WO2017115888A1 - 방향성 전기 강판의 자구 미세화 방법 및 그 장치 - Google Patents

방향성 전기 강판의 자구 미세화 방법 및 그 장치 Download PDF

Info

Publication number
WO2017115888A1
WO2017115888A1 PCT/KR2015/014461 KR2015014461W WO2017115888A1 WO 2017115888 A1 WO2017115888 A1 WO 2017115888A1 KR 2015014461 W KR2015014461 W KR 2015014461W WO 2017115888 A1 WO2017115888 A1 WO 2017115888A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
tension
grain
laser
oriented electrical
Prior art date
Application number
PCT/KR2015/014461
Other languages
English (en)
French (fr)
Inventor
홍성철
임충수
권오열
천명식
박현철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to PCT/KR2015/014461 priority Critical patent/WO2017115888A1/ko
Priority to JP2018534156A priority patent/JP2019510130A/ja
Priority to EP15912124.3A priority patent/EP3399058A4/en
Priority to US16/067,051 priority patent/US20190010566A1/en
Priority to CN201580085651.8A priority patent/CN108699616A/zh
Publication of WO2017115888A1 publication Critical patent/WO2017115888A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a method for miniaturizing magnetic domains of a grain-oriented electrical steel sheet and a device thereof, and more particularly, to reduce iron loss of a grain-oriented electrical steel sheet used as an iron core of an electrical apparatus such as a transformer.
  • the present invention relates to a method for minimizing magnetic domains of a grain-oriented electrical steel sheet and a device for permanently miniaturizing magnetic domains of an electrical steel sheet by forming grooves by melting.
  • a oriented electrical steel sheet having magnetic properties with low iron loss and high magnetic flux density is required.
  • Japanese Patent Publications 58-26405 and US Pat. No. 4,203,784 have disclosed methods for reducing iron loss by miniaturizing magnetic domains in the direction perpendicular to the rolling direction using laser and mechanical methods.
  • the method of miniaturizing magnetic domains using a laser has a disadvantage of losing the magnetic domain miniaturization effect after stress relief annealing.
  • the self-refining method can be roughly classified into a temporary self-refining method and a permanent refining method according to whether or not the effect of improving the self-refining effect is maintained by stress relief annealing.
  • Temporary magnetic domain micronization methods include laser magnetic domain microscopy, ball scratch method, plasma and ultrasonic waves, depending on the energy source for miniaturizing magnetic domains, as in Japanese Patrol Office 57-2252B, Japanese Patrol Office 58-5968B, and Japanese Patent Publication 7-072300. There is a way.
  • the magnetic domain is refined by forming a local compressive stress portion on the surface of the electrical steel sheet by laser, ball, plasma, and ultrasonic waves on the surface of the electrical steel sheet.
  • this method has a disadvantage in that the manufacturing cost is high because the coating layer is recoated because it causes damage to the insulating coating layer on the surface of the steel sheet, or the micronized treatment is performed in an intermediate process instead of the final product.
  • the coating layer is recoated because it causes damage to the insulating coating layer on the surface of the steel sheet, or the micronized treatment is performed in an intermediate process instead of the final product.
  • the micronized treatment is performed in an intermediate process instead of the final product.
  • the permanent magnetization microrefining method capable of maintaining the iron loss improving effect even after heat treatment can be roughly classified into an etching method, a roll method, and a laser method.
  • the etching method is masked with photosensitive resin on the surface of electrical steel sheet, and then the surface resin is desorbed using photo etching, laser or plasma, and then electrochemically in solution.
  • a method of forming a groove having a thickness is disclosed in Japanese Patent Application Laid-Open No. 6-57857.
  • Etching method is difficult to control groove shape (width, depth) because the groove is formed on the surface of the steel sheet by the electrochemical corrosion reaction in acid solution, and in the intermediate process of producing the steel sheet (decarburization annealing, before high temperature annealing) It is difficult to guarantee the iron loss characteristics of the final product because of the formation of grooves, and it is disadvantageous in that it is not environmentally friendly due to the use of acid solution.
  • the method of permanent magnetization by roll is a method of forming a groove having a width of 300 ⁇ m or less and a depth of 5 ⁇ m on the surface by pressing an electrical steel sheet using a roll whose surface is processed into a protrusion shape.
  • Korean Patent Publication No. 5-202450 Korean Patent Publication No. 5-202450.
  • Permanent magnetization method by roll is a technique for miniaturizing the magnetic domain by generating a recrystallization of the lower groove by annealing the electrical steel sheet after the permanent magnetization process has a disadvantage in that the stability, reliability and process for the machining process is complicated.
  • Japanese Patent Application Laid-Open No. 6-63037 discloses a method of forming a groove spacing of 5 ⁇ ⁇ and a depth of 1 to 30 mm on the surface of an electrical steel sheet by a press similar to the method of forming a groove by a roll.
  • Pulsed laser irradiation through the deposition of the irradiation material, forming grooves having a surface opening width of 100 to 300 ⁇ m and a depth of 10 to 30 ⁇ m, thereby securing 14% improvement in iron loss after heat treatment of a 0.23 mm thick oriented electrical steel sheet.
  • EP 0 870843 A1 WO 97/024466
  • the method of permanent magnetization and the method of improving iron loss after heat treatment by Q-switched pulse laser forms groove depths of 5 to 30 ⁇ m on both sides of electrical steel sheet to improve iron loss after heat treatment.
  • Japanese Patent Application No. 1998-284034 to secure 4.7-5.1%.
  • the known method for magnetic domain miniaturization by pulse laser suppresses the formation of the molten part because the grooves are formed by vapor deposition, and thus it is difficult to secure the iron loss improvement rate before heat treatment (stress relaxation heat treatment, SRA). Not only maintain, but also has the disadvantage that the processing speed of the steel plate (Line Speed 10mpm or more) can not be processed at high speed.
  • the present invention forms a groove having an upper width, a lower width and a depth of less than 70 ⁇ m, less than 10 ⁇ m, and 2 to 30 ⁇ m by irradiating a surface of the steel sheet with a single mode continuous wave laser beam on the surface of the oriented electrical steel sheet.
  • the iron loss improvement rate before and after heat treatment is ensured at least 5% and 10%, respectively, and the interval between the laser irradiation lines can be adjusted to 2 to 30 mm in the rolling direction.
  • the present invention provides a method and apparatus for miniaturizing magnetic domains of a grain-oriented electrical steel sheet which can improve the iron loss of a steel sheet by minimizing the influence of a heat affected zone (HAZ) by a laser beam.
  • HAZ heat affected zone
  • Meandering control step to make the steel plate move straight along the center of the production line
  • a method of miniaturizing magnetic domains of a grain-oriented electrical steel sheet comprising: irradiating a laser beam to melt the steel sheet to form grooves on the surface of the steel sheet.
  • a method of miniaturizing magnetic domains of a grain-oriented electrical steel sheet comprising: irradiating a laser beam to melt the steel sheet to form grooves on the surface of the steel sheet.
  • the meandering control step in the step of forming the grooves of the steel sheet surface by laser irradiation, the meandering amount of the meander measuring sensor whose center width of the steel sheet is out of the center of the production line before the groove is formed to form the grooves over the entire width of the steel sheet is measured.
  • Meandering quantity measuring step and
  • the meandering amount control step of controlling the meandering amount of the steel sheet within ⁇ 1 mm by adjusting the direction in which the steel sheet moves by rotating and moving the axis of the steering roll according to the meandering amount of the steel sheet measured in the meandering amount measuring step It may include.
  • the tension control step the steel sheet tension applying step of applying a tension of a predetermined size to the steel sheet by the tension bridle roll (Tension Bridle Roll) in order to operate with a steel sheet tension in the range of 1 ⁇ 4kgf / mm2,
  • Steel plate support roll position control step of controlling the position of the steel plate support roll position control within ⁇ 10 ⁇ m by adjusting the position of the steel plate support roll by the SPR position control system according to the brightness of the flame measured in the brightness measurement step It may include.
