WO2017114862A1 - Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur - Google Patents

Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur Download PDF

Info

Publication number
WO2017114862A1
WO2017114862A1 PCT/EP2016/082776 EP2016082776W WO2017114862A1 WO 2017114862 A1 WO2017114862 A1 WO 2017114862A1 EP 2016082776 W EP2016082776 W EP 2016082776W WO 2017114862 A1 WO2017114862 A1 WO 2017114862A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
filler
electrical apparatus
gas
medium
Prior art date
Application number
PCT/EP2016/082776
Other languages
English (en)
Inventor
David Gautschi
Robert Luescher
Yannick Kieffel
François Biquez
Original Assignee
General Electric Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55083320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017114862(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Technology Gmbh filed Critical General Electric Technology Gmbh
Priority to US16/066,380 priority Critical patent/US11017919B2/en
Priority to JP2018533617A priority patent/JP6956723B2/ja
Priority to CN201680076703.XA priority patent/CN108475555A/zh
Publication of WO2017114862A1 publication Critical patent/WO2017114862A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/56Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • H01B3/105Wires with oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/2825Preventing penetration of fluid, e.g. water or humidity, into conductor or cable using a water impermeable sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Definitions

  • the invention belongs to the field of electrical insulation and extinction of electric arcs in medium or high voltage electrical equipment and in particular high voltage.
  • the present invention relates to the use in a medium or high voltage electrical appliance of hybrid insulation with low environmental impact based on the combination of a gaseous medium comprising heptafluoroisobutyronitrile mixed with a dilution gas.
  • a gaseous medium comprising heptafluoroisobutyronitrile mixed with a dilution gas.
  • It also relates to a medium or high voltage electrical apparatus in which the extinction of the electric arcs is ensured by a gaseous medium comprising one heptafluoroisobutyronitrile mixed with a dilution gas and the electrical insulation is ensured by the same gaseous medium in combination with a solid insulation of low dielectric permittivity of the anionic oxidation type and / or polyepoxide or polyurethane paint with a possible nanometric charge applied in a thin layer on conductive parts subjected to an electric field greater than the breakdown field of the system without solid insulation.
  • This electrical apparatus may in particular be an electrical transformer such as a power or measurement transformer, a gas-insulated line (or LIG) for the transmission or distribution of electricity, a busbar or an electrical appliance.
  • connection / disconnection also called a switchgear
  • a circuit breaker such as a circuit breaker, a switch, a fuse-switch combination, a disconnector, an earthing switch or a contactor.
  • SF6 sulfur hexafluoride
  • GWP Global Warming Potential
  • this gas is a mixture of two molecules, one of which is predominantly present and the second is heptafluoroisobutyronitrile, present in a smaller amount.
  • This gaseous mixture has the advantage of being based on an SF6 substitution product having a lower GWP than SF6 dissolved in a very low GWP dilution gas, such as carbon dioxide (CO2) with GWP is equal to 1, or no GWP such as nitrogen (N2) or air.
  • CO2 carbon dioxide
  • N2 nitrogen
  • n the utilization factor of the electric field
  • a thick layer is defined as a layer between 1 and 10 mm, while a thin or thin layer is less than 1 mm, especially less than 500 pm and typically between 60 and 100 pm.
  • the inventors have therefore set themselves the general goal of further improving the hybrid insulation systems for high and medium voltage electrical equipment using, as isolation gas, a gaseous medium comprising heptafluoroisobutyronitrile while maintaining the characteristics of the apparatus, from the point of view of its insulating and cutting capacity, close to those of SF6 without significantly increasing the size of the apparatus and the pressure of the gas at the same time. inside.
  • the inventors set themselves the goal of maintaining the service temperature ranges of the electrical apparatus, close to those of the SF6 equivalents, without external heating means.
  • medium or high voltage electrical equipment based on this improved insulation system should have a size and pressure close to equivalent SF6 insulated equipment and should not be liquefied at the minimum temperature. use without addition of external heating source.
  • the hybrid insulation system implemented in the context of the present invention is based on a gaseous medium comprising heptafluoro ⁇ isobutyronitrile mixed with a neutral gas as an electrical insulating gas and / or extinguishing electric arcs in a medium or high voltage electrical device, in combination with a solid insulation, in particular of low dielectric permittivity, applied in a thin layer of thickness on the conductive parts subjected to an electric field greater than the breakdown field of the medium or high voltage apparatus without solid insulation.
  • the medium or high voltage electrical device according to the invention has electrical components that are not covered by any solid dielectric layer and none of these electrical components is covered by a thick solid dielectric layer as defined in the application. International WO 2014/037566 [1].
  • the composition of the solid dielectric layer is particular since the latter is made of a material comprising a polyepoxide resin optionally containing a filler, a polyurethane resin optionally containing a filler or aluminum oxide.
  • the present invention proposes a medium or high voltage electrical apparatus comprising a sealed enclosure in which there are electrical components covered with a solid dielectric layer and a gaseous medium ensuring electrical insulation and / or extinction of the arcs.
  • electrical devices capable of occurring in this chamber comprising heptafluoroisobutyronitrile mixed with a dilution gas, the thickness of the solid dielectric layer in said enclosure being less than 1 mm and said solid dielectric layer being made of a material comprising a resin polyepoxide optionally containing a filler, a polyurethane resin optionally containing a filler or aluminum oxide.
  • electrical components coated with a thin layer of such material are raw foundry components.
  • the solid dielectric layer present on electrical components located in the sealed enclosure of a high or medium voltage electrical device according to the invention is made of a material comprising a polyepoxide resin optionally containing at least one filler or a polyurethane resin optionally containing at least one filler, said layer having a thickness of between 10 and 500 ⁇ m.
  • the polyepoxide resin of the solid dielectric layer implemented may comprise or consist of a polyepoxide-polysiloxane resin or a polyepoxide-polyester resin.
  • the polyepoxide resin or the polyurethane resin comprises at least one filler
  • the latter is in the form of particles such as nanoparticles.
  • this filler is made of a material chosen from the group consisting of alumina, silica, titanium oxide, calcium carbonate, zinc oxide, wollastonite, quartz, graphite and clay. and talc.
  • the solid dielectric layer present on electrical components located in the sealed enclosure of a high or medium voltage electrical device according to the invention is made of a material comprising aluminum oxide, said layer having a thickness of between 10 and 100 ⁇ m.
  • the solid dielectric layer has on the surface of electrical components located in the sealed enclosure of the medium or high voltage electrical device according to the invention is in the form of a film or a powder.
  • the gaseous insulation in the sealed enclosure of the medium or high voltage electrical apparatus according to the invention is provided by heptafluoroisobutyronitrile mixed with a diluting agent.
  • a diluting agent is advantageously selected from carbon dioxide, nitrogen, oxygen, air and a mixture thereof.
  • the medium or high voltage electrical device is a gas-insulated electrical transformer, a gas-insulated line for the transmission or distribution of electricity, a connection element to other network equipment or a device. electrical connection / disconnection.
  • the present invention also relates to the use of heptafluoroisobutyronitrile in admixture with a dilution gas as previously defined as electrical isolation gas and / or electric arc extinguishing in a medium or high voltage electrical appliance whose electrical components are covered with a solid insulating layer whose thickness is less than 1 mm and made of a material as previously defined ie comprising a polyepoxide resin optionally containing a filler, a polyurethane resin optionally containing a filler or aluminum oxide .
  • the invention is based on the use, in a medium or high voltage electrical appliance, of a hybrid low environmental impact insulation system combining a gas mixture comprising one heptafluoroisobutyronitrile and a solid insulation of low dielectric permittivity applied in layer thin on the conductive parts subjected to an electric field greater than the breakdown field of the system without solid insulation.
  • the expression "average voltage” is used in its usual acceptance, namely that the term “average voltage” designates a voltage which is higher than 1000 volts with AC and with 1500 volts in direct current but not exceeding 52,000 volts AC and 75,000 volts DC.
  • high voltage is used in its usual acceptance, namely that the expression “high voltage” designates a voltage which is strictly greater than 52 000 volts AC and 75 volts. 000 volts in direct current.
  • a medium or high voltage electrical apparatus mainly comprises an outer envelope or enclosure, longitudinal delimiting a hollow volume and one or more electrical component (s) which is / are arranged inside this envelope.
  • the inner volume of the envelope is closed gas-tight and is filled with an electrical insulating gas and electric arc extinguishing which includes, in the context of the present invention, heptafluoroisobutyronitrile and a gas dilution.
  • all or part of the electrical components located in the sealed enclosure of the electrical apparatus has, on their surface, a dielectric layer.
  • the gaseous mixture comprising 1 heptafluoroisobutyronitrile and a dilution gas is used, in a hybrid insulation system, in combination with a solid insulation applied in one embodiment.
  • thin insulating layer on conductive parts subjected to an electric field greater than the breakdown field of the system without solid insulation.
  • the conductive parts covered by this insulating layer are raw foundry. In other words, these parts are rough and have not undergone any treatment intended to modify their surface state of the polishing type, prior to the deposition of the insulating layer.
  • the solid insulating layer implemented in the invention has a low relative permittivity.
  • low relative permittivity is meant a relative permittivity less than or equal to 6. It is recalled that the relative permittivity, also called dielectric constant, of a material, which is denoted by r , is a dimensionless quantity that can be defined by the following formulas (I) and (II):
  • - ⁇ corresponds to the permittivity (expressed in Farads / meter) of the vacuum
  • - C corresponds to the capacity (expressed Farads) of a flat capacitor comprising two parallel electrodes between which is disposed a layer of the material for which we want to determine the permittivity, this layer representing a specimen
  • e corresponds to the distance (expressed in meters) between the two parallel electrodes of the plane capacitor, which corresponds, in our case, to the thickness of the specimen;
  • S corresponds to the area (expressed in square meters) of each constituent electrode of the plane capacitor.
  • the capacitance is determined as in the IEC 60250-edl.O standard, namely by using a capacitor comprising two circular electrodes with a diameter ranging from 50 to 54 mm, integral with the test piece constituted of the material, these electrodes being obtained by spraying a conductive paint with a guard.
  • the test piece has dimensions of 100 mm x 100 mm and a thickness of 3 mm. The distance between the electrodes of the capacitor, which corresponds to the size e mentioned above, is therefore 3 mm.
  • the capacitance is determined under an excitation level of 500 volts RMS, at a frequency of 50 hertz, at a temperature of 23 ° C. and a relative humidity of 50%.
  • the duration of application of the above-mentioned voltage is 1 min.
  • the term "insulating layer / thin solid dielectric” means that the dielectric material deposited or applied to the electrical components or conductive parts, has a thickness of less than 1 mm, in particular less than or equal to 750 ⁇ m, and in particular in particular less than or equal to 500 ⁇ m, and this, whatever the conductive part or part of the conductive part on which it is deposit.
  • none of the conductive parts in the enclosure of the electrical apparatus according to the invention has a dielectric layer with a thickness greater than or equal to 1 mm. The thickness of the layer is determined during the preparation of the elements constituting this apparatus.
  • the insulating layer is applied in thin layer on the conductive parts subjected to an electric field greater than the breakdown field of the system without solid insulation. More particularly, the thin dielectric layer is typically deposited on the conductive parts where the coefficient of use of the electric field is greater than or equal to 0.2 and in particular greater than or equal to 0.3.
  • the solid insulating layer implemented in the context of the present invention may comprise a single dielectric material or several different dielectric materials.
  • the composition of the insulating layer ie the nature of the dielectric material (s) it comprises may differ depending on the conductive part or part part conductor on which the solid insulating layer is deposited.
  • the material (s) of the insulating layer comprises / comprises a polyepoxide resin optionally containing a filler, a polyurethane resin optionally containing a filler or aluminum oxide.
