage detecting unit 121, and the first and the first before and after the pressing of the pressure sensing unit 12 by the user.
  • the amount of change in the voltage value between the two resistors 120 determines the pressing force of the user.
  • Embodiments of the present disclosure also provide a method of detecting pressure according to the first pressure sensing panel described above, and a specific embodiment thereof is given.
  • 5 is a flow chart of a method for detecting pressure according to a first pressure sensing panel provided by the present disclosure. As shown in FIG. 5, the method of detecting pressure according to the first pressure sensing panel includes the following steps S1 to S4.
  • step S1 when the pressure sensing unit is not pressed, the voltage value between the two resistors of the pressure sensing unit is detected as a first voltage value.
  • step S2 when the pressure sensing unit is pressed, the voltage value between the two resistors is detected as the second voltage value.
  • the resistance in the pressure sensing unit is deformed and causes a voltage value change between the two resistors, so that the second voltage value is not equal to the first voltage value.
  • step S3 a difference between the first voltage value and the second voltage value is calculated.
  • the voltage value between the two resistors when the user presses the pressure sensing unit ie, the difference between the first voltage value and the second voltage value
  • the voltage value between the two resistors when the user presses the pressure sensing unit is proportional to the amount of deformation of the resistor, that is, the user's The pressing force is proportional.
  • step S4 according to the difference between the first voltage value and the second voltage value and the user pressing pressure The correspondence between the forces determines the pressing pressure of the user.
  • the user can be determined according to the calculated difference between the first voltage value and the second voltage value. Pressing pressure.
  • the method for detecting pressure according to the first pressure sensing panel detects the first and second resistances according to the change of the resistance value generated by the deformation of the resistance in the pressure sensing unit before and after the user presses the pressure.
  • the voltage value between the first voltage value and the second voltage value are respectively obtained, and according to the correspondence between the difference between the first voltage value and the second voltage value and the user pressing pressure, the user's pressing can be determined. pressure.
  • the pressure sensing panel includes a pressure sensing layer 11 formed on the substrate 10.
  • the pressure sensing layer 11 includes a plurality of pressure sensing units 12 distributed in various regions of the substrate 10.
  • Each of the pressure sensing units 12 includes four resistors 120, which are identical, and each of the resistors 120 has a major axis and a minor axis.
  • the resistor 120 may be elongated or elliptical. As shown in FIG. 6, when the resistor 120 is elongated, the long axis of the resistor 120 is a long long side and a short axis. The short side of the strip.
  • the material of the resistor 120 may be indium tin oxide (ITO) or carbon nano material.
  • resistors 120 may not be identical, and the disclosure is not limited thereto.
  • each of the pressure sensing units 12 four resistors 120 are sequentially connected, and the two short sides of the first resistor 120 are respectively connected to a long side of the second and fourth resistors 120 adjacent thereto.
  • the two short sides of the third resistor 120 opposite to the first resistor 120 are respectively connected to the other long sides of the second and fourth resistors 120.
  • the first, second, third, and fourth are only used to define the order of connection between them, and do not indicate their positional relationship in physical space.
  • the connection end between the first and fourth resistors 120 is connected to the first fixed voltage terminal V1, and the voltage value of the first fixed voltage terminal V1 is V1.
  • connection end between the second and third resistors 120 is connected to the second fixed voltage terminal V2, and the voltage value of the second fixed voltage terminal V2 is V2.
  • the connection between the first and second resistors 120 is connected to the first voltage detecting unit 121; the connection between the third and fourth resistors 120 is connected to the second voltage detecting unit 122.
  • each of the resistors 120 is deformed under the action of pressure, mainly because the long axis direction of the resistor 120 becomes longer (the resistance 120 is short).
  • the axial direction is also deformed, but the deformation amplitude is smaller than the deformation amplitude in the long axis direction, which causes the resistance between the two short sides of the resistor 120 to increase, and the resistance between the two long sides to decrease.
  • the resistance values of the first and third resistors 120 increase, and the resistance values of the second and fourth resistors 120 decrease.
  • the voltage value V1 of the first fixed voltage terminal V1 and the voltage value V2 of the second fixed voltage terminal V2 are set, and the first voltage detecting unit 121 detects the second voltage detecting unit 121 when the user does not press the pressure sensing unit 12.
  • the voltage V 12 between the first and second resistors 120 is:
  • R1 is a resistance value of the first resistor 120 when the pressure sensing unit 12 is not pressed
  • R2 is a resistance value of the second resistor 120 when the pressure sensing unit 12 is not pressed.
  • the voltage V 34 between the third and fourth resistors 120 detected by the second detecting unit 122 is:
  • R3 is the resistance value of the third resistor 120 when the pressure sensing unit 12 is not pressed
  • R4 is the resistance value of the fourth resistor 120 when the pressure sensing unit 12 is not pressed
  • the third resistor 120 is also passed through the two short sides thereof.
  • the second resistor 120 is connected to the first and third resistors 120 through its two long sides
  • the difference between V 12 and V 34 is:
  • the resistance values of the first and third resistors 120 are changed to aR1, aR3, a>1; the second and fourth resistors 120 are deformed.
  • the changed resistance value becomes bR2, bR4, b ⁇ 1; then the voltage V 12 between the first and second resistors 120 detected by the first detecting unit 121 becomes:
  • the voltage V 34 between the third and fourth resistors 120 detected by the second detecting unit 122 is:
  • V 12 -V 34 may determine a value after the user presses larger than the value of the user does not press. In this case, the greater the user's pressing force, the greater the deformation amplitude of the four resistors 120, the larger a, the smaller b; the larger the value of V 12 -V 34 after the user presses according to formula (8) . Thereby, the difference between V 12 - V 34 before and after the user presses is larger.
  • the voltage between the first and second resistors 120 becomes larger, and between the third and fourth resistors 120 The voltage becomes smaller. Therefore, when the user presses the pressure sensing unit with the same force and the degree of deformation of the resistor 120 is the same, the difference between the V 12 - V 34 in the second pressure sensing panel before and after the user pressing is greater than that in the first pressure sensing panel. '12 -V 12 value. Therefore, the minimum pressure limit of the user's pressing force that can be recognized by the second pressure sensing panel is smaller, so that the range of the user's pressing force that can be detected is larger. At the same time, its detection accuracy is also higher.
