WO2017115468A1 - Glass substrate for magnetic recording medium and magnetic recording medium - Google Patents

Glass substrate for magnetic recording medium and magnetic recording medium Download PDF

Info

Publication number
WO2017115468A1
WO2017115468A1 PCT/JP2016/052541 JP2016052541W WO2017115468A1 WO 2017115468 A1 WO2017115468 A1 WO 2017115468A1 JP 2016052541 W JP2016052541 W JP 2016052541W WO 2017115468 A1 WO2017115468 A1 WO 2017115468A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
outer peripheral
magnetic recording
peripheral side
recording medium
Prior art date
Application number
PCT/JP2016/052541
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 中山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017115468A1 publication Critical patent/WO2017115468A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a glass substrate for a magnetic recording medium and a magnetic recording medium.
  • a magnetic layer or the like is formed on a magnetic recording medium substrate, and information can be recorded using the magnetic layer.
  • an aluminum alloy substrate has been used as a substrate for a magnetic recording medium used in a magnetic recording apparatus.
  • it is harder and more flat and smooth than an aluminum alloy substrate. Glass substrates are becoming mainstream.
  • the energy-assisted magnetic recording medium can also have a configuration in which a glass substrate for a magnetic recording medium is used as a substrate and a magnetic layer or the like is disposed on the main surface of the glass substrate for a magnetic recording medium.
  • an ordered alloy having a large magnetic anisotropy coefficient Ku (hereinafter also referred to as “high Ku”) is used as the magnetic material of the magnetic layer.
  • the base material including the glass substrate for magnetic recording medium is at least 600 ° C. at the time of film formation, before film formation, or after film formation. Heat treatment may be performed at a high temperature.
  • heat treatment at a high temperature is performed before or after the film formation.
  • the annealing temperature is increased. This is also because the coercive force can be increased.
  • the glass substrate for magnetic recording medium may be heat-treated at a high temperature, so that the glass substrate for magnetic recording medium is also required to have heat resistance.
  • Patent Document 1 discloses a glass substrate for an information recording medium capable of forming a magnetic recording layer at a high temperature.
  • SiO 2 is 62 to 74%
  • Al 2 O 3 is 7 to 18%
  • B 2 O 3 is 2 to 15%
  • any one component of MgO, CaO, SrO and BaO 8 to 16% in total the total content of the seven components is 95% or more
  • any one or more of Li 2 O, Na 2 O and K 2 O is contained in less than 1% in total
  • a glass substrate for an information recording medium that does not contain any of these three components (except for a crystallized glass substrate and a tempered glass substrate).
  • an object of the present invention is to provide a glass substrate for a magnetic recording medium that suppresses thermal cracking when a sudden temperature change is applied.
  • a glass substrate for a magnetic recording medium having a donut shape and having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, the outer peripheral end surface is It has an outer peripheral side part and a pair of outer peripheral chamfered parts,
  • the arithmetic average roughness Ra of the outer peripheral side surface portion is 0.1 ⁇ m or less
  • a glass substrate for a magnetic recording medium in which an arithmetic average roughness Ra of an outer peripheral side surface after etching after etching 5 ⁇ m from the surface of the outer peripheral side surface portion is 0.5 ⁇ m or less.
  • the glass substrate for a magnetic recording medium of the present invention it is possible to provide a glass substrate for a magnetic recording medium that suppresses thermal cracking when a sudden temperature change is applied.
  • FIG. 1 is an explanatory diagram of a glass substrate for a magnetic recording medium according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of minute cracks generated in the glass substrate for a magnetic recording medium.
  • 3 (A) and 3 (B) are laser microscope images of the outer peripheral side surface before and after etching in Experimental Example 1 of the present invention.
  • FIG. 3A shows an image before etching
  • FIG. 3B shows an image after etching.
  • 4 (A) and 4 (B) are laser microscope images of the outer peripheral side surface before and after etching in Experimental Example 10 of the present invention.
  • FIG. 4A shows an image before etching
  • FIG. 4B shows an image after etching.
  • the glass substrate for a magnetic recording medium of the present embodiment is a glass substrate for a magnetic recording medium having a donut shape and having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, and the outer peripheral end surface is an outer peripheral side surface. And a pair of outer peripheral chamfers.
  • the arithmetic average roughness Ra of the outer peripheral side surface portion may be 0.1 ⁇ m or less, and the outer peripheral side surface portion may have an arithmetic average roughness Ra of 0.5 ⁇ m or less after etching after etching 5 ⁇ m from the surface. it can.
  • glass substrate for a magnetic recording medium of the present embodiment (hereinafter also simply referred to as “glass substrate”) will be described with reference to FIG.
  • FIG. 1 schematically shows a perspective sectional view of the glass substrate of the present embodiment.
  • 1 is a perspective cross-sectional view including a cross section in a plane passing through the center of the glass substrate 10 and perpendicular to the main surfaces 121 and 122. That is, in FIG. 1, the half of the glass substrate of this embodiment and sectional drawing are shown collectively.
  • the glass substrate 10 has a circular shape on the outer periphery, and a circular shape in which a circular opening (center opening) 11 is provided in the center so as to be concentric with the outer periphery, that is, a donut. It has a shape.
  • the upper and lower surfaces are main surfaces 121 and 122.
  • the glass substrate 10 has the outer peripheral end surface 13 located in an outer periphery, and the inner peripheral end surface 14 located in an inner periphery.
  • the outer peripheral end surface 13 and the inner peripheral end surface 14 can have chamfered portions on the main surfaces 121 and 122 side, respectively. That is, the outer peripheral end surface 13 and the inner peripheral end surface 14 can each have a pair of chamfered portions. Specifically, the outer peripheral end surface 13 can have outer peripheral chamfered portions 131 and 133, and the inner peripheral end surface 14 can have inner peripheral chamfered portions 141 and 143, respectively.
  • a side surface portion can be formed between the chamfered portions, the outer peripheral end surface 13 can have the outer peripheral side surface portion 132, and the inner peripheral end surface 14 can have the inner peripheral side surface portion 142.
  • the outer peripheral side surface portion 132 and the inner peripheral side surface portion 142 can be formed so as to be substantially perpendicular to the main surfaces 121 and 122, respectively.
  • the outer peripheral end surface 13 can include the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133
  • the inner peripheral end surface 14 can include the inner peripheral side surface portion 142 and the inner peripheral chamfered portions 141 and 143.
  • the size of the glass substrate 10 of this embodiment is not specifically limited, It can select arbitrarily according to the specification of a glass substrate.
  • the diameter D of the glass substrate of this embodiment can be made into the size according to the specification requested
  • the diameter of the glass substrate of the present embodiment is preferably 65 mm or more, for which demand has been increasing in recent years.
  • the inventors of the present invention have conducted intensive studies on a glass substrate that can suppress the occurrence of thermal cracking when a sudden temperature change is applied.
  • the inventors of the present invention first examined the cause of thermal cracking when a sudden temperature change was applied.
  • heat treatment is usually performed in a state where a plurality of locations on the outer peripheral side surface of the glass substrate are held by a metal holder, but the heat transfer between the holder and the glass substrate causes It has been found that the temperature distribution of the film tends to change particularly sharply.
  • the outer peripheral portion of the glass substrate is likely to be exposed to a rapid temperature change, and when exposed to a rapid temperature change, expansion and contraction are likely to occur. I found that it is easy to add.
  • FIG. 2 schematically shows a cross section of the microcrack in a plane parallel to the depth direction of the microcrack 22 and passing through the microcrack.
  • the microcracks 22 generated on the outer peripheral side surface portion of the glass substrate are generated from the surface 21 of the outer peripheral side surface portion of the glass substrate toward the inside as shown in FIG.
  • the stress concentration at the tip of the microcrack 22 has a correlation with the width R of the crack tip, and when the width R is small, the stress tends to concentrate particularly on the microcrack 22. Therefore, it can be seen that by reducing microcracks in the outer peripheral side surface portion, it is possible to provide a glass substrate that suppresses the occurrence of thermal cracking when a sudden temperature change is applied.
  • the micro crack 22 having a very small tip width R that is likely to cause thermal cracking has a small width of the opening 221 on the surface 21 side, and the opening 221 is covered with hydrate or the like. Therefore, it is difficult to detect from the surface 21 of the outer peripheral side surface portion of the glass substrate. For this reason, it was difficult to measure the presence frequency and depth at the outer peripheral side surface portion of the glass substrate with a surface roughness meter or the like.
  • microcracks that are not detected before etching can be manifested on the outer peripheral side surface. I found it. This is considered to be because the hydrate etc. that covered the microcracks by etching can be removed, and furthermore, the size of the opening (pit) on the surface side of the microcracks can be increased by etching. .
  • the outer peripheral side surface portion has an arithmetic average roughness Ra of 0.5 ⁇ m or less after etching the outer peripheral side surface portion after etching 5 ⁇ m from the surface, that is, the outer peripheral side surface portion after etching. More preferably, it is 0.3 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • the arithmetic average roughness Ra of the outer peripheral side surface after etching is 0.5 ⁇ m or less, the presence frequency of microcracks can be sufficiently reduced, and the occurrence of thermal cracks is suppressed. it can. For this reason, when a rapid temperature change is added, it can suppress that a thermal crack arises in a glass substrate, and it is preferable.
  • the etching amount when measuring the arithmetic average roughness Ra of the outer peripheral side surface after etching is set to 5 ⁇ m, but the same tendency is obtained if the etching amount is 1 ⁇ m or more and 20 ⁇ m or less. It is thought that. For this reason, the etching amount is not limited to 5 ⁇ m, and can be selected in the range of 1 ⁇ m to 20 ⁇ m.
  • the etching amount is smaller than 1 ⁇ m, the size of the opening of the microcrack on the outer peripheral side surface after etching is not sufficiently large, and the existence frequency of the microcrack and the detailed shape are May be difficult to evaluate.
  • the etching amount is larger than 20 ⁇ m, the size of the opening portion of the microcrack on the outer peripheral side surface after etching is too large, and the existing frequency of the crack and the size do not reflect, There is a risk that proper evaluation cannot be performed.
  • the etching amount is preferably 1 ⁇ m or more and 20 ⁇ m or less, particularly 5 ⁇ m, when the arithmetic average roughness Ra or the maximum height roughness Rz described later is evaluated for the outer peripheral side surface after etching. Is preferred.
  • the arithmetic mean roughness Ra of the outer peripheral side surface before etching is preferably 0.1 ⁇ m or less, and more preferably 0.05 ⁇ m or less.
  • the outer peripheral side surface portion after etching preferably has a maximum height roughness Rz of 10 ⁇ m or less, more preferably 4 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the maximum height roughness Rz is considered to correspond to the maximum depth of microcracks existing in the measurement region.
  • the microcracks are more likely to develop into thermal cracks as the depth increases.
  • the maximum height roughness Rz is 10 ⁇ m or less, the maximum depth of the microcracks is sufficiently shallow, and a rapid temperature change is applied. In this case, it is possible to suppress occurrence of thermal cracking in the glass substrate, which is preferable.
  • the method for etching the outer peripheral side surface portion of the glass substrate is not particularly limited, but etching can be performed by immersing the glass substrate in an etching solution for a predetermined time.
  • etching can be performed by immersing the glass substrate in an etching solution for a predetermined time.
  • the entire surface of the glass substrate is uniformly etched. For example, when 5 ⁇ m is etched from the surface of the outer peripheral side surface portion, the glass substrate is reduced in diameter by 10 ⁇ m.
  • the etchant is not particularly limited as long as it is a material that can etch the glass substrate, and for example, a mixed aqueous solution of hydrofluoric acid and hydrochloric acid can be used. Since the etching time varies depending on the etching solution and the glass material of the glass substrate, it is preferable to conduct a preliminary test or the like in advance to check the time required to etch the surface of the glass substrate by 5 ⁇ m.
  • the arithmetic average roughness Ra and the maximum height roughness Rz are defined in JIS B 0601 (2013), and are evaluated using, for example, a laser microscope, a contact-type surface roughness meter, a white interference method, or the like. It can be performed.
  • the glass substrate before etching 5 micrometers from the surface can be used as the glass substrate for magnetic recording media about the outer peripheral side surface part of the glass substrate of this embodiment.
  • micro cracks are mainly generated according to the manufacturing conditions of the glass substrate. For this reason, for the outer peripheral side surface portion of the glass substrate manufactured under the same conditions as in the actual manufacturing, the arithmetic average roughness Ra before and after the etching and, in some cases, the maximum height roughness Rz are further evaluated. Manufacturing conditions can be selected to satisfy the specifications of the glass substrate in the form.
  • a glass substrate when manufacturing a glass substrate, usually a plurality of glass substrates are manufactured per lot. And since the glass substrate is manufactured on the same conditions in the same lot, the presence frequency and the maximum depth of the micro crack which arise in the outer peripheral side part become comparable. For this reason, one or more glass substrates for evaluation are selected from the same lot, and the arithmetic average roughness Ra before and after the etching or, in some cases, the maximum height roughness Rz is evaluated for the glass substrate for evaluation. be able to. And it can confirm that the prescription
  • the holding location due to changes in the shape of the substrate holder of the glass substrate when heat treatment is performed at a high temperature, the holding location, temperature distribution during temperature rise, and temperature drop, the properties of the outer chamfered part and inner peripheral end surface also generate thermal cracks. May be affected.
  • the outer peripheral chamfered portions 131 and 133, the inner peripheral chamfered portions 141 and 143, and the inner peripheral side surface portion 142 described with reference to FIG. it is preferable that the arithmetic average roughness Ra after etching 5 ⁇ m from the surface, and in some cases, the maximum height roughness Rz after etching satisfy the same definition as the outer peripheral side part.
  • the corner between the main surface and the chamfered portion and the corner between the side surface and the chamfered portion are also arithmetic average roughness Ra before etching, and arithmetic after etching 5 ⁇ m from the surface for each portion. It is preferable that the average roughness Ra, and in some cases, the maximum height roughness Rz after etching satisfy the same definition as that of the outer peripheral side surface portion.
  • angular part between a main surface and a chamfering part means each corner
  • the corner between the side surface portion and the chamfered portion is a corner portion between the outer peripheral chamfered portions 131 and 133 and the outer peripheral side surface portion 132, and between the inner peripheral chamfered portions 141 and 143 and the inner peripheral side surface portion 142. Means each corner.
  • the glass substrate of the present embodiment can be chemically strengthened. This is because by performing chemical strengthening treatment, it is possible to particularly suppress the occurrence of thermal cracking when a sudden temperature change is applied.
  • the degree is not particularly limited, but at least at the outer peripheral side surface portion of the glass substrate, the depth DOL of the compressive stress by the chemical strengthening treatment is 1 ⁇ m ⁇ DOL ⁇ 15 ⁇ m. preferable.
  • the depth DOL of the compressive stress due to the chemical strengthening treatment is more preferably 1 ⁇ m ⁇ DOL ⁇ 15 ⁇ m for the entire surface of the glass substrate.
  • the depth DOL of the compressive stress is 1 ⁇ m or more, it can be said that chemical strengthening is sufficiently performed, and thermal cracking can be particularly suppressed.
  • the DOL exceeds 15 ⁇ m, the flatness of the glass substrate may deteriorate due to the diffusion of ions into the glass substrate when performing a high-temperature heat treatment at 600 ° C. or higher, so the DOL may be 15 ⁇ m or less. preferable.
  • the glass substrate used in a process that requires high-temperature heat treatment at 600 ° C. or higher is greatly affected by microcracks, and removal thereof is important.
  • the glass material constituting the glass substrate of the present embodiment is not particularly limited, and various glass materials can be used.
  • the glass substrate of the present embodiment has the arithmetic average roughness Ra of the outer peripheral side surface portion, and the arithmetic average roughness of the outer peripheral side surface portion after etching after etching 5 ⁇ m from the surface of the outer peripheral side surface portion. Thermal cracking can be suppressed by setting Ra to a predetermined range.
  • the glass material used for the glass substrate is preferably a glass substrate that hardly causes thermal cracking even when a sudden temperature change is applied.
  • the glass substrate of the present embodiment is preferably made of a glass material having a thermal expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C. or lower in a temperature range of 50 ° C. or higher and 350 ° C. or lower. More preferably, it is made of a glass material having a thermal expansion coefficient in the temperature range of 55 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient in the temperature range of 50 ° C. or more and 350 ° C. or less is 70 ⁇ 10 ⁇ 7 / ° C. or less, the glass substrate can be prevented from expanding and contracting due to temperature change, so a rapid temperature change was applied. Even in this case, the thermal cracking can be suppressed in combination with the properties of the outer peripheral side surface.
  • the lower limit value of the thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower is not particularly limited, and the glass substrate of the present embodiment has a thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower.
  • a glass material having a value greater than 0 can be used.
  • the glass substrate of this embodiment can suppress the occurrence of thermal cracking even when a sudden temperature change is applied as described above. For this reason, it can be particularly suitably used as a glass substrate for an energy-assisted magnetic recording medium that may be subjected to a rapid temperature change in the manufacturing process.
  • an energy-assisted magnetic recording medium in order to promote ordering of an FePt-based magnetic layer alloy (magnetic material) contained in the magnetic layer, 600 ° C. or higher and 700 ° C. during film formation of the magnetic layer or the like.
  • heat treatment is performed at a high temperature of about the following.
  • the glass substrate of the present embodiment is made of a glass material having a glass transition point Tg of 650 ° C. or higher in order to suppress distortion and deformation of the glass substrate.
  • the glass transition point Tg is more preferably 700 ° C. or higher.
  • the arithmetic average roughness Ra of the outer peripheral side surface portion and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 ⁇ m from the surface of the outer peripheral side surface portion. Is a predetermined range. For this reason, since the presence frequency of the microcracks contained in the outer peripheral side surface portion as a starting point of thermal cracking is sufficiently low, it is possible to suppress the occurrence of thermal cracking when a sudden temperature change is applied.
  • the glass substrate of the present embodiment can be particularly suitably used as a glass substrate for a magnetic recording medium for an energy-assisted magnetic recording medium.
  • the use of the glass substrate of the present embodiment is not limited to a glass substrate for energy-assisted magnetic recording media, and can be suitably used as a glass substrate for various magnetic recording media.
  • glass substrate manufacturing method a configuration example of the glass substrate for a magnetic recording medium according to the present embodiment described so far (hereinafter simply referred to as “glass substrate manufacturing method”) will be briefly described.
  • the glass substrate for magnetic recording media as stated above can be manufactured.
  • some description is abbreviate
  • the glass substrate manufacturing method of the present embodiment can include, for example, the following steps 1 to 5.
  • Step 1 A shape imparting step in which a glass substrate is processed into a disk-shaped glass substrate having a circular hole in the center.
  • Step 2 A chamfering step for chamfering the inner surface and the outer edge of the glass substrate.
  • Step 3 An end surface polishing step for polishing the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate.
  • Step 4) A main surface polishing step for polishing the main surface of the glass substrate.
  • Step 5 A cleaning / drying step of cleaning and drying the glass substrate.
  • the shape imparting step of (Step 1) includes a glass-shaped substrate formed by a float method, a fusion method, a press forming method, a down draw method or a redraw method, and a disk-shaped glass having a circular hole in the center.
  • the substrate is processed.
  • the glass substrate used may be amorphous glass, crystallized glass, or tempered glass having a tempered layer on the surface of the glass substrate.
  • the inner peripheral end surface and the outer peripheral end surface can be chamfered.
  • the inner peripheral chamfered portions 141 and 143 can be formed on the inner peripheral end surface 14, and the outer peripheral chamfered portions 131 and 133 can be formed on the outer peripheral end surface 13.
  • the end surface (side surface portion and chamfered portion) of the glass substrate can be subjected to end surface polishing.
  • a double-side polishing apparatus supplies polishing liquid to the main surface of the glass substrate having a donut shape, and the upper and lower main surfaces of the glass substrate having a donut shape can be simultaneously polished.
  • the main surface polishing step may be only primary polishing (primary polishing), primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.
  • wrapping of the main surface may be performed before performing the primary polishing of the main surface.
  • a primary lap may be used, and a plurality of lap processes such as a secondary lap may be performed.
  • glass substrate cleaning inter-process cleaning
  • glass substrate surface etching inter-process etching
  • main surface lapping is a broad surface main surface polishing.
  • the cleaning / drying step of (Step 5) is a step of cleaning and drying the polished glass substrate.
  • a specific cleaning method is not particularly limited. For example, cleaning can be performed by scrub cleaning using a detergent, ultrasonic cleaning in a state immersed in a detergent solution, ultrasonic cleaning in a state immersed in pure water, or the like. Moreover, it does not specifically limit about the drying method, For example, it can dry with isopropyl alcohol vapor
  • glass substrate cleaning inter-process cleaning
  • glass substrate surface etching inter-process etching
  • the reinforcing step for example, chemical strengthening step
  • polishing processes are performed before or after the polishing step mentioned in steps 3 and 4, Or you may implement between grinding
  • a main surface polishing step may be performed before the shape imparting step.
  • each step is not limited to one time, and can be performed any number of times according to the required glass substrate specifications.
  • the main surface polishing step may be performed after the shape imparting step, and then the chamfering step and the end surface polishing step may be performed, and then the main surface polishing step may be performed again.
  • the presence frequency of the micro crack of an outer peripheral side part is low as mentioned above. And the following two cases can be mainly considered as the cause of the occurrence of the micro cracks included in the outer peripheral side surface.
  • the glass substrate to be used for the main surface polishing step is inserted and held in a circular hole formed in the carrier, and the main surface of the glass substrate is polished by a double-side polishing apparatus.
  • the glass substrate held in the hole of the carrier is also rotated during polishing. In this case, wrinkles occur due to rubbing between the carrier and the glass substrate.
  • the carrier used in the main surface polishing step is a method using a material that does not easily generate microcracks in the glass substrate, or the end surface of step 3 after the main surface polishing step. Examples include a method for performing a polishing step.
  • stainless steel, steel, glass fiber-containing epoxy resin, or the like is used as a carrier material for holding the glass substrate in the main surface polishing step, and these materials have high hardness or contain a substance having high hardness. For this reason, during the main surface polishing, the carrier and the outer peripheral side surface portion of the glass rub against each other, which may cause micro cracks in the outer peripheral side surface portion.
  • the material used in the main surface polishing process is selected from aramid fiber-containing epoxy resin, carbon, polyvinyl chloride resin, polycarbonate, bakelite, epoxy resin, and polyester resin as a material for at least the portion that contacts the glass substrate.
  • the main surface polishing step is performed a plurality of times, at least the main surface polishing step to be performed at least lastly uses a carrier using a predetermined material for at least the portion in contact with the glass substrate, thereby causing a microcrack due to cause 2. Can be suppressed.
  • the material used in the main surface polishing step of at least a portion in contact with the glass substrate is one or more kinds selected from polyvinyl chloride resin, polycarbonate, bakelite, epoxy resin, and polyester resin, which are softer resins. It is further desirable to use materials.
  • the entire carrier can be composed of one or more types selected from the above-mentioned material group.
  • the main body uses a high-strength material such as stainless steel, and the above-mentioned material group in the portion of the glass substrate holding hole that comes into contact with the glass substrate A carrier using one or more materials selected from the above can also be used.
  • a carrier manufacturing method in which a main body formed of a high-strength material such as stainless steel and a hole portion that holds a glass substrate formed of a material selected from the above material group is not particularly limited. .
  • a method of coating the surface of a hole for holding a glass substrate provided on a carrier with a resin a method of forming a hole portion for holding a glass substrate with a resin, and bonding it to a carrier body, and the like.
  • the maximum depth of micro cracks generated in the main surface polishing step is measured in advance, It is preferable to select conditions for the end face polishing step so that cracks can be removed.
  • the glass substrate described above can be manufactured by the method for manufacturing a glass substrate including the steps described above.
  • the glass substrate obtained by the manufacturing method containing each said process can be used as a magnetic recording medium by further performing the process of forming thin films, such as a magnetic layer, on the main surface.
  • Magnetic recording medium Next, a configuration example of the magnetic recording medium of this embodiment will be described.
  • the magnetic recording medium of the present embodiment can include the above-described glass substrate for a magnetic recording medium.
  • the magnetic recording medium of the present embodiment includes the above-described glass substrate for a magnetic recording medium
  • the recording method and the like are not particularly limited. It can be a magnetic recording medium.
  • an energy-assisted magnetic recording medium will be described as an example.
  • the magnetic recording medium of the present embodiment is not limited in its configuration, but can have, for example, an adhesion layer, an underlayer, a seed layer, a magnetic recording layer, a protective layer on the surface of the glass substrate for magnetic recording medium, These layers can be laminated
  • the adhesion layer can be provided in order to enhance the adhesion layer between the layer formed on the adhesion layer and the layer formed below the adhesion layer.
  • a material for forming the adhesion layer for example, one or more kinds of metals selected from Ni, W, Ta, Cr, and Ru can be included, and an alloy including a metal selected from such a metal group can also be included. .
  • the adhesion layer can be composed of one layer, but it can also be a laminated structure of two or more layers.
  • a soft magnetic backing layer can be arbitrarily provided, for example, between the glass substrate and the magnetic recording layer.
  • the soft magnetic underlayer can improve the recording / reproducing characteristics of the magnetic recording medium by controlling the magnetic flux from the magnetic head.
  • the material for forming the soft magnetic backing layer is not particularly limited, but for example, crystalline materials such as NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, microcrystalline materials such as FeTaC, CoFeNi, CoNiP, CoZrNb, CoTaZr, etc.
  • An amorphous material containing a Co alloy can be preferably used.
  • the film thickness of the soft magnetic underlayer is not particularly limited, but can be selected according to, for example, the structure and characteristics of a magnetic head used for magnetic recording.
  • the soft magnetic backing layer preferably has a thickness of 10 nm to 500 nm.
  • a heat sink layer can be optionally provided.
  • the heat sink layer can effectively absorb excess heat of the magnetic recording layer generated during energy assist / magnetic recording.
  • the heat sink layer is preferably formed using a material having high thermal conductivity and specific heat capacity. Specifically, for example, Cu alone, Ag alone, Au alone, or an alloy material containing one or more kinds of metals selected from the metal group as a main component can be used.
  • including as a main component indicates that the content ratio of the metal in the material is 50 wt% or more.
  • the heat sink layer can also be formed using an Al—Si alloy, a Cu—B alloy, or the like from the viewpoint of strength and the like.
  • a heat sink layer is formed using Sendust (FeSiAl) alloy, soft magnetic CoFe alloy, etc., and the vertical magnetic field generated by the head, which is the function of the soft magnetic backing layer, is concentrated on the magnetic recording layer. It can also be granted.
  • the film thickness of the heat sink layer is not particularly limited, and can be selected according to, for example, the amount of heat and heat distribution during energy assisted magnetic recording, the layer configuration of the magnetic recording medium, the thickness of each component layer, and the like. .
  • the film thickness of the heat sink layer is preferably 10 nm or more and 100 nm or less, for example.
  • the film forming method of the heat sink layer is not particularly limited, but can be formed by using, for example, a sputtering method.
  • the heat sink layer can be provided, for example, between the glass substrate and the magnetic recording layer, and in consideration of characteristics required for the magnetic recording medium, between the glass substrate and the adhesion layer, or between the adhesion layer and the underlayer. Etc. can be provided.
  • the underlayer is a layer provided to block the influence of the crystal structure of the layer formed thereunder on the crystal orientation of the magnetic recording layer, the size of the magnetic crystal grains, and the like.
  • the underlayer is required to be nonmagnetic in order to suppress the magnetic influence on the soft magnetic backing layer.
  • Examples of the material for forming the underlayer include oxides such as MgO and SrTiO 3 , nitrides such as TiN, metals such as Cr and Ta, NiW alloys, and Cr-based alloys such as CrTi, CrZr, CrTa, and CrW Etc.
  • the film formation method of the underlayer is not particularly limited, and for example, a film formation method such as a sputtering method can be used.
  • the seed layer is a layer for controlling the grain size and crystal orientation of the magnetic crystal grains of the magnetic layer in the magnetic recording layer in contact with the seed layer, while ensuring adhesion between the underlayer and the magnetic recording layer. It is. Specifically, the seed layer on the magnetic layer formed thereon, to promote the magnetic crystal grains comprising L1 0 type ordered alloys, the separation of a non-magnetic grain boundary containing Ti, the magnetic The coercive force Hc of the magnetic recording layer including the layer can be increased.
  • the seed layer can contain, for example, Pt, and is particularly preferably composed of Pt.
  • the method for forming the seed layer is not particularly limited, and a film forming method such as a sputtering method or a vacuum evaporation method can be used.
  • the sputtering method includes, for example, an RF magnetron sputtering method.
  • the conditions for forming the seed layer are not particularly limited.
  • the film formation may be performed in a state where a base material for forming the seed layer including a glass substrate is heated to a temperature of 250 ° C. or higher and 700 ° C. or lower. preferable.
  • the thickness of the seed layer is not particularly limited, but is preferably 0.1 nm or more, more preferably 0.5 nm or more and 50 nm or less, and further preferably 1 nm or more and 20 nm or less.
  • the magnetic recording layer can include a single magnetic layer or a plurality of magnetic layers.
  • the magnetic layer in contact with the seed layer is referred to as a first magnetic layer.
  • the magnetic layer can contain, for example, Fe, Pt and Ti.
  • the first magnetic layer is specifically, for example, may have a magnetic crystal grains having an L1 0 type ordered alloy containing Fe and Pt, a granular structure consisting of a non-magnetic grain boundary containing Ti.
  • L1 0 type ordered alloy constituting the magnetic crystal grains can for the purpose of characteristic modulation of the magnetic crystal grains, Ni, Mn, Ag, may further comprise at least one element selected from the group consisting of Au and Cr . Desirable characteristic modulation comprises a reduction in the temperature required for ordering of the L1 0 type ordered alloy.
  • not all atoms may have a regular structure.
  • the regularity S representing the degree of the regular structure may be greater than or equal to a predetermined value.
  • the degree of order S can be calculated by measuring the magnetic recording medium by XRD and calculating the ratio between the measured value and the theoretical value when it is completely ordered. For L1 0 type ordered alloy is calculated using from ordered alloy (001) and the integrated intensity of the (002) peak. The ratio of the (002) peak integrated intensity to the (001) peak integrated intensity calculated theoretically when the value of the ratio of the (002) peak integrated intensity to the measured (001) peak integrated intensity is perfectly ordered.
  • the regularity S can be obtained by dividing by. If the degree of order S obtained in this way is 0.5 or more, the magnetic recording medium has a practical magnetic anisotropy coefficient Ku.
  • the nonmagnetic grain boundary can contain Ti, and is more preferably composed of Ti.
  • the first magnetic layer preferably contains 4 at% or more and 12 at% or less of Ti, more preferably 5 at% or more and 10 at% or less of Ti based on the total number of atoms of the first magnetic layer.
  • the separation between the magnetic crystal grain and the nonmagnetic crystal grain boundary can be promoted, and the coercive force Hc of the magnetic layer can be rapidly increased.
  • the magnetic recording layer can further include a second magnetic layer in addition to the first magnetic layer.
  • the performance of the magnetic recording medium can be further improved.
  • the configuration of the second magnetic layer is not particularly limited, but the second magnetic layer has a Curie temperature Tc different from that of the first magnetic layer, for example, and can be provided for the purpose of Tc control.
  • Tc Curie temperature
  • a magnetic layer having a Curie temperature Tc lower than the Curie temperature Tc of the first magnetic layer is formed as the second magnetic layer. If the recording temperature is set to be intermediate between the Curie temperatures of both magnetic layers, the magnetization of the second magnetic layer disappears during recording, and the magnetic field required to reverse the recording can be reduced. In this way, the magnetic field generated during recording required for the magnetic recording head can be reduced, and good magnetic recording performance can be exhibited.
  • the second magnetic layer also preferably has a granular structure, and the first magnetic layer and the second magnetic layer are arranged so that the magnetic crystal grains are in the same position in the horizontal direction, that is, in the direction parallel to the glass substrate surface. It is preferable to do. This is because such an arrangement can improve performance such as signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • the material constituting the second magnetic layer is not particularly limited, but for example, the magnetic crystal grains are preferably a material containing at least one of Co and Fe.
  • the magnetic crystal grains preferably further contain one or more kinds selected from Pt, Pd, Ni, Mn, Cr, Cu, Ag, and Au.
  • oxides such as ZnO, SiO 2 and TiO 2
  • nitrides such as SiN and TiN, C, B and the like
  • the second magnetic layer may be, for example, a layer in which the Ti ratio in the first magnetic layer is changed, a layer in which an element such as Ni added to the ordered alloy is changed, or the like.
  • the magnetic recording layer is, for example, an exchange coupling control layer between the first magnetic layer and the second magnetic layer in order to adjust the magnetic exchange coupling between the first magnetic layer and the second magnetic layer.
  • an exchange coupling control layer between the first magnetic layer and the second magnetic layer in order to adjust the magnetic exchange coupling between the first magnetic layer and the second magnetic layer.
  • a protective layer can be provided on the top surface of the magnetic recording layer, and the protective layer can be formed using a material conventionally used in the field of magnetic recording media.
  • the protective layer can be formed using a nonmagnetic metal such as Pt, a carbon-based material such as diamond-like carbon, or a silicon-based material such as silicon nitride.
  • the protective layer may be a single layer or may have a laminated structure.
  • the protective layer having a laminated structure may be, for example, a laminated structure of two types of carbon materials having different characteristics, a laminated structure of metals and carbon materials, or a laminated structure of metal oxide films and carbon materials. .
  • the protective layer can be formed using an arbitrary method such as a sputtering method (including a DC magnetron sputtering method) or a vacuum deposition method.
  • a liquid lubricant layer or the like can be further provided on the protective layer.
  • the liquid lubricant layer can be formed using, for example, a perfluoropolyether lubricant.
  • the liquid lubricant layer can be formed using, for example, a coating method such as a dip coating method or a spin coating method.
  • the energy-assisted magnetic recording medium has been described as an example of the configuration of the magnetic recording medium.
  • the energy-assisted magnetic recording medium is not limited to the above embodiment.
  • various layers can be further provided as necessary.
  • the magnetic recording medium of the present embodiment described above includes the above-described glass substrate for magnetic recording medium. That is, it includes a glass substrate for a magnetic recording medium that suppresses the occurrence of thermal cracking when a sudden temperature change is applied. For this reason, when the magnetic layer is formed, the occurrence of thermal cracking in the glass substrate can be suppressed, and the magnetic recording medium of this embodiment can be manufactured with high productivity.
  • Arithmetic average roughness Ra of outer peripheral side surface, outer peripheral side surface after etching, and maximum height roughness Rz of outer peripheral side surface after etching are measured by Keyence's laser microscope (Violet Laser color 3D, VK-9710, manufactured by Keyence Corporation). The outer peripheral side surface portion was observed using Laser Scanning Microscope) and calculated using the observation result.
  • the observation of the outer peripheral side surface and the outer peripheral side surface after etching uses a 50 ⁇ objective lens, the measurement area is 200 ⁇ m ⁇ 200 ⁇ m, and the center of the measurement area is arranged in the center of the glass substrate in the thickness direction. Went.
  • Etching of the outer peripheral side surface portion was performed by using a mixed aqueous solution of hydrofluoric acid and hydrochloric acid as an etchant and immersing a glass substrate to be evaluated in the etchant.
  • the concentration of hydrofluoric acid used in the etching solution was 1.0 wt%, and the concentration of hydrochloric acid was 18 wt%.
  • the outer peripheral side surface portion is removed by 5 ⁇ m by etching
  • the outer diameter of the disk after etching is reduced by 10 ⁇ m compared to before etching.
  • the etching rate varies depending on the glass material of the glass substrate used in each experimental example, a preliminary test was performed to adjust the etching time so that the etching amount was 5 ⁇ m.
  • the amount of removal by etching when adjusting the etching time by a preliminary test is the outer diameter of the glass substrate before and after the etching. Calculated from changes.
  • the etching time was different depending on the glass material of the glass substrate, but the etching time was in the range of 1 to 20 minutes.
  • FIGS. 3 (A) and 3 (B) show the surface of Example 1 to be described later
  • FIGS. 4 (A) and 4 (B) show the surface of the glass substrate of Example 10 to be described later before and after etching.
  • the photograph at the time of enlarging and observing this state with the above-mentioned laser microscope is shown.
  • (A) is before etching
  • (B) is after etching.
  • an opening (pit) of a microcrack that could not be confirmed before etching. It can be confirmed that 31 and 32 become larger and clearer by etching.
  • (2) Thermal crack test About the glass substrate produced in each experiment example, the rapid temperature change was added and the occurrence rate of the thermal crack was evaluated.
  • the glass substrate produced in each experimental example was heated to 230 ° C. in an electric furnace and then taken out from the electric furnace without cooling. Then, the glass substrate is moved in a direction parallel to the main surface of the glass substrate to the water in the water tank in which the water temperature is 20 ° C. and the depth is 10 mm in advance, that is, the water surface and the main surface of the glass substrate It was thrown in while keeping it vertical.
  • thermal cracking rate 100 glass substrates were tested in the same manner, and the ratio of the glass substrates determined to have undergone thermal cracking in the 100 glass substrates subjected to the test was defined as the thermal cracking rate.
  • the glass substrate was heated to 230 ° C. as described above, and then poured into water having a water temperature of 20 ° C. within 3 seconds. For this reason, a rapid temperature change of about 70 ° C./second is applied to the glass substrate. Even in the process of manufacturing the energy-assisted magnetic recording medium, the temperature change is, for example, about 65 ° C./second or less. Therefore, if the glass substrate has a sufficiently low thermal cracking rate when a temperature change of 70 ° C./second is applied as described above, a rapid temperature change can be applied like a glass substrate for energy-assisted magnetic recording media. It shows that it can be suitably used in applications.
  • the glass substrate used for the thermal cracking test and the glass substrate used for the evaluation of the arithmetic average roughness Ra and the maximum height roughness Rz of the outer peripheral side surface after etching were produced under the same conditions in each experimental example. Although they are used, they are not the same. This is because when the etching is performed for the measurement of the arithmetic average roughness Ra and the maximum height roughness Rz of the outer peripheral side surface after etching, the width R of the tip of the microcrack on the outer peripheral side surface portion increases, and cracks due to thermal stress occur. This is because no progress occurs and cracks do not occur. That is, in the thermal cracking test, a glass substrate that has not been etched is used.
  • Experimental Examples 1 to 6 Experimental Examples 9 to 16, Experimental Example 19, and Experimental Example 21 are examples, and Experimental Example 7, Experimental Example 8, Experimental Example 17, Experimental Example 18, Experimental Example 20, Experimental example 22 is a comparative example.
  • Each step was performed in the following order to produce a glass substrate for a magnetic recording medium.
  • Shape In order to obtain a glass substrate for a magnetic recording medium having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.8 mm, a glass substrate having a donut shape having a circular hole in the center portion of the glass substrate of glass A in Table 1 It was processed into.
  • the inner diameter means the diameter of the central opening.
  • An inner peripheral chamfered portion and an outer peripheral chamfered portion were formed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate obtained in the shape imparting step, respectively. At this time, each chamfered portion was chamfered so that a glass substrate having a chamfering width of 0.15 mm and a chamfering angle of 45 ° was obtained.
  • a grinding machine equipped with a diamond wheel is used to grind the inner peripheral end face and the outer peripheral end face at the same time while supplying a grinding liquid containing a surfactant to the grinding point. Formed.
  • the glass substrate was washed to remove grinding fluid and other dirt.
  • the average particle diameter means a particle diameter at a volume standard integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method. In other parts of the present specification, the average particle size has the same meaning.
  • End face polishing process The glass substrate which implemented on the same conditions to the main surface grinding
  • the polishing amount of the outer periphery polishing was 50 ⁇ m, and the polishing amount of the inner periphery polishing was 25 ⁇ m.
  • the polishing amount in the inner and outer peripheral polishing indicates the amount of change in the outer diameter or inner diameter of the substrate. That is, the machining allowance on one side is half of this. For example, when the polishing amount is 10 ⁇ m, one side is polished by 5 ⁇ m.
  • a carrier made of an epoxy resin containing glass fiber was used as the carrier for holding the glass substrate in the double-side polishing apparatus.
  • the glass substrate was washed to remove grinding fluid and other dirt.
  • Main surface polishing process primary polishing process
  • a double-side polishing apparatus manufactured by Hamai Sangyo Co., Ltd., product name: 16BF
  • the main surface was polished.
  • the removal amount by polishing was 25 ⁇ m.
  • the polishing time is, for example, 50 minutes.
  • the polishing amount in main surface polishing indicates the amount of change in substrate thickness. That is, the machining allowance on one side is half of this. For example, when the polishing amount is 10 ⁇ m, one side is polished by 5 ⁇ m.
  • a carrier made of an epoxy resin containing glass fiber was used as the carrier for holding the glass substrate in the double-side polishing apparatus.
  • the glass substrate was washed to remove grinding fluid and other contaminants.
  • Main surface polishing process secondary polishing process
  • a polishing tool using a suede type polyurethane polishing pad and a grinding liquid containing colloidal silica having an average particle size of 20 nm or less, a double-side polishing apparatus (product name: 16BF, manufactured by Hamai Sangyo Co., Ltd.) The upper and lower main surfaces were polished.
  • the removal amount by polishing was 1 ⁇ m.
  • the polishing time is, for example, 30 minutes.
  • a carrier made of an aramid fiber-containing epoxy resin was used as the carrier for holding the glass substrate in the double-side polishing apparatus.
  • the glass substrate was washed to remove grinding fluid and other contaminants.
  • the glass substrate that has been subjected to the main surface polishing process is sequentially subjected to scrub cleaning, ultrasonic cleaning in a state of being immersed in a detergent solution, and ultrasonic cleaning in a state of being immersed in pure water (precision cleaning). And drying with isopropyl alcohol vapor.
  • Experimental Example 3 a stainless steel carrier was used.
  • Experimental Example 4 a glass fiber-containing epoxy resin carrier was used, in Experimental Example 5, an aramid fiber-containing epoxy resin carrier was used, and in Experimental Example 6, a polyvinyl chloride resin carrier was used.
  • the conditions in each step are the same as in Experimental Example 1 except that the carrier material used in each main surface polishing step is different.
  • the polishing amount of the peripheral polishing in the end face polishing step in Experimental Example 8 to Experimental Example 15 is 5 ⁇ m (Experimental Example 8), 8 ⁇ m (Experimental Example 9), 11 ⁇ m (Experimental Example 10), 16 ⁇ m (Experimental Example 11), and 21 ⁇ m, respectively. (Experimental Example 12), 27 ⁇ m (Experimental Example 13), 32 ⁇ m (Experimental Example 14), and 38 ⁇ m (Experimental Example 15).
  • Experiment Example 7 a glass fiber-containing epoxy resin carrier was used, and in Experiment Examples 8 to 15, an aramid fiber-containing epoxy resin carrier was used.
  • the chemical strengthening was performed by immersing the glass substrate after the main surface polishing step (primary polishing step) in a dissolved salt at 400 ° C. containing 60% by weight of potassium nitrate and 40% by weight of sodium nitrate.
  • a process of preheating the glass substrate to 350 ° C. for 30 minutes was provided before the glass substrate was immersed in the dissolved salt.
  • the glass substrate was allowed to stand at 350 ° C. for 10 minutes and the dissolved salt was poured off, followed by slow cooling.
  • the chemical strengthening step was performed such that the depth DOL of the compressive stress at the outer peripheral side surface portion was 10 ⁇ m.
  • the amount of outer peripheral polishing in the end surface polishing step was 5 ⁇ m
  • the depth DOL of the compressive stress in the outer peripheral side surface portion was 10 ⁇ m in experimental example 17 and 17 ⁇ m in experimental example 18.
  • the glass substrate was produced and evaluated in the same manner as in Experimental Example 16 except that chemical strengthening was performed.
  • Table 3 shows the order of steps when manufacturing the glass substrate in each experimental example. In the same manner as described so far, each experimental example is performed in the order from step 1 to step 9 in Table 3.
  • the arithmetic average roughness Ra of the outer peripheral side surface portion is 0.1 ⁇ m or less, and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 ⁇ m from the surface of the outer peripheral side surface portion. It is confirmed that the thermal cracking rate is 20% or less for the glass substrates of Experimental Example 1 to Experimental Example 6, Experimental Example 9 to Experimental Example 16, Experimental Example 19 and Experimental Example 21 in which the thickness is 0.5 ⁇ m or less. did it.
  • the arithmetic average roughness Ra of the outer peripheral side surface portion is larger than 0.1 ⁇ m, and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 ⁇ m from the surface of the outer peripheral side surface portion from 0.5 ⁇ m.
  • the thermal cracking rate exceeded 20%.
  • the thermal cracking rate is low even if the arithmetic average roughness Ra of the outer peripheral side surface after etching is larger than 0.5 ⁇ m.
  • the DOL of the glass substrate for energy-assisted magnetic recording medium is preferably 15 ⁇ m or less.
  • Example 17 with a DOL of 10 ⁇ m reduces the thermal cracking rate compared to Example 8 with an equivalent arithmetic mean roughness Ra, but is more effective in Example 16 with an arithmetic mean roughness Ra lower than 0.5 ⁇ m.
  • the thermal cracking rate can be reduced. That is, even in a glass substrate subjected to chemical strengthening, setting the arithmetic average roughness Ra to 0.5 ⁇ m or less is effective in reducing the thermal cracking rate.
  • Example 22 uses a glass material with a low coefficient of thermal expansion, so the rate of occurrence of thermal cracking is lower than Example 8 which has the same arithmetic mean roughness Ra, but the arithmetic mean roughness Ra is low with the same glass material.
  • the thermal cracking rate is even lower. That is, even when a glass material having a low coefficient of thermal expansion is used, it is effective for reducing the thermal cracking rate to set the arithmetic average roughness Ra to 0.5 ⁇ m or less.
  • Example 2 and Experimental Example 9 are compared, the arithmetic average roughness Ra of the outer peripheral side surface after etching is the same, but the maximum height roughness Rz of the outer peripheral side surface after etching is different. And it can confirm that the incidence rate of a thermal crack is also changing according to it.
  • the thermal cracking rate that the arithmetic average roughness Ra of the outer peripheral side surface after etching is 0.5 ⁇ m or less, but the maximum height roughness Rz of the outer peripheral side surface after etching is It was confirmed that it was important to set the thickness to 10 ⁇ m or less.
  • Table 4 shows the percentage of roughness at a load factor of 50%, which is used as a method for expressing the surface state of a part of the experimental example.
  • Table 4 also shows the thermal cracking rates shown in Table 3.
  • the near-surface area of the object to be measured is cut by a plane parallel to the surface that forms the macroscopic shape of the surface of the object to be measured.
  • the level of the height to be cut at the surface in contact with the maximum protruding portion that protrudes to the maximum in the surface vicinity region is set to 0% as the maximum height, and the surface in contact with the deepest valley portion that is deepest in the surface vicinity region
  • the level of the height to be cut is set to a minimum height of 100%.
  • the percentage of roughness represents the level of cutting height between the highest and lowest heights in percent.
  • the load factor is the cut surface of the sample to be measured when the area of the region existing on the cut surface of the sample to be measured is cut at 100% roughness when the sample is cut at a specific roughness percentage level. Divided by the area of the existing region.
  • the percentage of roughness when the load factor is 50% indicates the level of cutting height at which the load factor is 50%. That is, the results shown in Table 4 are the same as when measuring the arithmetic mean roughness Ra, and the end face of the glass substrate subjected to etching of 5 ⁇ m was measured in a measurement area of 200 ⁇ m ⁇ 200 ⁇ m, and the presence of the measurement object for the entire measurement area The percentage of roughness when the area ratio of the area to be processed is 50% is shown.
  • Glass substrate for magnetic recording media (glass substrate) 121, 122 Main surface 13 Outer peripheral end surfaces 131, 133 Outer peripheral chamfered portion 132 Outer peripheral side surface 14 Inner peripheral end surface 141, 143 Inner peripheral chamfered portion 142 Inner peripheral side surface portion

