WO2017114258A1 - 一种引流扩散变流量喷头 - Google Patents

一种引流扩散变流量喷头 Download PDF

Info

Publication number
WO2017114258A1
WO2017114258A1 PCT/CN2016/111305 CN2016111305W WO2017114258A1 WO 2017114258 A1 WO2017114258 A1 WO 2017114258A1 CN 2016111305 W CN2016111305 W CN 2016111305W WO 2017114258 A1 WO2017114258 A1 WO 2017114258A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
vertex
variable flow
facing surface
steering
Prior art date
Application number
PCT/CN2016/111305
Other languages
English (en)
French (fr)
Inventor
陈永胜
曾竞
李峰
曾亚军
刘同武
Original Assignee
上海艾客制冷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海艾客制冷科技有限公司 filed Critical 上海艾客制冷科技有限公司
Priority to US16/066,916 priority Critical patent/US20190113293A1/en
Publication of WO2017114258A1 publication Critical patent/WO2017114258A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet

Definitions

  • the invention relates to the technical field of cooling towers, and more particularly to a drainage diffusion variable flow nozzle.
  • the working principle of the cooling tower is that the flowing air is blown from the right angle to the sprayed water. When the air passes through the water droplets, part of the water evaporates. Since the heat used to evaporate the water drops reduces the temperature of the water, the remaining water is It was cooled.
  • the water pump presses the circulating water into the water tray of the cooling tower through a pipeline with a certain pressure, and the water is evenly spread on the packing through the nozzle on the water tray; the circulating water is sprayed by the nozzle A water film is formed on the surface of the filler, and heat is exchanged with the air sucked into the tower by the fan, thereby cooling the cooling water.
  • the water sprayed from the nozzle in the prior art forms a large hollow circle, and the corresponding portion of the filler and the hollow hollow portion is still formed.
  • Anhydrous zone Due to the uneven distribution of water, a water concentration zone and a waterless zone are formed in the filler. In the water concentration zone, the air resistance increases due to the increase of water volume, and the ventilation capacity becomes smaller. On the contrary, the air resistance in the waterless zone becomes smaller, resulting in air short circuit causing cooling of the entire tower. The effect is degraded, eventually resulting in waste of energy.
  • Conventional cooling tower nozzles work by allowing water to collide with the splash tray to expand the sprinkler range. During the collision, a large amount of small water droplets are generated. This droplet of water dispersed in the high-speed flowing air is taken by the air. Walk to form a drifting loss. Directly create valuable waste of water.
  • the present invention provides a drainage and diffusion variable flow nozzle, which can avoid the problem of uneven water spray when the real-time water pressure is a non-standard water pressure, and can be 10% of the standard water volume in real time.
  • the water is evenly sprayed on the surface of the filler in the range of ⁇ 150%, and no large hollow circle is formed, and a small solid circle is not formed, so that the cooling performance of the filler can be maximized.
  • the invention provides a drainage diffusion variable flow nozzle, comprising a nozzle, an upper part of the nozzle is provided with a water inlet, a bottom is provided with a water outlet; a steering accelerator connected to a lower part of the nozzle is disposed on the steering accelerator a tension canceller, a central portion of the water-facing surface of the steering accelerator is higher than an edge portion, and a central portion of the water-facing surface is parabolically facing the edge portion to guide a vertical flow of water through the parabolic surface Gradually shifting to a horizontal direction; the tension canceller is raised on the water-facing surface, the first end of the strain relief is adjacent to the central portion, the second end is adjacent to and protrudes from the edge portion, The tension eliminator gradually increases in thickness from the top to the bottom, and gradually increases in thickness along the center portion to the edge portion of the water absorbing surface.
  • the water outlet of the nozzle is smaller than the water inlet, and the inner side wall of the nozzle is provided with a spiral guiding groove, and water flowing into the nozzle flows downward in a spiral direction along the spiral guiding groove.
  • the plurality of strain relief devices are distributed on the water-facing surface in a circumferential direction with the center portion as a center.
  • any one of the tension eliminators is a triangular pyramid having a first apex, a second apex, a third apex, and a fourth apex, and a line connecting any two vertices is an edge of the triangular pyramid;
  • the first vertex, the second vertex and the third vertex are disposed on the water-facing surface, and the first vertex is close to the central portion, and the second vertex and the third vertex are close to The edge portion, the fourth apex protrudes from the water-facing surface.
  • the projection of the fourth vertex in the vertical direction is outside the waterfront.
  • the first vertex is equal to a length of a line connecting the second vertex and the third vertex; the fourth vertex is located at a triangle formed by the first vertex, the second vertex, and the third vertex Symmetrical surface.
  • a line connecting the fourth vertex and the first vertex is tangent to the water passing hole.
  • a line connecting the fourth vertex and the first vertex intersects a center line of the water passing hole.