  • the second fixed voltage terminal V2 is grounded, so that the connection between the third and fourth resistors 120 can be directly grounded, and no need to provide a separate voltage terminal, thereby reducing the required setting.
  • the distribution density of the pressure sensing unit 12 is increased along the direction from the central region to the edge region of the substrate 10, and the effect is the same as in the embodiment of the first pressure sensing panel described above, and is no longer here. Narration.
  • the distance between the resistors 120 in each of the pressure sensing units 12 is relatively close. Therefore, similar to the first pressure sensing panel described above, the second pressure sensing panel in the present embodiment. It is also possible to obtain a higher accuracy of the detection of the user's pressing force and a technical effect of making the detecting method and process simpler.
  • the first and second resistors 120 and the third and fourth resistors 120 form two branch connections in parallel. Between the first fixed voltage terminal V1 and the second fixed voltage terminal V2.
  • the first resistor 120 is connected with the long axis between the first fixed voltage terminal V1 and the second fixed voltage terminal V2, and the second resistor 120 is The short axis is connected between the first fixed voltage terminal V1 and the second fixed voltage terminal V2; and in the branch where the third and fourth resistors 120 are located, the third resistor 120 is connected to the short axis by the short axis Between a fixed voltage terminal V1 and a second fixed voltage terminal V2, the fourth resistor 120 is connected with its long axis between the first fixed voltage terminal V1 and the second fixed voltage terminal V2.
  • the voltage value between the first and second resistors 120, the voltage value between the third and fourth resistors 120 are changed by different amplitudes, and the change thereof is performed.
  • the magnitude is related to the user's pressing strength. Therefore, the voltage between the first and second resistors 120 is detected by the first voltage detecting unit 121, and the voltage between the third and fourth resistors 120 is detected by the second voltage detecting unit 122, and the voltage is calculated.
  • the difference between the two based on the amount of change before and after the user presses the pressure sensing unit 12, can determine the pressing force of the user.
  • FIG. 8 is a flow chart of a method of detecting pressure according to a second pressure sensing panel provided by the present disclosure. As shown in FIG. 8, the method of detecting pressure according to the second pressure sensing panel includes the following steps S1 to S6.
  • step S1 when the pressure sensing unit is not pressed, detecting a voltage value between the first and second resistors of the pressure sensing unit, and detecting third and fourth of the pressure sensing unit The voltage value between the resistors.
  • step S2 the difference between the voltage value between the first and second resistors detected in step S1 and the voltage value between the third and fourth resistors is calculated as the first voltage. value.
  • step S3 when the pressure sensing unit is pressed, detecting the detection of the pressure sensing unit a voltage value between the first and second resistors, and a voltage value between the third and fourth resistors of the pressure sensing unit.
  • the resistance in the pressure sensing unit is deformed, and the voltage value between the first and second resistors changes with the voltage value between the third and fourth resistors. The opposite is true, one of them becomes larger and the other becomes smaller.
  • step S4 the difference between the voltage value between the first and second resistors detected in step S3 and the voltage value between the third and fourth resistors is calculated as the second voltage. value.
  • step S5 a difference between the first voltage value and the second voltage value is calculated.
  • step S6 the pressing pressure of the user is determined according to the correspondence between the difference between the first voltage value and the second voltage value and the pressing pressure of the user.
  • the user can be determined according to the calculated difference between the first voltage value and the second voltage value. Pressing pressure.
  • the method for detecting pressure according to the second pressure sensing panel detects the change of the resistance value generated by the deformation of the resistance in the pressure sensing unit before and after the user presses, and detects the first and the first before and after the user presses The voltage value between the two resistors, and the voltage value between the third and fourth resistors, and calculating the difference between the two before and after the user presses, respectively obtaining the first voltage value and the second voltage value,
  • the pressing pressure of the user can be determined according to the correspondence between the difference between the first voltage value and the second voltage value and the pressing pressure of the user.
  • the present disclosure also provides a 3D touch panel.
  • the 3D touch panel comprises the first or second pressure sensing panel of the above embodiment of the present disclosure.
  • the 3D touch panel provided by the present disclosure can detect the pressing force of the user when performing a touch operation by using the first or second pressure sensing panel provided in the present disclosure.
  • the present disclosure also provides a touch display panel.
  • the touch display panel comprises the 3D touch panel in the above embodiment of the present disclosure, or the first or second pressure sensing panel provided by the present disclosure.
  • the touch display panel provided by the present disclosure can detect the user's touch by using the 3D touch panel in the above embodiment of the present disclosure or using the first or second pressure sensing panel provided in the present disclosure.
  • the pressing force during operation can respond to the corresponding operation according to the user's pressing strength, thereby improving the richer touch experience.
  • the touch display panel may be a liquid crystal display panel (LCD) or an active matrix light emitting diode (AMOLED) display panel.
  • LCD liquid crystal display panel
  • AMOLED active matrix light emitting diode
  • the touch display panel includes an array substrate 20 , a counter substrate 21 opposite to the array substrate 20 , and a liquid crystal layer between the array substrate 20 and the counter substrate 21 . 22, and the pressure sensing panel of the above embodiment of the present disclosure, the pressure sensing layer 11 of the pressure sensing panel is formed on the array substrate 20 or the counter substrate 21.
  • the pressure sensing layer 11 may be specifically formed on a side of the array substrate 20 facing the counter substrate 21 or on a side of the cassette substrate 21 facing the array substrate 20 (in the figure). From the top to the bottom of the second dotted frame, the pressure sensing panel is located in the touch display panel to form an in-cell touch. In addition, the pressure sensing layer 11 may also be formed on the light exiting side of the counter substrate 21 (indicated by the first dashed frame in the figure) or the light incident side of the array substrate 20 (top to bottom in the figure) The third dotted box refers to).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本公开文本提供压力感应面板及检测方法、3D触控面板、触控显示面板。该压力感应面板包括压力感应层;压力感应层包括多个压力感应单元,每个压力感应单元包括四个电阻以及第一电压检测单元和第二电压检测单元。每个压力感应单元的四个电阻依次相接,且第一个电阻的两个短边分别和第二个、第四个电阻的一条长边相接,第三个电阻的两个短边和第二个、第四个电阻的另一条长边相接。第一个、第四个电阻之间的连接端与第一固定电压端连接;第二个、第三个电阻之间的连接端与第二固定电压端连接。第一电压检测单元与第一个、第二个电阻之间的连接端连接;第二电压检测单元与第三个、第四个电阻之间的连接端连接。上述压力感应面板能检测使用者的按压压力。