Abstract

The present invention provides a glass substrate for a magnetic recording medium such that thermal cracking that is caused by dramatic temperature changes can be minimized. The glass substrate for a magnetic recording medium according to the present invention is donut shaped and includes a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface. The outer peripheral end surface has an outer peripheral lateral surface and a pair of outer peripheral chamfers. The outer peripheral lateral surface has an arithmetic average roughness Ra of 0.1 μm or less. The outer peripheral lateral surface has an arithmetic average roughness Ra of 0.5 μm or less after being etched to 5 μm from the surface.

Description

磁気記録媒体用ガラス基板、磁気記録媒体Glass substrate for magnetic recording medium, magnetic recording medium
 本発明は、磁気記録媒体用ガラス基板、磁気記録媒体に関する。 The present invention relates to a glass substrate for a magnetic recording medium and a magnetic recording medium.
 磁気記録装置では、磁気記録媒体用基板上に磁性層等を成膜し、該磁性層を用いて情報を記録することができる。 In a magnetic recording apparatus, a magnetic layer or the like is formed on a magnetic recording medium substrate, and information can be recorded using the magnetic layer.
 磁気記録装置に用いられる磁気記録媒体用基板としては、従来、アルミニウム合金基板が使用されてきたが、高記録密度化の要求に伴い、アルミニウム合金基板に比べて硬く、平坦性や平滑性に優れるガラス基板が主流となってきている。 Conventionally, an aluminum alloy substrate has been used as a substrate for a magnetic recording medium used in a magnetic recording apparatus. However, due to the demand for higher recording density, it is harder and more flat and smooth than an aluminum alloy substrate. Glass substrates are becoming mainstream.
 そして、近年では年々高まる高記録密度化のニーズに応えるため、エネルギーアシスト磁気記録方式を用いた磁気記録媒体、すなわちエネルギーアシスト磁気記録媒体が検討されている。エネルギーアシスト磁気記録媒体についても、基板として磁気記録媒体用ガラス基板を用い、磁気記録媒体用ガラス基板の主表面上に磁性層等を配置した構成を有することができる。 In recent years, magnetic recording media using an energy-assisted magnetic recording system, that is, energy-assisted magnetic recording media, are being studied in order to meet the increasing demand for higher recording density. The energy-assisted magnetic recording medium can also have a configuration in which a glass substrate for a magnetic recording medium is used as a substrate and a magnetic layer or the like is disposed on the main surface of the glass substrate for a magnetic recording medium.
 エネルギーアシスト磁気記録媒体では、磁性層の磁性材料として磁気異方性係数Kuの大きい(以下、「高Ku」とも記載する)規則合金が用いられている。そして、規則化の程度(規則度)を高めて高Kuを実現するため、磁性層の成膜時、成膜前、または成膜後に、磁気記録媒体用ガラス基板を含む基材を600℃以上の高温で熱処理を行う場合がある。 In the energy-assisted magnetic recording medium, an ordered alloy having a large magnetic anisotropy coefficient Ku (hereinafter also referred to as “high Ku”) is used as the magnetic material of the magnetic layer. And, in order to increase the degree of ordering (regularity) and realize high Ku, the base material including the glass substrate for magnetic recording medium is at least 600 ° C. at the time of film formation, before film formation, or after film formation. Heat treatment may be performed at a high temperature.
 磁性層の成膜時、成膜前、または成膜後に高温での熱処理を行うのは、例えばエネルギーアシスト磁気記録媒体の磁性層の磁性材料として好適なFePt系合金等において、アニール温度を高くするほど保磁力を高められるためでもある。 When the magnetic layer is formed, heat treatment at a high temperature is performed before or after the film formation. For example, in an FePt alloy suitable as a magnetic material of the magnetic layer of the energy-assisted magnetic recording medium, the annealing temperature is increased. This is also because the coercive force can be increased.
 このように磁気記録媒体を製造する過程で、磁気記録媒体用ガラス基板についても高温で熱処理される場合があるため、磁気記録媒体用ガラス基板にも耐熱性が求められている。 In the process of manufacturing a magnetic recording medium in this manner, the glass substrate for magnetic recording medium may be heat-treated at a high temperature, so that the glass substrate for magnetic recording medium is also required to have heat resistance.
 そして、例えば特許文献1には高温で磁気記録層を形成できる情報記録媒体用ガラス基板が開示されている。具体的には、モル百分率表示で、SiOを62~74%、Alを7~18%、Bを2~15%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で8~16%含有し、上記7成分の含有量合計が95%以上であり、LiO、NaOおよびKOのいずれか1成分以上を合計で1%未満含有する、もしくはこれら3成分のいずれも含有しない情報記録媒体用ガラス基板(ただし、結晶化ガラス基板および強化ガラス基板を除く)が開示されている。 For example, Patent Document 1 discloses a glass substrate for an information recording medium capable of forming a magnetic recording layer at a high temperature. Specifically, in terms of mole percentage, SiO 2 is 62 to 74%, Al 2 O 3 is 7 to 18%, B 2 O 3 is 2 to 15%, and any one component of MgO, CaO, SrO and BaO 8 to 16% in total, the total content of the seven components is 95% or more, and any one or more of Li 2 O, Na 2 O and K 2 O is contained in less than 1% in total Or a glass substrate for an information recording medium that does not contain any of these three components (except for a crystallized glass substrate and a tempered glass substrate).
日本国特許第5056983号公報Japanese Patent No. 50569883
 しかしながら、上述のように高温で熱処理を行う場合、磁気記録媒体用ガラス基板に熱処理前後で急激な温度変化が加えられることになるため、磁気記録媒体用ガラス基板では急激な熱膨張または熱収縮が発生し、該磁気記録媒体用ガラス基板に大きな応力がかかる。そして、係る応力によって、磁気記録媒体用ガラス基板に熱割れが生じる場合があり、熱割れの程度によっては砕ける場合もあった。このように、磁気記録媒体の製造中に磁気記録媒体用ガラス基板に熱割れが生じたり、砕けると、歩留まりが低下するだけではなく、割れた基板の回収、熱処理装置の洗浄等を行う必要が生じ、生産性が大幅に低下するという問題があった。 However, when heat treatment is performed at a high temperature as described above, since a rapid temperature change is applied to the glass substrate for magnetic recording medium before and after the heat treatment, the glass substrate for magnetic recording medium exhibits rapid thermal expansion or contraction. And a large stress is applied to the glass substrate for a magnetic recording medium. Due to such stress, a thermal crack may occur in the glass substrate for a magnetic recording medium, and may be crushed depending on the degree of the thermal crack. As described above, when a thermal crack is generated or broken in the magnetic recording medium glass substrate during the production of the magnetic recording medium, it is necessary not only to reduce the yield but also to recover the broken substrate, clean the heat treatment apparatus, and the like. As a result, there is a problem in that productivity is greatly reduced.
 そこで、本発明の一側面では上記従来技術が有する問題に鑑み、急激な温度変化が加えられた場合に熱割れが生じることを抑制した磁気記録媒体用ガラス基板を提供することを目的とする。 Therefore, in view of the above-described problems of the related art, an object of the present invention is to provide a glass substrate for a magnetic recording medium that suppresses thermal cracking when a sudden temperature change is applied.
 上記課題を解決するため本発明の一側面では、ドーナツ形状を有し、一対の主表面と、外周端面と、内周端面と、を有する磁気記録媒体用ガラス基板であって、前記外周端面は外周側面部と一対の外周面取り部とを有し、
 前記外周側面部の算術平均粗さRaが0.1μm以下であり、
 前記外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaが0.5μm以下である磁気記録媒体用ガラス基板を提供する。
In order to solve the above problems, in one aspect of the present invention, a glass substrate for a magnetic recording medium having a donut shape and having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, the outer peripheral end surface is It has an outer peripheral side part and a pair of outer peripheral chamfered parts,
The arithmetic average roughness Ra of the outer peripheral side surface portion is 0.1 μm or less,
Provided is a glass substrate for a magnetic recording medium in which an arithmetic average roughness Ra of an outer peripheral side surface after etching after etching 5 μm from the surface of the outer peripheral side surface portion is 0.5 μm or less.
 本発明の磁気記録媒体用ガラス基板の一側面によれば、急激な温度変化が加えられた場合に熱割れが生じることを抑制した磁気記録媒体用ガラス基板を提供することができる。 According to one aspect of the glass substrate for a magnetic recording medium of the present invention, it is possible to provide a glass substrate for a magnetic recording medium that suppresses thermal cracking when a sudden temperature change is applied.
図1は、本発明の実施形態に係る磁気記録媒体用ガラス基板の説明図である。FIG. 1 is an explanatory diagram of a glass substrate for a magnetic recording medium according to an embodiment of the present invention. 図2は、磁気記録媒体用ガラス基板に生じる微小クラックの説明図である。FIG. 2 is an explanatory diagram of minute cracks generated in the glass substrate for a magnetic recording medium. 図3(A)、図3(B)は、本発明の実験例1における、エッチング前後の外周側面部表面のレーザー顕微鏡画像である。図3(A)がエッチング前、図3(B)がエッチング後の画像を示す。3 (A) and 3 (B) are laser microscope images of the outer peripheral side surface before and after etching in Experimental Example 1 of the present invention. FIG. 3A shows an image before etching, and FIG. 3B shows an image after etching. 図4(A)、図4(B)は、本発明の実験例10における、エッチング前後の外周側面部表面のレーザー顕微鏡画像である。図4(A)がエッチング前、図4(B)がエッチング後の画像を示す。4 (A) and 4 (B) are laser microscope images of the outer peripheral side surface before and after etching in Experimental Example 10 of the present invention. FIG. 4A shows an image before etching, and FIG. 4B shows an image after etching.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
(磁気記録媒体用ガラス基板)
 本実施形態の磁気記録媒体用ガラス基板の一構成例について説明を行う。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.
(Glass substrate for magnetic recording media)
One structural example of the glass substrate for magnetic recording media of this embodiment is demonstrated.
 本実施形態の磁気記録媒体用ガラス基板は、ドーナツ形状を有し、一対の主表面と、外周端面と、内周端面と、を有する磁気記録媒体用ガラス基板であって、外周端面は外周側面部と一対の外周面取り部とを有することができる。 The glass substrate for a magnetic recording medium of the present embodiment is a glass substrate for a magnetic recording medium having a donut shape and having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, and the outer peripheral end surface is an outer peripheral side surface. And a pair of outer peripheral chamfers.
 そして、外周側面部の算術平均粗さRaを0.1μm以下、外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaを0.5μm以下とすることができる。 Then, the arithmetic average roughness Ra of the outer peripheral side surface portion may be 0.1 μm or less, and the outer peripheral side surface portion may have an arithmetic average roughness Ra of 0.5 μm or less after etching after etching 5 μm from the surface. it can.
 まず、図1を用いて本実施形態の磁気記録媒体用ガラス基板(以下、単に「ガラス基板」とも記載する)の構造について説明する。 First, the structure of the glass substrate for a magnetic recording medium of the present embodiment (hereinafter also simply referred to as “glass substrate”) will be described with reference to FIG.
 図1は本実施形態のガラス基板の斜視断面図を模式的に示している。図1はガラス基板10の中心を通り、主表面121、122と垂直な面における断面を含む斜視断面図となっている。すなわち、図1では本実施形態のガラス基板の半分と、断面図とをあわせて示している。 FIG. 1 schematically shows a perspective sectional view of the glass substrate of the present embodiment. 1 is a perspective cross-sectional view including a cross section in a plane passing through the center of the glass substrate 10 and perpendicular to the main surfaces 121 and 122. That is, in FIG. 1, the half of the glass substrate of this embodiment and sectional drawing are shown collectively.
 図1から把握されるように、ガラス基板10は外周が円形であり、中央部には外周と同心円となるように円形の開口部(中央開口部)11が設けられた円板形状、すなわちドーナツ形状を有している。 As can be seen from FIG. 1, the glass substrate 10 has a circular shape on the outer periphery, and a circular shape in which a circular opening (center opening) 11 is provided in the center so as to be concentric with the outer periphery, that is, a donut. It has a shape.
 そして、上下の面が主表面121、122となっている。また、ガラス基板10は外周に位置する外周端面13と、内周に位置する内周端面14と、を有している。 The upper and lower surfaces are main surfaces 121 and 122. Moreover, the glass substrate 10 has the outer peripheral end surface 13 located in an outer periphery, and the inner peripheral end surface 14 located in an inner periphery.
 外周端面13、及び内周端面14は主表面121、122側にそれぞれ面取り部を有することができる。すなわち、外周端面13、及び内周端面14は、それぞれ一対の面取り部を有することができる。具体的には外周端面13は外周面取り部131、133を、内周端面14は内周面取り部141、143をそれぞれ有することができる。 The outer peripheral end surface 13 and the inner peripheral end surface 14 can have chamfered portions on the main surfaces 121 and 122 side, respectively. That is, the outer peripheral end surface 13 and the inner peripheral end surface 14 can each have a pair of chamfered portions. Specifically, the outer peripheral end surface 13 can have outer peripheral chamfered portions 131 and 133, and the inner peripheral end surface 14 can have inner peripheral chamfered portions 141 and 143, respectively.
 また、面取り部間には側面部を形成することができ、外周端面13は外周側面部132を、内周端面14は内周側面部142をそれぞれ有することができる。外周側面部132、及び内周側面部142はそれぞれ主表面121、122と略垂直になるように形成できる。 Further, a side surface portion can be formed between the chamfered portions, the outer peripheral end surface 13 can have the outer peripheral side surface portion 132, and the inner peripheral end surface 14 can have the inner peripheral side surface portion 142. The outer peripheral side surface portion 132 and the inner peripheral side surface portion 142 can be formed so as to be substantially perpendicular to the main surfaces 121 and 122, respectively.
 以上のように、外周端面13は外周側面部132と、外周面取り部131、133とを含み、内周端面14は内周側面部142と、内周面取り部141、143とを含むことができる。 As described above, the outer peripheral end surface 13 can include the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133, and the inner peripheral end surface 14 can include the inner peripheral side surface portion 142 and the inner peripheral chamfered portions 141 and 143. .
 なお、本実施形態のガラス基板10のサイズは特に限定されるものではなく、ガラス基板の仕様にあわせて任意に選択することができる。本実施形態のガラス基板の直径Dは例えば48mm、65mm、または95mm等のガラス基板に要求される仕様に応じたサイズとすることができる。特に、本実施形態のガラス基板の直径は、近年需要が高まっている65mm以上であることが好ましい。 In addition, the size of the glass substrate 10 of this embodiment is not specifically limited, It can select arbitrarily according to the specification of a glass substrate. The diameter D of the glass substrate of this embodiment can be made into the size according to the specification requested | required of glass substrates, such as 48 mm, 65 mm, or 95 mm, for example. In particular, the diameter of the glass substrate of the present embodiment is preferably 65 mm or more, for which demand has been increasing in recent years.
 ところで、既述の様にエネルギーアシスト磁気記録媒体の製造工程で、600℃以上、例えば600℃以上700℃以下の高温で熱処理を行う際に、ガラス基板に急激な温度変化が加わり、生じた応力により、ガラス基板に熱割れを生じる場合があった。 By the way, as described above, when the heat treatment is performed at a high temperature of 600 ° C. or higher, for example, 600 ° C. or higher and 700 ° C. or lower, in the manufacturing process of the energy assisted magnetic recording medium, a sudden temperature change is applied to the glass substrate and the generated stress. As a result, thermal cracks may occur in the glass substrate.
 そこで、本発明の発明者らは、急激な温度変化が加えられた場合に熱割れが生じることを抑制できるガラス基板について鋭意検討を行った。 Therefore, the inventors of the present invention have conducted intensive studies on a glass substrate that can suppress the occurrence of thermal cracking when a sudden temperature change is applied.
 本発明の発明者らは最初に、急激な温度変化が加えられた場合に熱割れが生じる原因について検討を行った。 The inventors of the present invention first examined the cause of thermal cracking when a sudden temperature change was applied.
 急激な温度変化をガラス基板に加えた際に膨張、収縮が起こり易い場所には応力がかかり易いため、急激な温度変化に伴い、膨張、収縮の起こり易い場所を検討したところ、形状の影響によりガラス基板の外周部分において、膨張、収縮が起こり易いことが分かった。 When a sudden temperature change is applied to a glass substrate, stress is easily applied to a place where expansion or contraction is likely to occur. It was found that expansion and contraction easily occur in the outer peripheral portion of the glass substrate.
 さらに、通常、ガラス基板の外周側面部のうち、複数箇所を金属製の保持具により保持した状態で熱処理が行われるが、係る保持具と、ガラス基板との間の熱移動により、ガラス基板内の温度分布が特に急峻に変化し易いことが分かった。 In addition, heat treatment is usually performed in a state where a plurality of locations on the outer peripheral side surface of the glass substrate are held by a metal holder, but the heat transfer between the holder and the glass substrate causes It has been found that the temperature distribution of the film tends to change particularly sharply.
 このため、熱処理を行う際に、ガラス基板の外周部分は、特に急激な温度変化に曝される可能性が高く、急激な温度変化に曝された場合に、膨張、収縮が起こり易いため、応力が加わり易くなっていることを見出した。 For this reason, when performing heat treatment, the outer peripheral portion of the glass substrate is likely to be exposed to a rapid temperature change, and when exposed to a rapid temperature change, expansion and contraction are likely to occur. I found that it is easy to add.
 そこで、次に、外周側面部の性状と、熱割れの発生との関係を検討したところ、外周側面部に深さ数μmからサブミクロンの微小クラックが存在する場合、クラック先端に応力が集中し、クラックが伸展し大きな割れの発生につながり易いことを見出した。 Then, next, when the relationship between the properties of the outer peripheral side surface and the occurrence of thermal cracking was examined, if a micro crack with a depth of several μm to submicron exists on the outer peripheral side surface, stress concentrates on the crack tip. It was found that the cracks tend to extend and lead to large cracks.
 ここで、微小クラックを模式的に図2に示す。図2においては、微小クラック22の深さ方向と平行で、かつ微小クラックを通る面での微小クラックの断面を模式的に示している。 Here, the microcracks are schematically shown in FIG. FIG. 2 schematically shows a cross section of the microcrack in a plane parallel to the depth direction of the microcrack 22 and passing through the microcrack.
 ガラス基板の外周側面部に生じる微小クラック22は、例えば図2に示したように、ガラス基板の外周側面部の表面21から、内部に向かって生じる。そして、微小クラックが生じた場合、微小クラック22の先端への応力集中はクラック先端の幅Rと相関を有し、該幅Rが小さいときに、特に微小クラック22に応力が集中し易くなる。従って、外周側面部における微小クラックを低減することで、急激な温度変化が加えられた場合に熱割れが生じることを抑制したガラス基板とすることができることが分かる。 The microcracks 22 generated on the outer peripheral side surface portion of the glass substrate are generated from the surface 21 of the outer peripheral side surface portion of the glass substrate toward the inside as shown in FIG. When a microcrack occurs, the stress concentration at the tip of the microcrack 22 has a correlation with the width R of the crack tip, and when the width R is small, the stress tends to concentrate particularly on the microcrack 22. Therefore, it can be seen that by reducing microcracks in the outer peripheral side surface portion, it is possible to provide a glass substrate that suppresses the occurrence of thermal cracking when a sudden temperature change is applied.
 ところが、特に熱割れ発生の原因となり易い先端の幅Rが非常に小さい微小クラック22は、表面21側の開口部221の幅が小さく、また開口部221が水和物等で覆われていることが多いため、ガラス基板の外周側面部の表面21から検出することは難しい。このため、ガラス基板の外周側面部での存在頻度や深さを表面粗さ計などで測定することは困難であった。 However, the micro crack 22 having a very small tip width R that is likely to cause thermal cracking has a small width of the opening 221 on the surface 21 side, and the opening 221 is covered with hydrate or the like. Therefore, it is difficult to detect from the surface 21 of the outer peripheral side surface portion of the glass substrate. For this reason, it was difficult to measure the presence frequency and depth at the outer peripheral side surface portion of the glass substrate with a surface roughness meter or the like.
 そこで、係る微小なクラックの検出方法について検討を行ったところ、ガラス基板の外周側面部をエッチング(エッチング処理)することで、エッチング前には検出されない微小クラックが、外周側面部に顕在化できることを見出した。これは、エッチングにより微小クラックを覆っていた水和物等を除去することができ、さらには、エッチングによって微小クラックの表面側の開口部(ピット)のサイズを大きくすることができるためと考えられる。 Therefore, when a method for detecting such a microcrack was examined, it was found that by etching (etching) the outer peripheral side surface of the glass substrate, microcracks that are not detected before etching can be manifested on the outer peripheral side surface. I found it. This is considered to be because the hydrate etc. that covered the microcracks by etching can be removed, and furthermore, the size of the opening (pit) on the surface side of the microcracks can be increased by etching. .
 以上の検討結果から、外周側面部をエッチングすることで、外周側面部の微小クラックを顕在化できるため、表面粗さ計等で検出できるようになり、外周側面部の微小クラックの存在頻度、深さを定量的に把握できることを見出した。さらに、エッチング後の基板の外周側面部の算術平均粗さRaと熱割れの発生率とに相関があることが分かった。 From the above examination results, by etching the outer peripheral side surface, micro cracks on the outer peripheral side surface can be revealed, so that it can be detected by a surface roughness meter or the like. It was found that it is possible to grasp the amount quantitatively. Furthermore, it was found that there is a correlation between the arithmetic average roughness Ra of the peripheral side surface portion of the substrate after etching and the occurrence rate of thermal cracking.
 そこで、本実施形態のガラス基板においては、外周側面部について、表面から5μmをエッチングした後の外周側面部、すなわちエッチング後外周側面部の算術平均粗さRaが0.5μm以下であることが好ましく、0.3μm以下であることがより好ましく、0.2μm以下であることがさらに好ましい。 Therefore, in the glass substrate of the present embodiment, it is preferable that the outer peripheral side surface portion has an arithmetic average roughness Ra of 0.5 μm or less after etching the outer peripheral side surface portion after etching 5 μm from the surface, that is, the outer peripheral side surface portion after etching. More preferably, it is 0.3 μm or less, and further preferably 0.2 μm or less.
 上述のように、エッチング後外周側面部は、エッチングにより微小なクラックが顕在化しており、エッチング後外周側面部の算術平均粗さRaを評価することで、外周側面部に含まれる微小なクラックの存在頻度を評価できる。すなわち、エッチング後外周側面部の算術平均粗さRaが小さいほど、外周側面部に含まれる微小クラックの存在頻度は小さくなる。 As described above, fine cracks are evident on the outer peripheral side surface after etching, and by evaluating the arithmetic average roughness Ra of the outer peripheral side surface after etching, the minute cracks included in the outer peripheral side portion are evaluated. Existence frequency can be evaluated. That is, the smaller the arithmetic average roughness Ra of the outer peripheral side surface after etching, the smaller the frequency of presence of microcracks included in the outer peripheral side surface portion.
 そして、本発明の発明者らの検討によれば、エッチング後外周側面部の算術平均粗さRaが0.5μm以下の場合、微小クラックの存在頻度を十分に小さくでき、熱割れの発生を抑制できる。このため、急激な温度変化が加えられた場合に、ガラス基板に熱割れが生じることを抑制でき、好ましい。 According to the study of the inventors of the present invention, when the arithmetic average roughness Ra of the outer peripheral side surface after etching is 0.5 μm or less, the presence frequency of microcracks can be sufficiently reduced, and the occurrence of thermal cracks is suppressed. it can. For this reason, when a rapid temperature change is added, it can suppress that a thermal crack arises in a glass substrate, and it is preferable.
 本実施形態のガラス基板においては、エッチング後の外周側面部の算術平均粗さRaを測定する際のエッチング量を5μmとしているが、エッチング量は1μm以上20μm以下であれば、同様の傾向が得られると考えられる。このため、エッチング量は5μmに限定されるものではなく、1μm以上20μmの範囲で選択することもできる。 In the glass substrate of the present embodiment, the etching amount when measuring the arithmetic average roughness Ra of the outer peripheral side surface after etching is set to 5 μm, but the same tendency is obtained if the etching amount is 1 μm or more and 20 μm or less. It is thought that. For this reason, the etching amount is not limited to 5 μm, and can be selected in the range of 1 μm to 20 μm.