  • the center portion of the steering accelerator is provided with a water passing hole penetrating in the up and down direction, and the diameter of the water passing hole of the next stage is smaller than the diameter of the water passing hole of the upper stage. .
  • the water passing hole is a tapered hole which gradually decreases in diameter from the top to the bottom.
  • the upper portion of the water passing hole is an acute angle to facilitate distributing a part of the water flow to the next-stage steering accelerator.
  • the steering accelerator comprises at least two stages, each of the steering accelerators is distributed in a vertical direction, and each of the steering accelerators is provided with the tension canceller.
  • the steering accelerator is in multiple stages, and each of the steering accelerators is provided with the tension eliminator, and the plurality of stages of the steering accelerators are sequentially connected in a vertical direction.
  • the adjacent two stages of the steering accelerators are connected by a first connecting column.
  • the nozzle is provided with a flange, and the position of the flange is disposed at an upper portion or a middle portion or a lower portion of the nozzle as needed.
  • the flange provided on the nozzle can be replaced by a thread for installation in other applications.
  • the steering accelerator of the uppermost stage is connected to the flange by a second connecting post.
  • the flange and the second connecting post are snapped together by a buckle and a card slot.
  • the water in the water distribution tray enters from the water inlet of the nozzle and flows out from the water outlet, and falls on the water-facing surface of the steering accelerator, and the water-facing surface gradually expands from the top to the bottom.
  • the tapered surface can further guide the flow of water flowing in the vertical direction to gradually change horizontally through the tapered surface, complete the direction conversion of the fluid with the lowest loss of speed, and maximize the use of hydraulic kinetic energy to diffuse the water in the preset water distribution area.
  • the water will be tangent to the tension eliminator during the steering process.
  • the tension eliminator gradually increases in thickness from top to bottom, and the thickness increases gradually from the center to the edge of the water-facing surface, the water flow is welcoming.
  • the water film which is originally shrunk due to the water tension is divided into a plurality of water flows by the thickness of the tension eliminator which gradually increases toward the water surface, so as to keep the water in a real-time working condition with a low water flow speed, or water Sprayed in a predetermined area, and the resistance encountered by the water flow is small, thereby avoiding shrinkage into a small solid circle due to the concentration of tension of the water flow, and therefore, the drainage diffusion variable flow provided by the present invention
  • the spray head enables the water to be sprayed farther and more evenly.
  • Figure 1 is a partial cross-sectional view of a steering accelerator and a strain relief in accordance with an embodiment of the present invention
  • FIG. 2 is a top plan view of a steering accelerator and a strain relief in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a drainage diffusion variable flow nozzle having a three-stage steering accelerator according to an embodiment of the present invention
  • FIG. 4 is a partial cross-sectional view of a drainage diffusion variable flow nozzle having a three-stage steering accelerator in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a drainage diffusion variable flow nozzle having a two-stage steering accelerator according to an embodiment of the present invention
  • the present embodiment provides a drainage diffusion variable flow nozzle capable of avoiding the problem of uneven water spray caused when the real-time water pressure is a non-standard water pressure.
  • the drainage diffusion variable flow nozzle provided by the embodiment includes a nozzle 21 , a steering accelerator 11 connected to the lower portion of the nozzle, and a tension eliminator 12 disposed on the steering accelerator 11 .
  • the upper portion of the nozzle 21 is provided with a water inlet, and the bottom portion is provided with a water outlet.
  • the inner side wall of the nozzle 21 is provided with a spiral guiding groove 22, and water flowing into the nozzle flows downward in a spiral direction along the spiral guiding groove 22.
  • the central portion 14 of the water-facing surface 13 of the steering accelerator 11 is higher than the edge portion 15 and faces the water surface
  • the central portion 14 of the 13 transitions through the parabolically facing edge portion 15 to direct the flow of water flowing in the vertical direction to gradually transition horizontally through the parabolic surface.
  • the water-facing surface 13 is a parabolic surface capable of guiding the vertical water flow to gradually change in the horizontal direction.
  • the parabolic surface may be disposed as follows: in any one of the longitudinal planes of the steering accelerator 11, the central portion 14 of the water-facing surface 13 The transition to the edge portion 15 along the curved line, and the midpoint of the line between the ends of the curved line is higher than the midpoint of the curved line, and the water-facing surface 13 of such a structure can gradually change the direction of the water flow from the vertical direction to the horizontal direction. Conversion.
  • the parabolic surface can also be a structure similar to the outer peripheral curved surface of the cone.