  • the solid dielectric layer present on electrical components located in the sealed enclosure of a high or medium voltage electrical device according to the invention is made of a material comprising or consisting of a polyepoxide resin optionally containing at least one filler or a polyurethane resin optionally containing at least one filler, said layer having a thickness of between 10 and 500 ⁇ m.
  • polyepoxide resin is meant, in the context of the present invention, a thermosetting resin obtained from the reaction of identical or different monomers and / or identical or different oligomers comprising oxirane functional groups (also called epoxy functions). ) with one or more hardeners which typically are amines such as a polyamine, amides such as a polyamide, carboxylic acids or acid anhydrides.
  • a polyepoxide resin is also referred to in the literature as “epoxy resin” or “epoxy resin”.
  • epoxy resin or epoxy resin
  • Those skilled in the art know different monomers or oligomers comprising epoxy functional groups that can be used as polyepoxide resin precursors. Such monomers or oligomers correspond in particular to the epoxy resins described in the international application WO 2010/139906 [3] and in the patent application EP 1 359 197 [4].
  • the composition from which the polyepoxide resin is obtained may contain, in addition to one or more different monomers and / or one or more different oligomers comprising epoxy functions and one or more hardeners, at least one other element.
  • a polysiloxane a polyester or a precursor of such polymers.
  • the polyepoxide resin will be a polyepoxide-polysiloxane resin or a polyepoxide-polyester resin.
  • polyepoxide resins used in the context of the present invention, mention may be made of Amercoat 385®, Amercoat 4093®, PSX 700® and Nuklad 105® marketed by Ameron.
  • polyurethane resin is meant a urethane polymer produced by the reaction of an isocyanate and a polyol.
  • the polyepoxide or polyurethane resin deposited on the electrical components of the electrical apparatus according to the invention may be unfilled or charged. When charged, the charge can be in the form of particles.
  • the particles put in the context of the present invention may have various shapes, such as spheroidal, ellipsoid, hexagonal, rod or star shapes.
  • the average particle size distribution of these particles is typically between 10 nm and 1 ⁇ m and in particular between 20 and 900 nm. So we can talk about nanoparticles.
  • this filler is made of a material chosen from the group consisting of a material chosen from the group consisting of alumina, silica, titanium oxide, calcium carbonate, zinc oxide, wollastonite, quartz, graphite, clay and talc.
  • the solid dielectric layer presents on electrical components located in the sealed enclosure of a device
  • Electrical high or medium voltage according to the invention is made of a material comprising aluminum oxide (Al2O3 or alumina) or consisting of Al2 ⁇ 03, said layer having a thickness between 10 and 100 pm.
  • this solid dielectric layer is produced by subjecting the electrical components based on aluminum or an alloy containing aluminum to electrolytic oxidation or cationic oxidation.
  • This passivation technique of an aluminum surface or an alloy containing aluminum by depositing a layer of alumina is well known to those skilled in the art who knows different types of baths usable for such treatment as a sulfuric acid bath or a bath of sulfuric acid and oxalic acid.
  • the solid dielectric layer has on the surface of electrical components located in the sealed enclosure of the medium or high voltage electrical device according to the invention is in the form of a film or a powder.
  • the deposit obtained may be in powder form or a film-forming deposit .
  • film-forming deposit is meant a deposit giving rise to a film, once applied to the surface of an electrical part, the formation of the film being able to result from the evaporation of a coexisting solvent. in the deposited composition and / or the chemical transformation in said composition (which transformation may be a polymerization reaction, a polycondensate reaction, a polyaddition reaction, an oxidation reaction or a vulcanization reaction).
  • the gaseous insulation uses a gaseous mixture comprising 1 heptafluoroisobutyronitrile.
  • the relative dielectric strength of the heptafluoroisobutyronitrile of formula (III), normalized with respect to SF6, is 2.2, said dielectric strength being measured at atmospheric pressure, under direct tension, between two steel electrodes with a diameter of 2.54 cm and spaced 0.1 cm apart.
  • the heptafluoroisobutyronitrile of formula (III) as defined above which is neither toxic, nor corrosive, nor flammable and which has a low GWP compared to that of SF6, is provided with electrical insulation properties and extinction of electric arcs suitable to allow it to replace in mixture with a gas of dilution, the SF6 like gas insulation and / or arc extinguishing in high voltage electrical devices.
  • the mixture used in the context of the present invention comprises heptafluoroisobutyronitrile and a dilution gas. It is also known as "blending gas” or “carrier gas”.
  • heptafluoroisobutyronitrile of formula (III) as defined above is used in admixture with a dilution gas which will be chosen from gases which satisfy the following four criteria:
  • a dilution gas that can be used in the context of the present invention is a neutral gas whose PRG is very low or even zero.
  • the dilution gas is, typically, carbon dioxide whose PRG is equal to 1, nitrogen, oxygen or air, advantageously dry, whose PRG is equal to 0, or mixtures thereof.
  • a dilution gas that can be used in the context of the present invention is chosen from carbon dioxide, nitrogen, oxygen, air, advantageously dry, and a mixture thereof.
  • the heptafluoroisobutyronitrile as defined above is present in the mixture heptafluoroisobutyronitrile / dilution gas in a molar percentage (Mhe) which is at least equal to 80% of the molar percentage M, determined by the formula (IV) :
  • PVShe (PVShe x 293) / (T min + 273) (V) in which PVShe represents the saturated vapor pressure of heptafluoroisobutyronitrile than previously defined at the minimum temperature T m in, expressed in degrees Celcius, of use of the electrical apparatus.
  • the dielectric properties of the gaseous medium are the highest possible and are closest to those of SF6.
  • the minimum use temperature T m in is chosen from 0 ° C, -5 ° C, -10 ° C, -15 ° C, -20 ° C, -25 ° C , -30 ° C, -35 ° C, -40 ° C, -45 ° C and -50 ° C and, in particular, selected from 0 ° C, -5 ° C, -10 ° C, -15 ° C , -20 ° C, -25 ° C, -30 ° C, -35 ° C and -40 ° C.
  • the electrical apparatus is a medium voltage or high voltage device for which the partial presence of the mixture in the liquid state is not likely to reduce the insulation.
  • the electrical apparatus is a medium voltage or high voltage device for which the partial presence of the mixture in the liquid state is not likely to reduce the insulation.
  • the heptafluoroisobutyronitrile is present in a molar percentage Mhe, greater than the molar percentage M.
  • the molar percentage of the heptafluoroisobutyronitrile is, typically, between 95% and 130%, more preferably between 97% and 120%, most preferably between 99% and 110% of the molar percentage M as previously defined.
  • the dielectric strength of the apparatus will be tested at a partial pressure of heptafluoroisobutyronitrile in the gaseous mixture for which the gas does not exhibit liquefaction at the minimum service temperature in order to validate the dielectric strength of said apparatus on the its entire temperature range.
  • the electrical apparatus is a medium or high voltage apparatus in which the insulation can be affected by the presence of liquid phase.
  • heptafluoroisobutyronitrile it is therefore advantageous for heptafluoroisobutyronitrile to be present in this mixture in a molar percentage (Mhe) which does not exceed 100% of the molar percentage M in order not to present a liquefaction phase at the minimum temperature of use.
  • Mhe molar percentage
  • the molar percentage of the heptafluoroisobutyronitrile is advantageously between 95% and 100% and, in particular, between 98% and 100% of the molar percentage M as previously defined.
  • the gaseous mixture used in the context of the present invention may contain only heptafluoroisobutyronitrile and carbon dioxide and therefore consist only of these two compounds.
  • the gas mixture comprises from 2 to 15 mol% of nitrile heptafluoroisobutyro- and from 85 to 98 mol% of carbon dioxide and, in particular, 4 to 10 mol% of 'heptafluoro ⁇ isobutyronitrile and 90 to 96% molar carbon dioxide.
  • this gaseous mixture may contain at least one other element in addition to 1 'heptafluoroiso ⁇ butyronitrile and carbon dioxide.
  • This other element can be any compound usually used in the electrical insulation of electrical equipment high or medium voltage.
  • such a compound is chosen from nitrogen, oxygen, air, advantageously dry, and a mixture thereof.
  • this other element is oxygen.
  • the gaseous mixture comprises from 2 to 15 mol% of heptafluoroisobutyronitrile, from 70 to 97 mol% of carbon dioxide and from 1 to 15 mol% of at least one other element as previously defined and in particular from 1 to 15 mol% of oxygen.
  • the gaseous mixture comprises from 4 to 10 mol% of heptafluoroisobutyronitrile, from 80 to 94 mol% of carbon dioxide and from 2 to 10 mol% of at least one other element as defined above and in particular from 2-10 mol% oxygen.
  • the heptafluoroisobutyronitrile is present in the electrical apparatus in completely gaseous form regardless of the temperature of use of this apparatus.
  • the pressure of the heptafluoroisobutyronitrile within the electrical apparatus should therefore be selected according to the saturated vapor pressure (PVS) that heptafluoroisobutyronitrile exhibits at the lowest temperature of use of said apparatus.
  • PVS saturated vapor pressure
  • the pressure of the heptafluoroisobutyronitrile referred to for filling the electrical apparatus is the pressure corresponding to the filling temperature, for example 20 ° C. C, to the PVS that presents Heptafluoroisobutyronitrile at the lowest temperature of use of said electrical apparatus.
  • Table I gives the saturation vapor pressures, denoted PVSI-C3F7CN and expressed in hectopascals, that heptafluoroisobutyronitrile exhibits at temperatures of 0 ° C., -5 ° C., -10 ° C. -15 ° C, -20 ° C, -25 ° C, -30 ° C and -40 ° C, as well as the pressures, denoted PI-C3F7CN and expressed in hectopascals, which correspond to 20 ° C at these vapor pressures saturation.
  • this electrical apparatus can be, in the first place, a gas-insulated electrical transformer such as, for example, a power transformer or a measurement transformer. It can also be a gas-insulated line, aerial or underground, or a busbar for the transport or distribution of electricity.
  • a gas-insulated electrical transformer such as, for example, a power transformer or a measurement transformer. It can also be a gas-insulated line, aerial or underground, or a busbar for the transport or distribution of electricity.
  • an electrical connection / disconnection device also known as a switchgear
  • a switchgear such as, for example, a circuit breaker, a switch, a disconnector, a fuse-switch combination, an earthing switch or a contactor.
  • Heptafluoroisobutyronitrile is used in a mixture with carbon dioxide to obtain the recommended filling pressure level.
  • 9,200 hPa will be filled with 0, 368 bar (i.e. 368 hPa) of heptafluoroisobutyronitrile and 8, 832 bar (i.e.
  • Such a device is in particular a GIB device
  • the heptafluoroisobutyronitrile will be at a pressure of 0.368 bar absolute measured at 20 ° C. Additional CO2 will be performed to obtain the final properties of the gas mixture.
  • the partial pressure of heptafluoroisobutyronitrile being 0.368 bar absolute measured at 20 ° C and the total gas pressure of 5 bar absolute, the molar ratio of 1-C3F 7CN is then 0.368 / 5 is about 7.4%.
  • the molar percentage M in heptafluoroisobutyronitrile is determined at the filling pressure of the recommended electrical apparatus, which represents the maximum proportion of heptafluoroisobutyronitrile that the heptafluoroisobutyronitrile mixture must contain. CC> 2 so that there is no liquid in the enclosure of the electrical device.
  • Mhe filling according to M In some cases, it is imperative that Mhe does not exceed M to avoid any presence of liquid.
  • Mhe is preferably chosen so that it is greater than or equal to 80% of M, better still greater than or equal to 95% of M, more preferably greater than or equal to 98% of M, for example equal to 99% of M.
  • the filling of the apparatus is carried out using a gas mixer to control the ratio between heptafluoroisobutyronitrile and carbon dioxide, this ratio being maintained constant and equal to about 7.4% in pressure throughout filling thanks to the use of precision mass flowmeter. Association with solid insulation
  • the gaseous mixture presented above is used in combination with a solid insulation of low dielectric permittivity applied to the parts. conductors subject to an electric field greater than the breakdown field of the system without solid insulation.
  • a coating of aluminum oxide obtained by hard anodizing by electric current in an acid bath of a thickness of about 50 ⁇ m;
  • a white epoxy paint with a thickness of between 100 and 400 ⁇ m.
  • the dielectric strength in lightning shock is 650 kV on uncoated blank.
  • the parts coated with the three coatings below show an improvement in their resistance to lightning shock of the order of 50 kV, an improvement of 7.6% compared to the raw parts.
  • a non-rough cast and deburred piece shows an improvement in the 25 kV lightning shock dielectric withstand.
  • the positive influence of the surface treatment is particularly remarkable in the case where the surfaces of the pieces are rough and have a high roughness.
  • the surface treatment ie the deposition of a solid coating according to the invention participates in smoothing the workpiece.
  • the addition of a coating does not significantly improve the dielectric strength of the assembly.
  • Patent Application EP 1 359 197 in the name of SigmaKalon Group, published November 5, 2003.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Organic Insulating Materials (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