  • the laser irradiation step by irradiating the surface of the steel sheet by the optical system receiving the laser beam irradiated from the laser oscillator to form a groove of the upper width, lower width and depth of less than 70 ⁇ m, less than 10 ⁇ m, 3 ⁇ 30 ⁇ m respectively
  • a laser irradiation and energy transfer step of transmitting a laser beam energy density within a range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet to produce a resolidification portion remaining in the groove inner wall of the molten portion when the laser beam is irradiated. can do.
  • the laser oscillator is turned on by the laser oscillator controller under normal working conditions, and the laser oscillator is turned off when the steel sheet has a meandering amount of 15 mm or more. It may include a beam oscillation control step.
  • a steel plate moving direction switching step of switching the moving direction of the steel sheet to the steel plate supporting roll by a deflector roll may be performed.
  • the laser oscillator may oscillate a single mode continuous wave laser beam.
  • the optical system may adjust the interval of the laser beam irradiation line to 2 ⁇ 30 mm in the rolling direction by controlling the laser scanning speed.
  • Meandering control system that allows the steel plate to move straight along the center of the production line without bias
  • Tension control equipment for imparting tension to the steel sheet to keep the steel sheet flat
  • Steel plate supporting roll position adjusting device for controlling the up and down position of the designated steel plate while supporting the steel plate
  • the apparatus for miniaturizing magnetic domains of a grain-oriented electrical steel sheet including a laser irradiation facility for irradiating a laser beam to melt the steel sheet to form grooves on the surface of the steel sheet.
  • Tension control equipment for imparting tension to the steel sheet to keep the steel sheet flat
  • Steel plate supporting roll position adjusting device for controlling the up and down position of the designated steel plate while supporting the steel plate
  • the apparatus for miniaturizing magnetic domains of a grain-oriented electrical steel sheet including a laser irradiation facility for irradiating a laser beam to melt the steel sheet to form grooves on the surface of the steel sheet.
  • the meandering control device is a steering roll (Steering Roll) for switching the movement direction of the steel sheet,
  • Steel plate center position control system (Strip Center Position Control System) for adjusting the direction of movement of the steel plate by rotating and moving the axis of the steering roll, and
  • a width center position of the steel sheet may include a meander measuring sensor for measuring the degree of deviation (meandering amount) from the center of the production line.
  • the tension control device is a tension bridle roll (Tension Bridle Roll), which induces movement while applying a certain amount of tension to the steel sheet,
  • a steel sheet may include a strip tension control system for adjusting the speed of the tension bridal roll according to the tension of the steel sheet measured by the steel sheet tension measuring sensor.
  • the steel sheet support roll position adjusting equipment is a steel sheet support roll (SPR) for supporting the steel sheet at the laser irradiation equipment position,
  • a luminance sensor for measuring the brightness of the flame generated when the laser irradiation to the steel sheet in the laser irradiation equipment
  • It may include a steel sheet support roll (SPR) position control system for controlling the position of the steel sheet support roll according to the brightness of the flame measured by the brightness measuring sensor.
  • SPR steel sheet support roll
  • the laser irradiation equipment a laser oscillator for oscillating a continuous wave laser beam,
  • the optical system may be configured to transmit a laser energy density within a range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet to the steel sheet so that the resolidification portion remaining on the wall surface is generated.
  • the laser irradiation apparatus may include a laser oscillator controller for controlling the laser oscillator to an off state when the laser oscillator is turned on under normal working conditions and the steel sheet meandering amount is 15 mm or more.
  • the moving direction of the steel sheet passing through the tension control device may be switched so that the steel sheet is directed to the steel sheet supporting roll by a deflector roll.
  • the laser oscillator may oscillate a single mode continuous wave laser beam.
  • the optical system may control the laser scanning speed to adjust the interval of the laser irradiation line to 2 to 30 mm in the rolling direction.
  • the steel sheet proceeds at a high speed of 2m / s or more, every 3 to 30mm intervals in the longitudinal direction to the steel sheet, the upper width, the lower width and depth of each within 70 ⁇ m, within 10 ⁇ m, 3 ⁇
  • a groove of 30 ⁇ m it can be applied not only to electrical steel sheets before primary recrystallization but also to secure iron loss improvement rates before and after heat treatment of electrical steel sheets after secondary recrystallization or after insulation coating of 5% and 10%, respectively. Because of its advantages, it can be used as a coil core that requires heat treatment and a core iron transformer that does not require heat treatment.
  • FIG. 1 is a schematic configuration diagram of a method for miniaturizing magnetic domains of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a device for refining a magnetic domain of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a steel sheet having continuous grooves formed by a continuous wave laser beam according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a method for miniaturizing magnetic domains of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the method for miniaturizing magnetic domains of a grain-oriented electrical steel sheet is a method for stably performing permanent magnetization treatment even when the steel sheet 1 is advanced at a speed of 2 m / s or more.
  • Steel plate support roll position adjusting step (S30) for controlling the vertical position of the specified steel sheet 1 while supporting the steel sheet 1, and
  • It may include a laser irradiation step (S40) and the like to form a groove on the surface of the steel sheet 1 by melting the steel sheet 1 by irradiating a laser beam.
  • S40 laser irradiation step
  • the center width of the steel sheet 1 before forming the groove is the center of the production line in order to form the grooves over the entire width of the steel sheet 1.
  • the tension control step (S20) is of a constant size to the steel sheet 1 by the tension bridle roll (Tension Bridle Roll) (5A, 5B) in order to operate with a steel sheet tension in the range of 1 ⁇ 4kgf / mm2 Steel plate tension applying step (S21) for applying the tension,
  • Steel plate for controlling the tension error of the steel sheet 1 to within ⁇ 1% by adjusting the speed of the tension bridal roll (5A, 5B) according to the tension of the steel sheet 1 measured in the steel sheet tension measurement step (S22) (Strip) may include a tension control step (S23).
  • the brightness measurement step (S32) for measuring the brightness of the flame generated when the laser irradiation on the steel sheet 1 by the brightness measurement sensor (10),
  • the steel sheet support roll position adjusting step (S30) supports the steel sheet 1 at the laser irradiation portion position by the steel sheet support roll 9, so that the steel sheet is positioned in the depth of focus with high laser steel sheet irradiation efficiency, Adjust the position of the steel plate support roll so that the brightness of the spark generated when the laser is irradiated on the steel plate is in the best state.
  • the brightness of the flame generated when the laser beam is irradiated to the steel sheet can be measured by using the brightness measuring sensor 10 and the steel sheet support roll position control accuracy can be controlled within ⁇ 10 ⁇ m.
  • the laser oscillator controller 12 turns on the laser oscillator 13 for oscillating the laser beam under normal working conditions, and when the meandering amount of the steel sheet is 15 mm or more, the laser oscillator ( Laser beam oscillation control step (S41) for controlling the 13 to the off (Off) state, and
  • the oscillator is turned on under normal working conditions, and when the steel sheet meandering amount is 15 mm or more, the oscillator is turned off, and the laser beam is irradiated on the surface of the steel sheet so that the upper width, 1.0 to 5.0 J required for melting the steel sheet to form grooves having a lower width and depth of less than 70 ⁇ m, less than 10 ⁇ m, and 3 to 30 ⁇ m, respectively, and at the same time generate re-solidification portions remaining on the inner wall of the groove of the molten portion during laser irradiation.
  • the laser energy density in the range of / mm 2 is transmitted to the steel sheet.
  • the laser oscillator 13 may oscillate a single mode continuous wave laser beam 15.
  • the optical system 14 may control the laser scanning speed to adjust the interval of the laser beam irradiation line to 2 ⁇ 30 mm in the rolling direction.
  • FIG. 2 is a schematic configuration diagram of a device for refining a magnetic domain of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the device for miniaturizing magnetic domains of a grain-oriented electrical steel sheet is a device for stably performing permanent magnetization treatment even when the steel sheet 1 proceeds at a high speed of 2 m / s or more.
  • Meandering control equipment that allows the steel sheet (1) to move straight along the center of the production line without bias
  • Tension control equipment for imparting tension to the steel sheet 1 so that the steel sheet 1 remains flat
  • a steel plate support roll position adjusting device for controlling a vertical position of the designated steel plate 1 while supporting the steel plate 1, and
  • a laser irradiation facility for melting the steel sheet 1 by irradiating the laser beam 15 to form grooves on the surface of the steel sheet.