 なお、エッチング量が1μmよりも小さい場合には、エッチング後の外周側面部表面での、微小クラックの開口部のサイズが十分に大きくなっておらず、微小クラックの存在頻度や、詳細な形状を評価することが難しくなる恐れがある。また、一方でエッチング量が20μmよりも大きい場合、エッチング後の外周側面部表面での、微小クラックの開口部のサイズが大きくなり過ぎ、元のクラックの存在頻度や、サイズを反映しなくなるため、適切な評価を行えなくなる恐れがある。 In addition, when the etching amount is smaller than 1 μm, the size of the opening of the microcrack on the outer peripheral side surface after etching is not sufficiently large, and the existence frequency of the microcrack and the detailed shape are May be difficult to evaluate. On the other hand, if the etching amount is larger than 20 μm, the size of the opening portion of the microcrack on the outer peripheral side surface after etching is too large, and the existing frequency of the crack and the size do not reflect, There is a risk that proper evaluation cannot be performed.
 このため、エッチング後の外周側面部について、算術平均粗さRaや、後述する最大高さ粗さRzの評価を行う場合、エッチング量は1μm以上20μm以下とすることが好ましく、特に5μmとすることが好ましい。 For this reason, the etching amount is preferably 1 μm or more and 20 μm or less, particularly 5 μm, when the arithmetic average roughness Ra or the maximum height roughness Rz described later is evaluated for the outer peripheral side surface after etching. Is preferred.
 また、本実施形態のガラス基板は、エッチングを行う前の外周側面部の算術平均粗さRaは、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましい。 In the glass substrate of this embodiment, the arithmetic mean roughness Ra of the outer peripheral side surface before etching is preferably 0.1 μm or less, and more preferably 0.05 μm or less.
 これは、後述するように外周側面部の算術平均粗さRaが0.1μmよりも高い場合には研磨砥粒等が付着しやすく、洗浄や成膜時に発塵を起こし、主表面への汚染につながることが懸念されるためである。 This is because, as will be described later, when the arithmetic mean roughness Ra of the outer peripheral side surface is higher than 0.1 μm, abrasive grains and the like are likely to adhere, and dust is generated during cleaning and film formation, and contamination to the main surface. It is because there is a concern that it will lead to.
 さらに、エッチング後外周側面部は、最大高さ粗さRzが10μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。 Furthermore, the outer peripheral side surface portion after etching preferably has a maximum height roughness Rz of 10 μm or less, more preferably 4 μm or less, and further preferably 3 μm or less.
 最大高さ粗さRzは測定領域に存在する微小クラックの最大深さに相当すると考えられる。そして、微小クラックは深さが深いほど熱割れに発展し易くなるところ、最大高さ粗さRzが10μm以下の場合、微小クラックの最大深さが十分に浅く、急激な温度変化が加えられた場合に、ガラス基板に熱割れが生じることを抑制でき、好ましいからである。 The maximum height roughness Rz is considered to correspond to the maximum depth of microcracks existing in the measurement region. The microcracks are more likely to develop into thermal cracks as the depth increases. When the maximum height roughness Rz is 10 μm or less, the maximum depth of the microcracks is sufficiently shallow, and a rapid temperature change is applied. In this case, it is possible to suppress occurrence of thermal cracking in the glass substrate, which is preferable.
 ガラス基板の外周側面部をエッチングする方法は特に限定されないが、ガラス基板をエッチング液に所定時間浸漬することでエッチングを行うことができる。ガラス基板をエッチング液に浸漬する場合、ガラス基板の表面全体が均一にエッチングされるため、例えば外周側面部について、表面から5μmをエッチングする場合、ガラス基板は直径としては10μm小さくなる。 The method for etching the outer peripheral side surface portion of the glass substrate is not particularly limited, but etching can be performed by immersing the glass substrate in an etching solution for a predetermined time. When the glass substrate is immersed in the etching solution, the entire surface of the glass substrate is uniformly etched. For example, when 5 μm is etched from the surface of the outer peripheral side surface portion, the glass substrate is reduced in diameter by 10 μm.
 エッチング液としては、ガラス基板をエッチングできる材料であればよく、特に限定されないが、例えばふっ酸と、塩酸との混合水溶液等を用いることができる。エッチング時間はエッチング液や、ガラス基板のガラス材料により変化するため、例えば予め予備試験等を行い、ガラス基板の表面を5μmエッチングするのに要する時間を調べておくことが好ましい。 The etchant is not particularly limited as long as it is a material that can etch the glass substrate, and for example, a mixed aqueous solution of hydrofluoric acid and hydrochloric acid can be used. Since the etching time varies depending on the etching solution and the glass material of the glass substrate, it is preferable to conduct a preliminary test or the like in advance to check the time required to etch the surface of the glass substrate by 5 μm.
 また、算術平均粗さRaや、最大高さ粗さRzは、JIS B 0601(2013)に規定されており、例えばレーザー顕微鏡や、接触式の表面粗さ計、白色干渉方式等を用いて評価を行うことができる。 The arithmetic average roughness Ra and the maximum height roughness Rz are defined in JIS B 0601 (2013), and are evaluated using, for example, a laser microscope, a contact-type surface roughness meter, a white interference method, or the like. It can be performed.
 なお、本実施形態のガラス基板は、外周側面部について、表面から5μmをエッチングする前のガラス基板を、磁気記録媒体用のガラス基板として用いることができる。 In addition, the glass substrate before etching 5 micrometers from the surface can be used as the glass substrate for magnetic recording media about the outer peripheral side surface part of the glass substrate of this embodiment.
 これは、外周側面部の表面のエッチングを行ったガラス基板では、微小クラックの先端の幅Rが大きくなるため熱割れを抑制できるが、微小クラックが顕在化していることからも明らかなように、外周側面部の算術平均粗さRaがエッチング前より大きくなる。このため、外周側面部に研磨砥粒等が付着しやすくなり、洗浄時等に各種研磨工程で付着した研磨砥粒の持ち込み等の問題を生じる恐れがあるからである。 This is because in the glass substrate etched on the surface of the outer peripheral side surface portion, the thermal crack can be suppressed because the width R of the tip of the microcrack becomes large, but it is clear from the fact that the microcrack has become obvious, The arithmetic average roughness Ra of the outer peripheral side surface portion becomes larger than that before etching. For this reason, the abrasive grains and the like are likely to adhere to the outer peripheral side surface, which may cause problems such as bringing in abrasive grains adhering in various polishing processes during cleaning and the like.
 微小クラックは、主にガラス基板の製造条件に応じて生じるものである。このため、予め、実際の製造時と同じ条件で製造したガラス基板の外周側面部について、エッチング前後それぞれの算術平均粗さRaや、場合によってはさらに最大高さ粗さRzを評価し、本実施形態のガラス基板の規定を充足するように製造条件を選択できる。 The micro cracks are mainly generated according to the manufacturing conditions of the glass substrate. For this reason, for the outer peripheral side surface portion of the glass substrate manufactured under the same conditions as in the actual manufacturing, the arithmetic average roughness Ra before and after the etching and, in some cases, the maximum height roughness Rz are further evaluated. Manufacturing conditions can be selected to satisfy the specifications of the glass substrate in the form.
 または、ガラス基板を製造する際は、通常、1ロット当り複数枚のガラス基板を製造する。そして、同一のロット内では同じ条件でガラス基板を製造しているため、その外周側面部に生じる微小クラックの存在頻度や、最大深さも同程度になる。このため、同じロット内から評価用のガラス基板を1枚以上選択し、該評価用のガラス基板についてエッチング前後それぞれの算術平均粗さRaや、場合によってはさらに最大高さ粗さRzを評価することができる。そして、該ロットのガラス基板について本実施形態のガラス基板の規定を充足していることを確認できる。 Or, when manufacturing a glass substrate, usually a plurality of glass substrates are manufactured per lot. And since the glass substrate is manufactured on the same conditions in the same lot, the presence frequency and the maximum depth of the micro crack which arise in the outer peripheral side part become comparable. For this reason, one or more glass substrates for evaluation are selected from the same lot, and the arithmetic average roughness Ra before and after the etching or, in some cases, the maximum height roughness Rz is evaluated for the glass substrate for evaluation. be able to. And it can confirm that the prescription | regulation of the glass substrate of this embodiment is satisfied about the glass substrate of this lot.
 上述のように、ガラス基板に急激な温度変化を加えた場合、主に外周側面部に含まれる微小クラックが熱割れの起点となる。このため、外周側面部のエッチング前の算術平均粗さRa、及び外周側面部について、表面から5μmをエッチングした後の算術平均粗さRaが上記規定を充足する場合、急激な温度変化を加えた場合でも熱割れが生じることを抑制できる。 As described above, when a rapid temperature change is applied to the glass substrate, a microcrack mainly included in the outer peripheral side surface is the starting point of thermal cracking. For this reason, when the arithmetic average roughness Ra before etching of the outer peripheral side surface portion and the arithmetic average roughness Ra after etching 5 μm from the surface of the outer peripheral side surface portion satisfy the above definition, a rapid temperature change was added. Even in the case, the occurrence of thermal cracking can be suppressed.
 ただし、高温に熱処理を行う際のガラス基板の基板保持具の形状や、保持箇所、昇温、降温時の温度分布の変化等により、外周面取り部や、内周端面の性状も熱割れの発生に影響を及ぼす場合がある。 However, due to changes in the shape of the substrate holder of the glass substrate when heat treatment is performed at a high temperature, the holding location, temperature distribution during temperature rise, and temperature drop, the properties of the outer chamfered part and inner peripheral end surface also generate thermal cracks. May be affected.
 そこで、外周側面部以外にも、図1を用いて説明した外周面取り部131、133、内周面取り部141、143、及び内周側面部142についても、エッチング前の算術平均粗さRa、及び上記各部について、表面から5μmをエッチングした後の算術平均粗さRa、場合によってはさらに、エッチングした後の最大高さ粗さRzが上述の外周側面部と同様の規定を充足することが好ましい。 Therefore, in addition to the outer peripheral side surface portion, the outer peripheral chamfered portions 131 and 133, the inner peripheral chamfered portions 141 and 143, and the inner peripheral side surface portion 142 described with reference to FIG. For each of the above parts, it is preferable that the arithmetic average roughness Ra after etching 5 μm from the surface, and in some cases, the maximum height roughness Rz after etching satisfy the same definition as the outer peripheral side part.
 また、主表面と面取り部との間の角部、及び側面部と面取り部との間の角部もそれぞれエッチング前の算術平均粗さRa、及び各部について、表面から5μmをエッチングした後の算術平均粗さRa、場合によってはさらに、エッチング後の最大高さ粗さRzが上述の外周側面部と同様の規定を充足することが好ましい。 Further, the corner between the main surface and the chamfered portion and the corner between the side surface and the chamfered portion are also arithmetic average roughness Ra before etching, and arithmetic after etching 5 μm from the surface for each portion. It is preferable that the average roughness Ra, and in some cases, the maximum height roughness Rz after etching satisfy the same definition as that of the outer peripheral side surface portion.
 なお、主表面と面取り部との間の角部とは、図1における主表面121、122と、外周面取り部131、133及び内周面取り部141、143との間の各角部を意味する。そして、側面部と面取り部との間の角部とは、外周面取り部131、133と外周側面部132との間の角部、内周面取り部141、143と内周側面部142との間の各角部を意味する。 In addition, the corner | angular part between a main surface and a chamfering part means each corner | angular part between main surface 121,122 in FIG. 1, outer peripheral chamfering part 131,133, and inner peripheral chamfering part 141,143. . The corner between the side surface portion and the chamfered portion is a corner portion between the outer peripheral chamfered portions 131 and 133 and the outer peripheral side surface portion 132, and between the inner peripheral chamfered portions 141 and 143 and the inner peripheral side surface portion 142. Means each corner.
 本実施形態のガラス基板は化学強化を施しておくこともできる。これは、化学強化処理を施しておくことにより、急激な温度変化が加えられた場合に熱割れが発生することを特に抑制できるからである。 The glass substrate of the present embodiment can be chemically strengthened. This is because by performing chemical strengthening treatment, it is possible to particularly suppress the occurrence of thermal cracking when a sudden temperature change is applied.
 ガラス基板について化学強化を施す場合、外周側面部に含まれる微小クラックの影響を特に抑制するため、少なくとも外周側面部を含む部分について、化学強化を施しておくことが好ましい。化学強化を施す場合、特にガラス基板の表面全体について化学強化を施しておくことが好ましい。 When performing chemical strengthening on the glass substrate, it is preferable to chemically strengthen at least a portion including the outer peripheral side portion in order to particularly suppress the influence of microcracks included in the outer peripheral side portion. When chemical strengthening is performed, it is particularly preferable to perform chemical strengthening on the entire surface of the glass substrate.
 そして、化学強化を施す場合、その程度は特に限定されるものではないが、少なくともガラス基板の外周側面部において、化学強化処理による圧縮応力の深さDOLが、1μm≦DOL≦15μmであることが好ましい。特にガラス基板の表面全体について化学強化処理による圧縮応力の深さDOLが、1μm≦DOL≦15μmであることがより好ましい。 When chemical strengthening is performed, the degree is not particularly limited, but at least at the outer peripheral side surface portion of the glass substrate, the depth DOL of the compressive stress by the chemical strengthening treatment is 1 μm ≦ DOL ≦ 15 μm. preferable. In particular, the depth DOL of the compressive stress due to the chemical strengthening treatment is more preferably 1 μm ≦ DOL ≦ 15 μm for the entire surface of the glass substrate.
 これは、圧縮応力の深さDOLが1μm以上の場合、十分に化学強化を施しているといえ、熱割れを特に抑制できるからである。ただし、DOLが15μmを超えると、600℃以上の高温熱処理を行う場合、ガラス基板内へのイオンの拡散により、ガラス基板の平坦度が悪化する場合があるため、DOLは15μm以下であることが好ましい。この点からも、600℃以上の高温熱処理を必要とするプロセスに用いるガラス基板は微小クラックの影響が大きく、その除去が重要となる。 This is because, when the depth DOL of the compressive stress is 1 μm or more, it can be said that chemical strengthening is sufficiently performed, and thermal cracking can be particularly suppressed. However, if the DOL exceeds 15 μm, the flatness of the glass substrate may deteriorate due to the diffusion of ions into the glass substrate when performing a high-temperature heat treatment at 600 ° C. or higher, so the DOL may be 15 μm or less. preferable. Also from this point, the glass substrate used in a process that requires high-temperature heat treatment at 600 ° C. or higher is greatly affected by microcracks, and removal thereof is important.
 本実施形態のガラス基板を構成するガラス材料については特に限定されるものではなく、各種ガラス材料を用いることができる。 The glass material constituting the glass substrate of the present embodiment is not particularly limited, and various glass materials can be used.
 ここまでに説明したように、本実施形態のガラス基板は、外周側面部の算術平均粗さRa、及び外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaを所定の範囲とすることで熱割れを抑制できる。 As explained so far, the glass substrate of the present embodiment has the arithmetic average roughness Ra of the outer peripheral side surface portion, and the arithmetic average roughness of the outer peripheral side surface portion after etching after etching 5 μm from the surface of the outer peripheral side surface portion. Thermal cracking can be suppressed by setting Ra to a predetermined range.
 ただし、ガラス基板に用いるガラス材料についても、急激な温度変化が加えられた場合でも、熱割れを生じにくいガラス基板を用いることが好ましい。 However, the glass material used for the glass substrate is preferably a glass substrate that hardly causes thermal cracking even when a sudden temperature change is applied.
 このため、本実施形態のガラス基板は、50℃以上350℃以下の温度域における熱膨張係数が70×10-7/℃以下であるガラス材料からなることが好ましく、50℃以上350℃以下の温度域における熱膨張係数が55×10-7/℃以下であるガラス材料からなることがより好ましい。 For this reason, the glass substrate of the present embodiment is preferably made of a glass material having a thermal expansion coefficient of 70 × 10 −7 / ° C. or lower in a temperature range of 50 ° C. or higher and 350 ° C. or lower. More preferably, it is made of a glass material having a thermal expansion coefficient in the temperature range of 55 × 10 −7 / ° C. or less.
 これは、50℃以上350℃以下の温度域における熱膨張係数が、70x10-7/℃以下の場合、温度変化に伴うガラス基板の膨張、収縮を抑制できるため、急激な温度変化が加えられた場合でも、外周側面部の性状と相まって、熱割れを抑制できるからである。 This is because when the thermal expansion coefficient in the temperature range of 50 ° C. or more and 350 ° C. or less is 70 × 10 −7 / ° C. or less, the glass substrate can be prevented from expanding and contracting due to temperature change, so a rapid temperature change was applied. Even in this case, the thermal cracking can be suppressed in combination with the properties of the outer peripheral side surface.
 なお、50℃以上350℃以下の温度域における熱膨張係数の下限値は特に限定されるものではなく、本実施形態のガラス基板には、例えば50℃以上350℃以下の温度域における熱膨張係数が0より大きいガラス材料を用いることができる。 The lower limit value of the thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower is not particularly limited, and the glass substrate of the present embodiment has a thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower. A glass material having a value greater than 0 can be used.
 本実施形態のガラス基板は、ここまで説明したように急激な温度変化を加えた場合でも熱割れが生じることを抑制できる。このため、製造工程で急激な温度変化を加える場合がある、エネルギーアシスト磁気記録媒体用のガラス基板として、特に好適に用いることができる。そして、エネルギーアシスト磁気記録媒体を製造する際には、磁性層に含まれるFePt系等の磁性層合金(磁性材料)の規則化促進のため、磁性層の成膜時等に600℃以上700℃以下程度の高温で熱処理を行うのが一般的である。このため、係る高温での熱処理を行った際に、ガラス基板に歪みや変形等が生じることを抑制するため、本実施形態のガラス基板は、ガラス転移点Tgが650℃以上であるガラス材料からなることが好ましく、ガラス転移点Tgが700℃以上であるガラス材料からなることがより好ましい。 The glass substrate of this embodiment can suppress the occurrence of thermal cracking even when a sudden temperature change is applied as described above. For this reason, it can be particularly suitably used as a glass substrate for an energy-assisted magnetic recording medium that may be subjected to a rapid temperature change in the manufacturing process. When manufacturing an energy-assisted magnetic recording medium, in order to promote ordering of an FePt-based magnetic layer alloy (magnetic material) contained in the magnetic layer, 600 ° C. or higher and 700 ° C. during film formation of the magnetic layer or the like. Generally, heat treatment is performed at a high temperature of about the following. For this reason, when performing the heat processing at such a high temperature, the glass substrate of the present embodiment is made of a glass material having a glass transition point Tg of 650 ° C. or higher in order to suppress distortion and deformation of the glass substrate. The glass transition point Tg is more preferably 700 ° C. or higher.
 既述のように、特にエネルギーアシスト磁気記録媒体を製造する際に、600℃以上の高温で熱処理を行う際に、ガラス基板に急激な温度変化が加わる場合があり、従来のガラス基板においては、熱割れを生じる場合があった。これに対して、本実施形態のガラス基板によれば、外周側面部の算術平均粗さRa、及び外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaを所定の範囲としている。このため、外周側面部に含まれる、熱割れの起点となる微小クラックの存在頻度が十分に低いため、急激な温度変化が加えられた場合に熱割れが生じることを抑制することができる。 As described above, when a heat treatment is performed at a high temperature of 600 ° C. or higher, particularly when producing an energy-assisted magnetic recording medium, a rapid temperature change may be applied to the glass substrate. In some cases, thermal cracking occurred. On the other hand, according to the glass substrate of the present embodiment, the arithmetic average roughness Ra of the outer peripheral side surface portion and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 μm from the surface of the outer peripheral side surface portion. Is a predetermined range. For this reason, since the presence frequency of the microcracks contained in the outer peripheral side surface portion as a starting point of thermal cracking is sufficiently low, it is possible to suppress the occurrence of thermal cracking when a sudden temperature change is applied.
 このため、本実施形態のガラス基板は、エネルギーアシスト磁気記録媒体用の磁気記録媒体用ガラス基板として、特に好適に用いることができる。 For this reason, the glass substrate of the present embodiment can be particularly suitably used as a glass substrate for a magnetic recording medium for an energy-assisted magnetic recording medium.
 ただし、本実施形態のガラス基板の用途は、エネルギーアシスト磁気記録媒体用のガラス基板に限定されるものではなく、各種磁気記録媒体用のガラス基板として好適に用いることができる。 However, the use of the glass substrate of the present embodiment is not limited to a glass substrate for energy-assisted magnetic recording media, and can be suitably used as a glass substrate for various magnetic recording media.
 次に、ここまで説明した本実施形態の磁気記録媒体用ガラス基板の製造方法(以下、単に「ガラス基板の製造方法」とも記載する)の一構成例について簡単に説明する。 Next, a configuration example of the glass substrate for a magnetic recording medium according to the present embodiment described so far (hereinafter simply referred to as “glass substrate manufacturing method”) will be briefly described.
 なお、本実施形態のガラス基板の製造方法によれば、既述の磁気記録媒体用ガラス基板を製造することができる。このため、磁気記録媒体用ガラス基板において説明した内容と重複する部分については一部記載を省略する。 In addition, according to the manufacturing method of the glass substrate of this embodiment, the glass substrate for magnetic recording media as stated above can be manufactured. For this reason, some description is abbreviate | omitted about the part which overlaps with the content demonstrated in the glass substrate for magnetic recording media.
 本実施形態のガラス基板の製造方法は、例えば以下の工程1~工程5を含むことができる。
(工程1)ガラス素基板から、中央部に円孔を有する円板形状のガラス基板に加工する形状付与工程。
(工程2)ガラス基板の内周と外周の端面部分の面取りを行う面取り工程。
(工程3)ガラス基板の端面(内周端面及び外周端面)を研磨する端面研磨工程。
(工程4)ガラス基板の主表面を研磨する主表面研磨工程。
(工程5)ガラス基板を洗浄して乾燥する洗浄・乾燥工程。
The glass substrate manufacturing method of the present embodiment can include, for example, the following steps 1 to 5.
(Step 1) A shape imparting step in which a glass substrate is processed into a disk-shaped glass substrate having a circular hole in the center.
(Step 2) A chamfering step for chamfering the inner surface and the outer edge of the glass substrate.
(Step 3) An end surface polishing step for polishing the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate.
(Step 4) A main surface polishing step for polishing the main surface of the glass substrate.
(Step 5) A cleaning / drying step of cleaning and drying the glass substrate.
 ここで、(工程1)の形状付与工程は、フロート法、フュージョン法、プレス成形法、ダウンドロー法またはリドロー法で成形されたガラス素基板を、中央部に円孔を有する円板形状のガラス基板に加工するものである。なお、用いるガラス素基板は、アモルファスガラスでもよく、結晶化ガラスでもよく、ガラス基板の表層に強化層を有する強化ガラスでもよい。 Here, the shape imparting step of (Step 1) includes a glass-shaped substrate formed by a float method, a fusion method, a press forming method, a down draw method or a redraw method, and a disk-shaped glass having a circular hole in the center. The substrate is processed. The glass substrate used may be amorphous glass, crystallized glass, or tempered glass having a tempered layer on the surface of the glass substrate.
 (工程2)の面取り工程は、内周端面、及び外周端面の面取りを行うことができる。面取り工程を行うことで、図1を用いて説明したように、内周端面14に内周面取り部141、143を、外周端面13に外周面取り部131、133を形成できる。 In the chamfering step (step 2), the inner peripheral end surface and the outer peripheral end surface can be chamfered. By performing the chamfering step, as described with reference to FIG. 1, the inner peripheral chamfered portions 141 and 143 can be formed on the inner peripheral end surface 14, and the outer peripheral chamfered portions 131 and 133 can be formed on the outer peripheral end surface 13.
 (工程3)の端面研磨工程は、ガラス基板の端面(側面部と面取り部)を端面研磨することができる。 In the end surface polishing step (step 3), the end surface (side surface portion and chamfered portion) of the glass substrate can be subjected to end surface polishing.
 (工程4)の主表面研磨工程では、例えば両面研磨装置により、ドーナツ形状を有するガラス基板の主表面に研磨液が供給され、ドーナツ形状を有するガラス基板の上下主表面を同時に研磨できる。主表面研磨工程は、一次ポリッシュ(一次研磨)のみでもよく、一次ポリッシュ及び二次ポリッシュを行うものでもよく、二次ポリッシュの後に三次ポリッシュを行うものでもよい。 In the main surface polishing step (step 4), for example, a double-side polishing apparatus supplies polishing liquid to the main surface of the glass substrate having a donut shape, and the upper and lower main surfaces of the glass substrate having a donut shape can be simultaneously polished. The main surface polishing step may be only primary polishing (primary polishing), primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.