La présente invention concerne un appareil électrique moyenne ou haute tension comprenant une enceinte étanche dans laquelle se trouvent des composants électriques recouverts d'une couche diélectrique solide et un milieu gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques comprenant de l'heptafluoroisobutyronitrile et un gaz de dilution, l'épaisseur de la couche diélectrique solide étant inférieure à 1 mm et cette dernière étant réalisée en un matériau comprenant une résine polyépoxyde ou polyuréthane contenant éventuellement une charge ou de l'oxyde d'aluminium.

Description

APPAREIL ÉLECTRIQUE MOYENNE OU HAUTE TENSION À ISOLATION HYBRIDE DE FAIBLE ÉPAISSEUR
DESCRIPTION DOMAINE TECHNIQUE
L'invention appartient au domaine de l'isolation électrique et de l'extinction des arcs électriques dans des appareils électriques moyenne ou haute tension et notamment haute tension.
Plus particulièrement, la présente invention concerne l'utilisation dans un appareil électrique moyenne ou haute tension d'une isolation hybride à faible impact environnemental basée sur la combinaison d'un milieu gazeux comprenant de 1 'heptafluoroiso- butyronitrile en mélange avec un gaz de dilution comme gaz d'isolation électrique et/ou d'extinction des arcs électriques et d'une isolation solide de type oxyde d'aluminium et/ou résine époxy ou polyuréthane avec une éventuelle charge appliquée en couche de faible épaisseur sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide.
Elle se rapporte également à un appareil électrique moyenne ou haute tension dans lequel l'extinction des arcs électriques est assurée par un milieu gazeux comprenant de 1 'heptafluoroisobutyro- nitrile en mélange avec un gaz de dilution et l'isolation électrique est assurée par le même milieu gazeux en combinaison avec une isolation solide de permittivité diélectrique faible du type oxydation anionique et/ou peinture polyépoxyde ou polyuréthane avec une éventuelle charge nanométrique appliquée en couche de faible épaisseur sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide. Cet appareil électrique peut notamment être un transformateur électrique tel qu'un transformateur de puissance ou de mesure, une ligne à isolation gazeuse (ou LIG) pour le transport ou la distribution de l'électricité, un jeu de barres ou encore un appareil électrique de connexion/déconnexion (aussi appelé appareil de coupure) tel qu'un disjoncteur, un interrupteur, un combiné interrupteur-fusibles, un sectionneur, un sectionneur de mise à la terre ou un contacteur .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Dans les appareils électriques de sous- station de moyenne ou haute tension, l'isolation électrique et, le cas échéant, l'extinction d'arc électrique sont typiquement assurées par un gaz qui est confiné à l'intérieur de ces appareils.
Actuellement, le gaz le plus souvent utilisé dans ce type d'appareil est l'hexafluorure de soufre (SF6) . Ce gaz présente, en effet, une rigidité diélectrique relativement haute, une bonne conductivité thermique et des pertes diélectriques peu élevées. Il est chimiquement inerte et non toxique pour l'homme et les animaux et, après avoir été dissocié par un arc électrique, il se recombine rapidement et presque totalement. De plus, il est ininflammable et son prix est, encore aujourd'hui, modéré. Toutefois, le SF6 a pour inconvénient majeur de présenter un potentiel de réchauffement global (PRG ou GWP pour « Global Warming Potential ») de 23 500 (relativement au CO2 sur 100 ans) et une durée de séjour dans l'atmosphère de 3 200 ans, ce qui le place parmi les gaz à fort pouvoir d'effet de serre. Le SF6 a donc été inscrit par le Protocole de Kyoto (1997) sur la liste des gaz dont les émissions doivent être limitées.
Le meilleur moyen de limiter les émissions du SF6 consiste à limiter l'utilisation de ce gaz, ce qui a conduit les industriels à chercher des alternatives au SF6.
A cet effet, un nouveau gaz présentant des propriétés d'isolation électrique suffisantes pour une application dans le domaine de l'appareillage électrique haute ou moyenne tension a été développé. Plus précisément, ce gaz est un mélange de deux molécules, l'une présente en grande majorité et la deuxième est l 'heptafluoroisobutyronitrile, présent en plus faible quantité. Ce mélange gazeux a l'avantage d'être basé sur un produit de substitution au SF6 présentant un GWP plus faible que le SF6 mis en solution dans un gaz hôte ou de dilution à GWP très faible, comme du dioxyde de carbone (CO2) dont le GWP est égal à 1, ou à GWP nul tel que l'azote (N2) ou l'air.
La demande internationale WO 2014/037566 [1] décrit l'utilisation de tels mélanges comme gaz d'isolation dans un appareil électrique haute ou moyenne tension, associés à une isolation solide. Un gaz d'isolation particulier à savoir comprenant de 1 'heptafluoroisobutyronitrile, du dioxyde de carbone et de l'oxygène, l'oxygène étant présent dans ledit milieu gazeux en un pourcentage molaire compris entre 1 et 25%, a, quant à lui, été décrit dans la demande internationale WO 2015/040069 [2] .
Dans ces deux documents, l'épaisseur de la couche isolante, lorsque cette dernière est présente, est fonction du facteur d'utilisation du champ électrique, n, défini comme le rapport du champ électrique moyen (U/d) sur le champ électrique maximal, Emax (n = U/ (Emax*d) ) . Ainsi, la couche est épaisse pour des facteurs d'utilisation proches de 0,3 i.e. compris entre 0,2 et 0,4 et la couche est mince ou fine pour des facteurs d'utilisation s'approchant de 0,9 i.e. supérieur à 0,5 et notamment supérieur à 0,6. De plus, une couche épaisse est définie comme une couche comprise entre 1 et 10 mm, alors qu'une couche mince ou fine est inférieure à 1 mm, notamment inférieure à 500 pm et typiquement comprise entre 60 et 100 pm.
Compte tenu de ce qui précède, les inventeurs se sont donc fixé pour but général d'améliorer encore les systèmes d'isolation hybride pour appareillages électriques haute ou moyenne tension mettant en œuvre, comme gaz d'isolation, un milieu gazeux comprenant de 1 'heptafluoroisobutyronitrile tout en maintenant les caractéristiques de l'appareil, du point de vue de sa capacité d'isolation et de coupure, proches de celles du SF6 sans augmenter, de manière significative, la taille de l'appareil et la pression du gaz à l'intérieur.
De plus, les inventeurs se sont fixé pour but de maintenir les plages de température de service de l'appareil électrique, proches de celles des appareils équivalents SF6 et ce, sans moyen de chauffe extérieur.
Ils se sont encore fixé pour but que les systèmes d'isolation hybride améliorés pour appareillages électriques haute ou moyenne tension mettant en œuvre, comme gaz d'isolation, un milieu gazeux comprenant de 1 'heptafluoroisobutyronitrile aient un coût de fabrication ou d'achat compatible avec une utilisation à une échelle industrielle.
Ils se sont encore fixé pour but que l'appareillage électrique moyenne ou haute tension basé sur ce système d'isolation amélioré ait une taille et une pression proches d'appareils équivalents isolés au SF6 et ne présente pas de liquéfaction à la température minimale d'utilisation sans ajout de source extérieur de chauffage .
EXPOSÉ DE L' INVENTION
Les buts fixés et d'autres encore sont atteints par l'invention qui propose l'utilisation d'un système d'isolation hybride particulier permettant d'obtenir un appareil électrique moyenne ou haute tension à faible impact environnemental.
En effet, le système d'isolation hybride mis en œuvre dans le cadre de la présente invention est basé sur un milieu gazeux comprenant de 1 'heptafluoro¬ isobutyronitrile en mélange avec un gaz neutre comme gaz d'isolation électrique et/ou d'extinction des arcs électriques dans un appareil électrique moyenne ou haute tension, en combinaison avec une isolation solide, notamment de permittivité diélectrique faible, appliquée en couche d'épaisseur mince sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage de l'appareil moyenne ou haute tension sans isolation solide. De fait, l'appareil électrique moyenne ou haute tension selon l'invention présente des composants électriques qui ne sont recouverts par aucune couche diélectrique solide et aucun de ces composants électriques n'est recouvert par une couche diélectrique solide épaisse telle que définie dans la demande internationale WO 2014/037566 [1] . De plus, la composition de la couche diélectrique solide est particulière puisque cette dernière est réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d ' aluminium.
De façon générale, la présente invention propose un appareil électrique moyenne ou haute tension comprenant une enceinte étanche dans laquelle se trouvent des composants électriques recouverts d'une couche diélectrique solide et un milieu gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques susceptibles de se produire dans cette enceinte comprenant de l 'heptafluoroisobutyronitrile en mélange avec un gaz de dilution, l'épaisseur de la couche diélectrique solide dans ladite enceinte étant inférieure à 1 mm et ladite couche diélectrique solide étant réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d'aluminium. En effet, les travaux des inventeurs ont montré que les appareils électriques moyenne ou haute tension dans lesquels l'isolation gazeuse est assurée par de 1 'heptafluoroisobutyronitrile sont plus sensibles à la rugosité de surface des composants électriques, comparés aux appareils électriques contenant du SF6 comme gaz d'isolation. Les inventeurs ont donc proposé de réduire la rugosité de surface en déposant, sur ces composants électriques, une couche mince d'un matériau à base d'une résine polyépoxyde ou polyuréthane contenant éventuellement une charge ou d'oxyde d'aluminium.
Typiquement les composants électriques recouverts d'une couche mince d'un tel matériau sont des composants bruts de fonderie.
De plus, les inventeurs ont montré que, des performances comparables à celles exposées dans la demande internationale WO 2014/037566 [1] pouvaient être obtenues en supprimant les couches diélectriques solides d'une épaisseur supérieure à 1 mm, ce qui est synonyme d'une réduction quant au coût de ces appareillages électriques moyenne ou haute tension.
