WO2017115455A1 - Water treatment system, water treatment method , and water production method - Google Patents

Water treatment system, water treatment method , and water production method Download PDF

Info

Publication number
WO2017115455A1
WO2017115455A1 PCT/JP2016/004855 JP2016004855W WO2017115455A1 WO 2017115455 A1 WO2017115455 A1 WO 2017115455A1 JP 2016004855 W JP2016004855 W JP 2016004855W WO 2017115455 A1 WO2017115455 A1 WO 2017115455A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hollow fiber
turbidity
fiber membrane
raw water
Prior art date
Application number
PCT/JP2016/004855
Other languages
French (fr)
Japanese (ja)
Inventor
若狭 浩之
高志 西田
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to SG11201805603SA priority Critical patent/SG11201805603SA/en
Priority to JP2017558844A priority patent/JPWO2017115455A1/en
Publication of WO2017115455A1 publication Critical patent/WO2017115455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities

Definitions

  • the present invention relates to a water treatment system, a water treatment method, and a water production method, and more particularly to a technique suitable for treating raw water such as river water and groundwater and reusing it as industrial water.
  • the hollow fiber membrane filtration module disclosed in Patent Document 1 is a hollow fiber membrane bundle composed of a number of hollow fiber membranes, one end (upper end) being fixed to a container and the other end (lower end) not fixed.
  • the hollow fiber membrane filtration module disclosed in Patent Document 1 is a hollow fiber membrane bundle composed of a number of hollow fiber membranes, one end (upper end) being fixed to a container and the other end (lower end) not fixed.
  • it has superior characteristics as compared with those using a hollow fiber membrane bundle in which both ends are fixed. That is, when air scrubbing is applied to perform a cleaning process for removing deposits on the surface of the hollow fiber membrane, the non-fixed end side of the hollow fiber membrane moves freely, so that the effect of peeling the deposited material is high.
  • the hollow fiber membrane filtration module includes a rectifier tube extending from the fixed side of the hollow fiber membrane bundle toward the longitudinal direction of the hollow fiber membrane bundle, thereby entanglement of the hollow fiber membranes during cleaning.
  • a rectifier tube extending from the fixed side of the hollow fiber membrane bundle toward the longitudinal direction of the hollow fiber membrane bundle, thereby entanglement of the hollow fiber membranes during cleaning.
  • an inorganic flocculant may be added and combined with treatment by a hollow fiber membrane filtration module.
  • a hollow fiber membrane filtration module In order to perform effective water treatment, it is considered effective to add a high concentration of the inorganic flocculant.
  • the high concentration of the inorganic flocculant itself can cause membrane fouling and clogging, There is a concern that efficient filtration with a hollow fiber membrane (hereinafter simply referred to as filtration treatment) cannot be performed, and the life of the hollow fiber membrane is shortened. Therefore, when combined with the filtration treatment, the concentration or addition amount of the inorganic flocculant is generally kept low.
  • the size of the aggregate (hereinafter referred to as “floc”) generally becomes small, and on the contrary, the pores of the hollow fiber membrane are easily blocked. It has been found that the cleaning effect by air scrubbing is diminished by the water entering and staying between the hollow fibers.
  • an object of the present invention is to realize the efficiency of the filtration process and the reduction of the clogging of the membrane and improve the cleaning effect when performing the water treatment using the hollow fiber membrane filtration module. .
  • the turbidity of the raw water is measured prior to the filtration treatment with the hollow fiber membrane bundle.
  • the turbidity of raw water is measured prior to the filtration treatment with the hollow fiber membrane bundle. And a step of adding an inorganic flocculant in an amount adjusted based on the measured turbidity.
  • another embodiment of the present invention includes a step of measuring the turbidity of raw water, a step of adding an amount of an inorganic flocculant adjusted based on the measured turbidity, and the inorganic flocculant being added.
  • the raw water is filtered by a hollow fiber membrane bundle whose one end is not fixed, and a water production method is provided.
  • the turbidity of the raw water is measured prior to the raw water filtration using the hollow fiber membrane bundle not fixed at one end, and the amount adjusted based on the measured turbidity is measured.
  • Add inorganic flocculant is added.
  • raw water refers to river water, lake water, ground water, various wastewater after treatment, etc., and can be reused as industrial water by removing turbidity. .
  • Turbidity is an index representing the degree of turbidity of water defined in JIS K 0101.
  • 1 mg of kaolin or formazine as a standard substance is uniformly dispersed in 1 L (liter) of purified water. It is determined by comparing the turbidity of the suspension (defined as “1 degree of turbidity”) with the sample (raw water).
  • kaolin is used as a standard substance and is simply labeled as “turbidity 50”, but it is needless to say that formazine can be used as a standard substance.
  • the inorganic flocculant includes aluminum-based and iron-based ones.
  • a sulfate band aluminum sulfate
  • ferric chloride aluminum sulfate
  • Ferric chloride Polyaluminum chloride
  • iron-based polyferric sulfate can be used.
  • FIG. 1 is a side view showing a partially broken example of a hollow fiber membrane filtration module applicable to the water treatment system of the present invention.
  • a hollow fiber membrane filtration module (hereinafter simply referred to as a filtration module) denoted by reference numeral 100 as a whole is a hollow fiber membrane bundle that can be a microfiltration membrane or an ultrafiltration membrane comprising a number of hollow fiber membranes.
  • 1 has a container 3 containing 1.
  • one end side (lower end side in FIG. 1) of each hollow fiber membrane is sealed and is a free end not fixed to the container 3.
  • the other end side (the upper end side in FIG.
  • each hollow fiber membrane is opened and is a fixed end fixed to the container 3 by a fixing member 6. That is, the hollow fiber membrane bundle 1 is converged and fixed while maintaining the open state on the fixed end side of each hollow fiber membrane, and the filtered water flows into the container 3 so as to exit from the opening on the fixed end side. Contained.
  • a lower end portion of the container 3, that is, an end portion on the free end side of the hollow fiber membrane bundle 1 is formed as a raw water introduction portion 7 for introducing raw water, and an air introduction portion 9 for introducing compressed air therein. Is connected.
  • the upper end of the container 3, that is, the end on the fixed end side of the hollow fiber membrane bundle 1 is formed as a treated water outlet 11 for discharging filtered water (hereinafter referred to as treated water), Further, an exhaust part 13 is provided in the vicinity of the upper end of the container 3.
  • the hollow fiber membrane bundle 1 is extended so as to extend from the fixed end side to the free end side of the hollow fiber membrane bundle 1.
  • a rectifier tube can be arranged near the center.
  • Raw water is introduced into the container 3 from the raw water introduction section 7 and filtered through the hollow fiber membrane bundle 1, and the treated water flows out through the outlet section 11.
  • air backwashing air scrubbing; hereinafter referred to as air backwashing.
  • FIG. 2 schematically shows an embodiment of the water treatment system of the present invention using the filtration module 100 of FIG.
  • a plurality of (four in the illustrated example) filtration modules 100 are disposed, and the raw water introduction part 7 and the air introduction part 9 are connected in common to the raw water pipe 70 and the air pipe 90, respectively.
  • the raw water is supplied to each filtration module 100 at a pressure of, for example, 0.1 MPa (gauge pressure) through the raw water pipe 70 and the raw water introduction unit 7 by the pump 72.
  • compressed air of 0.1 MPa or more is introduced into each filtration module 100 from the compressed air supply source (air compressor or the like) 92 through the air pipe 90 and the air introduction unit 9.
  • the raw water introduction part 7 is also used as a drain removal part of the filtration module 100, and the terminal side of the raw water pipe 70 is a drain discharge pipe 76.
  • the treated water outlet 11 and the exhaust 13 of the filtration module 100 are connected in common to the treated water pipe 110 and the exhaust pipe 130, respectively. That is, the treated water filtered by passing through the hollow fiber membrane bundle 1 of the filtration module 100 is led out from the lead-out part 11 through the treated water pipe 110, and is used as, for example, industrial water.
  • the end of the exhaust pipe 130 is connected to the drain discharge pipe 76.
  • Valves 74, 94, 114 and 134 in the form of on-off valves are inserted in the drain discharge pipe 76, the air pipe 90, the treated water pipe 110 and the exhaust pipe 130 at the end of the raw water pipe 70, respectively. These valves are appropriately controlled at the time of filtration processing, air backwashing, and the like, and can open / close the flow path of each pipe. Further, pressure sensors 78 and 118 can be disposed in the raw water pipe 70 and the treated water pipe 110, respectively. For example, by detecting the pressure difference between the raw water introduction side and the discharge side, the performance of the hollow fiber membrane is reduced. Can be used for judgment.
  • a turbidity measuring device 202 that measures turbidity prior to distributing raw water to the filtration module 100 and a flocculant addition that adds an inorganic flocculant to the raw water based on the measured turbidity are added to the raw water pipe 70.
  • a device 204 is provided. These are the constituent elements that characterize the present embodiment, but those in appropriate forms can be used.
  • the turbidity measuring device 202 can use an automatic turbidity measuring device based on JIS K 0801, it is preferable that the measured turbidity information can be presented to a controller described later.
  • the flocculant addition apparatus 204 includes an inorganic flocculant storage unit and an input unit that inputs an amount of the inorganic flocculant into the raw water pipe 70 in accordance with an instruction from a controller or the like described later.