Description

压力感应面板及检测方法、3D触控面板、触控显示面板
相关申请的交叉参考
本申请主张在2016年1月5日在中国提交的中国专利申请号No.201610006895.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及显示技术领域,具体地,涉及一种压力感应面板及其检测方法、3D触控面板、触控显示面板。
背景技术
触控显示面板一般包括显示面板和触控面板两部分。在制备触控显示面板时,最基本的方案是首先分别制备显示面板和触控面板,随后将显示面板和触控面板贴合形成触控显示面板。除此之外,还有On-cell和In-cell两种方案。所谓On-cell方案是指在显示面板的表面上形成触控电路,从而无需进行贴合工艺,与上述将显示面板和触控面板贴合方案相比,可以降低触控显示面板的厚度。另外,所谓In-cell方案是指在显示面板内(例如,在阵列基板和彩膜基板之间)形成触控电路,通过这种方案形成的触控显示面板的厚度比之On-cell方案还要更小。
根据上述多种方案制备出的触控显示面板一般仅能识别X方向和Y方向的坐标,即只能确定使用者所按压屏幕的位置,而对于使用者按压屏幕的力度,则无法进行判定。这给触控操控的进一步发展和应用带来了局限。
发明内容
(一)要解决的技术问题
本公开文本旨在至少解决现有技术中存在的技术问题之一,提出了一种压力感应面板及其检测方法、3D触控面板、触控显示面板,其可以检测使用者触控操作时的按压力度,进而响应相应操作,从而实现更丰富的触控体验。
(二)技术方案
为实现本公开文本的目的而提供一种压力感应面板,其包括形成在基板上的压力感应层;所述压力感应层包括分布在所述基板的各区域的多个压力感应单元,每个压力感应单元包括两个电阻以及第一电压检测单元;每个所述电阻具有长轴和短轴;在每个压力感应单元中,第一个电阻的两个短边分别与第一固定电压端以及第二个电阻的一个长边连接,第二个电阻的另一个长边与第二固定电压端连接;所述第一电压检测单元与第一个电阻和第二个电阻的连接端连接,用于检测其二者连接端的电压。
在一个可能的实施例中,所述电阻为长条形或椭圆形。
在一个可能的实施例中,所述第二固定电压端为接地端。
在一个可能的实施例中,沿所述基板的中心区域至边缘区域的方向,所述压力感应单元的分布密度递增。
在一个可能的实施例中,所述电阻的材料为氧化铟锡或碳纳米材料。
本公开文本还提供一种根据上述压力感应面板检测压力的方法,其包括:
在压力感应单元在未被按压时,检测所述压力感应单元的两个电阻之间的电压值,为第一电压值;
在按压压力感应单元时,检测两个电阻之间的电压值,为第二电压值;
计算第一电压值和第二电压值之间的差值;
根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,确定使用者的按压压力。
本公开文本还提供另一种压力感应面板,其包括形成在基板上的压力感应层;所述压力感应层包括分布在所述基板的各区域的多个压力感应单元,每个压力感应单元包括四个电阻,以及第一电压检测单元和第二电压检测单元;每个所述电阻具有长轴和短轴;每个压力感应单元的四个电阻依次相接,且第一个电阻的两个短边分别和与其相邻的第二个、第四个电阻的一条长边相接,与第一个电阻相对的第三个电阻的两个短边分别和第二个、第四个电阻的另一条长边相接;所述第一个、第四个电阻之间的连接端与第一固定电压端连接;所述第二个、第三个电阻之间的连接端与第二固定电压端连接;第一电压检测单元与所述第一个、第二个电阻之间的连接端连接,用于检测其二者连接端的电压;第二电压检测单元与所述第三个、第四个电阻之间的 连接端连接,用于检测其二者连接端的电压。
在一个可能的实施例中,所述电阻为长条形或椭圆形。
在一个可能的实施例中,所述第二固定电压端为接地端。
在一个可能的实施例中,沿所述基板的中心区域至边缘区域的方向,所述压力感应单元的分布密度递增。
在一个可能的实施例中,所述电阻的材料为氧化铟锡或碳纳米材料。
本公开文本还提供一种根据上述压力感应面板检测压力的方法,其包括:
在压力感应单元未被按压时,检测所述压力感应单元的第一个、第二个电阻之间的电压值,以及检测所述压力感应单元的第三个、第四个电阻之间的电压值;
计算所检测得到的第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值之间的差值,作为第一电压值;
在按压压力感应单元时,检测检测所述压力感应单元的第一个、第二个电阻之间的电压值,以及检测所述压力感应单元的第三个、第四个电阻之间的电压值;
计算所检测得到的第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值之间的差值,作为第二电压值;
计算第一电压值和第二电压值之间的差值;以及
根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,确定使用者的按压压力。
本公开文本还提供一种3D触控面板,其包括本公开文本提供的上述压力感应面板。
本公开文本还提供一种触控显示面板,所述触控显示面板包括本公开文本提供的上述压力感应面板,或者包括本公开文本提供的上述3D触控面板。
本公开文本具有以下有益效果:
本公开文本提供的第一种压力感应面板,其每个压力感应单元中,第一个、第二个电阻串联于第一固定电压端和第二固定电压端之间,且第一个电阻以其长轴连接于第一固定电压端至第二固定电压端之间,第二个电阻以其短轴连接于第一固定电压端至第二固定电压端之间,这样在使用者按压压力 感应单元时,使第一个、第二个电阻的电阻值发生变化的幅度不同,从而使第一个、第二个电阻之间的电压会发生变化,且其变化的幅度与使用者的按压力度有关,因此,通过第一电压检测单元检测第一个、第二个电阻之间的电压,根据使用者按压压力感应单元前后第一个、第二个电阻之间的电压值的变化量,可以确定使用者的按压力度。
本公开文本提供的根据第一种压力感应面板检测压力的方法,其依据使用者按压前后,压力感应单元中电阻的变形而产生的电阻值的变化,检测第一个、第二个电阻之间的电压值,分别获得第一电压值和第二电压值,根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,可以确定使用者的按压压力。
本公开文本提供的第二种压力感应面板,其每个压力感应单元中,第一个、第二个电阻和第三个、第四个电阻形成并联的两个支路连接于第一固定电压端和第二固定电压端之间;且在第一个、第二个电阻所在的支路中,第一个电阻以其长轴连接于第一固定电压端至第二固定电压端之间,第二个电阻以其短轴连接于第一固定电压端至第二固定电压端之间;而在第三个、第四个电阻所在的支路中,第三个电阻以其短轴连接于第一固定电压端至第二固定电压端之间,第四个电阻以其长轴连接于第一固定电压端至第二固定电压端之间;这样在使用者按压压力感应单元时,使第一个、第二个电阻之间的电压值,第三个、第四个电阻之间的电压值发生不同幅度的变化,且其变化的幅度与使用者的按压力度有关,因此,通过第一电压检测单元检测第一个、第二个电阻之间的电压,以及通过第二电压检测单元检测第三个、第四个电阻之间的电压,并计算其二者之间的差值,根据该差值在使用者按压压力感应单元前后的变化量,可以确定使用者的按压力度。