  • the meandering control device is a steering roll (Steering Roll) (2A, 2B) for switching the moving direction of the steel sheet (1),
  • Steel plate center position control system (Strip Center Position Control System) 3 for adjusting the direction in which the steel plate 1 moves by rotating and moving the axes of the steering roll (SR) 2A, 2B, and
  • the width center position of the steel sheet 1 may include a meander measuring sensor 4 for measuring the degree of deviation (meandering amount) from the center of the production line.
  • the meandering control device is a steering roll (SR) according to the meandering amount measured by the meander measuring sensor (4) before the groove formation in order to form the grooves over the full width of the steel sheet in the process of forming the steel sheet surface grooves by laser irradiation.
  • SR steering roll
  • the meandering amount of the steel sheet 1 can be controlled within ⁇ 1 mm.
  • the tension control device is a tension bridle roll (TBR) (5A, 5B) to induce movement while applying a fixed size of tension to the steel sheet (1),
  • TBR tension bridle roll
  • Steel plate tension measuring sensor 7 for measuring the tension of the steel sheet 1 passed through the tension bridal roll
  • a steel sheet tension control system 6 for adjusting the speeds of the tension bridal rolls 5A and 5B according to the tension of the steel sheet 1 measured by the steel sheet tension measuring sensor 7 may be included.
  • the tension control device is a tension bridle by the steel plate (Strip) tension control system 6 in accordance with the tension of the steel sheet measured by the steel sheet tension measuring sensor 7 to operate with a steel sheet tension in the range of 1 ⁇ 4kgf / mm2
  • the tension error of the steel sheet 1 can be controlled within ⁇ 1%.
  • the moving direction of the steel sheet having passed through the tension control device is switched so that the steel sheet 1 is directed to the steel sheet supporting roll 9 by deflector rolls 8A and 8B.
  • the steel sheet supporting roll position adjusting equipment is a steel sheet supporting roll (SPR) 9 for supporting the steel sheet 1 at the laser irradiation equipment position,
  • Luminance measuring sensor 10 for measuring the brightness of the flame generated when the laser irradiation to the steel sheet (1) in the laser irradiation equipment
  • a steel sheet support roll (SPR) position control system 11 for controlling the position of the steel sheet support roll 9 according to the brightness of the flame measured by the brightness measuring sensor 10 may be included.
  • the steel sheet supporting roll position adjusting device supports the steel sheet 1 at the laser irradiation part position by the steel sheet supporting roll 9, and the steel sheet is positioned in the depth of focus with high laser steel sheet irradiation efficiency.
  • the position of the steel sheet support roll 9 is adjusted so that the brightness of the spark generated during laser irradiation is in the best state.
  • the brightness of the flame generated when the laser beam is irradiated to the steel sheet can be measured by using the brightness measuring sensor 10 and the steel sheet support roll position control accuracy can be controlled within ⁇ 10 ⁇ m.
  • the laser beam oscillated from the laser oscillator 13 is irradiated onto the surface of the steel sheet 1 to form grooves having an upper width, a lower width and a depth of less than 70 ⁇ m, less than 10 ⁇ m, and 3 to 30 ⁇ m, respectively.
  • the optical system 14 may be configured to transmit a laser energy density within a range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet to the steel sheet so that a resolidification portion remaining on the groove inner wall of the molten portion may be generated during irradiation.
  • the laser irradiation equipment is turned on under normal working conditions, and when the steel sheet meandering amount is more than 15mm, the laser oscillator is turned off, and the laser beam is irradiated to the surface of the steel sheet so that the upper width and the lower portion are lower.
  • a laser energy density in the range of mm 2 can be delivered to the steel sheet.
  • the laser oscillator 13 may oscillate a single mode continuous wave laser beam 15 and transmit it to the optical system 14.
  • the optical system 14 has a function of controlling the laser scanning speed so that the interval of the laser irradiation line can be adjusted to 2 to 30 mm in the rolling direction.
  • FIG. 3 is a schematic diagram of a steel sheet having continuous grooves formed by a continuous wave laser beam according to an embodiment of the present invention.
  • reference numeral 16 denotes a laser groove irradiation line.
  • the device for refining the magnetic domain of a grain-oriented electrical steel sheet even if the steel sheet 1 proceeds at a high speed of 2 m / s or more, the steel sheet 1 is left and right along the center of the production line so as to stably perform permanent magnetization.
  • the meander control system is a steering roll (SR) (2A,) by the steel sheet central position control system 3 in accordance with the meandering amount outside the center of the production line of the width center position of the steel sheet measured by the meander measuring sensor (4)
  • the meandering amount of the steel sheet is controlled to within 1 mm by rotating and moving the shaft of 2B) to adjust the direction in which the steel sheet 1 moves.
  • the tension of the steel sheet is set in the range of 1 to 4 kgf / mm 2 so as not to cause excessive sheet breakage while making the steel sheet surface shape at the laser irradiation equipment position flat.
  • the tension control device is a tension bridle roll (TBR) 5A by the steel plate tension control system 6 in accordance with the tension of the steel sheet measured by the steel sheet tension measuring sensor 7 to operate at the set tension.
  • TBR tension bridle roll
  • the tension error of the steel sheet 1 is controlled to be within ⁇ 1%.
  • the steel sheet supporting roll 9 serves to support the steel sheet 1 at the position of the laser irradiation equipment, and the steel sheet supporting roll position adjusting equipment is positioned so that the steel sheet is positioned within a depth of focus with high laser beam steel sheet irradiation efficiency.
  • the position of the steel plate support roll 9 is adjusted by the steel plate support roll (SPR) position control system 11 so that the brightness of the spark generated when the laser is irradiated onto the steel plate 1 is in the best state.
  • the brightness of the flame is measured by using the brightness measuring sensor 10 and the steel plate support roll position control accuracy is managed within ⁇ 10 ⁇ m.
  • the meandering control device, the tension control device, and the steel sheet support roll position adjusting device serve to create a steel sheet condition at the laser irradiation position that enables the laser groove to be precisely formed on the steel sheet by the laser irradiation facility.
  • the steel sheet at the laser irradiation position should be the center position of the steel sheet in the center position of the production line and the distance from the optical system 14 should be maintained at the set value.
  • the laser irradiation equipment is composed of a laser oscillator controller 12, a laser oscillator 13, and an optical system 14.
  • a laser beam is irradiated onto the steel sheet supporting roll 9 to cause roll damage.
  • the laser oscillator is turned off in the laser oscillator controller when the amount of meandering occurs more than 15 mm.
  • the laser beam is irradiated onto the surface of the steel sheet to form grooves having an upper width, a lower width, and a depth of less than 70 ⁇ m, less than 10 ⁇ m, and 3 to 30 ⁇ m, respectively.
  • the laser oscillator 13 and the optical system 14 transmit the laser energy density within the range of 1.0 to 5.0 J / mm 2 required for melting the steel sheet to the steel sheet.
  • the laser oscillator 13 oscillates and transmits a single mode continuous wave laser beam to the optical system 14, and the optical system 14 irradiates the laser beam onto the surface of the steel sheet.
  • the optical system has a function of controlling the laser scanning speed, so that the distance between the laser irradiation lines can be adjusted to 2 to 30 mm in the rolling direction, thereby minimizing the influence of the heat affected zone (HAZ, Heat Affected Zone) caused by the laser beam. Iron loss can be improved.
  • HZ Heat Affected Zone
  • the meandering control device, the tension control device, and the steel plate support roll position adjusting device of the present invention precisely apply a laser groove to the steel sheet so that the permanent magnetization may be stably processed even if the steel sheet proceeds at a high speed of 2 m / s or more.
  • the steel sheet conditions at the laser irradiation position are made to be formed by the laser irradiation equipment.