  • FIG. 3 is a block diagram showing a configuration example of a control system applicable to the configuration of the system shown in FIG.
  • the illustrated control system is mainly configured by a controller 200 having a CPU that executes a control procedure described later with reference to FIG. 4, a ROM that stores a program corresponding to the control procedure, a working RAM, and the like.
  • Control targets of the controller 200 are valves 74, 94, 114, 134, a pump 72, a compressed air supply source (such as an air compressor) 92, and a charging unit 204, which are driving units 212, 214, Driven through 216 and 218.
  • measurement information of the turbidity measuring device 202 is input to the controller 200, and information from the cleaning timing defining unit 220 that defines the cleaning timing by air backwashing or the like is input.
  • the air backwash can be performed based on time, for example, at a timing of every 15 to 30 minutes.
  • the cleaning timing defining unit 220 can include a timer unit that manages time.
  • the air backwashing may be performed by judging other conditions and the performance deterioration of the hollow fiber membrane bundle 1, and in that case, the cleaning timing defining part 220 is set to the detection values of the pressure sensors 78 and 118, for example. A comparator or the like for comparison may be included.
  • chemical cleaning performed by appropriately putting chemicals such as sodium hypochlorite into the filtration module 100 can be combined.
  • the timing of chemical cleaning can be performed based on time, for example, and can be performed every 1-2 days, for example.
  • FIG. 4 shows an example of the control procedure of the water treatment system of FIG. 2 using the control system of FIG.
  • this procedure is started, first, the valve 114 is opened and the valves 74, 94 and 134 are closed in step S1, and then the pump 72 is driven in step S3.
  • the flow of raw water from the raw water pipe 70 to each filtration module 100 and the flow of treated water from each filtration module 100 through the treated water pipe 110 are established, and the air pipe 90, the drain discharge pipe 76 and the exhaust gas are exhausted.
  • Tube 130 is closed.
  • step S5 the turbidity measuring device 202 measures the turbidity of the raw water
  • step S7 the flocculant adding device 204 is driven to appropriately determine the turbidity and the flow rate of the raw water to be processed.
  • An amount of inorganic flocculant is charged.
  • the raw water to which the inorganic flocculant is added flows into the filtration module 100.
  • the measurement of turbidity and the adjustment of the amount of inorganic flocculant added in accordance therewith may be performed at an appropriate timing, not always.
  • step S11 it is determined whether or not the cleaning timing is due to air backwashing. If the determination is negative, the process returns to step S5. If the determination is affirmative, the process proceeds to step S13, and the valve 114 is closed and the valve 74 is closed. , 94 and 134 are opened. Thereby, the flow of the raw water from the raw water pipe 70 to each filtration module 100 and the flow of the treated water from each filtration module 100 through the treated water pipe 110 are blocked, and the air pipe 90, the drain discharge pipe 76 and the exhaust gas are exhausted. A flow path through the tube 130 is established.
  • step S15 the driving of the flocculant adding device 204 is stopped, and the air compressor 92 is driven in step S15.
  • air backwashing of the hollow fiber membrane bundle 1 is performed by supplying compressed air to the filtration module 100 via the air pipe 90. Fluid containing flocs floating in the container 3 or flocs separated from the hollow fiber membrane bundle 1 by this air backwashing is transferred from the exhaust unit 13 to the drain discharge pipe 76 via the exhaust pipe 130.
  • natural water introduction part 7 of the lower end side of the container 3 serves as a drain discharge port, the floc settled in the raw
  • the period of cleaning by air backwashing can also be managed by time, and when it is determined in step S19 that the cleaning has been completed, the driving of the air compressor 92 is stopped in step S21. And normal water treatment is restarted by returning to step S1.
  • a processing step for performing chemical cleaning may be added.
  • FIG. 5A is a graph showing experimental results comparing the water permeability after filtration treatment according to the type and concentration of the inorganic flocculant added to the raw water.
  • the experiment included the following five samples: Sample 1: raw water not containing inorganic flocculant (turbidity 25), Sample 2: Raw water to which 5 ppm of sulfuric acid band was added, Sample 3: raw water to which 10 ppm of sulfuric acid band was added, Sample 4: Raw water to which 5 ppm of ferric chloride was added, and Sample 5: Raw water to which 10 ppm of ferric chloride was added, Prepared.
  • PUREA registered trademark
  • Kuraray Aqua Co., Ltd. which is a filtration module having the structure as shown in FIG. 1
  • Raw water was supplied to the filtration membrane at a pressure of 0.1 MPa.
  • the vertical axis in FIG. 5A indicates the flow rate of the treated water, and indicates how many liters of treated water are obtained per hour for the membrane 1 m 2 . From this graph, it is better to add inorganic flocculant to raw water, water permeability is better, and efficient filtration without membrane clogging is possible, and higher addition rate (concentration) of inorganic flocculant is higher. The knowledge that it becomes efficient was obtained. This is considered to be derived from the fact that the floc is formed in a preferable size.
  • FIG. 5B is a graph showing the experimental results. From this graph, sample 3-2 having a higher addition rate (concentration) of the inorganic flocculant than sample 3 has higher water permeability, but sample 3-3 to which the inorganic flocculant is added at a higher concentration is more water permeable. It turned out to be lower.
  • the present inventor further conducted an experiment to verify the water permeability by changing the addition rate of the sulfuric acid band with respect to the raw water (turbidity 25).
  • the raw water used in this experiment had a water quality within the following range. pH: 5.4 to 7.8 SS: 20-380 mg / L Chromaticity: 30-50 Electrical conductivity: 1.80-5.34 mS / cm Salinity: 0.3% Ca: 250 to 870 mg / L SiO 2 : 7 mg / L NH 4 + : 0.2 to 0.7 mg / L CaCO 3 : 150 to 200 mg / L
  • FIG. 6 is a graph showing the experimental results. From this result, adding an inorganic flocculant to an appropriate concentration, that is, when using a sulfuric acid band, adding about 15 ppm to the raw water can improve water permeability. It was confirmed that this was preferable.
  • the inventor conducted an experiment to confirm the cleaning effect according to the concentration of the inorganic flocculant.
  • 50 L of the above samples 1 to 5 was supplied to the same filtration module as described above, and then physical cleaning (backwashing with air) and (chemical cleaning) were performed.
  • FIG. 7A is a graph showing how much the performance of the membrane has recovered after washing, as a flow rate ratio when the water permeability before supply is 100%. From this graph, it is generally found that the addition of the inorganic flocculant to the raw water has better recoverability, and considering the water permeability shown in FIG. 5A, it is preferable to add the inorganic flocculant at a concentration of 10 ppm or more. It was. This is also considered to be derived from the fact that the floc is formed in a preferred size.
  • FIG. 7B is a graph showing the experimental results. From this graph, when using a sulfuric acid band, it is possible to add a concentration of about 15 ppm (for example, in the range of 12.5 to 17.5 ppm) with respect to raw water with a turbidity of 25. It was confirmed that it was preferable also from the viewpoint.
  • the use of an inorganic flocculant having such a concentration is particularly suitable for the treatment of raw water having the above water quality.
  • FIG. 8 shows the result.
  • water is required to be treated so that the SDI value is 3 to 4 or less.
  • UF ultrafiltration membrane
  • the present inventor conducted an experiment to obtain a preferable concentration of an inorganic flocculant (sulfuric acid band) from the viewpoint of water permeability and recoverability after washing with respect to various turbidities.
  • FIG. 9 shows the result. From this result, it was confirmed that the turbidity and the preferable addition amount of the inorganic flocculant have a substantially linear relationship.
  • almost the amount of inorganic flocculant added (ppm) 0.45 ⁇ turbidity + 5
  • the relationship is expressed by the following formula. Therefore, when applied to the water treatment system shown in FIG. 2 and FIG. 3, the inorganic flocculant in such an amount that a concentration corresponding to the flow rate of the raw water to be treated can be obtained with respect to the turbidity measured by the turbidity measuring device 202. Therefore, the flocculant adding device 204 may be controlled in step S7 of FIG.
  • a table in which the turbidity, the addition amount, and the flow rate of raw water are tabulated in advance is stored in the ROM of the controller 200 and the table is referred to. can do.
  • the CPU of the controller 200 may calculate a preferable concentration and hence an addition amount according to the above formula based on the turbidity.
  • the present invention is not limited to the above-described embodiment and the modifications described in various places.
  • concentration for the case of adding a sulfuric acid band as an inorganic flocculant has been specifically described, but this is merely an example, and PAC or iron-based inorganic flocculants such as ferric chloride and polysulfuric acid Needless to say, an appropriate addition amount can be determined in the same manner when using ferric iron or the like.
  • the type, concentration or amount of addition of the inorganic flocculant used Of course, it can be determined depending on the specifications of the hollow fiber membrane (such as the diameter and pore diameter of the hollow fiber), or depending on the use conditions and environmental conditions (water temperature, etc.) of the filtration system, the type, concentration or amount of addition of the inorganic flocculant used Of course, it can be determined.
  • a water treatment system that automatically performs turbidity measurement and inorganic flocculant addition is illustrated, but in light of the spirit of the present invention embodied in a water treatment method or a water production method, At least a part may be performed in accordance with an operator's instruction or operation.
  • the water treated according to the present invention may be used directly as industrial water or the like, or may be subjected to additional treatment.