本公开文本提供的根据第二种压力感应面板检测压力的方法,其依据使用者按压前后,压力感应单元中电阻的变形而产生的电阻值的变化,在使用者按压前后检测第一个、第二个电阻之间的电压值,以及第三个、第四个电阻之间的电压值,并计算使用者按压前后二者之间的差值,分别获得第一电压值和第二电压值,根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,可以确定使用者的按压压力。
(三)有益效果
本公开文本实施例至少具有如下有益效果:
根据本公开文本提供的3D触控面板包括上述压力感应面板,本公开文本提供的触控显示面板包括上述3D触控面板或者包括上述压力感应面板,其均可以检测使用者触控操作时的按压力度,从而能够根据使用者的按压力度响应相应的操作,提高更丰富的触控体验。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开文本实施例提供的第一种和第二种压力感应面板的示意图;
图2为本公开文本实施例提供的第一种和第二种压力感应面板中的压力感应层的示意图;
图3为本公开文本实施例提供的第一种压力感应面板中的压力感应单元的示意图;
图4为图3所示压力感应单元的等效电路图(第二电压固定端为零电压时);
图5为本公开文本实施例提供的根据第一种压力感应面板检测压力的方法的流程图;
图6为本公开文本实施例提供的第二种压力感应面板中的压力感应单元的示意图;
图7为图6所示压力感应单元的等效电路图(第二电压固定端为零电压时);
图8为本公开文本实施例提供的根据第二种压力感应面板检测压力的方法的流程图;以及
图9为本公开文本实施例提供的压力感应面板的设置方式的示意图。
其中,附图标记包括:
10:基板;11:压力感应层;12:压力感应单元;20:阵列基板;21:对盒基板;22:液晶层;120:电阻;121:第一电压检测单元;122:第二电压检测单元。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以下结合附图对本公开文本的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开文本,并不用于限制本公开文本。
本公开文本提供多种压力感应面板,并给出其具体实施方式。在第一种压力感应面板的实施方式中,如图1至图3所示,所述压力感应面板包括形成在基板10上的压力感应层11。所述压力感应层11包括分布在所述基板10的各区域的多个压力感应单元12。例如,每个压力感应单元12包括两个电 阻120,以及第一电压检测单元121。例如,所述两个电阻120完全相同,且每个所述电阻120具有长轴和短轴。具体地,所述电阻120可以为长条形或椭圆形,以图3所示为例,所述电阻120为长条形,其长轴为长条形的长边方向,短轴为长条形的短边方向。
当然,本领域技术人员能够理解的是,所述两个电阻120也可以不完全相同,本公开文本并不以此为限。
参看图3,在每个压力感应单元12中,第一个电阻120的两个短边分别与第一固定电压端V1,以及第二个电阻120的一个长边连接,第二个电阻120的另一个长边与第二固定电压端V2连接。所述第一固定电压端V1的电压值为V1,第二固定电压端V2的电压值为V2。所述第一电压检测单元121与第一个电阻120和第二个电阻120的连接端连接,用于检测其二者连接端的电压。
下面结合附图对本公开文本实施例的第一种压力感应面板的工作原理和过程进行详细描述。
参看图3及图4,当使用者按压到压力感应单元12上时,每个电阻120在压力作用下发生变形,主要表现在,电阻120的长轴方向会变得更长(这里,电阻120的短轴方向也会变形,但其变形幅度小于长轴方向的变形幅度),这样会导致电阻120的两个短边之间的电阻会增加,而两个长边之间的电阻会减小。具体就本实施方式而言,第一个电阻120的电阻值会增大,而第二个电阻120的电阻值会减小。
基于以上变化,设第一固定电压端V1的电压值V1>第二固定电压端V2的电压值V2,则在使用者未按压压力感应单元12时,第一电压检测单元121所检测到的第一个、第二个电阻120之间的电压V12为:
Figure PCTCN2016089908-appb-000001
其中,R1为压力感应单元12未被按压时第一个电阻120的电阻值,R2为压力感应单元12未被按压时第二个电阻120的电阻值。
而在使用者按压压力感应单元12时,设第一个电阻120因变形而变化后的电阻值变为aR1,a>1;第二个电阻120因变形而变化后的电阻值变为bR2,b<1;则第一检测单元121所检测到的第一个、第二个电阻120之间的电压V′12 变为:
Figure PCTCN2016089908-appb-000002
因为a>1,b<1,根据公式(2)可以确定V′12>V12。在此情况下,使用者按压力度越大,第一个、第二个电阻120的变形幅度越大,a越大、b越小;根据公式(2),V′12的值越大;由此,V′12与V12之间的差值越大。而使用者按压力度越小,第一个、第二个电阻120的变形幅度越小,a越小,b越大;根据公式(2),V′12的值越小;由此,V′12与V12之间的差值越小。因此,V′12-V12的值可以反映使用者的按压力度,进而,根据使用者的按压力度与V′12-V12的值的对应关闭,可以确定使用者的按压力度。
优选地,所述第二固定电压端V2为接地端,这样可以直接将第二个电阻120接地,无需再提供一个单独的电压端,从而可以减少所需要设置的电压端子的数量,并且使得电路设置更加简单。
一般地,在应用本实施方式中的压力感应面板的触控面板或触控显示面板中,通过边框等固定部件将基板10的边缘部位固定,实现压力感应面板的固定。因此,在使用者按压压力感应面板的边缘部位时,压力感应面板发生的形变量相对较小;而在使用者按压压力感应面板的中部区域时,压力感应面板发生的形变量相对较大。针对该情况,在本实施方式中,沿基板10的中心区域至边缘区域的方向,所述压力感应单元12的分布密度递增,这样一方面可以减少所设置的压力感应单元12的数量,另一方面,由于压力感应面板的中部区域在被按压时发生的形变量大,在该中部区域设置较少的压力感应单元12,所述压力感应单元12中的电阻也能够发生足够的形变,从而确定使用者的按压力度。
在实际使用中,电阻120在被按压时发生变形的形变量还受温度的影响。而在本实施方式中,每个压力感应单元12中的各电阻120之间的距离较近,其各自所在区域的温度差异很小,一般可以将其忽略。因此,本实施方式中的压力感应单元对使用者按压力度的检测不受温度的影响。因此,其检测结果的准确性较高;而且,在检测使用者的按压力度时,可以无需考虑温度的影响,可以使检测方法和过程更加简单。