  • the tension eliminator 12 is raised on the water absorbing surface 13, the first end of the tension eliminator 12 is close to the central portion 14, and the second end is close to the edge portion 15, and the tension eliminator 12 is gradually increased in thickness from top to bottom. And the thickness of the central portion 14 to the edge portion 15 along the water-facing surface 13 gradually increases, the water flow flows from the top to the bottom, and flows from the central portion 14 to the edge portion 15, and the tension eliminator 12 can gradually divide the water flow into two parts, and The water flow encounters less resistance and reduces the shunt energy consumption.
  • the center portion of the steering accelerator 11 may be provided with a water passing hole penetrating in the up and down direction, and the diameter of the water passing hole of the next stage is smaller than the diameter of the water passing hole of the upper stage.
  • the water passing hole 16 at the center of the steering accelerator 11 can be increased in diameter or reduced in diameter according to the needs of the application or even eliminated.
  • a water passing hole 16 is provided in the steering accelerator 11 to prevent a hollow circle from being formed after the water is ejected.
  • the steering accelerator 11 can be disposed in two stages of up and down distribution, and each stage of the steering accelerator 11 is provided with a tension canceller.
  • the number of stages of the steering accelerator 11 can also be one level, three levels, four levels, etc., and can be specifically set according to actual conditions, and will not be specifically described herein.
  • the water in the water tray enters the nozzle 21 through the water inlet of the nozzle 21, and the inner side wall of the nozzle 21 is provided along the upper end to the lower end of the inlet nozzle.
  • the tension canceler 12 gradually increases in thickness from the top to the bottom, and the thickness increases gradually along the central portion 14 to the edge portion 15 of the water-facing surface 13, so that the water flow When flowing on the water-facing surface 13, it can be gradually separated by the strain relief 12, and the resistance encountered by the water flow is small, and the tension eliminator 12 separates the water flow, thereby avoiding the concentrated flow of water in one direction, and therefore, the present invention provides
  • the fluid steering accelerator enables a more standard and uniform flow of water.
  • tension canceller 12 is provided in plurality, and is distributed on the water immersion surface 13 in the circumferential direction with the center portion 14 as a center.
  • the water flow on the water-facing surface 13 can be divided into a plurality of water flows, and the connection between the water flows in each section can be cut off, so that the water flow distribution can be more uniform.
  • the tension eliminator 12 is specifically triangular pyramidal, that is, it has a first apex 17, a second apex 18, a third apex 19, and a fourth apex 20, and a line connecting any two vertices. It is a triangular tapered edge.
  • first vertex 17, the second vertex 18, and the third vertex 19 are disposed on the water-facing surface 13, and the first vertex 17 is close to the central portion 14, and the second vertex 18 and the third vertex 19 are close to the edge portion 15,
  • the fourth vertex 20 is raised on the water-facing surface 13.
  • the triangular conical strain relief 12 is capable of achieving a significant separation of the water flow with less resistance to water flow.
  • the projection of the fourth vertex 20 in the vertical direction is outside the water-facing surface 13, that is, the projection of the fourth vertex 20 in the vertical direction is outside the plane surrounded by the edge portion 15, that is, the fourth vertex is convex Outside the cylinder where the water is located.
  • the first vertices 17 are respectively equal to the length of the line connecting the second apex 18 and the third apex 19, that is, the triangles of the first apex 17, the second apex 18 and the third apex 19 are isosceles triangles;
  • the fourth apex 20 is located on the symmetry plane of the isosceles triangle, such that the edges formed by the first apex 17 and the fourth apex 20 are on the symmetry plane of the strain relief 12, so that the edge can equally divide the water flow Two paragraphs.
  • the line connecting the fourth vertex 20 and the first vertex 17 is tangent to the water passing hole 16 or intersects the center line of the water passing hole 16 .
  • This distribution form makes the extension direction of the strain relief 12 substantially coincide with the flow direction of the water flow, and can further reduce the pair of the strain relief 12 Resistance caused by water flow.
  • the adjacent two-stage steering accelerators can be connected by the first connecting column 23, and all the steering accelerators and the first connecting column 23 are connected by injection molding. It is a one-piece structure. In this way, it is convenient to connect the various stages of the steering accelerators together.
  • a flange 25 may be provided at the lower portion of the nozzle 21, and the flange 25 may be integrally connected to the nozzle 21 by injection molding.
  • the uppermost steering accelerator 11 is connected to the flange 25 through the second connecting post 24, in particular, a flange can be provided on the flange 25, and a card slot is provided on the second connecting post 24 The way the card is connected makes it easy to connect the two together.
  • the inner diameter of the nozzle 21 is tapered from the top to the bottom, so that the jetted water has sufficient water pressure to be sprayed on the steering accelerator 11 to achieve a better diffusion effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