Abstract

When performing water treatment using a hollow fiber membrane filtration module, the present invention achieves increased efficiency of filtration and reduction of membrane clogging and also makes it possible to improve the washing efficacy of air backwashing, etc. Prior to performing filtration of raw water using a hollow fiber membrane bundle, one end of which is not fixed, the turbidity of the raw water is measured and an inorganic flocculant is added in an amount that is adjusted on the basis of the measured turbidity. By thereby forming flocs of favorable size, increased efficiency of filtration and reduction of membrane clogging are achieved and it also becomes possible to improve washing efficacy.

Description

水処理システム、水処理方法および水製造方法Water treatment system, water treatment method and water production method
 本発明は、水処理システム、水処理方法および水製造方法に関し、詳しくは河川水や地下水などの原水を処理し、工業用水等として再利用するために好適な技術に関するものである。 The present invention relates to a water treatment system, a water treatment method, and a water production method, and more particularly to a technique suitable for treating raw water such as river water and groundwater and reusing it as industrial water.
 河川水や地下水などの原水を処理するシステムとして、中空糸膜ろ過モジュールを利用するものがある。中でも、特許文献1に開示された中空糸膜ろ過モジュールは、一端(上端)が容器に固定される一方、他端(下端)が固定されていない、多数の中空糸膜からなる中空糸膜束を用いる「片端フリー」と称される構造を採用することで、両端が固定された中空糸膜束を用いるものに比べ、優れた特徴を有している。すなわち、エアースクラビングを適用して中空糸膜面にある堆積物を除去する洗浄処理を行う場合、中空糸膜の非固定端側が自由に動くために、堆積物質を剥離させる効果が高いのである。また、特許文献1の中空糸膜ろ過モジュールでは、中空糸膜束の固定側から中空糸膜束の長手方向に向かって延在する整流管を備えることで、洗浄時における中空糸膜同士の絡み合いや、それによる中空糸膜の切断、あるいは中空糸膜の固定端側の応力集中に起因した中空糸膜の折損が防止されるという効果も得られる。 There are systems that use hollow fiber membrane filtration modules as systems for treating raw water such as river water and groundwater. Among them, the hollow fiber membrane filtration module disclosed in Patent Document 1 is a hollow fiber membrane bundle composed of a number of hollow fiber membranes, one end (upper end) being fixed to a container and the other end (lower end) not fixed. By adopting a structure called “one-end free” using the above, it has superior characteristics as compared with those using a hollow fiber membrane bundle in which both ends are fixed. That is, when air scrubbing is applied to perform a cleaning process for removing deposits on the surface of the hollow fiber membrane, the non-fixed end side of the hollow fiber membrane moves freely, so that the effect of peeling the deposited material is high. Further, in the hollow fiber membrane filtration module of Patent Document 1, the hollow fiber membrane filtration module includes a rectifier tube extending from the fixed side of the hollow fiber membrane bundle toward the longitudinal direction of the hollow fiber membrane bundle, thereby entanglement of the hollow fiber membranes during cleaning. In addition, it is possible to prevent the hollow fiber membrane from being broken due to the cutting of the hollow fiber membrane or the stress concentration on the fixed end side of the hollow fiber membrane.
 一方、濁度の高い原水を処理するために、無機凝集剤を添加し、これを中空糸膜ろ過モジュールによる処理と組み合わせることがある。効果的な水処理を行うには無機凝集剤を高濃度に添加することが有効であると考えられるところ、高濃度の無機凝集剤はそれ自体が膜ファウリングや閉塞の原因となり得ることから、効率的な中空糸膜によるろ過処理(以下、単にろ過処理という)を行えなくなったり、中空糸膜の寿命を短くしたりする懸念があった。そのため、ろ過処理と組み合わせる場合、無機凝集剤の濃度ないし添加量は低く抑えられているのが一般的である。 On the other hand, in order to treat raw water with high turbidity, an inorganic flocculant may be added and combined with treatment by a hollow fiber membrane filtration module. In order to perform effective water treatment, it is considered effective to add a high concentration of the inorganic flocculant. However, since the high concentration of the inorganic flocculant itself can cause membrane fouling and clogging, There is a concern that efficient filtration with a hollow fiber membrane (hereinafter simply referred to as filtration treatment) cannot be performed, and the life of the hollow fiber membrane is shortened. Therefore, when combined with the filtration treatment, the concentration or addition amount of the inorganic flocculant is generally kept low.
特許第3686225号公報Japanese Patent No. 3686225 国際公開WO2013/099857号公報International Publication WO2013 / 099857
 しかしながら、本発明者が鋭意検討したところ、無機凝集剤が低濃度であると凝集物(以下、フロックという)のサイズは一般に小さくなり、かえって中空糸膜の孔を閉塞しやすくなることや、フロックが中空糸間に容易に入り込んで滞留することで、エアースクラビングによる洗浄効果が減殺されることがわかった。 However, as a result of diligent investigations by the present inventor, when the inorganic flocculant has a low concentration, the size of the aggregate (hereinafter referred to as “floc”) generally becomes small, and on the contrary, the pores of the hollow fiber membrane are easily blocked. It has been found that the cleaning effect by air scrubbing is diminished by the water entering and staying between the hollow fibers.
 よって本発明は、中空糸膜ろ過モジュールを用いて水処理を行うに際し、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようにすることを目的とする。 Therefore, an object of the present invention is to realize the efficiency of the filtration process and the reduction of the clogging of the membrane and improve the cleaning effect when performing the water treatment using the hollow fiber membrane filtration module. .
 そのために、本発明の一形態では、一端が固定されていない中空糸膜束により原水を処理する水処理システムにおいて、中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する濁度計測部と、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する凝集剤添加部と、を備える。 Therefore, in one form of the present invention, in a water treatment system that treats raw water with a hollow fiber membrane bundle that is not fixed at one end, the turbidity of the raw water is measured prior to the filtration treatment with the hollow fiber membrane bundle. A turbidity measuring unit; and a flocculant adding unit for adding an amount of an inorganic flocculant adjusted based on the measured turbidity.
 また、本発明の他の形態では、一端が固定されていない中空糸膜束により原水を処理する水処理方法において、中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する工程と、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する工程と、を備える。 In another embodiment of the present invention, in the water treatment method of treating raw water with a hollow fiber membrane bundle whose one end is not fixed, the turbidity of raw water is measured prior to the filtration treatment with the hollow fiber membrane bundle. And a step of adding an inorganic flocculant in an amount adjusted based on the measured turbidity.
 さらに、本発明の別の形態は、原水の濁度を計測する工程と、当該計測された濁度に基づいて調整された量の無機凝集剤を添加する工程と、当該無機凝集剤が添加された原水を、一端が固定されていない中空糸膜束によりろ過処理する工程と、備える水製造方法に存する。 Furthermore, another embodiment of the present invention includes a step of measuring the turbidity of raw water, a step of adding an amount of an inorganic flocculant adjusted based on the measured turbidity, and the inorganic flocculant being added. The raw water is filtered by a hollow fiber membrane bundle whose one end is not fixed, and a water production method is provided.
 本発明によれば、一端が固定されていない中空糸膜束を用いて原水のろ過処理を行うに先立って、原水の濁度を計測し、当該計測された濁度に基づいて調整した量の無機凝集剤を添加する。これにより、フロックを好ましいサイズに形成することで、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようになる。 According to the present invention, the turbidity of the raw water is measured prior to the raw water filtration using the hollow fiber membrane bundle not fixed at one end, and the amount adjusted based on the measured turbidity is measured. Add inorganic flocculant. Thereby, by forming the floc into a preferred size, it is possible to improve the efficiency of the filtration process and reduce the blockage of the membrane, and to improve the cleaning effect.
本発明に適用可能な中空糸膜ろ過モジュールの一例を、一部破断して示す側面図である。It is a side view which shows a partially broken example of a hollow fiber membrane filtration module applicable to the present invention. 図1の中空糸膜ろ過モジュールを用いた、本発明水処理システムの一実施形態を模式的に示すブロック図である。It is a block diagram which shows typically one Embodiment of this invention water treatment system using the hollow fiber membrane filtration module of FIG. 図2の水処理システムを作動させるための制御系の概略を示すブロック図である。It is a block diagram which shows the outline of the control system for operating the water treatment system of FIG. 図3の制御系による水処理システムの制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the control procedure of the water treatment system by the control system of FIG. 原水に添加する無機凝集剤の種類や濃度を異ならせて用意した5つの試料に対する、ろ過処理後の透水性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the water permeability after the filtration process with respect to five samples prepared by varying the kind and density | concentration of the inorganic flocculant added to raw | natural water. 図5Aのうちの1つの試料について、原水に添加する無機凝集剤の濃度を異ならせて用意した3つの試料に対する、ろ過処理後の透水性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the water permeability after filtration with respect to three samples prepared by varying the density | concentration of the inorganic flocculant added to raw | natural water about one sample of FIG. 5A. 濁度25の原水に対して添加する無機凝集剤の濃度と透水性との関係を計測した結果を示すグラフである。It is a graph which shows the result of having measured the relationship between the density | concentration of the inorganic flocculant added with respect to the raw | natural water of turbidity 25, and water permeability. 原水に添加する無機凝集剤の種類や濃度を異ならせて用意した5つの試料に対する、洗浄後のろ過性能の回復性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the recoverability of the filtration performance after washing | cleaning with respect to five samples prepared by varying the kind and density | concentration of the inorganic flocculant added to raw | natural water. 図7Aのうちの1つの試料について、原水に添加する無機凝集剤の濃度を異ならせて用意した3つの試料に対する、洗浄後のろ過性能の回復性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the recoverability of the filtration performance after washing | cleaning with respect to three samples prepared by varying the density | concentration of the inorganic flocculant added to raw | natural water about one sample of FIG. 7A. 無機凝集剤として硫酸バンドを添加する場合の濃度とSDI値との関係を示す説明図である。It is explanatory drawing which shows the relationship between the density | concentration in the case of adding a sulfuric acid band as an inorganic flocculant, and an SDI value. 原水の濁度と無機凝集剤の好ましい濃度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the turbidity of raw | natural water, and the preferable density | concentration of an inorganic flocculant.