  • a laser oscillator and an optical system are 1.0-5.0 J / mm ⁇ 2 > required for melting a steel plate. Laser energy density within the range is transmitted to the steel sheet to form grooves having an upper width, a lower width and a depth of less than 70 ⁇ m, less than 10 ⁇ m, and 3 to 30 ⁇ m, respectively.
  • the optical system has a function of controlling the laser scanning speed so that the interval between the laser irradiation lines can be adjusted to 2 to 30 mm in the rolling direction.
  • Table 1 shows the iron loss improvement rate of the grain-oriented electrical steel sheet by the groove formed on the steel plate surface of 0.27mm thickness by continuous wave laser beam irradiation according to an embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

방향성 전기 강판의 자구 미세화 방법 및 장치를 제공한다. 본 발명에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 방법으로서, 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어단계, 상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계, 상기 강판을 지지하면서 지정된 상기 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계, 및 레이저 빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계를 포함한다.

Description

방향성 전기 강판의 자구 미세화 방법 및 그 장치
본 발명은 방향성 전기 강판의 자구 미세화 방법 및 그 장치에 관한 것으로서, 보다 상세하게는 변압기와 같은 전기기기의 철심으로 사용되는 방향성 전기강판의 철손을 감소시키기 위해, 전기강판 표면에 레이저를 조사하여 강판 용융에 의한 홈을 형성시킴으로써 영구적으로 전기강판의 자구를 미세화 처리하는 방향성 전기 강판의 자구 미세화 방법 및 그 장치에 관한 것이다.
일반적으로, 변압기와 같은 전기기기의 전력손실을 줄이고 효율을 향상시키기 위해 철손이 낮고 자속밀도가 높은 자기적 특성을 지닌 방향성 전기강판이 요구된다.
이러한 방향성 전기강판의 철손 특성을 향상시키기 위해 강판 내 자구 폭을 감소시키는 여러 가지 방법을 적용하고 있다.
자구를 미세화하는 방법으로는 일본 특허 공보 58-26405 및 미국 USP 4203784에서 강판표면에 레이저 및 기계적 방법을 이용하여 압연방향과 수직방향으로 자구를 미세화하여 철손을 감소시키는 방안이 게시되어 있지만, 강판표면에 레이저를 이용하여 자구를 미세화하는 방법은 응력제거소둔 후 자구미세화 효과를 상실하는 단점을 갖고 있다.
자구미세화 방법은 응력제거 소둔에 의해 자구미세화 개선 효과 유지 유무에 따라 일시 자구미세화 방법과 영구 자구미세화 방법으로 대별할 수 있다.
일시 자구미세화 방법에는, 일본 특공소 57-2252B, 일본 특공소 58-5968B 및 일본 특공평7-072300에서와 같이, 자구를 미세화시키는 에너지원에 따라 레이저 자구미세화법, 볼스크래치법, 플라즈마 및 초음파에 의한 방법이 있다. 전기강판의 표면에 레이저, 볼, 플라즈마 및 초음파에 의해 전기강판 표면에 국부적인 압축 응력부를 형성시킴으로써 자구를 미세화시킨다.
그러나, 이러한 방법은 강판 표면의 절연 코팅층 손상을 일으키기 때문에 재코팅을 하거나, 최종제품이 아닌 중간 공정에서 자구미세화 처리를 하기 때문에 제조비용이 높은 단점을 갖고 있다. 또한, 전기강판의 압축 변형층 영역을 조절하기 위해서는 입력되는 에너지값을 증가시켜야만 가능하다. 따라서, 최종 제품의 철손개선율 향상을 위해서는 자구미세화 처리 시 표면손상을 피할 수 없는 단점이 있다.
열처리 후에도 철손 개선 효과를 유지할 수 있는 영구 자구미세화 방법은 에칭법, 롤법 및 레이저법으로 대별할 수 있다. 에칭법은 전기강판 표면에 감광성 수지로 마스킹 후 포토 에칭이나 레이저 혹은 플라즈마를 이용하여 표면 수지를 탈착한 후 용액 내에서 전기 화학적인 방법으로, 전기강판 표면에 폭이 5~300㎛이고 깊이가 100㎛인 홈을 형성시키는 방법이 일본 특공평 6-57857에 공시되어 있다.
에칭법은 산 용액 내에서 전기 화학적인 부식 반응에 의해 전기강판 표면에 홈을 형성시키기 때문에 홈 형상(폭, 깊이) 제어가 어렵고, 전기강판을 생산하는 중간공정(탈탄 소둔, 고온 소둔 전)에서 홈을 형성시키기 때문에 최종 제품의 철손 특성의 보증이 어려우며 산 용액을 사용하기 때문에 환경 친화적이지 못한 단점을 갖고 있다.
롤에 의한 영구 자구미세화 방법은, 표면이 돌기 모양으로 가공된 롤을 이용하여 전기강판을 가압함으로써, 표면에 300㎛ 이하의 폭과 5㎛의 깊이를 가진 홈을 표면에 형성시키는 방법이 일본 특개평5-202450에 공지되어 있다.
롤에 의한 영구 자구미세화 방법은 영구 자구미세화 처리 후 전기강판을 소둔함으로써 홈 하부의 재결정을 발생시킴으로써 자구를 미세화시키는 기술로서 기계 가공에 대한 안정성, 신뢰성 및 프로세스가 복잡한 단점을 갖고 있다. 롤에 의한 홈을 형성시키는 방법과 유사한 프레스에 의해 전기강판 표면에 홈 깊이 5㎛, 1~30mm의 선 간격을 형성시키는 방법이 일본 특공평6-63037에 공지되어 있다.
펄스 레이저 조사로, 조사부 물질의 증착(Vaporization)으로 표면 개구부 폭이 100~300㎛, 깊이 10~30㎛의 홈을 형성시킴으로써, 0.23mm 두께의 방향성 전기강판의 열처리 후 철손 개선율을 14% 확보한 영구 자구미세화 방법에 대해 EP 0 870843 A1(WO 97/024466)에 공지되어 있으며, Q 스위치 펄스 레이저에 의한 열처리후 철손 개선 방법은 전기강판 양면에 홈 깊이 5~30㎛을 형성시킴으로써 열처리 후 철손 개선율을 4.7~5.1% 확보한 것으로 일본 특허 출원 1998-284034에 공지되어 있다.
공지한 펄스 레이저에 의한 자구미세화 방법은 증착에 의해 홈을 형성시키기 때문에 용융부 형성을 억제하므로 열처리(응력완화 열처리, SRA) 전 철손 개선율을 확보하기 어렵고, 열처리 후에는 단순 홈에 의한 자구미세화 효과만 유지할 뿐만 아니라 강판의 이송속도를 (Line Speed 10mpm 이상) 고속으로 처리하지 못하는 단점을 갖고 있다.
본 발명은 방향성 전기강판 표면에 싱글 모드(Single mode) 연속파 레이저 빔을 강판 표면에 조사함으로써 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 2~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부를 형성시킴으로써 열처리 전, 후의 철손 개선율을 각각 5% 이상, 10% 이상 확보하고 레이저 조사선의 간격을 압연방향으로 2~30mm로 조정 가능하게 함으로써 레이저 빔에 의한 열영향부(HAZ: Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선시킬 수 있는 방향성 전기 강판의 자구 미세화 방법 및 그 장치를 제공하고자 한다.
본 발명의 일 구현예에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 방법으로서,
강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어단계,
상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계,
상기 강판을 지지하면서 지정된 상기 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계, 및
레이저 빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계를 포함하는 방향성 전기 강판의 자구 미세화 방법이 제공될 수 있다.
또한, 본 발명의 다른 구현예에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 방법으로서,
강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계,
상기 강판을 지지하면서 지정된 상기 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계, 및
레이저 빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계를 포함하는 방향성 전기 강판의 자구 미세화 방법이 제공될 수 있다.
상기 사행 제어단계는, 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 강판의 전폭에 걸쳐서 홈을 형성하기 위해 홈 형성전 상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량을 사행 측정센서에 의하여 측정하는 사행량 측정단계, 및
상기 사행량 측정단계에서 측정된 강판의 사행량에 따라 스티어링 롤(Steering Roll)의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정함으로써, 상기 강판의 사행량을 ±1mm 이내로 제어하는 사행량 제어단계를 포함할 수 있다.