一种引流扩散变流量喷头,包括:喷管(21),喷管(21)的上部设有进水口、底部设有出水口;连接于喷管(21)下部的流体转向加速器(11)和设置于流体转向加速器(11)上的张力消除器(12),流体转向加速器(11)的迎水面(13)的中心部位(14)高于边缘部位(15),且迎水面(13)的中心部位(14)通过抛物线面向边缘部位(15)过渡;张力消除器(12)凸起于迎水面(13)上,张力消除器(12)的第一端靠近于中心部位(14)、第二端靠近并突出于边缘部位(15),张力消除器(12)沿由上至下的方向厚度逐渐增加,且沿迎水面(13)的中心部位(14)至边缘部位(15)厚度逐渐增加。该引流扩散变流量喷头,能够避免当实时水压为非标准水压时,由于水位压力低动能不足,在溅水盘处不能克服水张力,水流揪成一团,造成的喷水不均匀的问题。

Description

一种引流扩散变流量喷头
本申请要求于2015年12月28日提交中国专利局、申请号为201511005934.5、发明名称为“一种引流扩散变流量喷头”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冷却塔技术领域,更具体的涉及一种引流扩散变流量喷头。
背景技术
冷却塔工作原理是流动的空气从正确的角度吹向喷洒下来的水,当空气通过这些水滴的时候,一部分水就蒸发了,由于用于蒸发水滴的热量降低了水的温度,剩余的水就被冷却了。
冷却塔工作过程中,水泵以一定的压力经过管道将循环水压至冷却塔的布水盘内,通过布水盘上的喷头将水均匀地播洒在填料上面;循环水由喷头喷下后,在填料表面形成水膜,并和由风机吸入塔内的空气进行热交换,进而使冷却水冷却。
常规的冷却塔的配水喷头多为反射式和滴溅式,该两种喷头溅水盘为消能式,然而该两种喷头在当实时水量偏离标准水量到一定程度时,如实时水量只能达到标准水量的70%以下,该喷头就不能均匀配水,由于水位压力低动能不足,在溅水盘处不能克服水张力,水流揪成一团喷出的水只是一个小的实心圆。当实时水量大于标准水量的70%,布水盘内的水压较大时,现有技术中的喷头喷出的水会形成一个大的空心圆,填料与空心圆中空部对应部分仍然会形成无水区。因于配水不均匀,在填料中形成水集中区和无水区,在水集中区由于水量增大导致空气阻力增加通风量变小,相反无水区空气阻力变小产生空气短路造成整塔的冷却效果下降,最终造成能源的浪费。
常规冷却塔喷头的工作原理是让水冲撞溅水盘来扩大洒水范围,在冲撞过程中就会产生大量的小水滴飞溅,这种弥散在高速流动空气中的小水滴一部就会被空气带走形成漂水损失。直接造成宝贵的水资源浪费。
因此,如何解决现有技术中当实时水量为非标准水量时,喷头喷出的水在填料上分布不均匀的问题,成为本领域技术人员所要解决的重要技术问题。
发明内容
为了解决上述技术问题,本发明提供了一种引流扩散变流量喷头,其能够避免当实时水压为非标准水压时,造成的喷水不均匀的问题,可以在实时水量为标准水量10%~150%范围内将水均匀喷洒在填料表面,不会形成大空心圆,也不会形成小实心圆,可以最大程度发挥填料的冷却性能。
本发明提供的一种引流扩散变流量喷头,包括喷管,所述喷管的上部设有进水口、底部设有出水口;连接于所述喷管下部的转向加速器和设置于所述转向加速器上的张力消除器,所述转向加速器的迎水面的中心部位高于边缘部位,且所述迎水面的中心部位通过抛物线面向所述边缘部位过渡,以引导垂直方向流下的水流通过所述抛物线面逐渐向水平方向转换;所述张力消除器凸起于所述迎水面上,所述张力消除器的第一端靠近于所述中心部位、第二端靠近并突出于所述边缘部位,所述张力消除器沿由上至下的方向厚度逐渐增加,且沿所述迎水面的中心部位至边缘部位厚度逐渐增加。
优选地,所述喷管的出水口小于进水口,且所述喷管的内部侧壁设有螺旋导向槽,流入所述喷管内的水沿所述螺旋导向槽呈螺旋方向向下流动。
优选地,所述张力消除器为多个,且以所述中心部位为圆心沿圆周方向分布于所述迎水面上。
优选地,任意一个所述张力消除器为具有第一顶点、第二顶点、第三顶点及第四顶点的三角锥形,任意两个顶点的连线为所述三角锥形的棱边;所述第一顶点、所述第二顶点及所述第三顶点设置于所述迎水面上,且所述第一顶点靠近于所述中心部位,所述第二顶点和所述第三顶点靠近于所述边缘部位,所述第四顶点凸起于所述迎水面。
优选地,所述第四顶点沿竖直方向的投影位于所述迎水面之外。