 以下、図面を参照して本発明を詳細に説明する。ただし、本発明は以下に述べる実施の態様に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiments described below.
(定義)
 なお、本明細書および特許請求の範囲において、原水とは、河川水、湖沼水、地下水、処理後の各種排水などを言い、濁りを除去することで工業用水などとして再利用可能なものを言う。
(Definition)
In the present specification and claims, raw water refers to river water, lake water, ground water, various wastewater after treatment, etc., and can be reused as industrial water by removing turbidity. .
 また、濁度とは、JIS K 0101に規定される水の濁りの程度を表す指標であり、精製水1L(リットル)に対して標準物質であるカオリンまたはホルマジン1mgを均一に分散させたときの懸濁液の濁り(「濁度1度」と定義される)と試料(原水)とを比較することで決定されたものを言う。以下の実施形態では標準物質としてカオリンを用い、単に「濁度50」の如く標記するが、標準物質としてホルマジンを用いることができることは勿論である。 Turbidity is an index representing the degree of turbidity of water defined in JIS K 0101. When 1 mg of kaolin or formazine as a standard substance is uniformly dispersed in 1 L (liter) of purified water. It is determined by comparing the turbidity of the suspension (defined as “1 degree of turbidity”) with the sample (raw water). In the following embodiments, kaolin is used as a standard substance and is simply labeled as “turbidity 50”, but it is needless to say that formazine can be used as a standard substance.
 さらに、無機凝集剤にはアルミニウム系や鉄系のものが含まれ、以下の実施形態では硫酸バンド(硫酸アルミニウム)および塩化第二鉄を用いる場合を例示するが、その他、アルミニウム系のものとしてPAC(ポリ塩化アルミニウム)など、また鉄系のものポリ硫酸第二鉄など)を用いることができる。 Further, the inorganic flocculant includes aluminum-based and iron-based ones. In the following embodiments, a case where a sulfate band (aluminum sulfate) and ferric chloride are used is exemplified. (Polyaluminum chloride) or iron-based polyferric sulfate can be used.
(水処理システムの実施形態)
 図1は、本発明水処理システムに適用可能な中空糸膜ろ過モジュールの一例を一部破断して示す側面図である。図1において、全体を符号100で示す中空糸膜ろ過モジュール(以下、単にろ過モジュールという)は、多数の中空糸膜からなる、精密ろ過膜または限外ろ過膜とすることができる中空糸膜束1を収容した容器3を有する。ここで、各中空糸膜の一端側(図1の下端側)は封止されるとともに、容器3には固定されていない自由端となっている。一方、各中空糸膜の他端側(図1の上端側)は開口されるとともに、固定部材6によって容器3に固定された固定端となっている。すなわち、中空糸膜束1は、各中空糸膜の固定端側の開口状態を保ったまま収束されて固定され、ろ過された水が当該固定端側の開口から出て行くように容器3に収容されている。
(Embodiment of water treatment system)
FIG. 1 is a side view showing a partially broken example of a hollow fiber membrane filtration module applicable to the water treatment system of the present invention. In FIG. 1, a hollow fiber membrane filtration module (hereinafter simply referred to as a filtration module) denoted by reference numeral 100 as a whole is a hollow fiber membrane bundle that can be a microfiltration membrane or an ultrafiltration membrane comprising a number of hollow fiber membranes. 1 has a container 3 containing 1. Here, one end side (lower end side in FIG. 1) of each hollow fiber membrane is sealed and is a free end not fixed to the container 3. On the other hand, the other end side (the upper end side in FIG. 1) of each hollow fiber membrane is opened and is a fixed end fixed to the container 3 by a fixing member 6. That is, the hollow fiber membrane bundle 1 is converged and fixed while maintaining the open state on the fixed end side of each hollow fiber membrane, and the filtered water flows into the container 3 so as to exit from the opening on the fixed end side. Contained.
 容器3の下端部すなわち中空糸膜束1の自由端側の端部は、原水を導入するための原水導入部7として形成されており、そこには圧縮空気を導入するための空気導入部9が接続されている。一方、容器3の上端部すなわち中空糸膜束1の固定端側の端部は、ろ過処理された水(以下、処理水という)を排出するための処理水導出部11として形成されており、さらに容器3の上端近傍には排気部13が設けられている。なお、図には示されていないが、特許文献1に記載されているように、中空糸膜束1の固定端側から自由端側に向かって延在するように、中空糸膜束1の中心近傍に整流管を配置することができる。 A lower end portion of the container 3, that is, an end portion on the free end side of the hollow fiber membrane bundle 1 is formed as a raw water introduction portion 7 for introducing raw water, and an air introduction portion 9 for introducing compressed air therein. Is connected. On the other hand, the upper end of the container 3, that is, the end on the fixed end side of the hollow fiber membrane bundle 1, is formed as a treated water outlet 11 for discharging filtered water (hereinafter referred to as treated water), Further, an exhaust part 13 is provided in the vicinity of the upper end of the container 3. Although not shown in the figure, as described in Patent Document 1, the hollow fiber membrane bundle 1 is extended so as to extend from the fixed end side to the free end side of the hollow fiber membrane bundle 1. A rectifier tube can be arranged near the center.
 原水は、原水導入部7から容器3内に導入され、中空糸膜束1を通過することでろ過処理され、処理水は導出部11を介して流出する。一方、空気導入部9を介して圧縮空気を容器3内に導入し、容器3の内部に流体の運動を生じさせることで、中空糸膜束1の洗浄(エアースクラビング;以下、空気逆洗ともいう)が行われる。特許文献1に記載されたように、整流管が設けられていれば、空気逆洗時における中空糸膜同士の動きが抑制され、絡みが防止される。なお、空気逆洗時に導入された空気は排気部13を介して排出される。 Raw water is introduced into the container 3 from the raw water introduction section 7 and filtered through the hollow fiber membrane bundle 1, and the treated water flows out through the outlet section 11. On the other hand, by introducing compressed air into the container 3 through the air introduction unit 9 and causing movement of the fluid inside the container 3, the hollow fiber membrane bundle 1 is washed (air scrubbing; hereinafter referred to as air backwashing). Say). As described in Patent Document 1, if a rectifying tube is provided, the movement of the hollow fiber membranes during backwashing with air is suppressed and entanglement is prevented. In addition, the air introduced at the time of air backwashing is discharged | emitted via the exhaust part 13. FIG.
 図2は、図1のろ過モジュール100を用いた、本発明水処理システムの一実施形態を模式的に示す。このシステムには複数(図示の例では4基)のろ過モジュール100が配設され、原水導入部7および空気導入部9は、それぞれ、原水配管70および空気配管90に共通に接続されている。原水は、ポンプ72により原水配管70および原水導入部7を介して、各ろ過モジュール100に対し例えば0.1MPa(ゲージ圧)の圧力で供給される。一方、空気逆洗に際しては、圧縮空気供給源(空気圧縮機など)92から空気配管90および空気導入部9を介して、各ろ過モジュール100に0.1MPa以上の圧縮空気が導入される。なお、本実施形態では、原水導入部7はろ過モジュール100のドレン抜き部に兼用されており、原水配管70の終端側はドレン排出管76となっている。 FIG. 2 schematically shows an embodiment of the water treatment system of the present invention using the filtration module 100 of FIG. In this system, a plurality of (four in the illustrated example) filtration modules 100 are disposed, and the raw water introduction part 7 and the air introduction part 9 are connected in common to the raw water pipe 70 and the air pipe 90, respectively. The raw water is supplied to each filtration module 100 at a pressure of, for example, 0.1 MPa (gauge pressure) through the raw water pipe 70 and the raw water introduction unit 7 by the pump 72. On the other hand, at the time of air backwashing, compressed air of 0.1 MPa or more is introduced into each filtration module 100 from the compressed air supply source (air compressor or the like) 92 through the air pipe 90 and the air introduction unit 9. In this embodiment, the raw water introduction part 7 is also used as a drain removal part of the filtration module 100, and the terminal side of the raw water pipe 70 is a drain discharge pipe 76.
 ろ過モジュール100の処理水導出部11および排気部13は、それぞれ、処理水配管110および排気管130に共通に接続されている。すなわち、ろ過モジュール100の中空糸膜束1を通過することでろ過処理された処理水は、導出部11から処理水配管110を介して導出され、例えば工業用水として利用される。また、排気管130の終端はドレン排出管76に接続されている。 The treated water outlet 11 and the exhaust 13 of the filtration module 100 are connected in common to the treated water pipe 110 and the exhaust pipe 130, respectively. That is, the treated water filtered by passing through the hollow fiber membrane bundle 1 of the filtration module 100 is led out from the lead-out part 11 through the treated water pipe 110, and is used as, for example, industrial water. The end of the exhaust pipe 130 is connected to the drain discharge pipe 76.
 原水配管70の終端のドレン排出管76、空気配管90、処理水配管110および排気管130には、それぞれ、開閉弁形態のバルブ74、94、114および134が介挿されている。これらのバルブは、ろ過処理時および空気逆洗時等において適宜制御され、各配管の流路を開放/閉鎖することが可能である。また、原水配管70および処理水配管110にそれぞれ圧力センサ78および118を配設することができ、例えば原水の導入側と導出側との圧力差を検出することで、中空糸膜の性能低下等の判断に供することができる。 Valves 74, 94, 114 and 134 in the form of on-off valves are inserted in the drain discharge pipe 76, the air pipe 90, the treated water pipe 110 and the exhaust pipe 130 at the end of the raw water pipe 70, respectively. These valves are appropriately controlled at the time of filtration processing, air backwashing, and the like, and can open / close the flow path of each pipe. Further, pressure sensors 78 and 118 can be disposed in the raw water pipe 70 and the treated water pipe 110, respectively. For example, by detecting the pressure difference between the raw water introduction side and the discharge side, the performance of the hollow fiber membrane is reduced. Can be used for judgment.