상기 장력 제어단계는, 1~4㎏f/㎟ 범위 내의 강판 장력으로 조업하기 위해, 텐션 브라이들 롤(Tension Bridle Roll)에 의하여 상기 강판에 일정한 크기의 장력을 인가하는 강판 장력 인가단계,
상기 강판 장력 인가단계를 행한 상기 강판의 장력을 측정센서에 의하여 측정하기 위한 강판 장력 측정단계, 및
상기 강판 장력 측정단계에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하여 상기 강판의 장력오차를 ±1% 이내로 제어하는 강판(Strip) 장력 제어단계를 포함할 수 있다.
상기 강판 위치 조절단계는, 상기 레이저 조사단계에 위치하는 강판을 강판 지지롤로 지지하는 강판 지지단계,
상기 레이저 조사단계에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 휘도 측정센서로 측정하는 휘도 측정 단계, 및
상기 휘도 측정 단계에서 측정된 불꽃의 밝기에 따라 강판 지지롤(SPR) 위치 제어계에 의하여 강판 지지롤의 위치를 조정하여 상기 강판 지지롤 위치 제어 정밀도를 ±10㎛ 이내로 제어하는 강판 지지롤 위치 제어단계를 포함할 수 있다.
상기 레이저 조사단계는, 레이저 발진기에서 조사된 레이저 빔을 전달받은 광학계에 의하여 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 빔 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 빔 에너지 밀도를 강판에 전달하는 레이저 조사 및 에너지 전달단계를 포함할 수 있다.
상기 레이저 조사단계는, 레이저 발진기 제어기에 의하여 정상적인 작업조건 하에서는 레이저 빔을 발진하는 레이저 발진기를 온(On) 상태로 하고 강판의 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 빔 발진 제어단계를 포함할 수 있다.
상기 장력 제어단계를 행한 후 디플렉터 롤(Deflector Roll)에 의해 강판을 강판 지지롤로 향하도록 강판의 이동 방향을 전환하는 강판 이동방향 전환 단계를 행할 수 있다.
상기 레이저 조사단계에서 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진할 수 있다.
상기 레이저 조사단계에서 광학계는 레이저 주사속도를 제어하여 레이저 빔 조사선의 간격을 압연방향으로 2~30 mm로 조정할 수 있다.
또한, 본 발명의 일 구현예에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 장치로서,
강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어설비,
강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비,
강판을 지지하면서 지정된 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절설비, 및
레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비를 포함하는 방향성 전기 강판의 자구 미세화 장치가 제공될 수 있다.
또한, 본 발명의 다른 구현예에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 장치로서,
강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비,
강판을 지지하면서 지정된 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절설비, 및
레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비를 포함하는 방향성 전기 강판의 자구 미세화 장치가 제공될 수 있다.
상기 사행 제어설비는 상기 강판의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll),
상기 스티어링 롤의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System), 및
상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서를 포함할 수 있다.
상기 장력 제어설비는 상기 강판에 일정한 크기의 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll),
상기 텐션 브라이들 롤을 통과한 상기 강판의 장력을 측정하기 위한 강판 장력 측정센서, 및
상기 강판 장력 측정센서에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하기 위한 강판(Strip) 장력 제어계를 포함할 수 있다.
상기 강판 지지롤 위치 조절설비는, 상기 레이저 조사설비 위치의 강판을 지지하는 강판 지지롤(SPR),
상기 레이저 조사설비에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서, 및
상기 휘도 측정센서에서 측정된 불꽃의 밝기에 따라 상기 강판 지지롤의 위치를 제어하기 위한 강판 지지롤(SPR) 위치 제어계를 포함할 수 있다.
상기 레이저 조사설비는, 연속파 레이저 빔을 발진하기 위한 레이저 발진기,
상기 레이저 발진기로부터 발진된 상기 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달하는 광학계를 포함할 수 있다.
상기 레이저 조사설비는, 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 발진기 제어기를 포함할 수 있다.
상기 장력 제어설비를 통과한 강판의 이동방향은 강판이 디플렉터 롤(Deflector Roll)에 의해 강판 지지롤로 향하도록 전환될 수 있다.
상기 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진할 수 있다.
상기 광학계는 레이저 주사속도를 제어하여 레이저 조사선의 간격을 압연방향으로 2~30 mm로 조정할 수 있다.
본 발명의 구현예에 따르면, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 강판에 길이방향으로 3~30mm 간격 마다, 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴으로써, 1차 재결정전 전기강판에 적용할 수 있을 뿐만 아니라 2차 재결정후 혹은 절연코팅 후 전기강판의 열처리 전,후의 철손 개선율을 각각 5% 이상, 10% 이상 확보할 수 있는 장점을 갖고 있기 때문에 열처리를 필요로 하는 권철심 및 열처리를 필요로 하지 않는 적철심 변압기 철심으로 사용할 수 있다.
도 1은 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 방법의 개략적인 구성도이다.
도 2는 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 장치의 개략적인 구성도이다.
도 3은 본 발명의 일 구현예에 따라 연속파 레이저 빔에 의해 형성된 연속홈을 가진 강판에 대한 개략도이다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 구현예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
이하에서 사용되는 전문용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는” 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 방법의 개략적인 구성도이다.
도 1을 참고하면, 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 방법은, 강판(1)이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방법으로서,
강판(1)이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어단계(S10),
상기 강판(1)을 평평하게 펼쳐진 상태로 유지되게 상기 강판(1)에 장력을 부여하는 장력 제어단계(S20),
상기 강판(1)을 지지하면서 지정된 상기 강판(1)의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계(S30), 및
레이저 빔을 조사하여 상기 강판(1)을 용융시켜 상기 강판(1)의 표면에 홈을 형성하는 레이저 조사단계(S40) 등을 포함할 수 있다.
상기 사행 제어단계(S10)는, 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 강판(1)의 전폭에 걸쳐서 홈을 형성하기 위해 홈 형성전 상기 강판(1)의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량을 사행 측정센서(4)에 의하여 측정하는 사행량 측정단계(S11), 및
상기 사행량 측정단계(S11)에서 측정된 강판(1)의 사행량에 따라 스티어링 롤(Steering Roll: SR)(2A, 2B)의 축을 회전 및 이동시켜 강판(1)이 움직이는 방향을 조정함으로써, 상기 강판(1)의 사행량을 ±1mm 이내로 제어하는 사행량 제어단계(S12)를 포함할 수 있다.
상기 장력 제어단계(S20)는, 1~4㎏f/㎟ 범위 내의 강판 장력으로 조업하기 위해, 텐션 브라이들 롤(Tension Bridle Roll)(5A, 5B)에 의하여 상기 강판(1)에 일정한 크기의 장력을 인가하는 강판 장력 인가단계(S21),
상기 강판 장력 인가단계(S21)를 행한 상기 강판(1)의 장력을 장력 측정센서(7)에 의하여 측정하기 위한 강판 장력 측정단계(S22), 및
상기 강판 장력 측정단계(S22)에서 측정된 강판(1)의 장력에 따라 상기 텐션 브라이들 롤(5A, 5B)의 속도를 조정하여 상기 강판(1)의 장력오차를 ±1% 이내로 제어하는 강판(Strip) 장력 제어단계(S23)를 포함할 수 있다.
상기 장력 제어단계(S20)를 행한 후 디플렉터 롤(Deflector Roll)(8A, 8B)에 의해 강판(1)을 강판 지지롤(9)로 향하도록 강판의 이동 방향을 전환하는 강판 이동방향 전환 단계(S24)를 행한다.
상기 강판 지지롤 위치 조절단계(S30)는, 상기 레이저 조사단계(S40)에 위치하는 강판(1)을 강판 지지롤(9)로 지지하는 강판 지지단계(S31),
상기 레이저 조사단계(S40)에서 강판(1)에 레이저 조사 시 발생하는 불꽃의 밝기를 휘도 측정센서(10)로 측정하는 휘도 측정 단계(S32),
상기 휘도 측정 단계(S32)에서 측정된 불꽃의 밝기에 따라 불꽃의 밝기가 가장 좋은 상태가 되게 강판 지지롤(SPR) 위치 제어계(11)에 의하여 강판 지지롤(9)의 위치를 조정하여 상기 강판 지지롤 위치 제어 정밀도를 ±10㎛ 이내로 제어하는 강판 지지롤 위치 제어단계(S33)를 포함한다.