优选地,所述第一顶点分别与所述第二顶点和所述第三顶点的连线长度相等;所述第四顶点位于所述第一顶点、第二顶点、第三顶点形成的三角形的对称面上。
优选地,所述第四顶点与所述第一顶点的连线与所述过水孔相切。
优选地,所述第四顶点与所述第一顶点的连线与所述过水孔的中心线相交。
优选地,所述转向加速器的中心部设有沿上下方向将其贯穿的过水孔,且下一级的过水孔直径小于上一级的过水孔直径。。
优选地,所述过水孔为沿由上至下方向孔径逐渐缩小的锥孔。
优选地,所述过水孔上部为锐角边以利于分配一部分水流至下一级转向加速器。
优选地,所述转向加速器包括至少两级,各级所述转向加速器沿竖直方向分布,且各级所述转向加速器均设有所述张力消除器。
优选地,所述转向加速器为多级,各级所述转向加速器均设有所述张力消除器,多级所述转向加速器沿竖直方向依次连接。
优选地,相邻的两级所述转向加速器之间通过第一连接柱相连接。
优选地,所述喷管上设有法兰盘,法兰盘的位置根据需要设在喷管的上部或中部或下部。
优选地,所述喷管上设置的法兰盘,可以螺纹代替,以安装在其它场合。
优选地,最上级的所述转向加速器通过第二连接柱与所述法兰盘相连接。
优选地,所述法兰盘和所述第二连接柱通过卡扣和卡槽卡接在一起。
如此设置,本发明提供的技术方案中,布水盘内的水由喷管的进水口进入并由出水口流出,落在转向加速器的迎水面上,由于迎水面为由上至下方向逐渐扩大的锥形面,进而可以引导垂直方向流下的水流通过锥形面逐渐向水平方向转换,以尽量小的速度损耗完成流体的方向转换,最大程度利用水力动能将水扩散在预设的布水区域;
同时,水在转向的过程中会与张力消除器相切,由于张力消除器沿由上至下的方向厚度逐渐增加,且沿迎水面的中心部位至边缘部位厚度逐渐增加,因此,水流在迎水面上流动时,通过张力消除器迎水面逐渐增加的厚度,将原本由于水张力原因缩在一起的水膜分割成多条水流,以保在水流速度较低的实时工况,也可以将水喷洒在预定区域,且水流遇到的阻力较小,从而避免了因水流的张力集中而缩成一团形成小实心圆,因此,本发明提供的引流扩散变流量 喷头能够使水流喷的更远更均匀。
附图说明
图1为本发明具体实施方式中转向加速器和张力消除器局部剖视图;
图2为本发明具体实施方式中转向加速器和张力消除器的俯视图;
图3为本发明具体实施方式中具有三级转向加速器的引流扩散变流量喷头示意图;
图4为本发明具体实施方式中具有三级转向加速器的引流扩散变流量喷头的局部剖视图;
图5为本发明具体实施方式中具有两级转向加速器的引流扩散变流量喷头示意图;
图1-图5中:
转向加速器—11、张力消除器—12、迎水面—13、中心部位—14、边缘部位—15、过水孔—16、第一顶点—17、第二顶点—18、第三顶点—19、第四顶点—20、喷管—21、螺旋导向槽—22、第一连接柱—23、第二连接柱—24、法兰盘—25。
具体实施方式
本具体实施方式提供了一种引流扩散变流量喷头,其能够避免当实时水压为非标准水压时,造成的喷水不均匀的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1-图5,本具体实施方式提供的引流扩散变流量喷头,包括喷管21、连接于喷管下方的转向加速器11和设置于转向加速器11上的张力消除器12。
其中,喷管21的上部设有进水口、底部设有出水口,喷管21的内部侧壁设有螺旋导向槽22,流入喷管内的水沿螺旋导向槽22旋呈螺旋方向向下流动。
转向加速器11的迎水面13的中心部位14高于边缘部位15,而且迎水面 13的中心部位14通过抛物线面向边缘部位15过渡,以引导垂直方向流下的水流通过抛物线面逐渐向水平方向转换。
需要说明的是,上述迎水面13为能够引导垂直水流逐渐向水平方向转换的抛物线面,具体地该抛物线面可如下设置:在转向加速器11的任意一个纵切面中,迎水面13的中心部位14沿弧形线向边缘部位15过渡,且弧形线两端点之间连线的中点高于弧形线的中点,如此结构的迎水面13能够逐渐将水流方向由竖直方向向水平方向转换。当然,该抛物线面也可以为类似圆锥体的外周弧面的结构。
张力消除器12凸起于迎水面13上,张力消除器12的第一端靠近于中心部位14、第二端靠近于边缘部位15,张力消除器12沿由上至下的方向厚度逐渐增加,且沿迎水面13的中心部位14至边缘部位15厚度逐渐增加,水流由上至下方向流动,同时由中心部位14向边缘部位15流动,张力消除器12能够逐渐地将水流分成两部分,且水流遇到的阻力较小,降低了分流能耗。