在本实施方式中,所述基板10优选为透明基板,所述电阻120优选为透 明电阻,这样在将所述压力感应面板用于显示面板中时,不仅可以将所述电阻120设置在非显示区,还可以设置在用于显示的像素区域,从而可以提高压力感应单元的分布密度,这有助于提高识别使用者按压压力的精度。所述电阻120的材料具体可以为氧化铟锡(ITO)或碳纳米材料。
根据本公开文本实施例提供的第一种压力感应面板,其每个压力感应单元12中,第一个、第二个电阻120串联于第一固定电压端V1和第二固定电压端V2之间,且第一个电阻120以其长轴连接于第一固定电压端V1至第二固定电压端V2之间,第二个电阻120以其短轴连接于第一固定电压端V1至第二固定电压端V2之间。这样在使用者按压压力感应单元12时,使第一个、第二个电阻120的电阻值发生变化的幅度不同,从而使第一个、第二个电阻120之间的电压会发生变化,且其变化的幅度与使用者的按压力度有关,因此,通过第一电压检测单元121检测第一个、第二个电阻120之间的电压,根据使用者按压压力感应单元12前后第一个、第二个电阻120之间的电压值的变化量,可以确定使用者的按压力度。
本公开文本实施例还提供一种根据上述第一种压力感应面板检测压力的方法,并给出其具体实施方式。图5为本公开文本提供的根据第一种压力感应面板检测压力的方法的流程图。如图5所示,根据第一种压力感应面板检测压力的方法包括以下步骤S1~S4。
在步骤S1中,在压力感应单元在未被按压时,检测所述压力感应单元的两个电阻之间的电压值,为第一电压值。
在步骤S2中,在按压压力感应单元时,检测两个电阻之间的电压值,为第二电压值。
在使用者按压压力感应单元时,压力感应单元中的电阻会发生变形,并导致两个电阻之间的电压值变化,从而第二电压值不等于第一电压值。
在步骤S3中,计算第一电压值和第二电压值之间的差值。
两个电阻之间的电压值在使用者按压压力感应单元时的变化(即第一电压值和第二电压值之间的差值)与电阻的变形量成正比,也即是和使用者的按压力度呈正比。
在步骤S4中,根据第一电压值和第二电压值之间的差值与使用者按压压 力之间的对应关系,确定使用者的按压压力。
由于第一电压值和第二电压值之间的差值与使用者的按压力度成正比,因此,根据所计算出的第一电压值和第二电压值之间的差值,可以确定使用者的按压压力。
本公开文本实施例提供的根据第一种压力感应面板检测压力的方法,其依据使用者按压前后,压力感应单元中电阻的变形而产生的电阻值的变化,检测第一个、第二个电阻之间的电压值,分别获得第一电压值和第二电压值,根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,可以确定使用者的按压压力。
在第二种压力感应面板的实施方式中,如图1、图2和图6所示,所述压力感应面板包括形成在基板10上的压力感应层11。所述压力感应层11包括分布在所述基板10的各区域的多个压力感应单元12。每个压力感应单元12包括四个电阻120,所述四个电阻120完全相同,且每个所述电阻120具有长轴和短轴。具体地,所述电阻120可以为长条形或椭圆形,以图6所示为例,在所述电阻120为长条形时,电阻120的长轴为长条形的长边,短轴为长条形的短边。而所述电阻120的材料可以为氧化铟锡(ITO)或碳纳米材料。
当然,本领域技术人员能够理解的是,所述四个电阻120也可以不完全相同,本公开文本并不以此为限。
在每个压力感应单元12中,四个电阻120依次相接,且第一个电阻120的两个短边分别和与其相邻的第二个、第四个电阻120的一条长边相接,与第一个电阻120相对的第三个电阻120的两个短边分别和第二个、第四个电阻120的另一条长边相接。需要说明的是,所述第一个、第二个、第三个、第四个仅用于限定其相互之间的连接次序,而并不表示其在物理空间中的位置关系。所述第一个、第四个电阻120之间的连接端与第一固定电压端V1连接,第一固定电压端V1的电压值为V1。所述第二个、第三个电阻120之间的连接端与第二固定电压端V2连接,第二固定电压端V2的电压值为V2。所述第一个、第二个电阻120之间的连接端与第一电压检测单元121连接;所述第三个、第四个电阻120之间的连接端与第二电压检测单元122连接。
下面结合附图对本公开文本第二种压力感应面板的工作原理和过程进行详细描述。
参看图6及图7,当使用者按压到压力感应单元12上时,每个电阻120在压力作用下发生变形,主要表现在,电阻120的长轴方向会变得更长(电阻120的短轴方向也会变形,但其变形幅度小于长轴方向的变形幅度),这样会导致电阻120的两个短边之间的电阻会增加,而两个长边之间的电阻会减小。具体就本实施方式而言,第一个、第三个电阻120的电阻值会增加,而第二个、第四个电阻120的电阻值会减小。
基于以上变化,设第一固定电压端V1的电压值V1>第二固定电压端V2的电压值V2,则在使用者未按压压力感应单元12时,第一电压检测单元121所检测到的第一个、第二个电阻120之间的电压V12为:
Figure PCTCN2016089908-appb-000003
其中,R1为压力感应单元12未被按压时第一个电阻120的电阻值,R2为压力感应单元12未被按压时第二个电阻120的电阻值。
第二检测单元122所检测到的第三个、第四个电阻120之间的电压V34为:
Figure PCTCN2016089908-appb-000004
其中,R3为压力感应单元12未被按压时第三个电阻120的电阻值,R4为压力感应单元12未被按压时第四个电阻120的电阻值。
而由于所述四个电阻120相同,且第一个电阻120通过其两个短边分别与第二个、第四个电阻120连接,第三个电阻120同样通过其两个短边分别与第二个、第四个电阻120连接,因此,R1=R3。类似地,第二个电阻120通过其两个长边分别与第一个、第三个电阻120连接,第四个电阻120同样通过其两个长边分别与第一个、第三个电阻120连接,因此,R2=R4。在此情况下,V12和V34之间的差值为:
Figure PCTCN2016089908-appb-000005
而在使用者按压压力感应单元12时,设第一个、第三个电阻120因变形而变化后的电阻值变为aR1、aR3,a>1;第二个、第四个电阻120因变形而变化后的电阻值变为bR2、bR4,b<1;则第一检测单元121所检测到的第一 个、第二个电阻120之间的电压V12变为:
Figure PCTCN2016089908-appb-000006
第二检测单元122所检测到的第三个、第四个电阻120之间的电压V34为:
Figure PCTCN2016089908-appb-000007
而V12和V34之间的差值变为:
Figure PCTCN2016089908-appb-000008
因为a>1,b<1,根据公式(8)可以确定V12-V34在使用者按压后的值大于其在使用者未按压时的值。在此情况下,使用者按压力度越大,四个电阻120的变形幅度越大,a越大、b越小;根据公式(8),V12-V34在使用者按压后的值越大。由此,V12-V34在使用者按压前后的差值越大。而使用者按压力度越小,四个电阻120的变形幅度越小,a越小,b越大;根据公式(8),V12-V34在使用者按压后的值越小;由此,V12-V34在使用者按压前后的差值越小。因此,V12-V34在使用者按压前后的差值可以反映使用者的按压力度,进而,可以根据V12-V34在使用者按压前后变化的幅度确定使用者的按压力度。