Dans un premier mode de réalisation, la couche diélectrique solide présente sur des composants électriques situés dans l'enceinte étanche d'un appareil électrique haute ou moyenne tension selon l'invention est réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement au moins une charge ou une résine polyuréthane contenant éventuellement au moins une charge, ladite couche ayant une épaisseur comprise entre 10 et 500 pm. Dans ce mode de réalisation, la résine polyépoxyde de la couche diélectrique solide mise en œuvre peut comprendre ou être constituée par une résine polyépoxyde-polysiloxane ou une résine polyépoxyde- polyester.
Lorsque la résine polyépoxyde ou la résine polyuréthane comprend au moins une charge, cette dernière se présente sous forme de particules telles que des nanopart icules . Avantageusement, cette charge est en un matériau choisi dans le groupe constitué par l'alumine, la silice, l'oxyde de titane, le carbonate de calcium, l'oxyde de zinc, la wollastonite, le quartz, le graphite, l'argile et le talc.
Dans un second mode de réalisation, la couche diélectrique solide présente sur des composants électriques situés dans l'enceinte étanche d'un appareil électrique haute ou moyenne tension selon l'invention est réalisée en un matériau comprenant de l'oxyde d'aluminium, ladite couche ayant une épaisseur comprise entre 10 et 100 pm.
Avantageusement, la couche diélectrique solide présente à la surface de composants électriques situés dans l'enceinte étanche de l'appareil électrique moyenne ou haute tension selon l'invention se présente sous forme d'un film ou d'une poudre.
L'isolation gazeuse dans l'enceinte étanche de l'appareil électrique moyenne ou haute tension selon l'invention est assurée par de l 'heptafluoroisobutyro- nitrile en mélange avec un agent de dilution. Ce dernier est avantageusement choisi parmi le dioxyde de carbone, l'azote, l'oxygène, l'air et un de leurs mélanges.
Avantageusement, l'appareil électrique moyenne ou haute tension selon l'invention est un transformateur électrique à isolation gazeuse, une ligne à isolation gazeuse pour le transport ou la distribution de l'électricité, un élément de raccordement aux autres équipements du réseau ou un appareil électrique de connexion/déconnexion.
La présente invention concerne également l'utilisation d 'heptafluoroisobutyronitrile en mélange avec un gaz de dilution tel que précédemment défini comme gaz d'isolation électrique et/ou d'extinction des arcs électriques dans un appareil électrique moyenne ou haute tension dont les composants électriques sont recouverts d'une couche isolante solide dont l'épaisseur est inférieure à 1 mm et réalisée en un matériau tel que précédemment défini i.e. comprenant une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d'aluminium. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'invention est basée sur l'utilisation, dans un appareil électrique moyenne ou haute tension, d'un système d'isolation hybride à faible impact environnemental combinant un mélange gazeux comprenant de 1 'heptafluoroisobutyronitrile et une isolation solide de permittivité diélectrique faible appliquée en couche mince sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide. Dans ce qui précède et ce qui suit, l'expression « moyenne tension » est utilisée dans son acceptation habituelle, à savoir que le terme « moyenne tension » désigne une tension qui est supérieure à 1 000 volts en courant alternatif et à 1 500 volts en courant continu mais qui ne dépasse pas 52 000 volts en courant alternatif et 75 000 volts en courant continu.
Dans ce qui précède et ce qui suit, l'expression « haute tension » est utilisée dans son acceptation habituelle, à savoir que l'expression « haute tension » désigne une tension qui est strictement supérieure à 52 000 volts en courant alternatif et à 75 000 volts en courant continu.
Un appareil électrique moyenne ou haute tension comporte principalement une enveloppe extérieure ou enceinte, longitudinale délimitant un volume creux et un ou plusieurs composant (s) électrique ( s ) qui est/sont agencés à l'intérieur de cette enveloppe.
Le volume intérieur de l'enveloppe est fermé de manière étanche aux gaz et est rempli par un gaz d'isolation électrique et d'extinction d'arc électrique qui comprend, dans le cadre de la présente invention, de 1 'heptafluoroisobutyronitrile et un gaz de dilution.
Dans le cadre de la présente invention, tout ou partie des composants électriques situés dans l'enceinte étanche de l'appareil électrique présentent, à leur surface, une couche diélectrique.
En effet, dans le but d'améliorer la tenue diélectrique de l'ensemble, le mélange gazeux comprenant de 1 'heptafluoroisobutyronitrile et un gaz de dilution est utilisé, dans un système d'isolation hybride, en combinaison avec une isolation solide appliquée en une couche isolante mince sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide.
Les pièces conductrices recouvertes par cette couche isolante sont brutes de fonderie. En d'autres termes, ces pièces sont brutes et n'ont subi aucun traitement destiné à modifier leur état de surface du type polissage, préalablement au dépôt de la couche isolante .
La couche isolante solide mise en œuvre dans l'invention présente une permittivité relative faible. Par « permittivité relative faible », on entend une permittivité relative inférieure ou égale à 6. On rappelle que la permittivité relative, également appelée constante diélectrique, d'un matériau, qui est notée £r, est une grandeur sans dimension qui peut être définie par les formules (I) et (II) suivantes :
εΓ = ε/εο ( I ) , avec
ε = (e * C)/S et ε0 = 1/(36π * 109) (il) dans lesquelles :
- ε correspond à la permittivité absolue (exprimée en Farads/mètre) du matériau ;
- εο correspond à la permittivité (exprimée en Farads/mètre) du vide ; - C correspond à la capacité (exprimée en Farads) d'un condensateur plan comprenant deux électrodes parallèles entre lesquelles est disposée une couche du matériau pour lequel on veut déterminer la permittivité, cette couche représentant une éprouvette ;
- e correspond à la distance (exprimée en mètres) entre les deux électrodes parallèles du condensateur plan, ce qui correspond, dans notre cas, à l'épaisseur de 1 ' éprouvette ; et
- S correspond à la surface (exprimée en mètres carrés) de chaque électrode constitutive du condensateur plan.
Dans le cadre de la présente invention, la capacité est déterminée comme dans la norme CEI 60250-edl.O, à savoir en utilisant un condensateur comprenant deux électrodes circulaires d'un diamètre allant de 50 à 54 mm, solidaires de l 'éprouvette constituée du matériau, ces électrodes étant obtenues par pulvérisation d'une peinture conductrice avec un dispositif de garde. L 'éprouvette présente des dimensions de 100 mm x 100 mm et une épaisseur de 3 mm. La distance entre les électrodes du condensateur, qui correspond à la grandeur e mentionnée ci-dessus, est donc de 3 mm.
Par ailleurs, la capacité est déterminée sous un niveau d'excitation de 500 volts RMS, à une fréquence de 50 hertz, sous une température de 23°C et une humidité relative de 50%. La durée d'application de la tension susmentionnée est de 1 min.
Par « couche isolante/diélectrique solide mince », on entend dans le cadre de la présente invention que le matériau diélectrique, déposé ou appliqué sur les composants électriques ou pièces conductrices, présente une épaisseur inférieure à 1 mm, notamment inférieure ou égale à 750 pm et, en particulier notamment inférieure ou égale à 500 pm et ce, quelle que soit la pièce conductrice ou partie de pièce conductrice sur laquelle il est déposé. En d'autres termes, aucune des pièces conductrices dans l'enceinte de l'appareil électrique selon l'invention ne présente une couche diélectrique avec une épaisseur supérieure ou égale à 1 mm. L'épaisseur de la couche est déterminée lors de la préparation des éléments constituant cet appareil.
Dans le cadre de l'invention, la couche isolante est appliquée en couche mince sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide. Plus particulièrement, la couche diélectrique mince est typiquement déposée sur les pièces conductrices à l'endroit où le coefficient d'utilisation du champ électrique est supérieur ou égal à 0,2 et notamment supérieur ou égal à 0,3. Pour rappel, le facteur ou coefficient d'utilisation du champ électrique, n, est défini comme le rapport du champ électrique moyen (U/d) sur le champ électrique maximal, Emax (n = U/ (Emax*d) ) .
La couche isolante solide mise en œuvre dans le cadre de la présente invention peut comprendre un seul matériau diélectrique ou plusieurs matériaux diélectriques différents. De plus, la composition de la couche isolante i.e. la nature du ou des matériau(x) diélectrique ( s ) qu'elle comprend peut différer en fonction de la pièce conductrice ou partie de pièce conductrice sur laquelle la couche isolante solide est déposée .
Toutefois, dans le cadre de la présente invention, le ou les matériau (x) de la couche isolante comprend/comprennent une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d ' aluminium. Dans un premier mode de réalisation, la couche diélectrique solide présente sur des composants électriques situés dans l'enceinte étanche d'un appareil électrique haute ou moyenne tension selon l'invention est réalisée en un matériau comprenant ou constitué d'une résine polyépoxyde contenant éventuellement au moins une charge ou d'une résine polyuréthane contenant éventuellement au moins une charge, ladite couche ayant une épaisseur comprise entre 10 et 500 pm.
Par « résine polyépoxyde », on entend, dans le cadre de la présente invention, une résine thermodurcissable obtenue à partir de la réaction de monomères identiques ou différents et/ou d'oligomères identiques ou différents comprenant des groupes fonctionnels oxiranes (aussi appelés fonctions époxy) avec un ou plusieurs durcisseurs qui typiquement sont des aminés comme une polyamine, des amides comme un polyamide, des acides carboxyliques ou des anhydrides d'acides. Une résine polyépoxyde est également désignée, dans la littérature, sous l'appellation « résine époxy » ou encore « résine époxyde ». L'homme du métier connaît différents monomères ou oligomères comprenant des fonctions époxy utilisables en tant que précurseurs de résine polyépoxyde. De tels monomères ou oligomères correspondent notamment aux résines époxydées décrites dans la demande internationale WO 2010/139906 [3] et dans la demande de brevet EP 1 359 197 [4] .