 なお、(工程4)の主表面研磨工程では、上記主表面の一次研磨等を実施する前に主表面のラップ(例えば遊離砥粒ラップ、固定砥粒ラップ等)が実施されてもよい。この場合、一次ラップのみでもよく、二次ラップ等複数のラップ工程を実施することもできる。 In the main surface polishing step of (Step 4), wrapping of the main surface (for example, free abrasive wrap, fixed abrasive wrap, etc.) may be performed before performing the primary polishing of the main surface. In this case, only a primary lap may be used, and a plurality of lap processes such as a secondary lap may be performed.
 また、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。ここで、主表面のラップとは、広義の主表面研磨である。 Further, glass substrate cleaning (inter-process cleaning) and glass substrate surface etching (inter-process etching) may be performed between the processes. Here, the main surface lapping is a broad surface main surface polishing.
 (工程5)の洗浄・乾燥工程は、研磨後のガラス基板を洗浄し、乾燥する工程である。具体的な洗浄方法は特に限定されるものではない。例えば、洗剤を用いたスクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄等により洗浄を行うことができる。また、乾燥方法についても特に限定されるものではなく、例えば、イソプロピルアルコール蒸気にて乾燥することができる。 The cleaning / drying step of (Step 5) is a step of cleaning and drying the polished glass substrate. A specific cleaning method is not particularly limited. For example, cleaning can be performed by scrub cleaning using a detergent, ultrasonic cleaning in a state immersed in a detergent solution, ultrasonic cleaning in a state immersed in pure water, or the like. Moreover, it does not specifically limit about the drying method, For example, it can dry with isopropyl alcohol vapor | steam.
 さらに、上記各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。また、ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を工程3、4で挙げた研磨工程前、または研磨工程後、あるいは研磨工程間で実施してもよい。 Furthermore, glass substrate cleaning (inter-process cleaning) or glass substrate surface etching (inter-process etching) may be performed between the above processes. Further, when high mechanical strength is required for the glass substrate, the reinforcing step (for example, chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed before or after the polishing step mentioned in steps 3 and 4, Or you may implement between grinding | polishing processes.
 ここまで説明した工程1~5は記載した順番に行う必要はなく、例えば、形状付与工程の前に主表面研磨工程を行ってもよい。また、各工程は1回ずつに限定されるものではなく、要求されるガラス基板の仕様等に応じて任意の回数実施することができる。例えば、形状付与工程後に主表面研磨工程を行い、その後に面取り工程と端面研磨工程を行った後、再度主表面研磨工程を実施することもできる。 The steps 1 to 5 described so far need not be performed in the order described, and for example, a main surface polishing step may be performed before the shape imparting step. Further, each step is not limited to one time, and can be performed any number of times according to the required glass substrate specifications. For example, the main surface polishing step may be performed after the shape imparting step, and then the chamfering step and the end surface polishing step may be performed, and then the main surface polishing step may be performed again.
 ただし、本実施形態のガラス基板については、既述のように外周側面部の微小クラックの存在頻度が低いことが好ましい。そして、外周側面部に含まれる微小クラックの発生原因としては主に以下の2つの場合が考えられる。
(原因1)工程2の面取り工程においては、外周面取り部だけではなく、外周側面部も研削することになるが、この際外周側面部に微小クラックが発生し、工程3の端面研磨工程で十分に除去できなかった場合。
(原因2)工程4の主表面研磨工程においては、キャリアに形成された円状の孔に、主表面研磨工程に供するガラス基板を挿入、保持し、両面研磨装置によりガラス基板の主表面を研磨できるが、研磨の際に、該キャリアの孔に保持されたガラス基板も回転している。この際にキャリアとガラス基板との擦れにより疵が発生する場合。
However, as for the glass substrate of this embodiment, it is preferable that the presence frequency of the micro crack of an outer peripheral side part is low as mentioned above. And the following two cases can be mainly considered as the cause of the occurrence of the micro cracks included in the outer peripheral side surface.
(Cause 1) In the chamfering step in step 2, not only the outer peripheral chamfered portion but also the outer peripheral side portion is ground. At this time, micro cracks are generated in the outer peripheral side portion, and the end surface polishing step in step 3 is sufficient. If it could not be removed.
(Cause 2) In the main surface polishing step of step 4, the glass substrate to be used for the main surface polishing step is inserted and held in a circular hole formed in the carrier, and the main surface of the glass substrate is polished by a double-side polishing apparatus. However, the glass substrate held in the hole of the carrier is also rotated during polishing. In this case, wrinkles occur due to rubbing between the carrier and the glass substrate.
 そこで、原因1に対応するためには、予備試験等を行い、端面研磨工程における研磨量を調整し、微小クラックをより確実に除去できるように構成しておくことが好ましい。 Therefore, in order to cope with cause 1, it is preferable to perform a preliminary test or the like, adjust the polishing amount in the end surface polishing step, and be configured to remove the microcracks more reliably.
 また、原因2に対応するためには、主表面研磨工程で用いるキャリアを、ガラス基板に微小クラックを発生させにくい材料を用いたキャリアとする方法や、主表面研磨工程の後に、工程3の端面研磨工程を実施する方法等が挙げられる。 In order to cope with cause 2, the carrier used in the main surface polishing step is a method using a material that does not easily generate microcracks in the glass substrate, or the end surface of step 3 after the main surface polishing step. Examples include a method for performing a polishing step.
 通常、主表面研磨工程でガラス基板を保持するキャリアの材料としては、ステンレス、スチール、ガラス繊維含有エポキシ樹脂等が用いられるが、これらは硬度が高いか、硬度が高い物質を含有している。このため、主表面研磨中に、キャリアとガラスの外周側面部とが擦れることにより、外周側面部に微小クラックを発生させる恐れがある。 Usually, stainless steel, steel, glass fiber-containing epoxy resin, or the like is used as a carrier material for holding the glass substrate in the main surface polishing step, and these materials have high hardness or contain a substance having high hardness. For this reason, during the main surface polishing, the carrier and the outer peripheral side surface portion of the glass rub against each other, which may cause micro cracks in the outer peripheral side surface portion.
 これに対して、主表面研磨工程で用いるキャリアの、少なくともガラス基板と接触する部分の材料として、アラミド繊維含有エポキシ樹脂、カーボン、ポリ塩化ビニル樹脂、ポリカーボネート、ベークライト、エポキシ樹脂、ポリエステル樹脂から選択された1種類以上を用いた場合、微小クラックの発生を抑制できる。このため、係るキャリアを用いることで、原因2による微小クラックの発生を抑制できる。なお、主表面研磨工程を複数回実施する場合、少なくとも最後に行う主表面研磨工程において、上述の少なくともガラス基板と接触する部分に所定の材料を用いたキャリアを用いることで、原因2による微小クラックの発生を抑制できる。 On the other hand, the material used in the main surface polishing process is selected from aramid fiber-containing epoxy resin, carbon, polyvinyl chloride resin, polycarbonate, bakelite, epoxy resin, and polyester resin as a material for at least the portion that contacts the glass substrate. When one or more types are used, the generation of microcracks can be suppressed. For this reason, generation | occurrence | production of the microcrack by the cause 2 can be suppressed by using such a carrier. When the main surface polishing step is performed a plurality of times, at least the main surface polishing step to be performed at least lastly uses a carrier using a predetermined material for at least the portion in contact with the glass substrate, thereby causing a microcrack due to cause 2. Can be suppressed.
 主表面研磨工程で用いるキャリアの、少なくともガラス基板と接触する部分の材料としては、より軟質な樹脂である、ポリ塩化ビニル樹脂、ポリカーボネート、ベークライト、エポキシ樹脂、ポリエステル樹脂から選択された1種類以上の材料を用いることがさらに望ましい。 The material used in the main surface polishing step of at least a portion in contact with the glass substrate is one or more kinds selected from polyvinyl chloride resin, polycarbonate, bakelite, epoxy resin, and polyester resin, which are softer resins. It is further desirable to use materials.
 なお、キャリア全体を、上述の材料群から選択された1種類以上から構成することもできる。また、キャリアの強度を保ちながらガラス基板の外周側面部に微小クラックを発生させないため、本体はステンレス等の高強度な材料を用い、ガラス基板の保持孔のガラス基板と接する部分に上述の材料群から選択された1種類以上の材料を用いたキャリアを使用することもできる。 It should be noted that the entire carrier can be composed of one or more types selected from the above-mentioned material group. Moreover, in order not to generate micro cracks on the outer peripheral side surface portion of the glass substrate while maintaining the strength of the carrier, the main body uses a high-strength material such as stainless steel, and the above-mentioned material group in the portion of the glass substrate holding hole that comes into contact with the glass substrate A carrier using one or more materials selected from the above can also be used.
 ステンレス等の高強度の材料で形成された本体と、上述の材料群から選択される材料で形成されたガラス基板を保持する孔部分とを組み合わせたキャリアの製造方法は特に限定されるものではない。例えばキャリアに設けたガラス基板を保持する孔の表面を樹脂でコーティングする方法や、ガラス基板を保持する孔部分を樹脂で作製し、キャリア本体と結合させる方法等が挙げられる。 A carrier manufacturing method in which a main body formed of a high-strength material such as stainless steel and a hole portion that holds a glass substrate formed of a material selected from the above material group is not particularly limited. . For example, a method of coating the surface of a hole for holding a glass substrate provided on a carrier with a resin, a method of forming a hole portion for holding a glass substrate with a resin, and bonding it to a carrier body, and the like.
 なお、原因2に対応するため、主表面研磨工程の後に、工程3の端面研磨工程を実施する場合には、予め主表面研磨工程で生じる微小クラックの最大深さを測定しておき、該微小クラックを除去できるように、端面研磨工程の条件を選択することが好ましい。 In order to cope with cause 2, when the end surface polishing step of step 3 is performed after the main surface polishing step, the maximum depth of micro cracks generated in the main surface polishing step is measured in advance, It is preferable to select conditions for the end face polishing step so that cracks can be removed.
 以上に説明した各工程を含むガラス基板の製造方法により、既述のガラス基板を製造することができる。 The glass substrate described above can be manufactured by the method for manufacturing a glass substrate including the steps described above.
 そして、上記各工程を含む製造方法により得られたガラス基板は主表面上に磁性層などの薄膜を形成する工程をさらに行うことによって、磁気記録媒体とすることができる。
[磁気記録媒体]
 次に、本実施形態の磁気記録媒体の一構成例について説明する。
And the glass substrate obtained by the manufacturing method containing each said process can be used as a magnetic recording medium by further performing the process of forming thin films, such as a magnetic layer, on the main surface.
[Magnetic recording medium]
Next, a configuration example of the magnetic recording medium of this embodiment will be described.
 本実施形態の磁気記録媒体は、既述の磁気記録媒体用ガラス基板を含むことができる。 The magnetic recording medium of the present embodiment can include the above-described glass substrate for a magnetic recording medium.
 本実施形態の磁気記録媒体は、既述の磁気記録媒体用ガラス基板を含むものであれば、その記録方式等は特に限定されるものではなく、例えば既述のエネルギーアシスト磁気記録媒体等、各種磁気記録媒体とすることができる。ここでは、エネルギーアシスト磁気記録媒体を例に説明する。 As long as the magnetic recording medium of the present embodiment includes the above-described glass substrate for a magnetic recording medium, the recording method and the like are not particularly limited. It can be a magnetic recording medium. Here, an energy-assisted magnetic recording medium will be described as an example.
 本実施形態の磁気記録媒体は、その構成については限定されないが、例えば、磁気記録媒体用ガラス基板の表面に密着層、下地層、シード層、磁気記録層、保護層等を有することができ、これらの層は、例えばガラス基板上に上述の順に積層することができる。また、上述の層に替えて、または上述の層に加えて任意の層を設けることもできる。 The magnetic recording medium of the present embodiment is not limited in its configuration, but can have, for example, an adhesion layer, an underlayer, a seed layer, a magnetic recording layer, a protective layer on the surface of the glass substrate for magnetic recording medium, These layers can be laminated | stacked on the glass substrate in the above-mentioned order, for example. Moreover, it can replace with the above-mentioned layer, or can also provide arbitrary layers in addition to the above-mentioned layer.
 各層の構成例について以下に説明する。 The configuration example of each layer will be described below.
 密着層は、密着層上に形成される層と、密着層下に形成される層との密着層を高めるために設けることができる。密着層を形成する材料としては、例えばNi、W、Ta、Cr、Ruから選択される1種類以上の金属を含むことができ、係る金属群から選択された金属を含む合金を含むこともできる。 The adhesion layer can be provided in order to enhance the adhesion layer between the layer formed on the adhesion layer and the layer formed below the adhesion layer. As a material for forming the adhesion layer, for example, one or more kinds of metals selected from Ni, W, Ta, Cr, and Ru can be included, and an alloy including a metal selected from such a metal group can also be included. .
 密着層は一層から構成することもできるが、二層以上の積層構造とすることもできる。 The adhesion layer can be composed of one layer, but it can also be a laminated structure of two or more layers.
 また、軟磁性裏打ち層を、例えばガラス基板と磁気記録層との間に任意に設けることもできる。 Also, a soft magnetic backing layer can be arbitrarily provided, for example, between the glass substrate and the magnetic recording layer.
 軟磁性裏打ち層は、磁気ヘッドからの磁束を制御して、磁気記録媒体の記録・再生特性を向上させることができる。軟磁性裏打ち層を形成する材料は特に限定されないが、例えばNiFe合金、センダスト(FeSiAl)合金、CoFe合金等の結晶質材料や、FeTaC、CoFeNi、CoNiP等の微結晶質材料、CoZrNb、CoTaZr等のCo合金を含む非晶質材料を好ましく用いることができる。 The soft magnetic underlayer can improve the recording / reproducing characteristics of the magnetic recording medium by controlling the magnetic flux from the magnetic head. The material for forming the soft magnetic backing layer is not particularly limited, but for example, crystalline materials such as NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, microcrystalline materials such as FeTaC, CoFeNi, CoNiP, CoZrNb, CoTaZr, etc. An amorphous material containing a Co alloy can be preferably used.
 軟磁性裏打ち層の膜厚は、特に限定されないが、例えば磁気記録に用いる磁気ヘッドの構造および特性等に応じて選択することができる。他の層と連続成膜で軟磁性裏打ち層を成膜する場合、軟磁性裏打ち層は10nm以上500nm以下の膜厚を有することが好ましい。 The film thickness of the soft magnetic underlayer is not particularly limited, but can be selected according to, for example, the structure and characteristics of a magnetic head used for magnetic recording. When a soft magnetic backing layer is formed by continuous film formation with other layers, the soft magnetic backing layer preferably has a thickness of 10 nm to 500 nm.
 また、ヒートシンク層を、任意に設けることもできる。ヒートシンク層は、エネルギーアシス卜磁気記録時に発生する磁気記録層の余分な熱を効果的に吸収することができる。ヒートシンク層は、熱伝導率および比熱容量が高い材料を用いて形成することが好ましい。具体的は例えばCu単体、Ag単体、Au単体等や、または係る金属群から選択された1種類以上の金属を主成分として含む合金材料を用いることができる。 Also, a heat sink layer can be optionally provided. The heat sink layer can effectively absorb excess heat of the magnetic recording layer generated during energy assist / magnetic recording. The heat sink layer is preferably formed using a material having high thermal conductivity and specific heat capacity. Specifically, for example, Cu alone, Ag alone, Au alone, or an alloy material containing one or more kinds of metals selected from the metal group as a main component can be used.
 ここで、主成分として含むとは、材料中の上記金属の含有割合が50wt%以上であることを示している。 Here, including as a main component indicates that the content ratio of the metal in the material is 50 wt% or more.
 ヒートシンク層は、強度などの観点から、Al-Si合金や、Cu-B合金などを用いて形成することもできる。 The heat sink layer can also be formed using an Al—Si alloy, a Cu—B alloy, or the like from the viewpoint of strength and the like.
 また、センダスト(FeSiAl)合金、軟磁性のCoFe合金等を用いてヒートシンク層を形成し、ヒートシンク層に軟磁性裏打ち層の機能であるヘッドの発生する垂直方向磁界を磁気記録層に集中させる機能を付与することもできる。 In addition, a heat sink layer is formed using Sendust (FeSiAl) alloy, soft magnetic CoFe alloy, etc., and the vertical magnetic field generated by the head, which is the function of the soft magnetic backing layer, is concentrated on the magnetic recording layer. It can also be granted.
 ヒートシンク層の膜厚は特に限定されるものではなく、例えばエネルギーアシス卜磁気記録時の熱量および熱分布や、磁気記録媒体の層構成、各構成層の厚さ等に応じて選択することができる。ヒートシンク層の膜厚は例えば10nm以上100nm以下であることが好ましい。 The film thickness of the heat sink layer is not particularly limited, and can be selected according to, for example, the amount of heat and heat distribution during energy assisted magnetic recording, the layer configuration of the magnetic recording medium, the thickness of each component layer, and the like. . The film thickness of the heat sink layer is preferably 10 nm or more and 100 nm or less, for example.
 ヒートシンク層の成膜方法は特に限定されるものではないが、例えばスバッタ法等を用いて形成できる。ヒートシンク層は、例えばガラス基板と磁気記録層との間に設けることができ、磁気記録媒体に求められる特性を考慮して、ガラス基板と密着層との間や、密着層と下地層との間等に設けることができる。 The film forming method of the heat sink layer is not particularly limited, but can be formed by using, for example, a sputtering method. The heat sink layer can be provided, for example, between the glass substrate and the magnetic recording layer, and in consideration of characteristics required for the magnetic recording medium, between the glass substrate and the adhesion layer, or between the adhesion layer and the underlayer. Etc. can be provided.
 次に、下地層について説明する。 Next, the underlayer will be described.
 下地層は、その下に形成される層の結晶構造が磁気記録層の結晶配向性、および磁性結晶粒のサイズなどに及ぼす影響を遮断するために設けられる層である。 The underlayer is a layer provided to block the influence of the crystal structure of the layer formed thereunder on the crystal orientation of the magnetic recording layer, the size of the magnetic crystal grains, and the like.
 なお、上述のように軟磁性裏打ち層を設ける場合、軟磁性裏打ち層に対する磁気的影響を抑制するために、下地層は非磁性であることが要求される。 When the soft magnetic backing layer is provided as described above, the underlayer is required to be nonmagnetic in order to suppress the magnetic influence on the soft magnetic backing layer.
 下地層を形成するための材料としては、例えばMgO、SrTiOなどの酸化物、TiNなどの窒化物、CrおよびTaなどの金属、NiW合金、およびCrTi、CrZr、CrTa、CrWなどのCr系合金等を挙げることができる。 Examples of the material for forming the underlayer include oxides such as MgO and SrTiO 3 , nitrides such as TiN, metals such as Cr and Ta, NiW alloys, and Cr-based alloys such as CrTi, CrZr, CrTa, and CrW Etc.
 下地層の成膜方法は特に限定されないが、例えばスパッタリング法等の成膜方法を用いることができる。 The film formation method of the underlayer is not particularly limited, and for example, a film formation method such as a sputtering method can be used.
 次にシード層について説明する。 Next, the seed layer will be described.
 シード層は、下地層と磁気記録層との間の密着性を確保すると同時に、シード層と接触する磁気記録層中の磁性層の磁性結晶粒の粒径、および結晶配向を制御するための層である。具体的には、シード層は、その上に形成される磁性層中で、L1型規則合金を含む磁性結晶粒と、Tiを含む非磁性結晶粒界との分離を促進して、当該磁性層を含む磁気記録層の保磁力Hcを増大させることができる。 The seed layer is a layer for controlling the grain size and crystal orientation of the magnetic crystal grains of the magnetic layer in the magnetic recording layer in contact with the seed layer, while ensuring adhesion between the underlayer and the magnetic recording layer. It is. Specifically, the seed layer on the magnetic layer formed thereon, to promote the magnetic crystal grains comprising L1 0 type ordered alloys, the separation of a non-magnetic grain boundary containing Ti, the magnetic The coercive force Hc of the magnetic recording layer including the layer can be increased.
 シード層は、例えばPtを含むことができ、特にPtから構成されることが好ましい。 The seed layer can contain, for example, Pt, and is particularly preferably composed of Pt.
 シード層の成膜方法は特に限定されないが、スバッタ法や、真空蒸着法等の成膜方法を用いることができる。なお、スパッタリング法としては、例えばRFマグネトロンスパッタリング法等を含む。 The method for forming the seed layer is not particularly limited, and a film forming method such as a sputtering method or a vacuum evaporation method can be used. The sputtering method includes, for example, an RF magnetron sputtering method.
 シード層を成膜する際の条件は特に限定されないが、例えばガラス基板を含む、シード層を成膜する基材を250℃以上700℃以下の温度に加熱した状態で、成膜を行うことが好ましい。 The conditions for forming the seed layer are not particularly limited. For example, the film formation may be performed in a state where a base material for forming the seed layer including a glass substrate is heated to a temperature of 250 ° C. or higher and 700 ° C. or lower. preferable.
 シード層の膜厚は特に限定されるものではないが、例えば0.1nm以上であることが好ましく、0.5nm以上50nm以下であることがより好ましく、1nm以上20nm以下であることがさらに好ましい。 The thickness of the seed layer is not particularly limited, but is preferably 0.1 nm or more, more preferably 0.5 nm or more and 50 nm or less, and further preferably 1 nm or more and 20 nm or less.
 磁気記録層は、一層の磁性層または複数の磁性層を含むことができる。以下、シード層と接触する磁性層を第1磁性層と呼ぶ。 The magnetic recording layer can include a single magnetic layer or a plurality of magnetic layers. Hereinafter, the magnetic layer in contact with the seed layer is referred to as a first magnetic layer.
 磁性層は、例えばFe、PtおよびTiを含むことができる。第1磁性層は、具体的には例えば、FeおよびPtを含むL1型規則合金を有する磁性結晶粒と、Tiを含む非磁性結晶粒界とからなるグラニュラー構造を有することができる。 The magnetic layer can contain, for example, Fe, Pt and Ti. The first magnetic layer is specifically, for example, may have a magnetic crystal grains having an L1 0 type ordered alloy containing Fe and Pt, a granular structure consisting of a non-magnetic grain boundary containing Ti.
 磁性結晶粒を構成するL1型規則合金は、磁性結晶粒の特性変調を目的として、Ni、Mn、Ag、AuおよびCrからなる群から選択される少なくとも1種の元素をさらに含むこともできる。望ましい特性変調は、L1型規則合金の規則化に必要な温度の低減を含む。 L1 0 type ordered alloy constituting the magnetic crystal grains can for the purpose of characteristic modulation of the magnetic crystal grains, Ni, Mn, Ag, may further comprise at least one element selected from the group consisting of Au and Cr . Desirable characteristic modulation comprises a reduction in the temperature required for ordering of the L1 0 type ordered alloy.
 磁性結晶粒は全ての原子が規則構造を有していなくてもよい。規則構造の程度を表わす規則度Sが所定の値以上であれば良い。規則度Sは、磁気記録媒体をXRDにより測定し、測定値と完全に規則化した際の理論値との比により算出することができる。L1型規則合金の場合は、規則合金由来の(001)および(002) ピークの積分強度を用いて算出する。測定された(001)ピーク積分強度に対する(002)ピーク積分強度の比の値を、完全に規則化した際に理論的に算出される(001)ピーク積分強度に対する(002)ピーク積分強度の比で除算することで規則度Sを得ることができる。このようにして得られた規則度Sが0.5以上であれば、磁気記録媒体として実用的な磁気異方性係数Kuを有する。 In the magnetic crystal grains, not all atoms may have a regular structure. The regularity S representing the degree of the regular structure may be greater than or equal to a predetermined value. The degree of order S can be calculated by measuring the magnetic recording medium by XRD and calculating the ratio between the measured value and the theoretical value when it is completely ordered. For L1 0 type ordered alloy is calculated using from ordered alloy (001) and the integrated intensity of the (002) peak. The ratio of the (002) peak integrated intensity to the (001) peak integrated intensity calculated theoretically when the value of the ratio of the (002) peak integrated intensity to the measured (001) peak integrated intensity is perfectly ordered The regularity S can be obtained by dividing by. If the degree of order S obtained in this way is 0.5 or more, the magnetic recording medium has a practical magnetic anisotropy coefficient Ku.
 非磁性結晶粒界は、Tiを含むことができ、Tiで構成されることがより好ましい。第1磁性層は、該第1磁性層の全原子数を基準として、4at%以上12at%以下のTiを含むことが好ましく、5at%以上10at%以下のTiを含むことがより好ましい。 The nonmagnetic grain boundary can contain Ti, and is more preferably composed of Ti. The first magnetic layer preferably contains 4 at% or more and 12 at% or less of Ti, more preferably 5 at% or more and 10 at% or less of Ti based on the total number of atoms of the first magnetic layer.