与上述第一种压力感应面板相比,本实施方式中,在使用者按压后,第一个、第二个电阻120之间的电压变大,而第三个、第四个电阻120之间的电压变小。因此,在使用者以同样力度按压压力感应单元,电阻120的变形程度相同时,第二种压力感应面板中V12-V34在使用者按压前后的差值大于第一种压力感应面板中V′12-V12的值。因此,第二种压力感应面板所能够识别的使用者的按压力度的最小极限值更小,使其所能检测的使用者按压力度的范围更大。同时,其检测精度也更高。
优选地,所述第二固定电压端V2为接地端,这样可以直接将第三个、第四个电阻120之间的连接端接地,无需再提供一个单独的电压端,从而可以减少所需要设置的电压端子的数量。
在本实施方式中,沿基板10的中心区域至边缘区域的方向,所述压力感应单元12的分布密度递增,其效果与上述第一种压力感应面板的实施方式中相同,在此就不再赘述。
另外,在本实施方式中,每个压力感应单元12中,各电阻120之间的距离较近,因此,与上述第一种压力感应面板相类似,本实施方式中的第二种压力感应面板也能获得对使用者按压力度的检测的准确性更高,以及使检测方法和过程更加简单的技术效果。
本公开文本实施方式中的第二种压力感应面板,其每个压力感应单元12中,第一个、第二个电阻120和第三个、第四个电阻120形成并联的两个支路连接于第一固定电压端V1和第二固定电压端V2之间。且在第一个、第二个电阻120所在的支路中,第一个电阻120以其长轴连接于第一固定电压端V1至第二固定电压端V2之间,第二个电阻120以其短轴连接于第一固定电压端V1至第二固定电压端V2之间;而在第三个、第四个电阻120所在的支路中,第三个电阻120以其短轴连接于第一固定电压端V1至第二固定电压端V2之间,第四个电阻120以其长轴连接于第一固定电压端V1至第二固定电压端V2之间。这样在使用者按压压力感应单元12时,使第一个、第二个电阻120之间的电压值,第三个、第四个电阻120之间的电压值发生不同幅度的变化,且其变化的幅度与使用者的按压力度有关。因此,通过第一电压检测单元121检测第一个、第二个电阻120之间的电压,以及通过第二电压检测单元122检测第三个、第四个电阻120之间的电压,并计算其二者之间的差值,根据该差值在使用者按压压力感应单元12前后的变化量,可以确定使用者的按压力度。
本公开文本还提供一种根据上述第二种压力感应面板检测压力的方法,并给出其具体实施方式。图8为本公开文本提供的根据第二种压力感应面板检测压力的方法的流程图。如图8所示,根据第二种压力感应面板检测压力的方法包括以下步骤S1~S6。
在步骤S1中,在压力感应单元未被按压时,检测所述压力感应单元的第一个、第二个电阻之间的电压值,以及检测所述压力感应单元的第三个、第四个电阻之间的电压值。
在步骤S2中,计算步骤S1中所检测得到的第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值之间的差值,作为第一电压值。
在步骤S3中,在按压压力感应单元时,检测检测所述压力感应单元的第 一个、第二个电阻之间的电压值,以及检测所述压力感应单元的第三个、第四个电阻之间的电压值。
在使用者按压压力感应单元时,压力感应单元中的电阻会发生变形,而且,第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值的变化倾向相反,其二者一者变大,另一者则变小。
在步骤S4中,计算步骤S3中所检测得到的第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值之间的差值,作为第二电压值。
由于第一个、第二个电阻之间的电压值与第三个、第四个电阻之间的电压值二者当中,一者变大,另一者则变小,因此,其二者之间的差值的变化,即第二电压值与第一电压值的差值与使用者的按压力度成正比。
在步骤S5中,计算第一电压值和第二电压值之间的差值。
在步骤S6中,根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,确定使用者的按压压力。
由于第一电压值和第二电压值之间的差值与使用者的按压力度成正比,因此,根据所计算出的第一电压值和第二电压值之间的差值,可以确定使用者的按压压力。
本公开文本提供的根据第二种压力感应面板检测压力的方法,其依据使用者按压前后,压力感应单元中电阻的变形而产生的电阻值的变化,在使用者按压前后检测第一个、第二个电阻之间的电压值,以及第三个、第四个电阻之间的电压值,并计算使用者按压前后二者之间的差值,分别获得第一电压值和第二电压值,根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,可以确定使用者的按压压力。
本公开文本还提供一种3D触控面板。在其实施方式中,所述3D触控面板包括本公开文本上述实施方式中的第一种或第二种压力感应面板。
本公开文本提供的3D触控面板,其采用本公开文本提供的上述第一种或第二种压力感应面板,可以检测使用者进行触控操作时的按压力度。
本公开文本还提供一种触控显示面板。在其实施方式中,所述触控显示面板包括本公开文本上述实施方式中的3D触控面板,或者采用本公开文本提供的上述第一种或第二种压力感应面板。
本公开文本提供的触控显示面板,其采用本公开文本上述实施方式中的3D触控面板,或者采用本公开文本提供的上述第一种或第二种压力感应面板,可以检测使用者触控操作时的按压力度,从而能够根据使用者的按压力度响应相应的操作,提高更丰富的触控体验。
具体地,所述触控显示面板可以为液晶显示面板(LCD)或者有源矩阵发光二极管(AMOLED)显示面板。以LCD为例,如图9所示,所述触控显示面板包括阵列基板20、与所述阵列基板20对盒的对盒基板21、位于阵列基板20和对盒基板21之间的液晶层22,以及本公开文本上述实施方式中的压力感应面板,所述压力感应面板的压力感应层11形成在所述阵列基板20或对盒基板21上。
具体地,如图9所示,所述压力感应层11具体可以形成在阵列基板20中的朝向对盒基板21的一侧,或者,对盒基板21的朝向阵列基板20的一侧(图中由上至下第二个虚线框所指),此时,所述压力感应面板位于触控显示面板内,构成内嵌式触控(In-cell touch)。此外,所述压力感应层11还可以形成在对盒基板21的出光侧(图中由上至下第一个虚线框所指),或者阵列基板20的入光侧(图中由上至下第三个虚线框所指)。
可以理解的是,以上实施方式仅仅是为了说明本公开文本的原理而采用的示例性实施方式,然而本公开文本并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开文本的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开文本的保护范围。