La composition à partir de laquelle la résine polyépoxyde est obtenue peut contenir, en plus d'un ou plusieurs monomères différents et/ou d'un ou plusieurs oligomères différents comprenant des fonctions époxy et d'un ou plusieurs durcisseurs, au moins un autre élément tel qu'un polysiloxane, un polyester ou un précurseur de tels polymères. Dans ces cas, la résine polyépoxyde sera une résine polyépoxyde-polysiloxane ou une résine polyépoxyde-polyester . La demande de brevet EP 1 359 197
[4] décrit plusieurs exemples de résine polyépoxyde- polysiloxane utilisables dans le cadre de la présente invention .
A titre d'exemples de résines polyépoxydes utilisables dans le cadre de la présente invention, on peut citer Amercoat 385®, Amercoat 4093®, PSX 700® et Nuklad 105® commercialisés par Ameron.
Par « résine polyuréthane », on entend un polymère d'uréthane produit par la réaction d'un isocyanate et d'un polyol.
La résine polyépoxyde ou polyuréthane déposée sur les composants électriques de l'appareil électrique selon l'invention peut être non chargée ou chargée. Lorsqu'elle est chargée, la charge peut se présenter sous forme de particules. Les particules mises en œuvre dans le cadre de la présente invention peuvent présenter des formes variées, telles que formes sphéroïdes, ellipsoïdes, hexagonales, de bâtonnets ou en étoile. La distribution granulométrique moyenne de ces particules est typiquement comprise entre 10 nm et 1 pm et notamment entre 20 et 900 nm. On peut donc parler de nanopart icules .
Toute charge connue de l'homme du métier est utilisable dans le cadre de la présente invention. Toutefois, cette charge est non conductrice de l'électricité afin de ne générer aucune poussière conductrice. Avantageusement, cette charge est en un matériau choisi dans le groupe constitué en un matériau choisi dans le groupe constitué par l'alumine, la silice, l'oxyde de titane, le carbonate de calcium, l'oxyde de zinc, la wollastonite, le quartz, le graphite, l'argile et le talc.
L'homme du métier connaît différentes techniques permettant de déposer ou d'appliquer une résine polyépoxyde ou polyuréthane chargée ou non chargée ou une composition précurseur d'une telle résine sur les pièces conductrices de l'appareil électrique selon l'invention. A titre d'exemples de techniques de dépôt ou d'application, on peut citer une pulvérisation avec ou sans air comprimé, une projection au pistolet pneumatique ou électrostatique, une trempe ou une électrodéposition cationique (ou cataphorèse) .
Dans un second mode de réalisation, la couche diélectrique solide présente sur des composants électriques situés dans l'enceinte étanche d'un appareil électrique haute ou moyenne tension selon l'invention est réalisée en un matériau comprenant de l'oxyde d'aluminium (AI2O3 ou alumine) ou constitué d'Al2<03, ladite couche ayant une épaisseur comprise entre 10 et 100 pm.
Avantageusement, cette couche diélectrique solide est produite en soumettant les composants électriques à base d'aluminium ou d'un alliage contenant de l'aluminium à une oxydation électrolyt ique ou oxydation cationique. Cette technique de passivation d'une surface en aluminium ou en un alliage contenant de l'aluminium par dépôt d'une couche d'alumine est bien connue de l'homme du métier qui connaît différents types de bain utilisables pour un tel traitement comme un bain d'acide sulfurique ou un bain d'acide sulfurique et d'acide oxalique.
Avantageusement, la couche diélectrique solide présente à la surface de composants électriques situés dans l'enceinte étanche de l'appareil électrique moyenne ou haute tension selon l'invention se présente sous forme d'un film ou d'une poudre.
En effet, en fonction de la résine ou de la composition précurseur de cette dernière, de la technique d'application ou de la technique d'oxydation cationique mise en œuvre, le dépôt obtenu peut se présenter sous forme pulvérulente ou d'un dépôt filmogène.
Par « dépôt filmogène », on entend un dépôt donnant naissance à un film, une fois appliqué sur la surface d'une pièce électrique, la formation du film pouvant résulter de 1 ' évaporât ion d'un solvant coexistant dans la composition déposée et/ou de la transformation chimique dans ladite composition (laquelle transformation peut être une réaction de polymérisation, une réaction de polycondensat ion, une réaction de polyaddit ion, une réaction d'oxydation ou encore une réaction de vulcanisation) .
Dans l'appareil électrique selon la présente invention, l'isolation gazeuse met en œuvre un mélange gazeux comprenant de 1 'heptafluoroisobutyronitrile .
L 'heptafluoroisobutyronitrile de formule (III) : (CF3)2CFCN (III), également désigné 1-C3F7CN, correspond au 2 , 3 , 3 , 3-tétrafluoro-2-trifluorométhyl propanenitrile, de numéro CAS : 42532-60-5, présentant un point d'ébullition de -4,7°C à 1013 hPa (point d'ébullition mesuré selon ASTM D1120-94 "Standard Test Method for Boiling Point of Engine Codants") .
La tenue diélectrique relative de l'hepta- fluoroisobutyronitrile de formule (III), normalisée par rapport au SF6 est de 2.2, ladite tenue diélectrique étant mesurée à pression atmosphérique, sous tension continue, entre deux électrodes en acier de diamètre 2,54 cm et espacées de 0,1 cm.
Ainsi, l 'heptafluoroisobutyronitrile de formule (III) tel que précédemment défini, qui n'est ni toxique, ni corrosif, ni inflammable et qui présente un PRG faible par rapport à celui du SF6, est doté de propriétés d'isolation électrique et d'extinction des arcs électriques propres à lui permettre de remplacer en mélange avec un gaz de dilution, le SF6 comme gaz d'isolation et/ou d'extinction d'arc dans des appareils électriques haute tension.
Le mélange mis en œuvre dans le cadre de la présente invention comprend de 1 'heptafluoroisobutyronitrile et un gaz de dilution. Ce dernier est également connu sous l'appellation « gaz de mélange » ou « gaz porteur ».
Dans le cadre de l'invention,
1 'heptafluoroisobutyronitrile de formule (III) tel que précédemment défini est utilisé en mélange avec un gaz de dilution qui sera choisi parmi les gaz qui répondent aux quatre critères suivants :
(1) présenter une température d'ébullition très basse, inférieure à la température minimale d'utilisation de l'appareil ;
(2) présenter une rigidité diélectrique supérieure ou égale à celle du dioxyde de carbone dans des conditions d'essai identiques (même appareillage, même configuration géométrique, mêmes paramètres opératoires, ...) à celles utilisées pour mesurer la rigidité diélectrique du dioxyde de carbone ;
(3) être dénués de toxicité pour l'homme et les animaux ; et
(4) présenter un PRG plus faible que celui de 1 'heptafluoroisobutyronitrile de sorte que la dilution de 1 'heptafluoroisobutyronitrile par le gaz de dilution ait également pour effet d'abaisser l'impact environnemental de 1 'heptafluoroisobutyronitrile puisque le PRG d'un mélange gazeux est une moyenne pondérée, dérivée de la somme de la fraction de masse de chacune des substances multipliée par le PRG de chacun des composants .
En particulier, un gaz de dilution utilisable dans le cadre de la présente invention est un gaz neutre dont le PRG est très faible, voire nul. Aussi, le gaz de dilution est, typiquement, du dioxyde de carbone dont le PRG est égal à 1, de l'azote, de l'oxygène ou de l'air, avantageusement sec, dont le PRG est égal à 0, ou bien des mélanges de ceux-ci. Plus particulièrement, un gaz de dilution utilisable dans le cadre de la présente invention est choisi parmi le dioxyde de carbone, l'azote, l'oxygène, l'air, avantageusement sec, et un de leurs mélanges.
Avantageusement, 1 'heptafluoroisobutyro- nitrile tel que précédemment défini est présent dans le mélange 1 'heptafluoroisobutyronitrile/gaz de dilution en un pourcentage molaire (Mhe) qui est au moins égal à 80% du pourcentage molaire M, déterminé par la formule (IV) :
M = (Phe/Pmélange) X 100 (IV)
dans laquelle Pméiange représente la pression totale du mélange à 20°C dans l'appareil électrique et Phe représente la pression partielle, exprimée dans la même unité, qui équivaut à 20 °C à la pression de vapeur saturante que présente l 'heptafluoroisobutyronitrile tel que précédemment défini à la température minimale d'utilisation de l'appareil électrique.
La pression Phe est, elle-même, approximée par la formule (V) :
Phe = (PVShe x 293)/(Tmin + 273) (V) dans laquelle PVShe représente la pression de vapeur saturante de 1 'heptafluoroisobutyronitrile tel que précédemment défini à la température minimale Tmin , exprimée en degrés Celcius, d'utilisation de l'appareil électrique .
Ainsi, les propriétés diélectriques du milieu gazeux sont les plus élevées possibles et se rapprochent au mieux de celles du SF6.
Avantageusement, dans le cadre de la présente invention, la température minimale d'utilisation Tmin est choisie parmi 0°C, -5°C, -10°C, -15°C, -20°C, -25°C, -30°C, -35°C, -40°C, -45°C et -50°C et, en particulier, choisie parmi 0°C, -5°C, -10°C, -15°C, -20°C, -25°C, -30°C, -35°C et -40°C.