 さらに、原水配管70には、ろ過モジュール100に原水を分配するに先立って濁度を計測する濁度計測器202と、計測された濁度に基づいて無機凝集剤を原水に添加する凝集剤添加装置204と、が配設される。これらは本実施形態の特徴をなす構成要素であるが、適宜の形態のものを使用できる。例えば、濁度計測器202はJIS K 0801に準拠した濁度自動計測器を使用できるが、計測した濁度の情報を後述するコントローラなどに提示できるものであることが好ましい。また、凝集剤添加装置204は、無機凝集剤の貯留部と、後述するコントローラなどの指示に応じた量の無機凝集剤を原水配管70中に投入する投入部と、を備えることが好ましい。 Further, a turbidity measuring device 202 that measures turbidity prior to distributing raw water to the filtration module 100 and a flocculant addition that adds an inorganic flocculant to the raw water based on the measured turbidity are added to the raw water pipe 70. A device 204 is provided. These are the constituent elements that characterize the present embodiment, but those in appropriate forms can be used. For example, although the turbidity measuring device 202 can use an automatic turbidity measuring device based on JIS K 0801, it is preferable that the measured turbidity information can be presented to a controller described later. Moreover, it is preferable that the flocculant addition apparatus 204 includes an inorganic flocculant storage unit and an input unit that inputs an amount of the inorganic flocculant into the raw water pipe 70 in accordance with an instruction from a controller or the like described later.
(水処理システムの制御)
 図3は図2に示したシステムの構成に対して適用可能な制御系の構成例を示すブロック図である。図示の制御系は、図4について後述する制御手順を実行するCPU、その制御手順に対応するプログラムを格納したROMおよび作業用のRAMなどを有するコントローラ200を中心に構成されている。コントローラ200の制御対象はバルブ74,94,114,134、ポンプ72、圧縮空気供給源(空気圧縮機など)92および凝集剤添加装置204の投入部であり、これらはそれぞれ駆動部212、214、216および218を介して駆動される。また、コントローラ200に対しては、濁度計測器202の計測情報が入力されるとともに、空気逆洗などによる洗浄タイミングを規定する洗浄タイミング規定部220からの情報が入力される。
(Control of water treatment system)
FIG. 3 is a block diagram showing a configuration example of a control system applicable to the configuration of the system shown in FIG. The illustrated control system is mainly configured by a controller 200 having a CPU that executes a control procedure described later with reference to FIG. 4, a ROM that stores a program corresponding to the control procedure, a working RAM, and the like. Control targets of the controller 200 are valves 74, 94, 114, 134, a pump 72, a compressed air supply source (such as an air compressor) 92, and a charging unit 204, which are driving units 212, 214, Driven through 216 and 218. In addition, measurement information of the turbidity measuring device 202 is input to the controller 200, and information from the cleaning timing defining unit 220 that defines the cleaning timing by air backwashing or the like is input.
 空気逆洗は時間に基づいて実施することができ、例えば15~30分毎のタイミングで行うことができる。従って、洗浄タイミング規定部220は、時間の管理を行うタイマユニットを有するものとすることができる。しかしその他の条件、中空糸膜束1の性能低下を判断して空気逆洗が行われるようにしてもよく、その場合には、洗浄タイミング規定部220を例えば圧力センサ78および118の検出値を比較するコンパレータなどを有するものとすることができる。また、ろ過モジュール100内に次亜塩素酸ナトリウムなどの薬品を適宜投入して行う薬品洗浄を組み合わせることもできる。薬品洗浄のタイミングについても、例えば時間に基づいて実施することができ、例えば1~2日毎のタイミングで行うことができる。 The air backwash can be performed based on time, for example, at a timing of every 15 to 30 minutes. Accordingly, the cleaning timing defining unit 220 can include a timer unit that manages time. However, the air backwashing may be performed by judging other conditions and the performance deterioration of the hollow fiber membrane bundle 1, and in that case, the cleaning timing defining part 220 is set to the detection values of the pressure sensors 78 and 118, for example. A comparator or the like for comparison may be included. Further, chemical cleaning performed by appropriately putting chemicals such as sodium hypochlorite into the filtration module 100 can be combined. The timing of chemical cleaning can be performed based on time, for example, and can be performed every 1-2 days, for example.
 図4は、図3の制御系を用いた、図2の水処理システムの制御手順の一例を示す。本手順が起動されると、まずステップS1にてバルブ114を開、バルブ74、94および134を閉とした後、ステップS3にてポンプ72を駆動する。これらにより、原水配管70から各ろ過モジュール100への原水の流れ、および各ろ過モジュール100から処理水配管110を介した処理水の流れが確立されるとともに、空気配管90、ドレン排出管76および排気管130が閉塞される。そして、ステップS5では濁度計測器202により原水の濁度を計測し、ステップS7では凝集剤添加装置204を駆動することで、濁度および処理対象である原水の流量に応じて適切に定めた量の無機凝集剤を投入する。これにより、無機凝集剤が添加された原水がろ過モジュール100に流入する。この過程で原水に含まれる不純物が凝集するが、無機凝集剤の濃度が適切に調整されることでフロックが好ましいサイズに形成され、中空糸膜の孔の閉塞や中空糸間の滞留が生じにくいものとなる。なお、濁度の計測およびそれに応じた無機凝集剤添加量の調整は、常時行うのではなく、適宜のタイミングで行うようにしてもよい。 FIG. 4 shows an example of the control procedure of the water treatment system of FIG. 2 using the control system of FIG. When this procedure is started, first, the valve 114 is opened and the valves 74, 94 and 134 are closed in step S1, and then the pump 72 is driven in step S3. As a result, the flow of raw water from the raw water pipe 70 to each filtration module 100 and the flow of treated water from each filtration module 100 through the treated water pipe 110 are established, and the air pipe 90, the drain discharge pipe 76 and the exhaust gas are exhausted. Tube 130 is closed. In step S5, the turbidity measuring device 202 measures the turbidity of the raw water, and in step S7, the flocculant adding device 204 is driven to appropriately determine the turbidity and the flow rate of the raw water to be processed. An amount of inorganic flocculant is charged. Thereby, the raw water to which the inorganic flocculant is added flows into the filtration module 100. Impurities contained in the raw water aggregate in this process, but the floc is formed to a preferred size by adjusting the concentration of the inorganic flocculant, and the hollow fiber membranes are less likely to block the holes and stay between the hollow fibers. It will be a thing. The measurement of turbidity and the adjustment of the amount of inorganic flocculant added in accordance therewith may be performed at an appropriate timing, not always.
 次に、ステップS11では空気逆洗による洗浄タイミングとなったか否かを判定し、否定判定であればステップS5に復帰する一方、肯定判定であればステップS13に進み、バルブ114を閉、バルブ74、94および134を開とする。これにより、原水配管70から各ろ過モジュール100への原水の流れ、および各ろ過モジュール100から処理水配管110を介した処理水の流れが阻止されるとともに、空気配管90、ドレン排出管76および排気管130を介した流路が確立される。 Next, in step S11, it is determined whether or not the cleaning timing is due to air backwashing. If the determination is negative, the process returns to step S5. If the determination is affirmative, the process proceeds to step S13, and the valve 114 is closed and the valve 74 is closed. , 94 and 134 are opened. Thereby, the flow of the raw water from the raw water pipe 70 to each filtration module 100 and the flow of the treated water from each filtration module 100 through the treated water pipe 110 are blocked, and the air pipe 90, the drain discharge pipe 76 and the exhaust gas are exhausted. A flow path through the tube 130 is established.
 ステップS15では凝集剤添加装置204の駆動を停止し、ステップS15にて空気圧縮機92を駆動する。これにより、圧縮空気が空気配管90を介してろ過モジュール100に供給されることで、中空糸膜束1の空気逆洗が行われる。この空気逆洗によって容器3内で浮遊しているフロックや中空糸膜束1から剥離したフロックを含む流体は、排気部13から排気管130を介してドレン排出管76に移送される。また、本実施形態では、容器3の下端側の原水導入部7はドレン排出口を兼ねているため、空気逆洗時にもポンプ72を駆動しておくことで、原水導入部7に沈降したフロックをドレン排出管76に移送することができる。 In step S15, the driving of the flocculant adding device 204 is stopped, and the air compressor 92 is driven in step S15. Thereby, air backwashing of the hollow fiber membrane bundle 1 is performed by supplying compressed air to the filtration module 100 via the air pipe 90. Fluid containing flocs floating in the container 3 or flocs separated from the hollow fiber membrane bundle 1 by this air backwashing is transferred from the exhaust unit 13 to the drain discharge pipe 76 via the exhaust pipe 130. Moreover, in this embodiment, since the raw | natural water introduction part 7 of the lower end side of the container 3 serves as a drain discharge port, the floc settled in the raw | natural water introduction part 7 by driving the pump 72 also at the time of air backwashing. Can be transferred to the drain discharge pipe 76.
 空気逆洗による洗浄を行う期間についても時間で管理することができ、ステップS19で洗浄が終了したことが判定されると、ステップS21で空気圧縮機92の駆動を停止する。そしてステップS1に復帰することで、通常の水処理が再開される。なお、図4には示されていないが、薬剤洗浄を実施する処理ステップが付加されていてもよい。 The period of cleaning by air backwashing can also be managed by time, and when it is determined in step S19 that the cleaning has been completed, the driving of the air compressor 92 is stopped in step S21. And normal water treatment is restarted by returning to step S1. Although not shown in FIG. 4, a processing step for performing chemical cleaning may be added.
(無機凝集剤の添加量について)
 本発明者は、以下に示すような様々な実験を通じ、ろ過処理の効率化と膜の閉塞の低減化とを実現し、且つ洗浄効果も向上できるようにするための無機凝集剤の適切な添加量について検討を行った。
(About the amount of inorganic flocculant added)
Through various experiments as described below, the present inventor appropriately added an inorganic flocculant to achieve an efficient filtration process and a reduced membrane clogging, and to improve the cleaning effect. The amount was examined.
 まず、図5A、原水に添加する無機凝集剤の種類や濃度に応じた、ろ過処理後の透水性を比較した実験結果を示すグラフである。実験には、次の5つの試料、すなわち、
 試料1:無機凝集剤を添加していない原水(濁度25)、
 試料2:硫酸バンドを5ppm添加した原水、
 試料3:硫酸バンドを10ppm添加した原水、
 試料4:塩化第二鉄を5ppm添加した原水、および
 試料5:塩化第二鉄を10ppm添加した原水、
を用意した。そして、図1に示したような構造を有するろ過モジュールであるクラレアクア株式会社製のピューリア(登録商標)GSの中空糸膜を切断し、総面積が0.0152m2となるようにその数本を自由端端部と反対側において束ねたものを試験用のろ過膜として使用した。そのろ過膜に0.1MPaの圧力で原水を供給した。
First, FIG. 5A is a graph showing experimental results comparing the water permeability after filtration treatment according to the type and concentration of the inorganic flocculant added to the raw water. The experiment included the following five samples:
Sample 1: raw water not containing inorganic flocculant (turbidity 25),
Sample 2: Raw water to which 5 ppm of sulfuric acid band was added,
Sample 3: raw water to which 10 ppm of sulfuric acid band was added,
Sample 4: Raw water to which 5 ppm of ferric chloride was added, and Sample 5: Raw water to which 10 ppm of ferric chloride was added,
Prepared. Then, the hollow fiber membrane of PUREA (registered trademark) GS manufactured by Kuraray Aqua Co., Ltd., which is a filtration module having the structure as shown in FIG. 1, is cut so that the total area becomes 0.0152 m 2. Was bundled on the side opposite to the free end, and used as a test membrane. Raw water was supplied to the filtration membrane at a pressure of 0.1 MPa.