Claims (15)

  1. 一种压力感应面板,包括:形成在基板上的压力感应层;所述压力感应层包括分布在所述基板的各区域的多个压力感应单元,每个压力感应单元包括两个电阻以及第一电压检测单元;
    所述两个电阻中的每个电阻都具有长轴和短轴;
    在每个压力感应单元中,第一个电阻的两个短边分别与第一固定电压端以及第二个电阻的一个长边连接,第二个电阻的另一个长边与第二固定电压端连接;
    所述第一电压检测单元分别与第一个电阻和第二个电阻的连接端连接,用于检测其二者连接端的电压。
  2. 根据权利要求1所述的压力感应面板,其中,所述两个电阻为长条形或椭圆形。
  3. 根据权利要求1或2所述的压力感应面板,其中,所述第二固定电压端为接地端。
  4. 根据权利要求1至3中任意一项所述的压力感应面板,其中,沿所述基板的中心区域至边缘区域的方向,所述压力感应单元的分布密度递增。
  5. 根据权利要求1至4中任意一项所述的压力感应面板,其中,所述两个电阻的材料为氧化铟锡或碳纳米材料。
  6. 根据权利要求1至5中任意一项所述的压力感应面板检测压力的方法,包括:
    在压力感应单元在未被按压时,检测所述压力感应单元的两个电阻之间的电压值,为第一电压值;
    在按压压力感应单元时,检测两个电阻之间的电压值,为第二电压值;
    计算第一电压值和第二电压值之间的差值;以及
    根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,确定使用者的按压压力。
  7. 一种压力感应面板,包括:形成在基板上的压力感应层;所述压力感应层包括分布在所述基板的各区域的多个压力感应单元,每个压力感应单元 包括四个电阻以及第一电压检测单元和第二电压检测单元;
    所述四个电阻中的每个电阻都具有长轴和短轴;每个压力感应单元的四个电阻依次相接,且第一个电阻的两个短边分别和与其相邻的第二个、第四个电阻的一条长边相接,与第一个电阻相对的第三个电阻的两个短边分别和第二个、第四个电阻的另一条长边相接;
    所述第一个、第四个电阻之间的连接端与第一固定电压端连接;所述第二个、第三个电阻之间的连接端与第二固定电压端连接;
    第一电压检测单元与所述第一个电阻和第二个电阻之间的连接端连接,用于检测其二者连接端的电压;
    第二电压检测单元与所述第三个电阻和第四个电阻之间的连接端连接,用于检测其二者连接端的电压。
  8. 根据权利要求7所述的压力感应面板,其中,所述四个电阻为长条形或椭圆形。
  9. 根据权利要求7或8所述的压力感应面板,其中,所述第二固定电压端为接地端。
  10. 根据权利要求7至9中任意一项所述的压力感应面板,其中,沿所述基板的中心区域至边缘区域的方向,所述压力感应单元的分布密度递增。
  11. 根据权利要求7至10中任意一项所述的压力感应面板,其中,所述四个电阻的材料为氧化铟锡或碳纳米材料。
  12. 根据权利要求7至11中任意一项所述的压力感应面板检测压力的方法,包括:
    在压力感应单元未被按压时,检测所述压力感应单元的第一个电阻和第二个电阻之间的电压值,以及检测所述压力感应单元的第三个电阻和第四个电阻之间的电压值;
    计算所检测得到的第一个电阻和第二个电阻之间的电压值与第三个电阻和第四个电阻之间的电压值之间的差值,作为第一电压值;
    在按压压力感应单元时,检测所述压力感应单元的第一个电阻和第二个电阻之间的电压值,以及检测所述压力感应单元的第三个电阻和第四个电阻之间的电压值;
    计算所检测得到的第一个电阻和第二个电阻之间的电压值与第三个电阻和第四个电阻之间的电压值之间的差值,作为第二电压值;
    计算第一电压值和第二电压值之间的差值;以及
    根据第一电压值和第二电压值之间的差值与使用者按压压力之间的对应关系,确定使用者的按压压力。
  13. 一种3D触控面板,包括:根据权利要求1至5中任意一项或7至11中任意一项所述的压力感应面板。
  14. 一种触控显示面板,包括:根据权利要求1至5中任意一项或7至11中任意一项所述的压力感应面板。
  15. 一种触控显示面板,包括:根据权利要求13所述的3D触控面板。
PCT/CN2016/089908 2016-01-05 2016-07-13 压力感应面板及检测方法、3d触控面板、触控显示面板 WO2017117962A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,933 US10216310B2 (en) 2016-01-05 2016-07-13 Pressure-sensitive panel and detection method thereof, 3D touch panel and touch display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006895.9 2016-01-05
CN201610006895.9A CN105404432B (zh) 2016-01-05 2016-01-05 压力感应面板及检测方法、3d触控面板、触控显示面板

Publications (1)

Publication Number Publication Date
WO2017117962A1 true WO2017117962A1 (zh) 2017-07-13