另外,本具体实施方式中转向加速器11的中心部可以设有沿上下方向将其贯穿的过水孔,且下一级的过水孔直径小于上一级的过水孔直径。需要说明的是,转向加速器11中心的过水孔16可以根据应用的需求增加直径或减小直径甚至取消。在转向加速器11上设有过水孔16,可避免水喷出后形成空心圆。而且本实施方式中可以将转向加速器11设置为上下分布的两级,且各级转向加速器11上均设有张力消除器。当然,转向加速器11的级数也可为一级、三级、四级等,具体可根据实际情况具体设定,本文不再具体说明。
如此设置,本具体实施方式提供的技术方案中,布水盘内的水通过喷管21的进水口进入喷管21内,由于喷管21的内侧壁设有沿进喷管的上端至下端方向螺旋下降的螺旋导向槽22,进入喷管21的水沿螺旋导向槽22进行螺旋流动,产生涡旋效果,增加水流的离心力,以保证水流散开的面积。
水从喷管21内流出之后落在转向加速器的迎水面13上时,由于迎水面13的中心部位14高于四周的边缘部位15,水流首先与中心部位14相接触,并沿着迎水面13向迎水面13的边缘部位15流动,由于迎水面13为能够将水流方向由竖直方向逐渐向水平方向转换的抛物线面,如此,能够使水流能够沿抛物线面由竖直流动方向逐渐向水平流动方向转换,使水喷的更远。同时,水 在转向的过程中会与张力消除器12相切,由于张力消除器12沿由上至下的方向厚度逐渐增加,且沿迎水面13的中心部位14至边缘部位15厚度逐渐增加,因此,水流在迎水面13上流动时,能够逐渐被张力消除器12分开,且水流遇到的阻力较小,张力消除器12将水流分开,从而避免了水流集中流向于一个方向,因此,本发明提供的流体转向加速器能够使水流喷的更标准更均匀。
进一步地,将上述张力消除器12设置为多个,且以中心部位14为圆心沿圆周方向分布于迎水面13上。
如此设置,能够将迎水面13上的水流分隔成多段水流,切断了各段水流之间的连接,能够使水流分布的更均匀。
本实施例的优选方案中,上述张力消除器12具体为三角锥形,即其具有第一顶点17、第二顶点18、第三顶点19及第四顶点20,而且任意两个顶点的连线为三角锥形的棱边。
具体地,第一顶点17、第二顶点18及第三顶点19设置于迎水面13上,且第一顶点17靠近于中心部位14,第二顶点18和第三顶点19靠近于边缘部位15,第四顶点20凸起于迎水面13。
如此设置,三角锥形的张力消除器12能够在对水流造成更小的阻力的情况下,完成水流的明显分隔。
进一步地,第四顶点20沿竖直方向的投影位于迎水面13之外,即第四顶点20沿竖直方向的投影在边缘部位15围成的平面之外,即第四顶点凸出于迎水面所在的圆柱体之外。如此设置,能够防止被分隔开的水流在张力作用下重新汇合,进而进一步提高了分流效果。
为了能够均匀地分流,上述第一顶点17分别与第二顶点18和第三顶点19的连线长度相等,即第一顶点17、第二顶点18和第三顶点19所在三角形为等腰三角形;第四顶点20位于该等腰三角形的对称面上,如此设置,第一顶点17和第四顶点20形成的棱边处于张力消除器12的对称面上,因此,该棱边能够将水流等分成两段。
需要说明的是,本具体实施方式中,第四顶点20与第一顶点17的连线与过水孔16相切或者与过水孔16的中心线相交。该种分布形式,使张力消除器12的延伸方向与水流的流动方向基本一致,能够进一步降低张力消除器12对 水流造成的阻力。
本具体实施方式中当转向加速器为多级时,为了方便连接,相邻的两级转向加速器之间可以通过第一连接柱23相连接,所有的转向加速器和第一连接柱23均通过注塑连接为一体式结构。如此,可方便地将各级转向加速器连接在一起。
为了方便地将喷管21与其下方的转向加速器11连接在一起,在喷管21的下部可以设有法兰盘25,该法兰盘25可通过注塑方式与喷管21连接成一体式结构。最上级的转向加速器11通过第二连接柱24与法兰盘25相连接,具体地,可以在法兰盘25上设有卡接凸起,在第二连接柱24上设有卡槽,通过卡接的方式,方便地将二者连接在一起。
本具体实施方式的优选方案中,喷管21的内径沿由上至下方向渐缩,如此设置,喷出的水流具有足够的水压喷射在转向加速器11上,实现较好的扩散效果。
以上对本发明所提供的一种引流扩散变流量喷头进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (15)