Dans une lère forme de mise en œuvre, l'appareil électrique est un appareil moyenne tension ou haute tension pour lequel la présence partielle du mélange à l'état liquide n'est pas de nature à réduire l'isolation. Dans ce cas, il est possible d'utiliser un mélange dans lequel 1 'heptafluoroisobutyronitrile est présent en un pourcentage molaire Mhe , supérieur au pourcentage molaire M. Auquel cas, le pourcentage molaire de 1 'heptafluoroisobutyronitrile est, typiquement, compris entre 95% et 130%, mieux encore entre 97% et 120%, idéalement entre 99% et 110% du pourcentage molaire M tel que précédemment défini. Dans un tel cas, la tenue diélectrique de l'appareil sera testée à une pression partielle d 'heptafluoroisobutyronitrile dans le mélange gazeux pour laquelle le gaz ne présente pas de liquéfaction à la température minimale de service afin de valider la tenue diélectrique dudit appareil sur l'ensemble de sa plage de températures. Dans une 2nde forme de mise en œuvre, l'appareil électrique est un appareil moyenne ou haute tension dans lequel l'isolation peut être affectée par la présence de phase liquide. Dans cette forme de mise en œuvre, il est souhaitable que le mélange heptafluoroisobutyronitrile/ gaz de dilution soit exclusivement ou quasi exclusivement à l'état gazeux dans toute la gamme des températures d'utilisation de cet appareil. Il est donc avantageux que 1 'heptafluoroisobutyronitrile soit présent dans ce mélange en un pourcentage molaire (Mhe) qui ne dépasse pas 100% du pourcentage molaire M afin de ne pas présenter de phase de liquéfaction à la température minimale d'utilisation. Auquel cas, le pourcentage molaire de 1 'heptafluoroisobutyronitrile est, avantageusement, compris entre 95% et 100% et, en particulier, entre 98% et 100% du pourcentage molaire M tel que précédemment défini .
A titre d'exemple particulier, le mélange gazeux mis en œuvre dans le cadre de la présente invention peut ne contenir que de 1 'heptafluoroisobutyronitrile et du dioxyde de carbone et donc n'être constitué que de ces deux composés. Dans ce cas, le mélange gazeux comprend de 2 à 15% molaire d 'heptafluoroisobutyro- nitrile et de 85 à 98% molaire de dioxyde de carbone et, en particulier, de 4 à 10% molaire d 'heptafluoro¬ isobutyronitrile et de 90 à 96% molaire de dioxyde de carbone .
En variante, ce mélange gazeux peut contenir au moins un autre élément en plus de 1 'heptafluoroiso¬ butyronitrile et du dioxyde de carbone. Cet autre élément peut être tout composé habituellement utilisé dans l'isolation électrique des appareillages électriques haute ou moyenne tension. Avantageusement, un tel composé est choisi parmi l'azote, l'oxygène, l'air, avantageusement sec, et un de leurs mélanges. Typiquement, cet autre élément est de l'oxygène.
Dans cette variante, le mélange gazeux comprend de 2 à 15% molaire d 'heptafluoroiso- butyronitrile, de 70 à 97% molaire de dioxyde de carbone et de 1 à 15% molaire d'au moins un autre élément tel que précédemment défini et notamment de 1 à 15% molaire d'oxygène. En particulier, le mélange gazeux comprend de 4 à 10% molaire d 'heptafluoroisobutyro-nitrile, de 80 à 94% molaire de dioxyde de carbone et de 2 à 10% molaire d'au moins un autre élément tel que précédemment défini et notamment de 2 à 10% molaire d'oxygène.
Avantageusement, 1 'heptafluoroisobutyro- nitrile est présent dans l'appareil électrique sous forme entièrement gazeuse quelle que soit la température d'utilisation de cet appareil. Il convient donc que la pression de 1 'heptafluoroisobutyronitrile à l'intérieur de l'appareil électrique soit choisie en fonction de la pression de vapeur saturante (PVS) que présente 1 'heptafluoroisobutyronitrile à la température la plus basse d'utilisation dudit appareil.
Toutefois, comme le remplissage en gaz des appareils électriques se fait usuellement à température ambiante, la pression de 1 'heptafluoroisobutyronitrile à laquelle on se réfère pour remplir l'appareil électrique est la pression qui correspond, à la température de remplissage, par exemple 20°C, à la PVS que présente 1 'heptafluoroisobutyronitrile à la température la plus basse d'utilisation dudit appareil électrique.
A titre d'exemple, le Tableau I ci-après indique les pressions de vapeur saturante, notées PVSI-C3F7CN et exprimées en hectopascals , que présente 1 'heptafluoroisobutyronitrile aux températures de 0°C, - 5°C, -10°C, -15°C, -20°C, -25°C, -30°C et -40°C, ainsi que les pressions, notées PI-C3F7CN et exprimées en hectopascals, qui correspondent à 20°C à ces pressions de vapeur saturante.
Figure imgf000025_0001
Tableau I : pressions de vapeur saturante du i-C3F7C
Conformément à l'invention, cet appareil électrique peut être, en premier lieu, un transformateur électrique à isolation gazeuse comme, par exemple, un transformateur de puissance ou un transformateur de mesure . Il peut également être une ligne à isolation gazeuse, aérienne ou souterraine, ou un jeu de barres pour le transport ou la distribution de l'électricité.
Il peut également être un élément de raccordement aux autres équipements du réseau comme, par exemple, les traversées aériennes ou les traversées de cloison .
Enfin, il peut aussi être un appareil électrique de connexion/déconnexion (aussi appelé appareil de coupure) comme, par exemple, un disjoncteur, un interrupteur, un sectionneur, un combiné interrupteur- fusibles, un sectionneur de mise à la terre ou un contacteur . Exemple d' application et remplissage
Selon l'appareil électrique, la pression préconisée de remplissage en milieu d'isolation électrique et/ou d'extinction des arcs électriques varie.
Elle est toutefois, typiquement de plusieurs bars (i.e. plusieurs milliers d 'hectopascals ) .
L 'heptafluoroisobutyronitrile est utilisé en mélange avec du dioxyde de carbone pour pouvoir obtenir le niveau de pression de remplissage préconisé.
Ainsi, par exemple, un appareil prévu pour, d'une part, être utilisé à une température minimale de
-30°C, et, d'autre part, être rempli à 9,2 bars (i.e.
9 200 hPa) , sera rempli avec 0, 368 bar (i.e. 368 hPa) d 'heptafluoroisobutyronitrile et 8, 832 bars (i.e.
8832 hPa) de dioxyde de carbone.
Un tel appareil est notamment un appareil GIB
420 kV d'Alstom conçu pour une application à -30°C rempli avec C02/1-C3F 7C . Pour cet appareil de température minimale d'application de -30°C, 1 'heptafluoroiso- butyronitrile sera à une pression de 0,368 bar absolu mesurée à 20 °C. Un complément de CO2 sera effectué pour obtenir les propriétés finales du mélange gazeux. La pression partielle d 'heptafluoroisobutyronitrile étant de 0,368 bar absolu mesurée à 20°C et la pression totale du gaz de 5 bars absolus, le ratio molaire de 1-C3F 7CN est alors de 0,368/5 soit environ 7,4%.
Afin de déterminer la composition du mélange gazeux au remplissage, on détermine le pourcentage molaire M en heptafluoroisobutyronitrile à la pression de remplissage de l'appareil électrique préconisée, qui représente la proportion maximale d 'heptafluoroiso- butyronitrile que doit comporter le mélange hepta- fluoroisobutyronitrile/CC>2 pour qu'il n'y ait pas de liquide dans l'enceinte de l'appareil électrique. Le pourcentage molaire M est donné par la formule M = (Phe/Pméiange) x 100, avec Phe qui représente la pression équivalente, à la température de remplissage (typiquement de l'ordre de 20°C), à la pression de vapeur saturante PVS de l 'heptafluoroiso-butyronitrile à la température minimale d'utilisation Tmin de l'appareil (Phe = (PVShe x 293) / (273 +
Ensuite, on choisit le pourcentage molaire
Mhe de remplissage en fonction de M. Dans certains cas, il est impératif que Mhe ne dépasse pas M pour éviter toute présence de liquide.
Par contre, il est parfois possible, par exemple en moyenne tension ou pour certains appareils électriques haute tension pour lesquels leur isolation n'est pas affectée par la présence de phase liquide, d'avoir un peu de liquide à basse ou très basse température, auquel cas Mhe peut atteindre 110% voire 130% de M. Par ailleurs, comme 1 'heptafluoroiso- butyronitrile possède une meilleure tenue diélectrique que les gaz neutres, il est souhaitable d'optimiser le remplissage par 1 'heptafluoroisobutyronitrile : on choisit donc, de préférence, Mhe de sorte qu'il soit supérieur ou égal à 80% de M, mieux encore supérieur ou égal à 95% de M, mieux encore supérieur ou égal à 98% -de M, par exemple égal à 99% de M .
Le remplissage de l'appareil est effectué à l'aide d'un mélangeur de gaz permettant de contrôler le rapport entre l 'heptafluoroisobutyronitrile et dioxyde de carbone, ce rapport étant maintenu constant et égal à environ 7,4% en pression tout au long du remplissage grâce à l'utilisation de débitmètre massique de précision . Association à une isolation solide
Afin d'obtenir l'équivalence diélectrique par rapport au SF6, sans dégrader ses performances à basse température, ni augmenter sa pression totale, le mélange gazeux présenté ci-dessus est utilisé en combinaison avec une isolation solide de permittivité diélectrique faible appliquée sur les pièces conductrices soumises à un champ électrique supérieur au champ de claquage du système sans isolation solide.
Dans le cadre de la présente invention, trois isolations solides ont été testées : - un revêtement en poudre d'une résine thermoducissable de type époxyde selon DIN EN ISO 12944 D5M avec une épaisseur de 100 pm ;
- un revêtement d'oxyde d'aluminium obtenu par anodisation dure par courant électrique dans un bain acide, d'une épaisseur d'environ 50 pm ; et
- une peinture époxyde blanche avec une épaisseur comprise entre 100 et 400 pm.
Ces trois revêtements ont été appliqués à des enveloppes et pièces en aluminium obtenues par coulée sable sans traitement de surface additionnel (brutes de fonderie) de type polissage avant dépôt du revêtement.
La tenue diélectrique en choc de foudre est de 650 kV sur pièce brute non revêtue. Les pièces revêtues des trois revêtements ci-dessous montrent une amélioration de leur tenue sous choc de foudre de l'ordre de 50 kV, soit une amélioration de 7,6% par rapport aux pièces brutes. De manière comparative, une pièce non brute de fonderie et ébavurée présente une amélioration de la tenue diélectrique en choc de foudre de 25 kV.
L'influence positif du traitement de surface est particulièrement remarquable dans le cas où les surfaces des pièces sont brutes et présentent une rugosité importante. Ainsi, le traitement de surface i.e. le dépôt d'un revêtement solide selon l'invention participe au lissage de la pièce. Dans le cas de pièces polies et présentant des rugosités faibles, l'ajout d'un revêtement n'améliore pas, de façon significative, la tenue diélectrique de l'ensemble. RÉFÉRENCES
[1] Demande internationale WO 2014/037566, au nom de Alstom Technology Ltd, publiée le 13 mars 2014.
[2] Demande internationale WO 2015/040069, au nom de Alstom Technology Ltd, publiée le 26 mars 2015.
[3] Demande internationale WO 2010/139906, au nom de Arkema France, publiée le 9 décembre 2010.
[4] Demande de brevet EP 1 359 197, au nom de SigmaKalon Group, publiée le 5 novembre 2003.