 非磁性結晶粒界が上記範囲のTiを含むことによって、磁性結晶粒と非磁性結晶粒界との分離を促進して、当該磁性層の保磁力Hcを急激に増大させることができる。 When the nonmagnetic crystal grain boundary contains Ti within the above range, the separation between the magnetic crystal grain and the nonmagnetic crystal grain boundary can be promoted, and the coercive force Hc of the magnetic layer can be rapidly increased.
 磁気記録層は、第1磁性層に加えて、第2磁性層をさらに有することもできる。第2磁性層を有することで磁気記録媒体の性能をさらに向上させることができる。 The magnetic recording layer can further include a second magnetic layer in addition to the first magnetic layer. By having the second magnetic layer, the performance of the magnetic recording medium can be further improved.
 第2磁性層の構成は特に限定されないが、第2磁性層は例えば第1磁性層とは異なるキュリー温度Tcを有し、Tc制御を目的として設けることができる。第1磁性層と第2磁性層との両者をあわせた記録温度を設定することで、記録時に必要とされる磁気記録媒体全体としての反転磁界を低減することができる。 The configuration of the second magnetic layer is not particularly limited, but the second magnetic layer has a Curie temperature Tc different from that of the first magnetic layer, for example, and can be provided for the purpose of Tc control. By setting the recording temperature for both the first magnetic layer and the second magnetic layer, the reversal magnetic field of the entire magnetic recording medium required at the time of recording can be reduced.
 例えば、第2磁性層として、第1磁性層のキュリー温度Tcよりもキュリー温度Tcの低い磁性層を形成する。そして、記録温度を両磁性層のキュリー温度の中間に設定すれば、記録時に第2磁性層の磁化は消失し、記録を反転させるために必要な磁界を低減させることができる。このようにして磁気記録ヘッドに要請される記録時の発生磁界を低減して良好な磁気記録性能を発揮することができる。 For example, a magnetic layer having a Curie temperature Tc lower than the Curie temperature Tc of the first magnetic layer is formed as the second magnetic layer. If the recording temperature is set to be intermediate between the Curie temperatures of both magnetic layers, the magnetization of the second magnetic layer disappears during recording, and the magnetic field required to reverse the recording can be reduced. In this way, the magnetic field generated during recording required for the magnetic recording head can be reduced, and good magnetic recording performance can be exhibited.
 第2磁性層についてもグラニュラー構造を有することが好ましく、第1磁性層と、第2磁性層とは磁性結晶粒が水平方向、すなわちガラス基板表面と平行な方向について、同じ位置となるように配置することが好ましい。これは係る配置とすることで、信号対雑音比(SNR)等の性能を向上することができるからである。 The second magnetic layer also preferably has a granular structure, and the first magnetic layer and the second magnetic layer are arranged so that the magnetic crystal grains are in the same position in the horizontal direction, that is, in the direction parallel to the glass substrate surface. It is preferable to do. This is because such an arrangement can improve performance such as signal-to-noise ratio (SNR).
 第2磁性層を構成する材料は特に限定されないが、例えば磁性結晶粒は少なくともCoおよびFeのうちのいずれかを含有する材料であることが好ましい。特に磁性結晶粒は、さらにPt、Pd、Ni、Mn、Cr、Cu、Ag、Auから選択される1種類以上を含有することが好ましい。 The material constituting the second magnetic layer is not particularly limited, but for example, the magnetic crystal grains are preferably a material containing at least one of Co and Fe. In particular, the magnetic crystal grains preferably further contain one or more kinds selected from Pt, Pd, Ni, Mn, Cr, Cu, Ag, and Au.
 第2の磁性層の磁性結晶粒の材料としては例えば、CoCr系合金、CoCrPt系合金、FePt系合金、FePd系合金等を用いることができる。磁性結晶粒は、L1型、L1型、L1型などの規則構造や、hcp構造(六方最密充填構造)、fcc構造(面心立方構造)などであってもよい。 As a material for the magnetic crystal grains of the second magnetic layer, for example, a CoCr alloy, a CoCrPt alloy, a FePt alloy, a FePd alloy, or the like can be used. Magnetic crystal grains, L1 0 type, L1 1 type, and ordered structure, such as a L1 2 type, hcp structure (hexagonal close-packed structure), it may be a fcc structure (face-centered cubic structure).
 第2磁性層を構成する非磁性結晶粒の材料としては、例えばZnO、SiO、TiOなどの酸化物、SiN、TiNなどの窒化物、C、B等を用いることができる。 As the material of the nonmagnetic crystal grains constituting the second magnetic layer, for example, oxides such as ZnO, SiO 2 and TiO 2 , nitrides such as SiN and TiN, C, B and the like can be used.
 なお、第2磁性層として、第1磁性層と同様の材料を用いて、異なる組成とした層を用いてもよい。第2磁性層は、例えば、第1磁性層中のTiの比率を変更した層、規則合金に添加するNiなどの元素を変更した層などであってもよい。 Note that a layer having a different composition using the same material as that of the first magnetic layer may be used as the second magnetic layer. The second magnetic layer may be, for example, a layer in which the Ti ratio in the first magnetic layer is changed, a layer in which an element such as Ni added to the ordered alloy is changed, or the like.
 磁気記録層は、その他に例えば、第1磁性層と第2磁性層との間の磁気的な交換結合を調整するために、第1磁性層と第2磁性層との間に交換結合制御層を配置することもできる。 In addition, the magnetic recording layer is, for example, an exchange coupling control layer between the first magnetic layer and the second magnetic layer in order to adjust the magnetic exchange coupling between the first magnetic layer and the second magnetic layer. Can also be arranged.
 磁気記録層の上面には保護層を設けることができ、保護層は、磁気記録媒体の分野で慣用的に使用されている材料を用いて形成することができる。具体的には、Ptなどの非磁性金属、ダイアモンドライクカーボンなどのカーボン系材料、あるいは窒化シリコンなどのシリコン系材料を用いて、保護層を形成することができる。保護層は、単層であってもよく、積層構造を有してもよい。積層構造の保護層は、例えば、特性の異なる2種のカーボン系材料の積層構造、金属とカーボン系材料との積層構造、または金属酸化物膜とカーボン系材料との積層構造であってもよい。 A protective layer can be provided on the top surface of the magnetic recording layer, and the protective layer can be formed using a material conventionally used in the field of magnetic recording media. Specifically, the protective layer can be formed using a nonmagnetic metal such as Pt, a carbon-based material such as diamond-like carbon, or a silicon-based material such as silicon nitride. The protective layer may be a single layer or may have a laminated structure. The protective layer having a laminated structure may be, for example, a laminated structure of two types of carbon materials having different characteristics, a laminated structure of metals and carbon materials, or a laminated structure of metal oxide films and carbon materials. .
 保護層は、スバッタ法(DCマグネトロンスパッタリング法などを含む)、真空蒸着法などの任意の方法を用いて形成することができる。 The protective layer can be formed using an arbitrary method such as a sputtering method (including a DC magnetron sputtering method) or a vacuum deposition method.
 また、保護層上にはさらに液体潤滑剤層等を設けることもできる。液体潤滑剤層は、例えばパーフルオロポリエーテル系の潤滑剤等を用いて形成することができる。液体潤滑剤層は、たとえば、ディップコート法、スピンコート法などの塗布法を用いて形成できる。 Further, a liquid lubricant layer or the like can be further provided on the protective layer. The liquid lubricant layer can be formed using, for example, a perfluoropolyether lubricant. The liquid lubricant layer can be formed using, for example, a coating method such as a dip coating method or a spin coating method.
 なお、本実施形態では、磁気記録媒体の一構成例として、エネルギーアシスト磁気記録媒体について説明したが、エネルギーアシスト磁気記録媒体とする場合でも上記の形態に限定されるものではない。例えば必要に応じて各種層をさらに設ける等することもできる。 In the present embodiment, the energy-assisted magnetic recording medium has been described as an example of the configuration of the magnetic recording medium. However, the energy-assisted magnetic recording medium is not limited to the above embodiment. For example, various layers can be further provided as necessary.
 以上に説明した本実施形態の磁気記録媒体は、既述の磁気記録媒体用ガラス基板を含んでいる。すなわち、急激な温度変化が加えられた場合に熱割れが生じることを抑制した磁気記録媒体用ガラス基板を含んでいる。このため、磁性層を成膜する際等に、ガラス基板に熱割れが生じることを抑制し、生産性良く本実施形態の磁気記録媒体を製造することができる。 The magnetic recording medium of the present embodiment described above includes the above-described glass substrate for magnetic recording medium. That is, it includes a glass substrate for a magnetic recording medium that suppresses the occurrence of thermal cracking when a sudden temperature change is applied. For this reason, when the magnetic layer is formed, the occurrence of thermal cracking in the glass substrate can be suppressed, and the magnetic recording medium of this embodiment can be manufactured with high productivity.
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, specific examples will be described. However, the present invention is not limited to these examples.
 まず、以下の実験例における、磁気記録媒体用ガラス基板の評価方法について説明する。 First, a method for evaluating a glass substrate for a magnetic recording medium in the following experimental example will be described.
 (1)外周側面部、エッチング後外周側面部の算術平均粗さRa、エッチング後外周側面部の最大高さ粗さRz
 外周側面部、及びエッチング後外周側面部の算術平均粗さRa、及びエッチング後外周側面部の最大高さ粗さRzは、キーエンスのレーザー顕微鏡(株式会社キーエンス製 Violet Laser color 3D、VK-9710、Laser Scanning Microscope)を使用して外周側面部を観察し、観察結果を用いて算出した。
(1) Arithmetic average roughness Ra of outer peripheral side surface, outer peripheral side surface after etching, and maximum height roughness Rz of outer peripheral side surface after etching
The arithmetic average roughness Ra of the outer peripheral side surface and the outer peripheral side surface after etching, and the maximum height roughness Rz of the outer peripheral side surface after etching are measured by Keyence's laser microscope (Violet Laser color 3D, VK-9710, manufactured by Keyence Corporation). The outer peripheral side surface portion was observed using Laser Scanning Microscope) and calculated using the observation result.
 外周側面部、エッチング後外周側面部の観察は、50倍の対物レンズを使用し、測定領域を200μm×200μmとし、測定領域の中心がガラス基板の厚み方向の中心になるように配置し、測定を行った。 The observation of the outer peripheral side surface and the outer peripheral side surface after etching uses a 50 × objective lens, the measurement area is 200 μm × 200 μm, and the center of the measurement area is arranged in the center of the glass substrate in the thickness direction. Went.
 なお、算術平均粗さRa、最大高さ粗さRzの解析、算出は、同レーザー顕微鏡のソフトVK analyzer(Ver.1.1.0.0)を使用して行った。 The analysis and calculation of the arithmetic average roughness Ra and the maximum height roughness Rz were performed using the software VK analyzer (Ver.1.1.0.0) of the same laser microscope.
 解析に当たって、ガラス基板の外周側面部、及びエッチング後外周側面部は曲面であるため、まずX・Y方向に自動二次曲面補正を使用して曲面の傾き補正を行った。その後、カットオフλsを0.25μm λcを80μmとして、算術平均粗さRaおよび最大高さ粗さRzを算出した。 In the analysis, since the outer peripheral side surface portion of the glass substrate and the outer peripheral side surface portion after etching are curved surfaces, first, curved surface inclination correction was performed using automatic quadric surface correction in the X and Y directions. Thereafter, the arithmetic average roughness Ra and the maximum height roughness Rz were calculated with a cutoff λs of 0.25 μm and λc of 80 μm.
 外周側面部のエッチングは、エッチング液としてフッ化水素酸と塩酸との混合水溶液を用い、該エッチング液に評価を行うガラス基板を浸漬することで行った。 Etching of the outer peripheral side surface portion was performed by using a mixed aqueous solution of hydrofluoric acid and hydrochloric acid as an etchant and immersing a glass substrate to be evaluated in the etchant.
 エッチング液に用いたフッ化水素酸の濃度は1.0wt%、塩酸の濃度は18wt%とした。 The concentration of hydrofluoric acid used in the etching solution was 1.0 wt%, and the concentration of hydrochloric acid was 18 wt%.
 上述のように、ガラス基板全体をエッチング液に浸漬したことから、外周側面部をエッチングにより5μm除去する場合、エッチング後のディスク外径がエッチング前に比べ10μm減少することになる。 As described above, since the entire glass substrate is immersed in the etching solution, when the outer peripheral side surface portion is removed by 5 μm by etching, the outer diameter of the disk after etching is reduced by 10 μm compared to before etching.
 そして、エッチングの速度は各実験例で用いたガラス基板のガラス材料によって異なるため、エッチング量5μmとなるように、予備試験を行い、エッチング時間を調整した。なお、上述のようにエッチングを行う際は、ガラス基板をエッチング液に浸漬していることから、予備試験によりエッチング時間を調整する際のエッチングによる除去量は、エッチング前後のガラス基板の外径の変化から算出している。 Since the etching rate varies depending on the glass material of the glass substrate used in each experimental example, a preliminary test was performed to adjust the etching time so that the etching amount was 5 μm. When etching is performed as described above, since the glass substrate is immersed in an etching solution, the amount of removal by etching when adjusting the etching time by a preliminary test is the outer diameter of the glass substrate before and after the etching. Calculated from changes.
 上述のようにガラス基板のガラス材料によりエッチング時間は異なったが、エッチング時間は1分以上20分以下の範囲内であった。 As described above, the etching time was different depending on the glass material of the glass substrate, but the etching time was in the range of 1 to 20 minutes.
 なお、ここで、エッチングの前後での外周側面部表面の状態の変化を図3、図4を用いて説明する。図3(A)、図3(B)は後述する実験例1の、図4(A)、図4(B)は後述する実験例10のガラス基板の外周側面部をエッチングした前後での表面の状態を上述のレーザー顕微鏡により拡大して観察した際の写真を示している。いずれも(A)がエッチング前、(B)がエッチング後となる。図3(A)、図4(A)と、図3(B)、図4(B)とをそれぞれ比較すると明らかなように、エッチングの前では確認できなかった微小クラックの開口部(ピット)31、32が、エッチングにより大きくなり明確になっていることを確認できる。
(2)熱割れ試験
 各実験例で作製したガラス基板について、急激な温度変化を加えて熱割れの発生率について評価を行った。
Here, changes in the state of the outer peripheral side surface before and after etching will be described with reference to FIGS. 3 (A) and 3 (B) show the surface of Example 1 to be described later, and FIGS. 4 (A) and 4 (B) show the surface of the glass substrate of Example 10 to be described later before and after etching. The photograph at the time of enlarging and observing this state with the above-mentioned laser microscope is shown. In both cases, (A) is before etching and (B) is after etching. As is clear from comparison between FIGS. 3A, 4A, 3B, and 4B, an opening (pit) of a microcrack that could not be confirmed before etching. It can be confirmed that 31 and 32 become larger and clearer by etching.
(2) Thermal crack test About the glass substrate produced in each experiment example, the rapid temperature change was added and the occurrence rate of the thermal crack was evaluated.
 各実験例において作製したガラス基板について、電気炉で230℃まで加熱後、冷却することなく電気炉から取り出した。そして、予め水温が20℃、深さ10mmとなるように水を張った水槽内の水に、ガラス基板をガラス基板の主表面に対し平行の方向に移動させ、すなわち水面とガラス基板の主表面とが垂直になるように保ちながら投入した。 The glass substrate produced in each experimental example was heated to 230 ° C. in an electric furnace and then taken out from the electric furnace without cooling. Then, the glass substrate is moved in a direction parallel to the main surface of the glass substrate to the water in the water tank in which the water temperature is 20 ° C. and the depth is 10 mm in advance, that is, the water surface and the main surface of the glass substrate It was thrown in while keeping it vertical.
 水に投入した際に、ガラス基板に外周部分から5mm以上の長さの割れ、またはクラックが発生した場合に熱割れが発生したと判定した。 When it was poured into water, it was determined that a thermal crack had occurred when a crack with a length of 5 mm or more from the outer peripheral portion or a crack occurred in the glass substrate.
 各実験例について、100枚のガラス基板を同様にして試験し、試験に供した100枚のガラス基板中、熱割れが発生したと判断されたガラス基板の割合を熱割れ率とした。 For each experimental example, 100 glass substrates were tested in the same manner, and the ratio of the glass substrates determined to have undergone thermal cracking in the 100 glass substrates subjected to the test was defined as the thermal cracking rate.
 熱割れ試験では、上述のようにガラス基板を、230℃まで加熱後、3秒以内に水温が20℃の水に投入している。このため、ガラス基板にはおよそ70℃/秒の急激な温度変化が加えられていることになる。エネルギーアシスト磁気記録媒体を製造する工程においても、温度変化は、例えば65℃/秒以下程度である。このため、上述のように70℃/秒の温度変化を加えた際の熱割れ率が十分に低いガラス基板であれば、エネルギーアシスト磁気記録媒体用ガラス基板のように急激な温度変化を加えられる用途においても好適に使用できることを示している。 In the thermal cracking test, the glass substrate was heated to 230 ° C. as described above, and then poured into water having a water temperature of 20 ° C. within 3 seconds. For this reason, a rapid temperature change of about 70 ° C./second is applied to the glass substrate. Even in the process of manufacturing the energy-assisted magnetic recording medium, the temperature change is, for example, about 65 ° C./second or less. Therefore, if the glass substrate has a sufficiently low thermal cracking rate when a temperature change of 70 ° C./second is applied as described above, a rapid temperature change can be applied like a glass substrate for energy-assisted magnetic recording media. It shows that it can be suitably used in applications.
 なお、熱割れ試験に使用したガラス基板と、エッチング後外周側面部の算術平均粗さRaおよび最大高さ粗さRzの評価に用いたガラス基板とは、各実験例で、同条件で作製したものを用いているが、同一のものではない。これは、エッチング後外周側面部の算術平均粗さRaおよび最大高さ粗さRzの測定のためのエッチングを行うと、外周側面部の微小クラックの先端の幅Rが大きくなり、熱応力によるクラックの進展が起こらず、割れは発生しないためである。すなわち、熱割れ試験においては、エッチングを行っていないガラス基板を使用している。 The glass substrate used for the thermal cracking test and the glass substrate used for the evaluation of the arithmetic average roughness Ra and the maximum height roughness Rz of the outer peripheral side surface after etching were produced under the same conditions in each experimental example. Although they are used, they are not the same. This is because when the etching is performed for the measurement of the arithmetic average roughness Ra and the maximum height roughness Rz of the outer peripheral side surface after etching, the width R of the tip of the microcrack on the outer peripheral side surface portion increases, and cracks due to thermal stress occur. This is because no progress occurs and cracks do not occur. That is, in the thermal cracking test, a glass substrate that has not been etched is used.
 次に、各実験例における磁気記録媒体用ガラス基板の製造方法について説明する。なお、実験例1~実験例6、実験例9~実験例16、実験例19、実験例21が実施例となり、実験例7、実験例8、実験例17、実験例18、実験例20、実験例22が比較例となる。
[実験例1]
 以下の順に各工程を実施して、磁気記録媒体用ガラス基板の作製を行った。
(形状付与工程)
 外径65mm、内径20mm、板厚0.8mmの磁気記録媒体用ガラス基板が得られるように、表1のガラスAからなるガラス素基板を、中央部に円孔を有するドーナツ形状を有するガラス基板に加工した。
Next, the manufacturing method of the glass substrate for magnetic recording media in each experimental example will be described. Experimental Examples 1 to 6, Experimental Examples 9 to 16, Experimental Example 19, and Experimental Example 21 are examples, and Experimental Example 7, Experimental Example 8, Experimental Example 17, Experimental Example 18, Experimental Example 20, Experimental example 22 is a comparative example.
[Experimental Example 1]
Each step was performed in the following order to produce a glass substrate for a magnetic recording medium.
(Shaping process)
In order to obtain a glass substrate for a magnetic recording medium having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.8 mm, a glass substrate having a donut shape having a circular hole in the center portion of the glass substrate of glass A in Table 1 It was processed into.
 なお、内径とは、中央開口部の直径を意味している。
(面取り工程)
 形状付与工程で得られたガラス基板の内周端面と外周端面とに、それぞれ内周面取り部、及び外周面取り部を形成した。この際、各面取り部について、面取り幅0.15mm、面取り角度45°のガラス基板が得られるように面取り加工を行った。
The inner diameter means the diameter of the central opening.
(Chamfering process)
An inner peripheral chamfered portion and an outer peripheral chamfered portion were formed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate obtained in the shape imparting step, respectively. At this time, each chamfered portion was chamfered so that a glass substrate having a chamfering width of 0.15 mm and a chamfering angle of 45 ° was obtained.
 面取り加工では、ダイヤモンドホイールを具備する研削機を用い、界面活性剤を含有する研削液を研削点に供給しながら内周端面、及び外周端面を同時に研削し、内周面取り部、及び外周面取り部を形成した。 In the chamfering process, a grinding machine equipped with a diamond wheel is used to grind the inner peripheral end face and the outer peripheral end face at the same time while supplying a grinding liquid containing a surfactant to the grinding point. Formed.
 なお、実験例1、2では電着タイプのダイヤモンド♯500で研削後、表面50μmをレジンボンドタイプのダイヤモンド♯600を使用して仕上げ研削を行った。 In Experimental Examples 1 and 2, after grinding with electrodeposition type diamond # 500, the surface of 50 μm was subjected to finish grinding using resin bond type diamond # 600.
 また、後述する実験例3~22は電着タイプのダイヤモンド♯500のみを使用して研削を行った。
(主表面研磨工程:一次ラップ工程)
 研磨具として平均粒径9μmのダイヤモンド粒子を含有する固定砥粒工具と、界面活性剤を含有する研削液とを用いて、両面研磨装置 (浜井産業社製、製品名:16BF)によりガラス基板の上下の主表面を研削した。両面研磨装置内でガラス基板を保持するキャリアとしては、ガラス繊維含有エポキシ樹脂からなるキャリアを使用した。
In Experimental Examples 3 to 22, which will be described later, grinding was performed using only electrodeposition type diamond # 500.
(Main surface polishing process: primary lapping process)
Using a fixed abrasive tool containing diamond particles having an average particle size of 9 μm as a polishing tool and a grinding liquid containing a surfactant, a double-side polishing apparatus (product name: 16BF, manufactured by Hamai Sangyo Co., Ltd.) The upper and lower main surfaces were ground. As a carrier for holding the glass substrate in the double-side polishing apparatus, a carrier made of glass fiber-containing epoxy resin was used.
 主表面研磨工程(一次ラップ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去した。 After completion of the main surface polishing step (primary lapping step), the glass substrate was washed to remove grinding fluid and other dirt.
 なお、平均粒径は、レーザー回折・散乱法によって求めた粒度分布における体積基準積算値50%での粒径を意味する。なお、本明細書の他の部分でも、平均粒径は同様の意味を有する。
(端面研磨工程)
 主表面研磨工程(一次ラップ工程)までを同様の条件で実施したガラス基板を積層した。そして、研磨具としてナイロン製のブラシを用い、平均粒径1μmの酸化セリウム研磨剤を供給しながら、積層されたガラス基板の内周端面、及び外周端面に対し、回転するブラシを押しつけることで内周端面、及び外周端面の研磨を行った。
The average particle diameter means a particle diameter at a volume standard integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method. In other parts of the present specification, the average particle size has the same meaning.
(End face polishing process)
The glass substrate which implemented on the same conditions to the main surface grinding | polishing process (primary lapping process) was laminated | stacked. Then, using a nylon brush as the polishing tool, while supplying a cerium oxide abrasive with an average particle diameter of 1 μm, the rotating brush is pressed against the inner and outer peripheral end surfaces of the laminated glass substrates. The peripheral end surface and the outer peripheral end surface were polished.
 この際の外周研磨の研磨量は50μmとし、内周研磨の研磨量は25μmとした。内外周研磨における研磨量とは基板外径もしくは内径の変化量を示す。すなわち、片側の取り代はこの半分となる。たとえば研磨量10μmとした場合には、片側は5μm研磨されたこととなる。
(主表面研磨工程:二次ラップ工程)
 研磨具として平均粒径4μmのダイヤモンド粒子を含有する固定砥粒工具と、界面活性剤を含有する研削液とを用いて、両面研磨装置 (浜井産業社製、製品名:16BF)によりガラス基板の上下の主表面を研削した。
At this time, the polishing amount of the outer periphery polishing was 50 μm, and the polishing amount of the inner periphery polishing was 25 μm. The polishing amount in the inner and outer peripheral polishing indicates the amount of change in the outer diameter or inner diameter of the substrate. That is, the machining allowance on one side is half of this. For example, when the polishing amount is 10 μm, one side is polished by 5 μm.
(Main surface polishing process: secondary lapping process)
Using a fixed abrasive tool containing diamond particles having an average particle diameter of 4 μm as a polishing tool and a grinding liquid containing a surfactant, a double-side polishing machine (product name: 16BF, manufactured by Hamai Sangyo Co., Ltd.) The upper and lower main surfaces were ground.