  1. 一种引流扩散变流量喷头,其特征在于,包括:
    喷管,所述喷管的上部设有进水口、底部设有出水口;连接于所述喷管下部的转向加速器和设置于所述转向加速器上的张力消除器,所述转向加速器的迎水面的中心部位高于边缘部位,且所述迎水面的中心部位通过抛物线面向所述边缘部位过渡,以引导垂直方向流下的水流通过所述抛物线面逐渐向水平方向转换;所述张力消除器凸起于所述迎水面上,所述张力消除器的第一端靠近于所述中心部位、第二端靠近并突出于所述边缘部位,所述张力消除器沿由上至下的方向厚度逐渐增加,且沿所述迎水面的中心部位至边缘部位厚度逐渐增加。
  2. 如权利要求1所述的引流扩散变流量喷头,其特征在于,所述喷管的出水口小于进水口,且所述喷管的内部侧壁设有螺旋导向槽,流入所述喷管内的水沿所述螺旋导向槽呈螺旋方向向下流动。
  3. 如权利要求1所述的引流扩散变流量喷头,其特征在于,所述张力消除器为多个,且以所述中心部位为圆心沿圆周方向分布于所述迎水面上。
  4. 如权利要求1-3任一项所述的引流扩散变流量喷头,其特征在于,任意一个所述张力消除器为具有第一顶点、第二顶点、第三顶点及第四顶点的三角锥形,任意两个顶点的连线为所述三角锥形的棱边;所述第一顶点、所述第二顶点及所述第三顶点设置于所述迎水面上,且所述第一顶点靠近于所述中心部位,所述第二顶点和所述第三顶点靠近于所述边缘部位,所述第四顶点凸起于所述迎水面。
  5. 如权利要求4所述的引流扩散变流量喷头,其特征在于,所述第四顶点沿竖直方向的投影位于所述迎水面之外。
  6. 如权利要求5所述的引流扩散变流量喷头,其特征在于,所述第一顶点分别与所述第二顶点和所述第三顶点的连线长度相等;所述第四顶点位于所述第一顶点、第二顶点、第三顶点形成的三角形的对称面上。
  7. 如权利要求6所述的引流扩散变流量喷头,其特征在于,所述第四顶点与所述第一顶点的连线与所述过水孔相切。
  8. 如权利要求6所述的引流扩散变流量喷头,其特征在于,所述第四顶 点与所述第一顶点的连线与所述过水孔的中心线相交。
  9. 如权利要求1所述的引流扩散变流量喷头,其特征在于,所述转向加速器的中心部设有沿上下方向将其贯穿的过水孔,且下一级的过水孔直径小于上一级的过水孔直径。
  10. 如权利要求9所述的引流扩散变流量喷头,其特征在于,所述过水孔为沿由上至下方向孔径逐渐缩小的锥孔,过水孔的上口截面为锐角边。
  11. 如权利要求1所述的引流扩散变流量喷头,其特征在于,所述转向加速器包括至少两级,各级所述转向加速器沿竖直方向分布,且各级所述转向加速器均设有所述张力消除器。
  12. 如权利要求2所述的引流扩散变流量喷头,其特征在于,所述转向加速器为多级,各级所述转向加速器均设有所述张力消除器,多级所述转向加速器沿竖直方向依次连接。
  13. 如权利要求12所述的引流扩散变流量喷头,其特征在于,相邻的两级所述转向加速器之间通过第一连接柱相连接。
  14. 如权利要求13所述的引流扩散变流量喷头,其特征在于,所述喷管的下部设有法兰盘,最上级的所述转向加速器通过第二连接柱与所述法兰盘相连接。
  15. 如权利要求14所述的引流扩散变流量喷头,其特征在于,所述法兰盘和所述第二连接柱通过卡扣和卡槽卡接在一起。
PCT/CN2016/111305 2015-12-28 2016-12-21 一种引流扩散变流量喷头 WO2017114258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/066,916 US20190113293A1 (en) 2015-12-28 2016-12-21 Traffic-varying flow-adaptive spray nozzle having guiding and spreading functions capable of guiding flows and conducting spread