 図5Aの縦軸は処理水の流量を示し、膜1m2、1時間当たり何L(リットル)の処理水が得られたかを示している。このグラフから、原水に無機凝集剤を添加するほうが透水性は良好となり、膜の閉塞がない効率的なろ過処理が可能となること、また、無機凝集剤の添加率(濃度)は高いほうがより効率的となるとの知見が得られた。そしてこのことは、フロックが好ましいサイズに形成されていることに由来するものと考えられる。 The vertical axis in FIG. 5A indicates the flow rate of the treated water, and indicates how many liters of treated water are obtained per hour for the membrane 1 m 2 . From this graph, it is better to add inorganic flocculant to raw water, water permeability is better, and efficient filtration without membrane clogging is possible, and higher addition rate (concentration) of inorganic flocculant is higher. The knowledge that it becomes efficient was obtained. This is considered to be derived from the fact that the floc is formed in a preferable size.
 そこで本発明者は、無機凝集剤として硫酸バンドを選択し、試料3に加え、
 試料3-2:硫酸バンドを15ppm添加した原水、および
 試料3-3:硫酸バンドを25ppm添加した原水、
を用意し、同様にして透水性を検証した。図5Bはその実験結果を示すグラフである。このグラフから、試料3よりも無機凝集剤の添加率(濃度)が高い試料3-2のほうが透水性は高いが、さらに高濃度に無機凝集剤を添加した試料3-3ではかえって透水性が低くなることがわかった。
Therefore, the present inventor selected a sulfuric acid band as the inorganic flocculant, added to the sample 3,
Sample 3-2: Raw water to which 15 ppm of sulfuric acid band was added, and Sample 3-3: Raw water to which 25 ppm of sulfuric acid band was added,
The water permeability was verified in the same manner. FIG. 5B is a graph showing the experimental results. From this graph, sample 3-2 having a higher addition rate (concentration) of the inorganic flocculant than sample 3 has higher water permeability, but sample 3-3 to which the inorganic flocculant is added at a higher concentration is more water permeable. It turned out to be lower.
 本発明者はさらに、原水(濁度25)に対して硫酸バンドの添加率を変化させて透水性を検証する実験を行った。この実験で用いた原水は、下記の範囲内の水質を有していた。
 pH:5.4~7.8
 SS:20~380mg/L
 色度:30~50
 電気伝導度:1.80~5.34mS/cm
 塩分:0.3%
 Ca:250~870mg/L
 SiO:7mg/L
 NH :0.2~0.7mg/L
 CaCO:150~200mg/L
The present inventor further conducted an experiment to verify the water permeability by changing the addition rate of the sulfuric acid band with respect to the raw water (turbidity 25). The raw water used in this experiment had a water quality within the following range.
pH: 5.4 to 7.8
SS: 20-380 mg / L
Chromaticity: 30-50
Electrical conductivity: 1.80-5.34 mS / cm
Salinity: 0.3%
Ca: 250 to 870 mg / L
SiO 2 : 7 mg / L
NH 4 + : 0.2 to 0.7 mg / L
CaCO 3 : 150 to 200 mg / L
 図6はその実験結果を示すグラフである。この結果から、無機凝集剤を適切な濃度となるように添加すること、すなわち硫酸バンドを使用する場合、原水に対し15ppm程度の濃度となるように添加することが、透水性を良好にする上で好ましいことを確認した。 FIG. 6 is a graph showing the experimental results. From this result, adding an inorganic flocculant to an appropriate concentration, that is, when using a sulfuric acid band, adding about 15 ppm to the raw water can improve water permeability. It was confirmed that this was preferable.
 一方、本発明者は、無機凝集剤の濃度に応じた洗浄効果を確認する実験を行った。実験ではまず、上記試料1~5を上記と同じろ過モジュールに対し50Lを供給した後、物理洗浄(空気逆洗)および(薬品洗浄)を行った。 On the other hand, the inventor conducted an experiment to confirm the cleaning effect according to the concentration of the inorganic flocculant. In the experiment, first, 50 L of the above samples 1 to 5 was supplied to the same filtration module as described above, and then physical cleaning (backwashing with air) and (chemical cleaning) were performed.
 図7Aは、洗浄後にどこまで膜の性能が回復したかを、供給前の透水性を100%としたときの流量比にて示したグラフである。このグラフから、原水に無機凝集剤を添加するほうが概して回復性は良く、図5Aに示した透水性も勘案すれば、無機凝集剤を10ppm以上の濃度で添加することが好ましいとの知見が得られた。そしてこのことも、フロックが好ましいサイズに形成されていることに由来するものと考えられる。 FIG. 7A is a graph showing how much the performance of the membrane has recovered after washing, as a flow rate ratio when the water permeability before supply is 100%. From this graph, it is generally found that the addition of the inorganic flocculant to the raw water has better recoverability, and considering the water permeability shown in FIG. 5A, it is preferable to add the inorganic flocculant at a concentration of 10 ppm or more. It was. This is also considered to be derived from the fact that the floc is formed in a preferred size.
 そこで本発明者は、無機凝集剤として硫酸バンドを選択し、試料3、試料3-2および試料3-3を用意し、同様に回復性を検証した。図7Bはその実験結果を示すグラフである。このグラフから、硫酸バンドを使用する場合、濁度25の原水に対し15ppm程度の濃度(例えば、12.5~17.5ppmの範囲)となるように添加することが、洗浄後の回復性の観点からも好ましいことが確認された。本発明においてこのような濃度の無機凝集剤を用いることは、上記の水質を有する原水の処理において特に好適である。 Therefore, the present inventor selected a sulfuric acid band as the inorganic flocculant, prepared Sample 3, Sample 3-2 and Sample 3-3, and similarly verified the recoverability. FIG. 7B is a graph showing the experimental results. From this graph, when using a sulfuric acid band, it is possible to add a concentration of about 15 ppm (for example, in the range of 12.5 to 17.5 ppm) with respect to raw water with a turbidity of 25. It was confirmed that it was preferable also from the viewpoint. In the present invention, the use of an inorganic flocculant having such a concentration is particularly suitable for the treatment of raw water having the above water quality.
 さらに本発明者は、特許文献2の明細書に記載されている方法に従って、米国ASTMD 4189の規定に準じて、硫酸バンドを添加したときの原水の濁質成分量(SDI(Silt Density Index)値)を評価する実験を行った。 Furthermore, the present inventor, according to the method described in the specification of Patent Document 2, in accordance with the provisions of US ASTM D 4189, the amount of turbidity component of raw water (SDI (Silt Density と き Index) value when sulfuric acid band is added) ) Was evaluated.
 図8はその結果を示している。一般に、水はSDI値が3~4以下となるように処理されることが必要とされているが、硫酸バンドを添加した場合、「×」で示すUF(限外ろ過膜)処理した場合よりも優れたSDI値となっていることが確認された。 FIG. 8 shows the result. Generally, water is required to be treated so that the SDI value is 3 to 4 or less. However, when a sulfuric acid band is added, water is treated more than when UF (ultrafiltration membrane) indicated by “x” is treated. Was confirmed to be an excellent SDI value.
 加えて、本発明者は、種々の濁度に対し、透水性および洗浄後の回復性の観点から好ましい無機凝集剤(硫酸バンド)の濃度を求める実験を行った。 In addition, the present inventor conducted an experiment to obtain a preferable concentration of an inorganic flocculant (sulfuric acid band) from the viewpoint of water permeability and recoverability after washing with respect to various turbidities.
 図9はその結果を示しており、この結果から、濁度と、好ましい無機凝集剤の添加量とには概ね線形の関係があることが確認された。図9の場合には、ほぼ
 無機凝集剤添加量(ppm)=0.45×濁度+5
の式で表される関係となっている。従って、図2および図3に示した水処理システムに適用するにあたっては、濁度計測器202によって計測された濁度に対し、処理する原水の流量に応じた濃度が得られる量の無機凝集剤が添加されるように、図4のステップS7にて凝集剤添加装置204を制御すればよいことになる。なお、好ましい量の無機凝集剤を添加するに際しては、例えば、濁度、添加量および原水の流量を予めテーブル化したものをコントローラ200のROM等に格納しておき、このテーブルを参照するようにすることができる。あるいは、コントローラ200のCPUが、濁度に基づき上式に従って好ましい濃度ひいては添加量を算出するものであってもよい。
FIG. 9 shows the result. From this result, it was confirmed that the turbidity and the preferable addition amount of the inorganic flocculant have a substantially linear relationship. In the case of FIG. 9, almost the amount of inorganic flocculant added (ppm) = 0.45 × turbidity + 5
The relationship is expressed by the following formula. Therefore, when applied to the water treatment system shown in FIG. 2 and FIG. 3, the inorganic flocculant in such an amount that a concentration corresponding to the flow rate of the raw water to be treated can be obtained with respect to the turbidity measured by the turbidity measuring device 202. Therefore, the flocculant adding device 204 may be controlled in step S7 of FIG. In addition, when adding a preferable amount of the inorganic flocculant, for example, a table in which the turbidity, the addition amount, and the flow rate of raw water are tabulated in advance is stored in the ROM of the controller 200 and the table is referred to. can do. Alternatively, the CPU of the controller 200 may calculate a preferable concentration and hence an addition amount according to the above formula based on the turbidity.
(その他)
 なお、本発明は、以上の実施形態および随所に述べた変形例に限られるものではない。例えば、無機凝集剤として硫酸バンドを添加する場合について好ましい濃度を具体的に説明したが、これは単に例示であって、PAC、あるいは鉄系の無機凝集剤である塩化第二鉄やポリ硫酸第二鉄などを用いる場合にも同様に適切な添加量を定め得ることは勿論である。また、中空糸膜の諸元(中空糸自体の径や孔径など)に応じ、あるいは、ろ過システムの使用条件や環境条件(水温など)に応じ、用いる無機凝集剤の種類や濃度ないしは添加量を定め得ることも勿論である。
(Other)
Note that the present invention is not limited to the above-described embodiment and the modifications described in various places. For example, the preferred concentration for the case of adding a sulfuric acid band as an inorganic flocculant has been specifically described, but this is merely an example, and PAC or iron-based inorganic flocculants such as ferric chloride and polysulfuric acid Needless to say, an appropriate addition amount can be determined in the same manner when using ferric iron or the like. Also, depending on the specifications of the hollow fiber membrane (such as the diameter and pore diameter of the hollow fiber), or depending on the use conditions and environmental conditions (water temperature, etc.) of the filtration system, the type, concentration or amount of addition of the inorganic flocculant used Of course, it can be determined.
 加えて、上述の実施形態では、濁度の計測および無機凝集剤の添加を自動で行う水処理システムを例示したが、水処理方法または水製造方法に具現化される本発明の趣旨に照らし、少なくとも一部を操作者の指示または操作に従って行われるものであってもよい。また、本発明に従って処理された水は、工業用水等として直接的に利用されるものであってもよいし、付加的な処理が施されるものであってもよい。 In addition, in the above-described embodiment, a water treatment system that automatically performs turbidity measurement and inorganic flocculant addition is illustrated, but in light of the spirit of the present invention embodied in a water treatment method or a water production method, At least a part may be performed in accordance with an operator's instruction or operation. The water treated according to the present invention may be used directly as industrial water or the like, or may be subjected to additional treatment.