상기 강판 지지롤 위치 조절단계(S30)는 강판 지지롤(9)에 의하여 레이저 조사부 위치의 강판(1)을 지지하고, 레이저 강판조사 효율이 높은 초점심도(Depth of Focus)내에 강판이 위치하도록, 강판에 레이저 조사 시 발생하는 불꽃의 밝기가 가장 좋은 상태가 되게 강판지지롤 위치를 조정한다. 또한, 강판에 레이저 조사 시 발생하는 불꽃의 밝기는 휘도 측정센서(10)를 이용하여 측정하고 강판 지지롤 위치 제어 정밀도는 ±10㎛ 이내로 제어할 수 있다.
상기 레이저 조사단계(40)는, 레이저 발진기 제어기(12)에 의하여 정상적인 작업조건 하에서는 레이저 빔을 발진하는 레이저 발진기(13)를 온(On) 상태로 하고 강판의 사행량이 15mm 이상 발생되면 레이저 발진기(13)를 오프(Off) 상태로 제어하는 레이저 빔 발진 제어단계(S41), 및
레이저 발진기(13)에서 조사된 레이저 빔을 전달받은 광학계(14)에 의하여 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 빔 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 빔 에너지 밀도를 강판에 전달하는 레이저 조사 및 에너지 전달단계(S42)를 포함한다.
상기 레이저 조사단계(S40)는 정상적인 작업조건 하에서는 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 발진기를 오프(Off) 상태로 제어하고, 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달한다.
상기 레이저 조사단계(40)에서 레이저 발진기(13)는 싱글 모드(Single mode) 연속파 레이저 빔(15)을 발진할 수 있다.
또한, 상기 레이저 조사단계(S40)에서 광학계(14)는 레이저 주사속도를 제어하여 레이저 빔 조사선의 간격을 압연방향으로 2~30 mm로 조정할 수 있다.
도 2는 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 장치의 개략적인 구성도이다.
도 2를 참고하면, 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 장치는, 강판(1)이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 장치로서,
강판(1)이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어설비,
강판(1)을 평평하게 펼쳐진 상태로 유지되게 강판(1)에 장력을 부여하는 장력 제어설비,
강판(1)을 지지하면서 지정된 강판(1)의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절설비, 및
레이저 빔(15)을 조사하여 강판(1)을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비 등을 포함할 수 있다.
상기 사행 제어설비는 상기 강판(1)의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll)(2A, 2B),
상기 스티어링 롤(Steering Roll: SR)(2A, 2B)의 축을 회전 및 이동시켜 강판(1)이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System)(3), 및
상기 강판(1)의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서(4)를 포함할 수 있다.
상기 사행 제어설비는 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 강판의 전폭에 걸쳐서 홈을 형성하기 위해 홈 형성전 사행 측정센서(4)에서 측정된 사행량에 따라 스티어링 롤(Steering Roll: SR)(2A, 2B)의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정함으로써, 상기 강판(1)의 사행량을 ±1mm 이내로 제어할 수 있다.
상기 장력 제어설비는 상기 강판(1)에 일정한 크기의 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B),
상기 텐션 브라이들 롤을 통과한 상기 강판(1)의 장력을 측정하기 위한 강판 장력 측정센서(7), 및
상기 강판 장력 측정센서(7)에서 측정된 강판(1)의 장력에 따라 상기 텐션 브라이들 롤(5A, 5B)의 속도를 조정하기 위한 강판(Strip) 장력 제어계(6)를 포함할 수 있다.
상기 장력 제어설비는 1~4㎏f/㎟ 범위 내의 강판 장력으로 조업하기 위해, 강판 장력 측정센서(7)에서 측정된 강판의 장력에 따라 강판(Strip) 장력 제어계(6)에 의하여 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B)의 속도를 조정함으로써, 상기 강판(1)의 장력오차를 ±1% 이내로 제어할 수 있다.
상기 장력 제어설비를 통과한 강판의 이동방향은 강판(1)이 디플렉터 롤(Deflector Roll)(8A, 8B)에 의해 강판 지지롤(9)로 향하도록 전환된다.
상기 강판 지지롤 위치 조절설비는, 상기 레이저 조사설비 위치의 강판(1)을 지지하는 강판 지지롤(SPR)(9),
상기 레이저 조사설비에서 강판(1)에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서(10), 및
상기 휘도 측정센서(10)에서 측정된 불꽃의 밝기에 따라 상기 강판 지지롤(9)의 위치를 제어하기 위한 강판 지지롤(SPR) 위치 제어계(11)를 포함할 수 있다.
상기 강판 지지롤 위치 조절설비는, 강판 지지롤(9)에 의하여 레이저 조사부 위치의 강판(1)을 지지하고, 레이저 강판조사 효율이 높은 초점심도(Depth of Focus)내에 강판이 위치하도록, 강판에 레이저 조사 시 발생하는 불꽃의 밝기가 가장 좋은 상태가 되게 강판 지지롤(9) 위치를 조정한다. 또한, 강판에 레이저 조사 시 발생하는 불꽃의 밝기는 휘도 측정센서(10)를 이용하여 측정하고 강판 지지롤 위치 제어 정밀도는 ±10㎛ 이내로 제어할 수 있다.
상기 레이저 조사설비는, 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 발진기 제어기(12),
연속파 레이저 빔(15)을 발진하기 위한 레이저 발진기(13), 및
상기 레이저 발진기(13)로부터 발진된 상기 레이저 빔을 강판(1) 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달하는 광학계(14)를 포함할 수 있다.
상기 레이저 조사설비는 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하고, 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달할 수 있다.
상기 레이저 발진기(13)는 싱글 모드(Single mode) 연속파 레이저 빔(15)을 발진하여 상기 광학계(14)에 전달할 수 있다.
또한, 상기 광학계(14)는 레이저 주사속도를 제어하는 기능이 있어 레이저 조사선의 간격을 압연방향으로 2~30 mm로 조정할 수 있다.
도 3은 본 발명의 일 구현예에 따라 연속파 레이저 빔에 의해 형성된 연속홈을 가진 강판에 대한 개략도이다.
도 3에서 도면부호 16은 레이저 홈 조사선을 가리킨다.
이하에서, 도 2 및 도 3을 참조하여, 본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 장치의 작동에 대해서 설명한다.
본 발명의 일 구현예에 따른 방향성 전기 강판의 자구 미세화 장치는, 강판(1)이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록, 강판(1)이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행제어설비, 강판(1)을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비, 강판을 지지하면서 지정된 강판의 상하방향 위치를 제어하는 강판 지지롤 위치 조절설비, 그리고, 레이저 빔을 강판에 조사하여 강판을 용융시켜 홈을 형성하는 레이저 조사설비 등으로 구성된다.
그리고, 사행 제어설비는 사행 측정센서(4)에서 측정된 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량에 따라 강판 중앙위치 제어계(3)에 의하여 스티어링 롤(Steering Roll: SR)(2A, 2B)의 축을 회전 및 이동시켜 강판(1)이 움직이는 방향을 조정함으로써, 강판의 사행량을 1mm 이내로 제어한다.
또한, 강판의 장력은 레이저 조사설비 위치의 강판 표면 형상을 평평하게 만들게 하면서 너무 과도하여 판파단이 발생되지 않도록 1~4㎏f/㎟ 범위에서 설정된다.
그리고, 장력 제어설비는, 설정된 장력으로 조업하기 위해 강판 장력 측정센서(7)에서 측정된 강판의 장력에 따라 강판 장력 제어계(6)에 의하여 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B)의 속도를 조정함으로써, 강판(1)의 장력오차를 ±1% 이내로 되도록 제어한다.