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511005934.5 2015-12-28
CN201511005934.5A CN106918266A (zh) 2015-12-28 2015-12-28 一种引流扩散变流量喷头

Publications (1)

Publication Number Publication Date
WO2017114258A1 true WO2017114258A1 (zh) 2017-07-06

Family

ID=59224575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111305 WO2017114258A1 (zh) 2015-12-28 2016-12-21 一种引流扩散变流量喷头

Country Status (3)

Country Link
US (1) US20190113293A1 (zh)
CN (1) CN106918266A (zh)
WO (1) WO2017114258A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918263A (zh) * 2015-12-28 2017-07-04 上海艾客制冷科技有限公司 一种宽幅可变流量配水系统
CN107537248A (zh) * 2017-10-10 2018-01-05 杭州胡庆余堂药业有限公司 一种药物包衣粉尘的除尘工艺和装置
CN109341407A (zh) * 2018-12-13 2019-02-15 广东新菱空调科技有限公司 横流塔变流量喷头
CN110787562B (zh) * 2019-09-27 2021-10-15 贾伟 一种高温烟气洗涤喷头
CN114835182A (zh) * 2022-05-11 2022-08-02 国能宁夏鸳鸯湖第一发电有限公司 一种脱硫废水处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2375528A (en) * 1943-04-13 1945-05-08 Fluor Corp Spray nozzle
CN201011486Y (zh) * 2007-01-04 2008-01-23 江苏海鸥冷却塔股份有限公司 三溅式喷头
CN201335649Y (zh) * 2009-01-14 2009-10-28 韩永春 多层旋转喷溅装置
CN104048552A (zh) * 2014-06-17 2014-09-17 上海理工大学 用于冷却塔防壁流喷头
CN203848748U (zh) * 2014-04-23 2014-09-24 江苏环球龙圣环境科技发展有限公司 分流型离心式喷溅装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1674480A (en) * 1927-09-10 1928-06-19 A M Lockett & Company Ltd Spray nozzle
US1877046A (en) * 1930-05-29 1932-09-13 Cooling Tower Co Inc Sprinkler distributor
US2005600A (en) * 1932-07-28 1935-06-18 Cooling Tower Co Inc Distributor nozzle
US3061204A (en) * 1961-03-30 1962-10-30 Fluor Corp Water spray nozzle
US4350302A (en) * 1980-09-19 1982-09-21 Zurn Industries, Inc. Liquid spray nozzle
US4700893A (en) * 1986-07-25 1987-10-20 The Marley Cooling Tower Company Multipurpose non-clogging nozzle for water cooling towers
US5180103A (en) * 1991-07-31 1993-01-19 Amsted Industries Incorporated Spray nozzle fluid distribution system
CN2212181Y (zh) * 1994-09-21 1995-11-08 王腊华 冷却塔用布水喷头
US6360970B1 (en) * 2000-05-01 2002-03-26 Larry A. Fitzgerald Water diffuser
CN202734658U (zh) * 2012-08-30 2013-02-13 山东华能冷却技术股份有限公司 一种玻璃钢冷却塔用布水喷头
CN103353254B (zh) * 2013-06-25 2015-04-22 上海艾客制冷科技有限公司 一种喷头及包括该喷头的布水盘和冷却塔
CN104759364A (zh) * 2014-01-07 2015-07-08 中国农业机械化科学研究院 一种低压旋转式喷头散水盘
CN104689934B (zh) * 2015-03-12 2017-04-12 西北农林科技大学 一种多喷盘低压折射式喷头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2375528A (en) * 1943-04-13 1945-05-08 Fluor Corp Spray nozzle
CN201011486Y (zh) * 2007-01-04 2008-01-23 江苏海鸥冷却塔股份有限公司 三溅式喷头
CN201335649Y (zh) * 2009-01-14 2009-10-28 韩永春 多层旋转喷溅装置
CN203848748U (zh) * 2014-04-23 2014-09-24 江苏环球龙圣环境科技发展有限公司 分流型离心式喷溅装置
CN104048552A (zh) * 2014-06-17 2014-09-17 上海理工大学 用于冷却塔防壁流喷头

Also Published As

Publication number Publication date
US20190113293A1 (en) 2019-04-18
CN106918266A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2017114258A1 (zh) 一种引流扩散变流量喷头
CN100360207C (zh) 齿边浮阀
CN103353254B (zh) 一种喷头及包括该喷头的布水盘和冷却塔
CN204619409U (zh) 降膜式蒸发器、布液器及其均液板
CN108722703B (zh) 逆喷式洗涤喷嘴
CN103521161A (zh) 加强型折弯槽式液体分布器
CN105983490A (zh) 一种可形成中空水幕的出水装置
CN103669301B (zh) 双层分散消能的高低坎消力池
WO2017114259A1 (zh) 一种宽幅可变流量配水系统
CN108905580B (zh) 一种配置屋脊式托盘的湿法脱硫塔
CN208966319U (zh) 一种新型石油钻井用液气分离器
US9182182B2 (en) Variable-flow nozzle for cooling tower
IL35299A (en) An evaporative heat exchanger of the injection type
RU2536396C1 (ru) Центробежная вихревая форсунка типа кочстар
RU2561107C1 (ru) Форсунка струйно-вихревая с эжектирующим факелом
CN206222468U (zh) 空调器室内机和空调器
CN206329360U (zh) 一种提高下游冷却效果的孔型结构
CN205868580U (zh) 一种能充分细化液滴的双向喷淋头
JP2010043771A (ja) 流下式製氷機の散水パイプ
CN208097786U (zh) 一种处理效果好的喷淋塔
CN211060698U (zh) 逆流冷却塔
EP1621841B1 (en) Spray device with a non-circular spray pattern
CN205517186U (zh) 高效双头单向雾化脱硫喷嘴
US2161016A (en) Spray nozzle
US2650860A (en) Improvement in hollow cone spray nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881047

Country of ref document: EP

Kind code of ref document: A1