 両面研磨装置内でガラス基板を保持するキャリアとしては、ガラス繊維含有エポキシ樹脂からなるキャリアを使用した。 As the carrier for holding the glass substrate in the double-side polishing apparatus, a carrier made of an epoxy resin containing glass fiber was used.
 主表面研磨工程(二次ラップ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去した。
(主表面研磨工程:一次ポリッシュ工程)
 研磨具として、スウェードタイプのポリウレタン製研磨パッドと、平均粒径1μmの酸化セリウムを含有する研削液とを用いて、両面研磨装置 (浜井産業社製、製品名:16BF)によりガラス基板の上下の主表面をポリッシュした。
After completion of the main surface polishing step (secondary lapping step), the glass substrate was washed to remove grinding fluid and other dirt.
(Main surface polishing process: primary polishing process)
As a polishing tool, using a suede type polyurethane polishing pad and a grinding liquid containing cerium oxide having an average particle diameter of 1 μm, a double-side polishing apparatus (manufactured by Hamai Sangyo Co., Ltd., product name: 16BF) The main surface was polished.
 主表面研磨工程(一次ポリッシュ工程)では研磨による除去量は25μmとした。研磨時間はたとえば50分間である。主表面研磨における研磨量とは基板厚さの変化量を示す。すなわち、片側の取り代はこの半分となる。たとえば研磨量10μmとした場合には、片側は5μm研磨されたこととなる。 In the main surface polishing step (primary polishing step), the removal amount by polishing was 25 μm. The polishing time is, for example, 50 minutes. The polishing amount in main surface polishing indicates the amount of change in substrate thickness. That is, the machining allowance on one side is half of this. For example, when the polishing amount is 10 μm, one side is polished by 5 μm.
 両面研磨装置内でガラス基板を保持するキャリアとしては、ガラス繊維含有エポキシ樹脂からなるキャリアを使用した。 As the carrier for holding the glass substrate in the double-side polishing apparatus, a carrier made of an epoxy resin containing glass fiber was used.
 主表面研磨工程(一次ポリッシュ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去した。
(主表面研磨工程:二次ポリッシュ工程)
 研磨具として、スウェードタイプのポリウレタン製研磨パッドと、平均粒径が20nm以下のコロイダルシリカを含有する研削液とを用いて、両面研磨装置(浜井産業社製、製品名:16BF)によりガラス基板の上下の主表面をポリッシュした。
After completion of the main surface polishing step (primary polishing step), the glass substrate was washed to remove grinding fluid and other contaminants.
(Main surface polishing process: secondary polishing process)
As a polishing tool, using a suede type polyurethane polishing pad and a grinding liquid containing colloidal silica having an average particle size of 20 nm or less, a double-side polishing apparatus (product name: 16BF, manufactured by Hamai Sangyo Co., Ltd.) The upper and lower main surfaces were polished.
 主表面研磨工程(二次ポリッシュ工程)では研磨による除去量は1μmとした。研磨時間はたとえば30分間である。 In the main surface polishing step (secondary polishing step), the removal amount by polishing was 1 μm. The polishing time is, for example, 30 minutes.
 両面研磨装置内でガラス基板を保持するキャリアとしては、アラミド繊維含有エポキシ樹脂からなるキャリアを使用した。 As the carrier for holding the glass substrate in the double-side polishing apparatus, a carrier made of an aramid fiber-containing epoxy resin was used.
 主表面研磨工程(二次ポリッシュ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去した。
(洗浄・乾燥工程)
 主表面研磨工程(二次ポリッシュ工程)を行ったガラス基板は、スクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い(精密洗浄)、イソプロピルアルコール蒸気にて乾燥を行った。
After completion of the main surface polishing step (secondary polishing step), the glass substrate was washed to remove grinding fluid and other contaminants.
(Washing / drying process)
The glass substrate that has been subjected to the main surface polishing process (secondary polishing process) is sequentially subjected to scrub cleaning, ultrasonic cleaning in a state of being immersed in a detergent solution, and ultrasonic cleaning in a state of being immersed in pure water (precision cleaning). And drying with isopropyl alcohol vapor.
 以上の手順により得られた磁気記録媒体用ガラス基板について、上述の外周側面部の算術平均粗さRa、エッチング後外周側面部の算術平均粗さRa、及びエッチング後外周側面部の最大高さ粗さRzの評価、及び熱割れ試験を実施した。評価結果を表2に示す。
[実験例2]
 端面研磨工程における外周研磨の研磨量を11μmとした点以外は、実験例1と同様にしてガラス基板の製造、及び評価を行った。評価結果を表2に示す。
[実験例3~実験例6]
 以下の点以外は実験例1と同様にして、ガラス基板の製造、及び評価を行った。
(変更点1)
 主表面研磨工程(一次ラップ工程)から、主表面研磨工程(二次ポリッシュ工程)までの工程の順番を以下の順に変更した。
About the glass substrate for magnetic recording media obtained by the above procedure, the arithmetic average roughness Ra of the outer peripheral side surface portion, the arithmetic average roughness Ra of the outer peripheral side surface portion after etching, and the maximum height roughness of the outer peripheral side surface portion after etching Evaluation of thickness Rz and a thermal cracking test were carried out. The evaluation results are shown in Table 2.
[Experiment 2]
A glass substrate was manufactured and evaluated in the same manner as in Experimental Example 1 except that the polishing amount of the outer peripheral polishing in the end surface polishing step was 11 μm. The evaluation results are shown in Table 2.
[Experimental Example 3 to Experimental Example 6]
The glass substrate was produced and evaluated in the same manner as in Experimental Example 1 except for the following points.
(Change 1)
The order of steps from the main surface polishing step (primary lapping step) to the main surface polishing step (secondary polishing step) was changed in the following order.
 実験例3~実験例6では主表面研磨工程(一次ラップ工程)の後、主表面研磨工程(二次ラップ工程)、主表面研磨工程(一次ポリッシュ工程)、端面研磨工程、主表面研磨工程(二次ポリッシュ工程)の順に実施した。
(変更点2)
 主表面研磨工程(一次ラップ工程)、主表面研磨工程(二次ラップ工程)、主表面研磨工程(一次ポリッシュ工程)、及び主表面研磨工程(二次ポリッシュ工程)で用いたキャリアの材料を変更した。
In Experimental Examples 3 to 6, after the main surface polishing step (primary lapping step), the main surface polishing step (secondary lapping step), main surface polishing step (primary polishing step), end surface polishing step, main surface polishing step ( (Secondary polishing step).
(Change 2)
The carrier material used in the main surface polishing step (primary lapping step), main surface polishing step (secondary lapping step), main surface polishing step (primary polishing step), and main surface polishing step (secondary polishing step) is changed. did.
 具体的には、実験例3ではステンレス製のキャリアを用いた。また、実験例4ではガラス繊維含有エポキシ樹脂製のキャリアを、実験例5ではアラミド繊維含有エポキシ樹脂製のキャリアを、実験例6ではポリ塩化ビニル樹脂製のキャリアを用いた。 Specifically, in Experimental Example 3, a stainless steel carrier was used. In Experimental Example 4, a glass fiber-containing epoxy resin carrier was used, in Experimental Example 5, an aramid fiber-containing epoxy resin carrier was used, and in Experimental Example 6, a polyvinyl chloride resin carrier was used.
 なお、各主表面研磨工程で用いたキャリアの材料が異なる点を除いては、各工程での条件は実験例1の場合と同様にしている。 The conditions in each step are the same as in Experimental Example 1 except that the carrier material used in each main surface polishing step is different.
 評価結果を表2に示す。
[実験例7~実験例15]
 以下の点以外は実験例1と同様にして、ガラス基板の製造、及び評価を行った。
(変更点1)
 主表面研磨工程(一次ラップ工程)から、主表面研磨工程(二次ポリッシュ工程)までの工程の順番を以下の順に変更した。
The evaluation results are shown in Table 2.
[Experimental Example 7 to Experimental Example 15]
The glass substrate was produced and evaluated in the same manner as in Experimental Example 1 except for the following points.
(Change 1)
The order of steps from the main surface polishing step (primary lapping step) to the main surface polishing step (secondary polishing step) was changed in the following order.
 主表面研磨工程(一次ラップ工程)の後、主表面研磨工程(二次ラップ工程)、主表面研磨工程(一次ポリッシュ工程)、主表面研磨工程(二次ポリッシュ工程)、端面研磨工程の順に実施した。なお、実験例7では端面研磨工程を実施していない。
(変更点2)
 端面研磨工程の条件を以下のように変更した。
After the main surface polishing step (primary lapping step), the main surface polishing step (secondary lapping step), the main surface polishing step (primary polishing step), the main surface polishing step (secondary polishing step), and the end surface polishing step are performed in this order. did. In Experimental Example 7, the end face polishing step is not performed.
(Change 2)
The conditions of the end face polishing process were changed as follows.
 実験例7については、端面研磨工程を実施しなかった。実験例8~実験例15での端面研磨工程における外周研磨の研磨量は、それぞれ5μm(実験例8)、8μm(実験例9)、11μm(実験例10)、16μm(実験例11)、21μm(実験例12)、27μm(実験例13)、32μm(実験例14)、38μm(実験例15)とした。
(変更点3)
 主表面研磨工程(一次ラップ工程)、主表面研磨工程(二次ラップ工程)、主表面研磨工程(一次ポリッシュ工程)、及び主表面研磨工程(二次ポリッシュ工程)で用いたキャリアの材料を変更した。
For Experimental Example 7, the end surface polishing step was not performed. The polishing amount of the peripheral polishing in the end face polishing step in Experimental Example 8 to Experimental Example 15 is 5 μm (Experimental Example 8), 8 μm (Experimental Example 9), 11 μm (Experimental Example 10), 16 μm (Experimental Example 11), and 21 μm, respectively. (Experimental Example 12), 27 μm (Experimental Example 13), 32 μm (Experimental Example 14), and 38 μm (Experimental Example 15).
(Change 3)
The carrier material used in the main surface polishing step (primary lapping step), main surface polishing step (secondary lapping step), main surface polishing step (primary polishing step), and main surface polishing step (secondary polishing step) is changed. did.
 実験例7では、ガラス繊維含有エポキシ樹脂製のキャリアを、実験例8~15ではアラミド繊維含有エポキシ樹脂製のキャリアをそれぞれ用いた。 In Experiment Example 7, a glass fiber-containing epoxy resin carrier was used, and in Experiment Examples 8 to 15, an aramid fiber-containing epoxy resin carrier was used.
 なお、上述の点を除いては、各工程での条件は実験例1の場合と同様にしている。 Except for the above points, the conditions in each step are the same as in Experimental Example 1.
 評価結果を表2に示す。
[実験例16]
 本実験例では、主表面研磨工程(一次ポリッシュ工程)の後、主表面研磨工程(二次ポリッシュ工程を実施する前にガラス基板の化学強化処理を行う化学強化工程を実施した点以外は、実験例1と同様にしてガラス基板の製造、及び評価を行った。評価結果を表2に示す。
The evaluation results are shown in Table 2.
[Experimental Example 16]
In this experimental example, the experiment was performed except that the main surface polishing step (primary polishing step) was followed by the main surface polishing step (chemical strengthening step for performing chemical strengthening treatment of the glass substrate before performing the secondary polishing step). A glass substrate was produced and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
 なお、化学強化は、硝酸カリウム60重量%・硝酸ナトリウム40重量%の割合で含有する400℃の溶解塩に主表面研磨工程(一次ポリッシュ工程)を終えたガラス基板を浸漬することで実施した。 The chemical strengthening was performed by immersing the glass substrate after the main surface polishing step (primary polishing step) in a dissolved salt at 400 ° C. containing 60% by weight of potassium nitrate and 40% by weight of sodium nitrate.
 なお、溶解塩にガラス基板を浸漬する前にはガラス基板を350℃に30分間予熱するプロセスを設けた。また、溶解塩にガラス基板を浸漬した後にはガラス基板を350℃で10分間放置して溶解塩を流し落すプロセスを実施した後、徐冷した。 In addition, a process of preheating the glass substrate to 350 ° C. for 30 minutes was provided before the glass substrate was immersed in the dissolved salt. In addition, after immersing the glass substrate in the dissolved salt, the glass substrate was allowed to stand at 350 ° C. for 10 minutes and the dissolved salt was poured off, followed by slow cooling.
 化学強化工程は、外周側面部における圧縮応力の深さDOLが、10μmとなるように実施した。
[実験例17、実験例18]
 本実験例では、端面研磨工程における外周研磨の研磨量を5μmとした点、化学強化工程において、外周側面部における圧縮応力の深さDOLが、実験例17は10μm、実験例18は17μmとなるように化学強化を実施した点以外は、実験例16と同様にしてガラス基板の製造、及び評価を行った。
The chemical strengthening step was performed such that the depth DOL of the compressive stress at the outer peripheral side surface portion was 10 μm.
[Experimental Example 17, Experimental Example 18]
In this experimental example, the amount of outer peripheral polishing in the end surface polishing step was 5 μm, and in the chemical strengthening step, the depth DOL of the compressive stress in the outer peripheral side surface portion was 10 μm in experimental example 17 and 17 μm in experimental example 18. Thus, the glass substrate was produced and evaluated in the same manner as in Experimental Example 16 except that chemical strengthening was performed.
 評価結果を表2に示す。
[実験例19、実験例21]
 形状付与工程に供するガラス基板として、表1のガラスB(実験例19)、ガラスC(実験例21)からなるガラス素基板を用いた点以外は、実験例1と同様にしてガラス基板の製造、及び評価を行った。評価結果を表2に示す。
[実験例20、実験例22]
 形状付与工程に供するガラス基板として、表1のガラスB(実験例20)、またはガラスC(実験例22)からなるガラス素基板を用いた点以外は、実験例8と同様にしてガラス基板の製造、及び評価を行った。評価結果を表2に示す。
The evaluation results are shown in Table 2.
[Experimental Example 19, Experimental Example 21]
Production of a glass substrate in the same manner as in Experimental Example 1 except that a glass base substrate made of Glass B (Experimental Example 19) and Glass C (Experimental Example 21) in Table 1 was used as the glass substrate used in the shape imparting step. And evaluation. The evaluation results are shown in Table 2.
[Experimental Example 20, Experimental Example 22]
The glass substrate was subjected to the same procedure as in Experimental Example 8 except that a glass substrate made of glass B (Experimental Example 20) or Glass C (Experimental Example 22) in Table 1 was used as the glass substrate used in the shape imparting step. Manufacture and evaluation were performed. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表3に各実験例におけるガラス基板を製造する際の工程の順番を示す。ここまで説明したのと同様に、各実験例について、表3中工程1から工程9まで、その順に実施している。 Table 3 shows the order of steps when manufacturing the glass substrate in each experimental example. In the same manner as described so far, each experimental example is performed in the order from step 1 to step 9 in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示した結果によると、外周側面部の算術平均粗さRaが0.1μm以下であり、外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaが0.5μm以下である実験例1~実験例6、実験例9~実験例16、実験例19、実験例21のガラス基板については、熱割れ率が20%以下となっていることを確認できた。これは、エッチング後外周側面部の算術平均粗さRaが0.5μm以下のガラス基板については、外周側面部の微小クラックの存在頻度が十分に低いため、急激な温度変化を加えられた場合でも、熱割れを抑制できたためと考えられる。 According to the results shown in Table 2, the arithmetic average roughness Ra of the outer peripheral side surface portion is 0.1 μm or less, and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 μm from the surface of the outer peripheral side surface portion. It is confirmed that the thermal cracking rate is 20% or less for the glass substrates of Experimental Example 1 to Experimental Example 6, Experimental Example 9 to Experimental Example 16, Experimental Example 19 and Experimental Example 21 in which the thickness is 0.5 μm or less. did it. This is because, for glass substrates having an arithmetic mean roughness Ra of the outer peripheral side surface after etching of 0.5 μm or less, the presence frequency of microcracks on the outer peripheral side surface is sufficiently low, so even when a sudden temperature change is applied. This is probably because the thermal cracking was suppressed.
 これに対して、外周側面部の算術平均粗さRaが0.1μmより大きく、外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaが0.5μmより大きい、実験例7、8、20のガラス基板については熱割れ率が20%を超えていることを確認できた。 On the other hand, the arithmetic average roughness Ra of the outer peripheral side surface portion is larger than 0.1 μm, and the arithmetic average roughness Ra of the outer peripheral side surface portion after etching after etching 5 μm from the surface of the outer peripheral side surface portion from 0.5 μm. For the large glass substrates of Experimental Examples 7, 8, and 20, it was confirmed that the thermal cracking rate exceeded 20%.
 これは、実験例7、8、20のガラス基板については、外周側面部における微小なクラックの存在頻度が高く、急激な温度変化が加えられた場合に微小クラックに応力が集中し、熱割れが生じたためと考えられる。 This is because, in the glass substrates of Experimental Examples 7, 8, and 20, the existence frequency of minute cracks in the outer peripheral side surface portion is high, and stress is concentrated on the minute cracks when a sudden temperature change is applied. This is thought to have occurred.
 実施例18のように化学強化深さDOLが15μm以上の場合には、エッチング後の外周側面部の算術平均粗さRaが0.5μmより大きくても、熱割れ率は低い。しかしながら、前述のようにエネルギーアシスト磁気記録媒体用ガラス基板のDOLは15μm以下であることが好ましい。DOLが10μmである実施例17は同等の算術平均粗さRaである実施例8に比較すると、熱割れ率は低減するが、算術平均粗さRaが0.5μmより低い実施例16ではより有効に熱割れ率を低減することができる。すなわち化学強化を行っているガラス基板においても算術平均粗さRaを0.5μm以下とすることは熱割れ率低減に有効である。 When the chemical strengthening depth DOL is 15 μm or more as in Example 18, the thermal cracking rate is low even if the arithmetic average roughness Ra of the outer peripheral side surface after etching is larger than 0.5 μm. However, as described above, the DOL of the glass substrate for energy-assisted magnetic recording medium is preferably 15 μm or less. Example 17 with a DOL of 10 μm reduces the thermal cracking rate compared to Example 8 with an equivalent arithmetic mean roughness Ra, but is more effective in Example 16 with an arithmetic mean roughness Ra lower than 0.5 μm. In addition, the thermal cracking rate can be reduced. That is, even in a glass substrate subjected to chemical strengthening, setting the arithmetic average roughness Ra to 0.5 μm or less is effective in reducing the thermal cracking rate.
 実施例22は低熱膨張率の硝材を使用しているために同等の算術平均粗さRaである実施例8よりも熱割れの発生率が低いが、同じ硝材で算術平均粗さRaが低い実施例21は更に熱割れ率が低い。すなわち低熱膨張率の硝材を使用する場合においても算術平均粗さRaを0.5μm以下とすることは熱割れ率低減に有効である。 Example 22 uses a glass material with a low coefficient of thermal expansion, so the rate of occurrence of thermal cracking is lower than Example 8 which has the same arithmetic mean roughness Ra, but the arithmetic mean roughness Ra is low with the same glass material. In Example 21, the thermal cracking rate is even lower. That is, even when a glass material having a low coefficient of thermal expansion is used, it is effective for reducing the thermal cracking rate to set the arithmetic average roughness Ra to 0.5 μm or less.
 また、実験例1~実験例4を比較すると、エッチング前の外周側面部の算術平均粗さRaはほとんど差がないが、エッチング後の外周側面部の算術平均粗さRaには明らかな差があり、それに応じて熱割れ率が変化していることを確認できる。ここから、エッチングを行うことによりはじめて、熱割れへの影響を評価できることが分かる。 Further, comparing Experimental Examples 1 to 4, there is almost no difference in the arithmetic average roughness Ra of the outer peripheral side surface before etching, but there is a clear difference in the arithmetic average roughness Ra of the outer peripheral side portion after etching. Yes, it can be confirmed that the thermal cracking rate is changed accordingly. From this, it can be seen that the effect on thermal cracking can be evaluated only by performing etching.
 さらに、実施例2と実験例9とを比較すると、エッチング後の外周側面部の算術平均粗さRaは同等であるが、エッチング後の外周側面部の最大高さ粗さRzが異なる。そして、熱割れの発生率もそれに従って変化していることが確認できる。 Furthermore, when Example 2 and Experimental Example 9 are compared, the arithmetic average roughness Ra of the outer peripheral side surface after etching is the same, but the maximum height roughness Rz of the outer peripheral side surface after etching is different. And it can confirm that the incidence rate of a thermal crack is also changing according to it.
 以上の結果から、熱割れ率には、エッチング後の外周側面部の算術平均粗さRaを0.5μm以下とすることが重要であるが、エッチング後の外周側面部の最大高さ粗さRzを10μm以下とすることも重要であることを確認できた。 From the above results, it is important for the thermal cracking rate that the arithmetic average roughness Ra of the outer peripheral side surface after etching is 0.5 μm or less, but the maximum height roughness Rz of the outer peripheral side surface after etching is It was confirmed that it was important to set the thickness to 10 μm or less.
 ここで参考として、実験例の一部について、表面状態を表現する手法として用いられる負荷率50%であるときの粗さ百分率を表4に記載する。表4には表3でも示した熱割れ率を併せて示す。 For reference, Table 4 shows the percentage of roughness at a load factor of 50%, which is used as a method for expressing the surface state of a part of the experimental example. Table 4 also shows the thermal cracking rates shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 負荷率50%であるときの粗さ百分率について、簡単に説明する。 簡 単 The roughness percentage when the load factor is 50% will be briefly explained.
 被測定物の表面近傍領域の表面形状の測定結果において、被測定物表面の巨視的形状を作る面に平行な平面で、被測定物の表面近傍領域を切断するとする。 Suppose that, in the measurement result of the surface shape of the near-surface area of the object to be measured, the near-surface area of the object to be measured is cut by a plane parallel to the surface that forms the macroscopic shape of the surface of the object to be measured.
 この場合に、当該表面近傍領域の最大に突出した最大突出部分に接する面で切断する高さのレベルを最高高さ0%とし、当該表面近傍領域において、最も深く凹んだ最深谷部に接する面で切断する高さのレベルを最低高さ100%とする。最高高さと、最低高さとの間の切断高さのレベルをパーセントで表したのが粗さ百分率となる。 In this case, the level of the height to be cut at the surface in contact with the maximum protruding portion that protrudes to the maximum in the surface vicinity region is set to 0% as the maximum height, and the surface in contact with the deepest valley portion that is deepest in the surface vicinity region The level of the height to be cut is set to a minimum height of 100%. The percentage of roughness represents the level of cutting height between the highest and lowest heights in percent.
 そして、負荷率とは、特定の粗さ百分率レベルで切断した場合における、被測定試料の切断面上に存在する領域の面積を、粗さ百分率100%で切断した場合における被測定試料の切断面上に存在する領域の面積で割ったものである。 The load factor is the cut surface of the sample to be measured when the area of the region existing on the cut surface of the sample to be measured is cut at 100% roughness when the sample is cut at a specific roughness percentage level. Divided by the area of the existing region.
 このため、負荷率50%であるときの粗さ百分率とは、負荷率が50%となる、切断高さのレベルを示したものといえる。すなわち、表4に記載した結果は、算術平均粗さRaの測定時と同様、5μmのエッチングを行ったガラス基板端面部を200μm×200μmの測定領域で測定し、測定領域全体に対する測定物の存在する領域の面積の割合が50%であるときの、粗さ百分率を示したものである。 Therefore, it can be said that the percentage of roughness when the load factor is 50% indicates the level of cutting height at which the load factor is 50%. That is, the results shown in Table 4 are the same as when measuring the arithmetic mean roughness Ra, and the end face of the glass substrate subjected to etching of 5 μm was measured in a measurement area of 200 μm × 200 μm, and the presence of the measurement object for the entire measurement area The percentage of roughness when the area ratio of the area to be processed is 50% is shown.
 表4の結果からも明らかなように、熱割れ率と、負荷率50%であるときの粗さ百分率との間には相関が見られず、割れ発生率を低減する際の指標としては適当ではないことが確認できる。 As is clear from the results in Table 4, there is no correlation between the thermal cracking rate and the roughness percentage when the load factor is 50%, which is an appropriate index for reducing the cracking rate. It can be confirmed that it is not.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年12月28日付で出願された日本特許出願(特願2015-257144)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 28, 2015 (Japanese Patent Application No. 2015-257144), which is incorporated by reference in its entirety.
10      磁気記録媒体用ガラス基板(ガラス基板)
121、122 主表面
13      外周端面
131、133 外周面取り部
132     外周側面部
14      内周端面
141、143 内周面取り部
142     内周側面部
10 Glass substrate for magnetic recording media (glass substrate)
121, 122 Main surface 13 Outer peripheral end surfaces 131, 133 Outer peripheral chamfered portion 132 Outer peripheral side surface 14 Inner peripheral end surface 141, 143 Inner peripheral chamfered portion 142 Inner peripheral side surface portion