강판 지지롤(9)은 레이저 조사설비 위치의 강판(1)을 지지하는 역할을 하고, 강판 지지롤 위치 조절설비는, 레이저 빔 강판 조사 효율이 높은 초점심도(Depth of Focus)내에 강판이 위치하도록, 강판 지지롤(SPR) 위치 제어계(11)에 의하여 강판(1)에 레이저 조사 시 발생하는 불꽃의 밝기가 가장 좋은 상태가 되게 강판 지지롤(9)의 위치를 조정한다. 불꽃의 밝기는 휘도 측정센서(10)를 이용하여 측정하고 강판 지지롤 위치 제어 정밀도는 ±10㎛ 이내로 관리 한다.
상기와 같이 사행 제어설비, 장력 제어설비, 그리고 강판 지지롤 위치 조절설비는 레이저 조사설비에 의해 정밀하게 강판에 레이저 홈을 형성시킬 수 있게 하는 레이저 조사위치에서의 강판 조건을 만들어주는 역할을 한다. 레이저 조사위치에서의 강판은 강판 중앙위치가 생산라인 중앙위치에 있어야 하고 광학계(14)와의 거리가 설정된 값으로 유지되어야 한다.
레이저 조사설비는 레이저 발진기 제어기(12), 레이저 발진기(13), 그리고 광학계(14)로 구성된다. 강판 사행량이 과도하면, 강판이 레이저 조사위치에서 벗어나게 되어 강판 지지롤(9)에 레이저 빔이 조사되어 롤 손상이 발생된다. 롤 손상 방지를 위해 사행량이 15mm이상 발생되면 레이저 발진기 제어기에서 레이저 발진기를 오프(Off) 상태로 되게 한다. 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 레이저 발진기(13)와 광학계(14)는 강판의 용융에 필요한 1.0~5.0J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달한다. 레이저 발진기(13)는 싱글 모드(Single mode) 연속파 레이저 빔을 발진하여 광학계(14)에 전달하고 광학계(14)는 레이저 빔을 강판 표면에 조사한다.
그리고, 광학계에는 레이저 주사속도를 제어하는 기능이 있어 레이저 조사선의 간격을 압연방향으로 2~30mm로 조정 가능하게 함으로써 레이저 빔에 의한 열영향부 (HAZ, Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선할 수 있다.
상기와 같이, 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록, 본 발명의 사행 제어설비, 장력 제어설비, 그리고 강판지지롤 위치 조절설비는, 정밀하게 강판에 레이저 홈을 레이저 조사설비에 의해 형성시킬 수 있게, 레이저 조사위치에서의 강판 조건을 만들어준다. 그리고, 레이저 발진기와 광학계는, 강판의 용융에 필요한 1.0~5.0J/mm2 범위 내의 레이저 에너지 밀도를 강판에 전달하여, 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킨다. 또한, 광학계에는 레이저 주사속도를 제어하는 기능이 있어 레이저 조사선의 간격을 압연방향으로 2~30 mm로 조정 가능하게 한다.
[표 1]은 본 발명의 일 구현예에 따른 연속파 레이저 빔 조사에 의해 0.27mm 두께의 강판 표면에 형성된 홈에 의한 방향성 전기강판의 철손 개선율을 나타내고 있다.
표 1
Figure PCTKR2015014461-appb-T000001

Claims (20)

  1. 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 방법으로서,
    강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어단계,
    상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계,
    상기 강판을 지지하면서 지정된 상기 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계, 및
    레이저 빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계
    를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  2. 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 방법으로서,
    강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계,
    상기 강판을 지지하면서 지정된 상기 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절단계, 및
    레이저 빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계
    를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  3. 제1항에 있어서,
    상기 사행 제어단계는, 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 강판의 전폭에 걸쳐서 홈을 형성하기 위해 홈 형성전 상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량을 사행 측정센서에 의하여 측정하는 사행량 측정단계, 및
    상기 사행량 측정단계에서 측정된 강판의 사행량에 따라 스티어링 롤(Steering Roll)의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정함으로써, 상기 강판의 사행량을 ±1mm 이내로 제어하는 사행량 제어단계를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  4. 제2항 또는 제3항에 있어서,
    상기 장력 제어단계는, 1~4㎏f/㎟ 범위 내의 강판 장력으로 조업하기 위해, 텐션 브라이들 롤(Tension Bridle Roll)에 의하여 상기 강판에 일정한 크기의 장력을 인가하는 강판 장력 인가단계,
    상기 강판 장력 인가단계를 행한 상기 강판의 장력을 장력 측정센서에 의하여 측정하기 위한 강판 장력 측정단계, 및
    상기 강판 장력 측정단계에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하여 상기 강판의 장력오차를 ±1% 이내로 제어하는 강판(Strip) 장력 제어단계를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  5. 제4항에 있어서,
    상기 강판 위치 조절단계는, 상기 레이저 조사단계에 위치하는 강판을 강판 지지롤로 지지하는 강판 지지단계,
    상기 레이저 조사단계에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 휘도 측정센서로 측정하는 휘도 측정 단계, 및
    상기 휘도 측정 단계에서 측정된 불꽃의 밝기에 따라 강판 지지롤(SPR) 위치 제어계에 의하여 강판 지지롤의 위치를 조정하여 상기 강판 지지롤 위치 제어 정밀도를 ±10㎛ 이내로 제어하는 강판 지지롤 위치 제어단계를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  6. 제5항에 있어서,
    상기 레이저 조사단계는, 레이저 발진기에서 조사된 레이저 빔을 전달받은 광학계에 의하여 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 빔 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 빔 에너지 밀도를 강판에 전달하는 레이저 조사 및 에너지 전달단계를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  7. 제6항에 있어서,
    상기 레이저 조사단계는, 레이저 발진기 제어기에 의하여 정상적인 작업조건 하에서는 레이저 빔을 발진하는 레이저 발진기를 온(On) 상태로 하고 강판의 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 빔 발진 제어단계를 포함하는 방향성 전기 강판의 자구 미세화 방법.
  8. 제5항에 있어서,
    상기 장력 제어단계를 행한 후 디플렉터 롤(Deflector Roll)에 의해 강판을 강판 지지롤로 향하도록 강판의 이동 방향을 전환하는 강판 이동방향 전환 단계를 행하는 방향성 전기 강판의 자구 미세화 방법.
  9. 제7항에 있어서,
    상기 레이저 조사단계에서 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진하는 방향성 전기 강판의 자구 미세화 방법.
  10. 제9항에 있어서,
    상기 레이저 조사단계에서 광학계는 레이저 주사속도를 제어하여 레이저 빔 조사선의 간격을 압연방향으로 2~30 mm로 조정하는 방향성 전기 강판의 자구 미세화 방법.
  11. 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 장치로서,
    강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 똑바로 이동하게 하는 사행 제어설비,
    강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비,
    강판을 지지하면서 지정된 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절설비, 및
    레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비
    를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  12. 강판이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 하도록 하는 방향성 전기 강판의 자구 미세화 장치로서,
    강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비,
    강판을 지지하면서 지정된 강판의 상하 방향 위치를 제어하는 강판 지지롤 위치 조절설비, 및
    레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비
    를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  13. 제11항에 있어서,
    상기 사행 제어설비는 상기 강판의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll),
    상기 스티어링 롤의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System), 및
    상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  14. 제12항 또는 제13항에 있어서,
    상기 장력 제어설비는 상기 강판에 일정한 크기의 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll),
    상기 텐션 브라이들 롤을 통과한 상기 강판의 장력을 측정하기 위한 강판 장력 측정센서, 및
    상기 강판 장력 측정센서에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하기 위한 강판(Strip) 장력 제어계를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  15. 제14항에 있어서,
    상기 강판 지지롤 위치 조절설비는, 상기 레이저 조사설비 위치의 강판을 지지하는 강판 지지롤(SPR),
    상기 레이저 조사설비에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서, 및
    상기 휘도 측정센서에서 측정된 불꽃의 밝기에 따라 상기 강판 지지롤의 위치를 제어하기 위한 강판 지지롤(SPR) 위치 제어계를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  16. 제15항에 있어서,
    상기 레이저 조사설비는, 연속파 레이저 빔을 발진하기 위한 레이저 발진기,
    상기 레이저 발진기로부터 발진된 상기 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3~30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0~5.0 J/mm2 범위내의 레이저 에너지 밀도를 강판에 전달하는 광학계를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  17. 제16항에 있어서,
    상기 레이저 조사설비는, 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 발진기 제어기를 포함하는 방향성 전기 강판의 자구 미세화 장치.