Claims (7)

  1.  一端が固定されていない中空糸膜束により原水を処理する水処理システムにおいて、
     前記中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する濁度計測部と、
     当該計測された濁度に基づいて調整した量の無機凝集剤を添加する凝集剤添加部と、
    を備えたことを特徴とする水処理システム。
    In a water treatment system for treating raw water with a hollow fiber membrane bundle whose one end is not fixed,
    Prior to performing the filtration treatment with the hollow fiber membrane bundle, a turbidity measuring unit for measuring the turbidity of raw water,
    A flocculant addition unit for adding an inorganic flocculant in an amount adjusted based on the measured turbidity;
    A water treatment system comprising:
  2.  前記濁度計測部によって計測された濁度がX度(カオリン)であるとき、前記凝集剤添加部は次式で定まる濃度Y(ppm)
     Y=0.45×X+5
    が得られるように前記無機凝集剤の添加を行うことを特徴とする請求項1に記載の水処理システム。
    When the turbidity measured by the turbidity measurement unit is X degree (kaolin), the flocculant addition unit has a concentration Y (ppm) determined by the following formula:
    Y = 0.45 × X + 5
    The water treatment system according to claim 1, wherein the inorganic flocculant is added so that
  3.  前記中空糸膜束は精密ろ過膜または限外ろ過膜であることを特徴とする請求項1または2に記載の水処理システム。
    The water treatment system according to claim 1 or 2, wherein the hollow fiber membrane bundle is a microfiltration membrane or an ultrafiltration membrane.
  4.  前記無機凝集剤として硫酸アルミニウムが用いられることを特徴とする請求項1ないし3のいずれか一項に記載の水処理システム。
    The water treatment system according to any one of claims 1 to 3, wherein aluminum sulfate is used as the inorganic flocculant.
  5.  さらに、0.1MPa以上の圧力で圧縮空気を導入することにより前記中空糸膜束の洗浄が行われることを特徴とする請求項1ないし4のいずれか一項に記載の水処理システム。
    The water treatment system according to any one of claims 1 to 4, wherein the hollow fiber membrane bundle is washed by introducing compressed air at a pressure of 0.1 MPa or more.
  6.  一端が固定されていない中空糸膜束により原水を処理する水処理方法において、
     前記中空糸膜束によるろ過処理を行うに先立って、原水の濁度を計測する工程と、
     当該計測された濁度に基づいて調整した量の無機凝集剤を添加する工程と、
    を備えたことを特徴とする水処理方法。
    In a water treatment method of treating raw water with a hollow fiber membrane bundle whose one end is not fixed,
    Prior to performing the filtration treatment with the hollow fiber membrane bundle, measuring the turbidity of the raw water,
    Adding an inorganic flocculant in an amount adjusted based on the measured turbidity;
    A water treatment method comprising:
  7.  原水の濁度を計測する工程と、
     当該計測された濁度に基づいて調整された量の無機凝集剤を添加する工程と、
     当該無機凝集剤が添加された原水を、一端が固定されていない中空糸膜束によりろ過処理する工程と、
    を備えたことを特徴とする水製造方法。
    Measuring raw water turbidity;
    Adding an amount of inorganic flocculant adjusted based on the measured turbidity;
    A step of filtering the raw water to which the inorganic flocculant is added with a hollow fiber membrane bundle whose one end is not fixed;
    A water production method comprising:
PCT/JP2016/004855 2015-12-28 2016-11-10 Water treatment system, water treatment method , and water production method WO2017115455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201805603SA SG11201805603SA (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method, and water production method
JP2017558844A JPWO2017115455A1 (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method and water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257390 2015-12-28
JP2015-257390 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115455A1 true WO2017115455A1 (en) 2017-07-06