Claims

REVENDICATIONS
1. Appareil électrique moyenne ou haute tension comprenant une enceinte étanche dans laquelle se trouvent des composants électriques recouverts d'une couche diélectrique solide et un milieu gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques susceptibles de se produire dans cette enceinte comprenant de 1 'heptafluoroisobutyronitrile en mélange avec un gaz de dilution,
caractérisé en ce que l'épaisseur de la couche diélectrique solide dans ladite enceinte est inférieure à 1 mm et
en ce que ladite couche diélectrique solide est réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d'aluminium.
2. Appareil électrique selon la revendication 1, caractérisé en ce que lesdits composants électriques sont bruts de fonderie.
3. Appareil électrique selon la revendication 1 ou 2, caractérisé en ce que ladite couche diélectrique solide réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement une charge ou une résine polyuréthane contenant éventuellement une charge a une épaisseur comprise entre 10 et 500 pm.
4. Appareil électrique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite résine polyépoxyde comprend ou est constituée par une résine polyépoxyde-polysiloxane ou une résine polyépoxyde-polyester .
5. Appareil électrique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite charge se présente sous forme de particules telles que des nanopart icules .
6. Appareil électrique selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite charge est en un matériau choisi dans le groupe constitué par l'alumine, la silice, l'oxyde de titane, le carbonate de calcium, l'oxyde de zinc, la wollastonite, le quartz, le graphite, l'argile et le talc .
7. Appareil électrique selon la revendication 1 ou 2, caractérisé en ce que ladite couche diélectrique solide réalisée en un matériau comprenant de l'oxyde d'aluminium a une épaisseur comprise entre 10 et 100 pm.
8. Appareil électrique selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ladite couche diélectrique solide se présente sous forme d'un film ou d'une poudre.
9. Appareil électrique selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit gaz de dilution est choisi parmi le dioxyde de carbone, l'azote, l'oxygène, l'air et un de leurs mélanges.
10. Appareil électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit appareil est un transformateur électrique à isolation gazeuse, une ligne à isolation gazeuse pour le transport ou la distribution de l'électricité, un élément de raccordement aux autres équipements du réseau ou un appareil électrique de connexion/déconnexion.
11. Utilisation d 'heptafluoroisobutyro- nitrile en mélange avec un gaz de dilution tel que défini la revendication 1 ou 9 comme gaz d'isolation électrique et/ou d'extinction des arcs électriques dans un appareil électrique moyenne ou haute tension dont les composants électriques sont recouverts d'une couche isolante solide dont l'épaisseur est inférieure à 1 mm et réalisée en un matériau comprenant une résine polyépoxyde contenant éventuellement une charge, une résine polyuréthane contenant éventuellement une charge ou de l'oxyde d'aluminium tel que défini à l'une quelconque des revendications 1 à 8.
PCT/EP2016/082776 2015-12-28 2016-12-28 Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur WO2017114862A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/066,380 US11017919B2 (en) 2015-12-28 2016-12-28 Medium-voltage or high-voltage electrical device having low-thickness hybrid insulation
JP2018533617A JP6956723B2 (ja) 2015-12-28 2016-12-28 薄いハイブリッド絶縁体を有する中電圧または高電圧電気機器
CN201680076703.XA CN108475555A (zh) 2015-12-28 2016-12-28 具有低厚度混合绝缘材料的中压或高压电气装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15307151.9 2015-12-28
EP15307151.9A EP3188196B1 (fr) 2015-12-28 2015-12-28 Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur

Publications (1)

Publication Number Publication Date
WO2017114862A1 true WO2017114862A1 (fr) 2017-07-06

Family

ID=55083320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/082776 WO2017114862A1 (fr) 2015-12-28 2016-12-28 Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur

Country Status (5)

Country Link
US (1) US11017919B2 (fr)
EP (1) EP3188196B1 (fr)
JP (1) JP6956723B2 (fr)
CN (1) CN108475555A (fr)
WO (1) WO2017114862A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3923301A1 (fr) 2020-06-11 2021-12-15 General Electric Technology GmbH Appareil électrique à isolation gazeuse comprenant du dioxyde de carbone, de l'heptafluoroisobutyronitrile et une forte teneur en oxygène
US11535579B2 (en) 2017-12-13 2022-12-27 3M Innovative Properties Company Hydrofluoroolefin ethers, compositions, apparatuses and methods for using same
US11551827B2 (en) 2017-12-13 2023-01-10 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes in dielectric fluids and electrical devices
US11673861B2 (en) 2017-12-13 2023-06-13 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes, compositions, and methods and apparatuses for using same
EP4376025A1 (fr) 2022-11-28 2024-05-29 General Electric Technology GmbH Appareil électrique isolé par gaz comprenant de l'heptafluoroisomerase et de l'heptafluoroisopropyl(trifluorométhyl)cétone

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256244B (zh) * 2018-11-22 2020-12-01 华北电力大学 一种直流输电管道
CN109830912A (zh) * 2019-03-29 2019-05-31 武汉大学 一种环保型气体绝缘介质的改性配方
EP4024095A4 (fr) 2019-08-29 2023-10-04 Toppan Inc. Feuille d'estampage à chaud et article imprimé avec dispositif optiquement variable
EP3982377B1 (fr) * 2020-10-09 2023-11-29 Hitachi Energy Ltd Procédé de rétablissement d'un appareil électrique de moyenne ou haute tension
US11916448B2 (en) 2021-02-01 2024-02-27 The Timken Company Small-fraction nanoparticle resin for electric machine insulation systems
CN113284723A (zh) * 2021-06-22 2021-08-20 武汉大学 含c5f10o的气体变压器绝缘介质的配方气体
EP4120292A1 (fr) 2021-07-13 2023-01-18 Hitachi Energy Switzerland AG Récipient de stockage et de transport d'un milieu d'isolation diélectrique
DE102022205691A1 (de) * 2022-06-03 2023-12-14 Siemens Energy Global GmbH & Co. KG Beschichtetes aktives Bauteil in einem Hochspannungsgerät und Verfahren zur Erhöhung der dielektrischen Festigkeit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986103A1 (fr) * 2012-01-23 2013-07-26 Alstom Technology Ltd Milieu gazeux comprenant au moins un oxirane polyfluore et une hydrofluoroolefine pour l'isolation electrique et/ou l'extinction des arcs electriques en haute tension
FR2986102A1 (fr) * 2012-01-23 2013-07-26 Schneider Electric Ind Sas Milieu gazeux comprenant au moins un oxirane polyfluore et une hydrofluoroolefine pour l'isolation electrique et/ou l'extinction des arcs electriques en moyenne tension
WO2013151741A1 (fr) * 2012-04-04 2013-10-10 3M Innovative Properties Company Nitriles fluorés en tant que gaz diélectriques
WO2014037566A1 (fr) * 2012-09-10 2014-03-13 Alstom Technology Ltd Appareil électrique moyenne ou haute tension à faible impact environnemental et à isolation hybride
EP2816692A1 (fr) * 2012-02-14 2014-12-24 Mitsubishi Electric Corporation Appareil de connexion à isolation gazeuse et son procédé de fabrication
WO2015040069A1 (fr) * 2013-09-20 2015-03-26 Alstom Technology Ltd Appareil électrique moyenne ou haute tension à isolation gazeuse comprenant du dioxyde de carbone, de l'oxygène et de l'heptafluoroisobutyronitrile
FR3016746A1 (fr) * 2014-01-21 2015-07-24 Alstom Technology Ltd Appareil electrique moyenne ou haute tension a isolation gazeuse comprenant de l'hexafluorure de soufre et un autre compose fluore