  18. 제15항에 있어서,
    상기 장력 제어설비를 통과한 강판의 이동방향은 강판이 디플렉터 롤(Deflector Roll)에 의해 강판 지지롤로 향하도록 전환되는 방향성 전기 강판의 자구 미세화 장치.
  19. 제17항에 있어서,
    상기 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진하는 방향성 전기 강판의 자구 미세화 장치.
  20. 제19항에 있어서,
    상기 광학계는 레이저 주사속도를 제어하여 레이저 조사선의 간격을 압연방향으로 2~30 mm로 조정하는 방향성 전기 강판의 자구 미세화 장치.
PCT/KR2015/014461 2015-12-30 2015-12-30 방향성 전기 강판의 자구 미세화 방법 및 그 장치 WO2017115888A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2015/014461 WO2017115888A1 (ko) 2015-12-30 2015-12-30 방향성 전기 강판의 자구 미세화 방법 및 그 장치
JP2018534156A JP2019510130A (ja) 2015-12-30 2015-12-30 方向性電磁鋼板の磁区微細化方法およびその装置
EP15912124.3A EP3399058A4 (en) 2015-12-30 2015-12-30 Method for refining magnetic domain of grain-oriented electrical steel sheet, and device therefor
US16/067,051 US20190010566A1 (en) 2015-12-30 2015-12-30 Method for refining magnetic domain of grain-oriented electrical steel sheet, and device therefor
CN201580085651.8A CN108699616A (zh) 2015-12-30 2015-12-30 定向电工钢板的磁畴细化方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/014461 WO2017115888A1 (ko) 2015-12-30 2015-12-30 방향성 전기 강판의 자구 미세화 방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2017115888A1 true WO2017115888A1 (ko) 2017-07-06

Family

ID=59225364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014461 WO2017115888A1 (ko) 2015-12-30 2015-12-30 방향성 전기 강판의 자구 미세화 방법 및 그 장치

Country Status (5)

Country Link
US (1) US20190010566A1 (ko)
EP (1) EP3399058A4 (ko)
JP (1) JP2019510130A (ko)
CN (1) CN108699616A (ko)
WO (1) WO2017115888A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406740A4 (en) * 2016-01-22 2018-11-28 Posco Method and device for magnetic domain refinement of orientated electrical steel plate
EP3751013A4 (en) * 2018-02-09 2021-07-14 Nippon Steel Corporation ORIENTED ELECTROMAGNETIC STEEL SHEET AND ITS PRODUCTION PROCESS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779580B1 (ko) * 2006-12-26 2007-11-28 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR20100058929A (ko) * 2008-11-25 2010-06-04 주식회사 포스코 전기강판의 자구미세화방법 및 자구미세화 처리된 전기강판
KR20100091493A (ko) * 2009-02-10 2010-08-19 안승일 저철손 저소음 방향성전기강판 성형장치
KR20120073914A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법
KR20150000927A (ko) * 2013-06-25 2015-01-06 주식회사 포스코 방향성 전기강판의 자구 미세화 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181820A (ja) * 1982-04-15 1983-10-24 Nippon Steel Corp 走行ストリツプへのレ−ザ−ビ−ム照射方法及び装置
IN171546B (ko) * 1988-03-25 1992-11-14 Armco Advanced Materials
JPH03249132A (ja) * 1990-02-28 1991-11-07 Kawasaki Steel Corp 方向性珪素鋼板の鉄損改善装置
JPH04165021A (ja) * 1990-10-25 1992-06-10 Kawasaki Steel Corp パスライン保持用サポートローラ装置
JPH0522547U (ja) * 1991-09-05 1993-03-23 川崎製鉄株式会社 電子ビーム照射装置
JP4319715B2 (ja) * 1998-10-06 2009-08-26 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板とその製造方法
JP4189143B2 (ja) * 2001-10-22 2008-12-03 新日本製鐵株式会社 低鉄損一方向性電磁鋼板の製造方法
JP5283583B2 (ja) * 2009-07-30 2013-09-04 株式会社神戸製鋼所 板材の処理ライン及び板材の蛇行修正方法
JP5482260B2 (ja) * 2010-02-05 2014-05-07 Jfeスチール株式会社 鋼帯の連続処理ラインにおける蛇行制御装置及び蛇行制御方法
TWI417394B (zh) * 2010-09-09 2013-12-01 Nippon Steel & Sumitomo Metal Corp 方向性電磁鋼板及其製造方法
JP5423646B2 (ja) * 2010-10-15 2014-02-19 新日鐵住金株式会社 方向性電磁鋼板の製造方法
JP5742294B2 (ja) * 2011-02-25 2015-07-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN203062087U (zh) * 2013-01-13 2013-07-17 北京首钢国际工程技术有限公司 激光刻痕机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779580B1 (ko) * 2006-12-26 2007-11-28 주식회사 포스코 저철손 고자속밀도 방향성 전기강판의 제조방법
KR20100058929A (ko) * 2008-11-25 2010-06-04 주식회사 포스코 전기강판의 자구미세화방법 및 자구미세화 처리된 전기강판
KR20100091493A (ko) * 2009-02-10 2010-08-19 안승일 저철손 저소음 방향성전기강판 성형장치
KR20120073914A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법
KR20150000927A (ko) * 2013-06-25 2015-01-06 주식회사 포스코 방향성 전기강판의 자구 미세화 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399058A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406740A4 (en) * 2016-01-22 2018-11-28 Posco Method and device for magnetic domain refinement of orientated electrical steel plate
US11000920B2 (en) 2016-01-22 2021-05-11 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
EP3751013A4 (en) * 2018-02-09 2021-07-14 Nippon Steel Corporation ORIENTED ELECTROMAGNETIC STEEL SHEET AND ITS PRODUCTION PROCESS
US11697856B2 (en) 2018-02-09 2023-07-11 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
US20190010566A1 (en) 2019-01-10
EP3399058A1 (en) 2018-11-07
JP2019510130A (ja) 2019-04-11
EP3399058A4 (en) 2018-11-14
CN108699616A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2015012562A1 (ko) 방향성 전기강판 및 그 제조방법
CN104099458B (zh) 方向性电磁钢板的制造方法
WO2013100353A1 (ko) 전기강판 및 그 제조방법
US20090107585A1 (en) Method for Production and Apparatus for Production of Grain-Oriented Electrical Steel Sheet Excellent in Magnetic Properties
CN107012309B (zh) 取向性电磁钢板的铁损改善装置
KR101368578B1 (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
KR20190137097A (ko) 응력-완화 어닐링에 강한 레이저-에칭된 입자-방향성 실리콘강 및 그 제조방법
WO2017126810A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2017115888A1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치
KR101395800B1 (ko) 전기강판의 자구 미세화 방법 및 이에 의해 제조되는 방향성 전기강판
KR101626601B1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치
WO2017126811A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2022108234A1 (ko) 세라믹 절단방법 및 장치
KR101626599B1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치
WO2017126814A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101395798B1 (ko) 자구 미세화 방법 및 이에 이해 제조되는 방향성 전기강판
WO2018117510A2 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101395799B1 (ko) 전기강판의 자구 미세화 방법 및 이에 의해 제조되는 방향성 전기강판
KR101639920B1 (ko) 방향성 전기강판의 자구미세화 장치 및 그 방법
KR101641938B1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치
CN114207157B (zh) 线状槽形成方法、线状槽形成装置以及取向性电磁钢板的制造方法
WO2021125680A1 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2021125902A2 (ko) 방향성 전기강판 및 그 자구미세화 방법
KR101742212B1 (ko) 방향성 전기 강판의 자구 미세화 장치
KR101626600B1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015912124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015912124

Country of ref document: EP

Effective date: 20180730