Family

ID=59224883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004855 WO2017115455A1 (en) 2015-12-28 2016-11-10 Water treatment system, water treatment method , and water production method

Country Status (3)

Country Link
JP (2) JPWO2017115455A1 (en)
SG (1) SG11201805603SA (en)
WO (1) WO2017115455A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138160A (en) * 2019-02-28 2020-09-03 株式会社クラレ Composite hollow fiber membrane module
CN115837218A (en) * 2022-03-23 2023-03-24 株式会社罗潘 Physical and chemical water treatment process using microfiber filter media coated with coagulant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130055A (en) * 1975-05-08 1976-11-12 Toshiba Corp Apparatus for controlling amounts incorporated of chemicals in a water purification plant
JP3686225B2 (en) * 1997-08-29 2005-08-24 株式会社クラレ Hollow fiber membrane module
JP2012024673A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method of managing addition of flocculant
JP2012239947A (en) * 2011-05-17 2012-12-10 Toray Ind Inc Water treatment method and water treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245216B2 (en) * 2006-06-16 2013-07-24 富士電機株式会社 Hollow fiber membrane water treatment method and water treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130055A (en) * 1975-05-08 1976-11-12 Toshiba Corp Apparatus for controlling amounts incorporated of chemicals in a water purification plant
JP3686225B2 (en) * 1997-08-29 2005-08-24 株式会社クラレ Hollow fiber membrane module
JP2012024673A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method of managing addition of flocculant
JP2012239947A (en) * 2011-05-17 2012-12-10 Toray Ind Inc Water treatment method and water treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138160A (en) * 2019-02-28 2020-09-03 株式会社クラレ Composite hollow fiber membrane module
JP7351623B2 (en) 2019-02-28 2023-09-27 株式会社クラレ Composite hollow fiber membrane module
CN115837218A (en) * 2022-03-23 2023-03-24 株式会社罗潘 Physical and chemical water treatment process using microfiber filter media coated with coagulant
CN115837218B (en) * 2022-03-23 2023-07-28 株式会社罗潘 Physical and chemical water treatment process using coagulant coated microfiber filter

Also Published As

Publication number Publication date
JP2020192533A (en) 2020-12-03
JPWO2017115455A1 (en) 2018-10-18
SG11201805603SA (en) 2018-07-30

Similar Documents

Publication Publication Date Title
US8956464B2 (en) Method of cleaning membranes
Ebrahim et al. Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems
JP4241684B2 (en) Membrane module cleaning method
JP6305368B2 (en) Water treatment method and apparatus
KR100679231B1 (en) Flexible-fiber filter module
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
JP2020192533A (en) Water treatment system, water treatment method and water production method
JP6194887B2 (en) Fresh water production method
WO2013111826A1 (en) Desalination method and desalination device
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
KR20120082754A (en) Water treating apparatus and a cleaning methoed for reverse osmosis filter of the water treating apparatus
CA2904571C (en) Methods of inhibiting fouling in liquid systems
KR101732811B1 (en) Energy saving Forward Osmosis-filtration hybrid Water treatment/seawater desalination system using big size polymer draw solute and method of Water treatment/seawater desalination using the same
JPWO2016035175A1 (en) Water treatment apparatus and water treatment apparatus operating method
KR20130128866A (en) System and method for treating water using pressurized module
KR101796633B1 (en) Apparatus for treating water and method for treating water using the same
WO2013047466A1 (en) Membrane module cleaning method
JP4576760B2 (en) Circulating cooling water treatment method
JP2018089598A (en) Water treating device
KR101587057B1 (en) Waste Water Recycling System
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
WO2020026857A1 (en) Method for washing membrane filtration device and water treatment method
Galvañ et al. Direct pre-treatment of surface water through submerged hollow fibre ultrafiltration membranes
RU2225369C1 (en) Natural water treatment process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201805603S

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16881436

Country of ref document: EP

Kind code of ref document: A1