Family

ID=55469949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089908 WO2017117962A1 (zh) 2016-01-05 2016-07-13 压力感应面板及检测方法、3d触控面板、触控显示面板

Country Status (3)

Country Link
US (1) US10216310B2 (zh)
CN (1) CN105404432B (zh)
WO (1) WO2017117962A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404432B (zh) * 2016-01-05 2019-02-12 京东方科技集团股份有限公司 压力感应面板及检测方法、3d触控面板、触控显示面板
CN105955535B (zh) * 2016-05-13 2019-05-14 上海天马微电子有限公司 一种显示面板
CN106201063B (zh) * 2016-06-27 2018-08-14 华为技术有限公司 一种触摸压力检测装置、显示屏及触控电子设备
CN107153483B (zh) 2017-05-09 2019-12-03 京东方科技集团股份有限公司 一种触控显示模组、显示装置及其驱动方法
CN107422510A (zh) * 2017-06-29 2017-12-01 上海天马微电子有限公司 显示面板、显示装置和显示面板的触控检测方法
CN107315502B (zh) * 2017-06-30 2020-05-19 上海天马微电子有限公司 显示面板、显示装置和压力检测方法
CN108874223B (zh) * 2018-06-27 2021-08-10 上海天马微电子有限公司 显示面板及显示装置
US11261390B2 (en) 2018-09-10 2022-03-01 Korea Institute Of Science And Technology Apparatus and method of preparing synthetic fuel using natural gas
CN114964567A (zh) * 2022-06-15 2022-08-30 宁波普瑞均胜汽车电子有限公司 汽车人机界面零部件的表面压力检测系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117058A (zh) * 2015-08-24 2015-12-02 联想(北京)有限公司 一种触控面板、触控显示面板及电子设备
CN204883660U (zh) * 2015-09-11 2015-12-16 宸鸿科技(厦门)有限公司 一种增强型3d侦测模块
CN105404432A (zh) * 2016-01-05 2016-03-16 京东方科技集团股份有限公司 压力感应面板及检测方法、3d触控面板、触控显示面板
CN205302244U (zh) * 2016-01-05 2016-06-08 京东方科技集团股份有限公司 压力感应面板、3d触控面板、触控显示面板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766666A (en) * 1985-09-30 1988-08-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure sensor and method of manufacturing the same
US5590908A (en) * 1995-07-07 1997-01-07 Carr; Donald W. Sports board having a pressure sensitive panel responsive to contact between the sports board and a surface being ridden
CN101699369A (zh) * 2009-11-18 2010-04-28 英华达(南昌)科技有限公司 一种用于电子设备压力触发装置和包含所述装置的电子设备
US8393229B2 (en) * 2010-02-24 2013-03-12 The Hong Kong Research Institute Of Textiles And Apparel Limited Soft pressure sensing device
CN102467314A (zh) * 2010-11-02 2012-05-23 宏碁股份有限公司 可携式电子装置与显示面板压力监控方法
KR20130104598A (ko) * 2012-03-14 2013-09-25 주식회사 미성포리테크 터치패널 기기의 홈 키 장치
TWI629459B (zh) * 2013-02-06 2018-07-11 藤倉股份有限公司 Method for manufacturing pressure detecting device, pressure detecting device, pressure detecting device and electronic device
US9851845B2 (en) * 2014-08-12 2017-12-26 Apple Inc. Temperature compensation for transparent force sensors
CN105117055B (zh) * 2015-08-14 2018-09-28 宸鸿科技(厦门)有限公司 触压式三维信号输入装置及使用方法及多功能触控面板
CN204904241U (zh) * 2015-09-11 2015-12-23 宸鸿科技(厦门)有限公司 包含三维输入模组的显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117058A (zh) * 2015-08-24 2015-12-02 联想(北京)有限公司 一种触控面板、触控显示面板及电子设备
CN204883660U (zh) * 2015-09-11 2015-12-16 宸鸿科技(厦门)有限公司 一种增强型3d侦测模块
CN105404432A (zh) * 2016-01-05 2016-03-16 京东方科技集团股份有限公司 压力感应面板及检测方法、3d触控面板、触控显示面板
CN205302244U (zh) * 2016-01-05 2016-06-08 京东方科技集团股份有限公司 压力感应面板、3d触控面板、触控显示面板

Also Published As

Publication number Publication date
US20180210596A1 (en) 2018-07-26
CN105404432B (zh) 2019-02-12
CN105404432A (zh) 2016-03-16
US10216310B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2017117962A1 (zh) 压力感应面板及检测方法、3d触控面板、触控显示面板
TWI605369B (zh) 互容式壓力感測器以及具有壓力感測功能之觸控顯示裝置與其壓力感測方法
CN106557207B (zh) 触控显示面板及其感测驱动方法
US9760206B2 (en) Self-capacitive touch panel structure, in-cell touch panel, and liquid crystal display
US10146385B2 (en) Touch substrate, display device and method for detecting touch electrode pattern
US20160274724A1 (en) Pressure Sensing and Touch Sensitive Panel, Pressure Sensing Method, Pressure Sensing Electronic Device and Control Unit Thereof
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
TWI413928B (zh) 觸控面板及其差動辨識方法
WO2017041431A1 (zh) 一种内嵌式触摸屏及显示装置
CN105607773B (zh) 一种触摸屏
CN106855764A (zh) 触摸显示装置
CN104991681B (zh) 一种显示器及其显示控制方法和显示控制装置
WO2017075978A1 (zh) 触控显示面板、触控显示装置及驱动方法
US20160364071A1 (en) Touch control device
TWI788588B (zh) 一種壓力感測模組、觸控面板以及觸控面板兩點觸摸壓力檢測方法
TWI459267B (zh) 觸摸屏觸摸點之感測方法
US10209818B2 (en) Display panel and drive method thereof as well as display apparatus
CN101593059B (zh) 触控面板、其触控检测方法及具有触控功能的显示装置
CN105700738A (zh) 一种触控显示屏及电子设备
US9195089B2 (en) Liquid crystal display touch panel structure
CN106855758A (zh) 触摸显示装置
CN106557193A (zh) 触摸显示装置
KR101405164B1 (ko) 터치 디스플레이 장치
TWI594162B (zh) 增強型3d偵測模組的偵測方法
WO2015192597A1 (zh) 触摸面板及其驱动方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329933

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883097

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 060619)

122 Ep: pct application non-entry in european phase

Ref document number: 16883097

Country of ref document: EP

Kind code of ref document: A1