Claims (7)

  1.  ドーナツ形状を有し、一対の主表面と、外周端面と、内周端面と、を有する磁気記録媒体用ガラス基板であって、前記外周端面は外周側面部と一対の外周面取り部とを有し、
     前記外周側面部の算術平均粗さRaが0.1μm以下であり、
     前記外周側面部について、表面から5μmをエッチングした後のエッチング後外周側面部の算術平均粗さRaが0.5μm以下である磁気記録媒体用ガラス基板。
    A glass substrate for a magnetic recording medium having a donut shape and having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, the outer peripheral end surface having an outer peripheral side surface portion and a pair of outer peripheral chamfered portions ,
    The arithmetic average roughness Ra of the outer peripheral side surface portion is 0.1 μm or less,
    About the said outer peripheral side part, the glass substrate for magnetic recording media whose arithmetic mean roughness Ra of the outer peripheral side part after an etching after etching 5 micrometers from the surface is 0.5 micrometer or less.
  2.  前記エッチング後外周側面部の最大高さ粗さRzが10μm以下である請求項1に記載の磁気記録媒体用ガラス基板。 The glass substrate for a magnetic recording medium according to claim 1, wherein the maximum height roughness Rz of the outer peripheral side surface after the etching is 10 μm or less.
  3.  50℃以上350℃以下の温度域における熱膨張係数が70x10-7/℃以下であり、
     ガラス転移点Tgが650℃以上であるガラス材料からなる請求項1または2に記載の磁気記録媒体用ガラス基板。
    The thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower is 70 × 10 −7 / ° C. or lower,
    The glass substrate for magnetic recording media according to claim 1 or 2, comprising a glass material having a glass transition point Tg of 650 ° C or higher.
  4.  50℃以上350℃以下の温度域における熱膨張係数が55x10-7/℃以下であるガラス材料からなる請求項1乃至3のいずれか一項に記載の磁気記録媒体用ガラス基板。 4. The glass substrate for a magnetic recording medium according to claim 1, comprising a glass material having a thermal expansion coefficient of 55 × 10 −7 / ° C. or less in a temperature range of 50 ° C. or more and 350 ° C. or less.
  5.  少なくともガラス基板の外周側面部において、化学強化処理による圧縮応力の深さDOLが、1μm≦DOL≦15μmである請求項1乃至4のいずれか一項に記載の磁気記録媒体用ガラス基板。 The glass substrate for a magnetic recording medium according to any one of claims 1 to 4, wherein the depth DOL of the compressive stress by the chemical strengthening treatment is 1 μm ≦ DOL ≦ 15 μm at least on the outer peripheral side surface of the glass substrate.
  6.  エネルギーアシスト磁気記録媒体用の磁気記録媒体用ガラス基板である、請求項1乃至5のいずれか一項に記載の磁気記録媒体用ガラス基板。 The glass substrate for magnetic recording media according to any one of claims 1 to 5, which is a glass substrate for magnetic recording media for energy-assisted magnetic recording media.
  7.  請求項1乃至6のいずれか一項に記載の磁気記録媒体用ガラス基板を含む磁気記録媒体。 A magnetic recording medium comprising the glass substrate for a magnetic recording medium according to any one of claims 1 to 6.
PCT/JP2016/052541 2015-12-28 2016-01-28 Glass substrate for magnetic recording medium and magnetic recording medium WO2017115468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-257144 2015-12-28
JP2015257144A JP5939350B1 (en) 2015-12-28 2015-12-28 Glass substrate for magnetic recording medium, magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2017115468A1 true WO2017115468A1 (en) 2017-07-06