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487349A (en) * 1967-11-06 1969-12-30 Bell Telephone Labor Inc Fire retardant composition and elements coated therewith
SE456621B (sv) * 1985-10-16 1988-10-17 Asea Ab Anordning vid system for overforing av hogspend likstrom
JP2001284138A (ja) 2000-03-29 2001-10-12 Toshiba Corp 高電圧電気機器
EP1359197A1 (fr) 2002-05-03 2003-11-05 SigmaKalon Group B.V. Compositions de resines epoxy polysiloxanes pour revêtements
US20050256240A1 (en) 2002-10-04 2005-11-17 Rensselaer Polytechnic Institute Nanometric composites as improved dielectric structures
JP4429205B2 (ja) * 2005-05-16 2010-03-10 三菱電機株式会社 ガス絶縁機器
JP4918301B2 (ja) 2006-07-19 2012-04-18 ソマール株式会社 電力用スイッチギアの製造方法
FR2946350B1 (fr) 2009-06-04 2012-05-11 Arkema France Utilisation de molecules porteuses de groupes associatifs comme durcisseurs de resines thermodurcissables
DE102009053253A1 (de) 2009-11-09 2011-05-12 Siemens Aktiengesellschaft Tränkharz für Verbundisolatoren
KR20130114117A (ko) * 2010-09-30 2013-10-16 다우 글로벌 테크놀로지스 엘엘씨 코팅 조성물
US8657413B2 (en) * 2011-01-18 2014-02-25 Funai Electric Co., Ltd. Die attach composition for silicon chip placement on a flat substrate having improved thixotropic properties
DE102011083228A1 (de) * 2011-09-22 2013-03-28 Siemens Aktiengesellschaft Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu
DE102011083409A1 (de) * 2011-09-26 2013-03-28 Siemens Aktiengesellschaft Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu
EP2595157B1 (fr) * 2011-11-16 2018-01-10 ABB Research Ltd. Système d'isolation électrique
CN109021501A (zh) 2012-06-26 2018-12-18 陶氏环球技术有限责任公司 用于电力传输和配送的绝缘复合材料
FR3023649B1 (fr) * 2014-07-08 2016-08-19 Alstom Technology Ltd Disjoncteur utilisant l'etat diphasique d'un gaz pour ameliorer les proprietes de coupure
KR102280925B1 (ko) * 2014-07-25 2021-07-26 에스케이이노베이션 주식회사 하드코팅층 형성용 조성물
FR3030106B1 (fr) 2014-12-11 2017-01-13 Alstom Technology Ltd Dispositif de coupure electrique haute tension a autosoufflage optimise
WO2016091274A1 (fr) 2014-12-12 2016-06-16 Abb Technology Ag Appareil de production, de distribution et/ou d'utilisation d'énergie électrique et composant pour un tel appareil
MX2017009000A (es) * 2015-01-20 2018-01-26 Ormazabal Corporate Tech A I E Sistema de aislamiento electrico para aparamenta electrica de media y alta tension.
FR3032828B1 (fr) 2015-02-13 2017-03-17 Alstom Technology Ltd Appareil electrique moyenne ou haute tension a isolation gazeuse comprenant de l'heptafluoroisobutyronitrile et du tetrafluoromethane
EP3104391A1 (fr) * 2015-06-10 2016-12-14 General Electric Technology GmbH Appareillage electrique a isolation gazeuse rempli d'un gaz dielectrique
DE102015214126A1 (de) * 2015-07-27 2017-02-02 Siemens Aktiengesellschaft Phasenleiteranordnung
EP3174071B1 (fr) * 2015-11-30 2018-11-14 General Electric Technology GmbH Procédé et installation de remplissage d'un appareillage électrique à isolation gazeuse comprenant un mélange de (cf3)2cfcn et de co2
CN107541013A (zh) * 2016-06-23 2018-01-05 北京交通大学 一种高导热环氧树脂基氮化硼微纳米复合绝缘材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986103A1 (fr) * 2012-01-23 2013-07-26 Alstom Technology Ltd Milieu gazeux comprenant au moins un oxirane polyfluore et une hydrofluoroolefine pour l'isolation electrique et/ou l'extinction des arcs electriques en haute tension
FR2986102A1 (fr) * 2012-01-23 2013-07-26 Schneider Electric Ind Sas Milieu gazeux comprenant au moins un oxirane polyfluore et une hydrofluoroolefine pour l'isolation electrique et/ou l'extinction des arcs electriques en moyenne tension
EP2816692A1 (fr) * 2012-02-14 2014-12-24 Mitsubishi Electric Corporation Appareil de connexion à isolation gazeuse et son procédé de fabrication
WO2013151741A1 (fr) * 2012-04-04 2013-10-10 3M Innovative Properties Company Nitriles fluorés en tant que gaz diélectriques
WO2014037566A1 (fr) * 2012-09-10 2014-03-13 Alstom Technology Ltd Appareil électrique moyenne ou haute tension à faible impact environnemental et à isolation hybride
WO2015040069A1 (fr) * 2013-09-20 2015-03-26 Alstom Technology Ltd Appareil électrique moyenne ou haute tension à isolation gazeuse comprenant du dioxyde de carbone, de l'oxygène et de l'heptafluoroisobutyronitrile
FR3016746A1 (fr) * 2014-01-21 2015-07-24 Alstom Technology Ltd Appareil electrique moyenne ou haute tension a isolation gazeuse comprenant de l'hexafluorure de soufre et un autre compose fluore

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535579B2 (en) 2017-12-13 2022-12-27 3M Innovative Properties Company Hydrofluoroolefin ethers, compositions, apparatuses and methods for using same
US11551827B2 (en) 2017-12-13 2023-01-10 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes in dielectric fluids and electrical devices
US11673861B2 (en) 2017-12-13 2023-06-13 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes, compositions, and methods and apparatuses for using same
EP3923301A1 (fr) 2020-06-11 2021-12-15 General Electric Technology GmbH Appareil électrique à isolation gazeuse comprenant du dioxyde de carbone, de l'heptafluoroisobutyronitrile et une forte teneur en oxygène
WO2021250181A1 (fr) 2020-06-11 2021-12-16 General Electric Technology Gmbh Appareil électrique isolé au gaz comprenant du dioxyde de carbone, de l'heptafluoroisobutyronitrile et une teneur élevée en oxygène
EP4376025A1 (fr) 2022-11-28 2024-05-29 General Electric Technology GmbH Appareil électrique isolé par gaz comprenant de l'heptafluoroisomerase et de l'heptafluoroisopropyl(trifluorométhyl)cétone
WO2024115417A1 (fr) 2022-11-28 2024-06-06 General Electric Technology Gmbh Appareil électrique à isolation gazeuse comprenant de l'heptafluoroisobutyronitrile et de l'heptafluoroisopropyl (trifluorométhyl)cétone

Also Published As

Publication number Publication date
JP6956723B2 (ja) 2021-11-02
JP2019506119A (ja) 2019-02-28
US20190156968A1 (en) 2019-05-23
US11017919B2 (en) 2021-05-25
EP3188196A1 (fr) 2017-07-05
EP3188196B1 (fr) 2020-03-04
CN108475555A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
EP3188196B1 (fr) Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur
EP2893602B1 (fr) Appareil électrique moyenne ou haute tension à faible impact environnemental et à isolation hybride
EP3047491B1 (fr) Appareil électrique moyenne ou haute tension à isolation gazeuse comprenant du dioxyde de carbone, de l&#39;oxygène et de l&#39;heptafluoroisobutyronitrile
EP3257059A1 (fr) Appareil électrique moyenne ou haute tension à isolation gazeuse comprenant de l&#39;heptafluoroisobutyronitrile et du tétrafluorométhane
EP2729940B1 (fr) Utilisation d&#39;un melange comprenant une hydrofluoroolefine comme gaz d&#39;isolation et/ou d&#39;extinction d&#39;arc en moyenne tension et appareil electrique moyenne tension le comprenant
EP2715760B1 (fr) Melange de decafluoro-2-methylbutan-3-one et d&#39;un gaz vecteur comme milieu d&#39;isolation electrique et/ou d&#39;extinction des arcs electriques en moyenne tension
JP2014506376A (ja) 誘電性絶縁媒体
FR2980628A1 (fr) Melange d&#39;hydrofluoroolefine et de fluorocetone pour l&#39;utilisation comme milieu d&#39;isolation et/ou d&#39;extinction d&#39;arc et appareil electrique moyenne tension a isolation gazeuse le comprenant
WO2012038443A1 (fr) Utilisation de melanges sf6/fluorocetone(s) pour l&#39;isolation electrique et/ou l&#39;extinction d&#39;arc electrique
WO2013136015A1 (fr) Melange d&#39;hydrofluoroolefine et d&#39;hydrofluorocarbure pour ameliorer la tenue a l&#39;arc interne dans les appareils electriques moyenne et haute tension
EP3023996B1 (fr) Appareil électrique à isolation électrique et extinction d&#39;arcs électriques améliorées et procédé associé
EP2715759B1 (fr) Mélange de décafluoro-2-méthylbutan-3-one et d&#39;un gaz vecteur comme milieu d&#39;isolation électrique et/ou d&#39;extinction des arcs électriques en haute tension
FR2983341A1 (fr) Oxiranes polyfluores comme gaz d&#39;isolation electrique et/ou d&#39;extinction des arcs electriques en moyenne tension
JP6270752B2 (ja) 絶縁コーティング組成物、高電圧機器用の樹脂モールド製品、金属タンクおよびガス絶縁開閉装置
CN114072881B (zh) 介电绝缘或消弧流体
WO2013079569A1 (fr) Oxirane polyfluore comme gaz d&#39;isolation electrique et/ou d&#39;extinction des arcs electriques en haute tension
EP1789975B1 (fr) Dispositif de haute- ou moyenne-tension comprenant un systeme dielectrique particulier
FR2980629A1 (fr) Melange d&#39;hydrofluoroolefine et de fluorocetone pour l&#39;utilisation comme milieu d&#39;isolation et/ou d&#39;extinction d&#39;arc et appareil electrique haute tension a isolation gazeuse le comprenant
EP3384508A1 (fr) Procédés pour isoler diélectriquement des éléments électriques actifs
Graneau Vacuum insulation for cryogenic cables. A brief review
Dakin et al. The Past Twenty‐Five Years of Electrical Insulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819944

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018533617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16819944

Country of ref document: EP

Kind code of ref document: A1