Family

ID=56184645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052541 WO2017115468A1 (en) 2015-12-28 2016-01-28 Glass substrate for magnetic recording medium and magnetic recording medium

Country Status (3)

Country Link
JP (1) JP5939350B1 (en)
SG (1) SG10201604651VA (en)
WO (1) WO2017115468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119047A (en) * 2018-05-16 2020-12-22 Hoya株式会社 Glass for magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467118B1 (en) 2017-06-30 2019-02-06 Hoya株式会社 Magnetic disk substrate and magnetic disk

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175964A (en) * 1997-12-09 1999-07-02 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium
JP2006179180A (en) * 1995-04-27 2006-07-06 Asahi Glass Co Ltd Magnetic disk
JP2013023420A (en) * 2011-07-22 2013-02-04 Ohara Inc Crystallized glass, and crystallized glass substrate for information recording medium
JP2015060614A (en) * 2013-09-20 2015-03-30 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
JP2015135720A (en) * 2013-02-22 2015-07-27 Hoya株式会社 Glass substrate of magnetic disk and magnetic disk
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179180A (en) * 1995-04-27 2006-07-06 Asahi Glass Co Ltd Magnetic disk
JPH11175964A (en) * 1997-12-09 1999-07-02 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium
JP2013023420A (en) * 2011-07-22 2013-02-04 Ohara Inc Crystallized glass, and crystallized glass substrate for information recording medium
JP2015135720A (en) * 2013-02-22 2015-07-27 Hoya株式会社 Glass substrate of magnetic disk and magnetic disk
JP2015060614A (en) * 2013-09-20 2015-03-30 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119047A (en) * 2018-05-16 2020-12-22 Hoya株式会社 Glass for magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
US11447414B2 (en) 2018-05-16 2022-09-20 Hoya Corporation Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording and reproducing apparatus, and magnetic recording and reproducing apparatus
US11884584B2 (en) 2018-05-16 2024-01-30 Hoya Corporation Glass for magnetic recording medium substrate or for glass spacer for magnetic recording and reproducing

Also Published As

Publication number Publication date
JP2017120677A (en) 2017-07-06
SG10201604651VA (en) 2017-07-28
JP5939350B1 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP4982810B2 (en) Glass substrate manufacturing method and magnetic disk manufacturing method
WO2008062656A1 (en) Glass substrate for information recording medium, method for manufacturing glass substrate for information recording medium, and information recording medium
JPWO2008062657A1 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium
US20050074635A1 (en) Information recording medium and method of manufacturing glass substrate for the information recording medium, and glass substrate for the information recording medium, manufactured using the method
JP5939350B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP2003346316A (en) Information-recording medium, manufacturing method of glass substrate for the information recording medium and the glass substrate for information recording medium manufactured by the method
JP5126401B1 (en) Glass substrate for magnetic recording media
JP5235118B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2014188668A (en) Method of manufacturing glass substrate
JP2007102843A (en) Glass substrate for magnetic recording medium and magnetic disk
JP2004241089A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of the magnetic disk
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
WO2017090260A1 (en) Glass substrate for magnetic disc, and magnetic disc
WO2017119147A1 (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP2008130180A (en) Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium, and information recording medium
JP5036323B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate holder
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
JP6020753B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP6020754B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP5722618B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP2012203959A (en) Manufacturing method for glass substrate for magnetic information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881448

Country of ref document: EP

Kind code of ref document: A1