WO2017113762A1 - 指纹识别设备测试系统 - Google Patents

指纹识别设备测试系统 Download PDF

Info

Publication number
WO2017113762A1
WO2017113762A1 PCT/CN2016/090475 CN2016090475W WO2017113762A1 WO 2017113762 A1 WO2017113762 A1 WO 2017113762A1 CN 2016090475 W CN2016090475 W CN 2016090475W WO 2017113762 A1 WO2017113762 A1 WO 2017113762A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
robot
simulated finger
identification device
simulated
Prior art date
Application number
PCT/CN2016/090475
Other languages
English (en)
French (fr)
Inventor
陈洪
林育波
袁啸
肖裕权
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2017113762A1 publication Critical patent/WO2017113762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present patent application relates to the field of electronic industry technology, and in particular to a fingerprint identification device testing system.
  • the fingerprint identification device is a module for completing fingerprint collection and fingerprint recognition, and the application of the fingerprint recognition device on the mobile terminal device is increasingly popular.
  • the sample collection is usually performed by manual acquisition, and the efficiency is low. Moreover, when the number of samples is large, a large number of people are required, and the labor is expensive. In addition, changes in ambient temperature and humidity may cause changes in the skin condition of the same person's fingers, or differences in the fingers of different people due to different skin conditions may result in different tests for the same fingerprint identification device at different times or in different test environments. As a result, an accurate performance evaluation of the fingerprint recognition device cannot be made.
  • the purpose of some embodiments of the present invention is to provide a fingerprint identification device testing system, which has the advantages of high efficiency, accurate test results, and mass production.
  • an embodiment of the present invention provides a fingerprint identification device testing system for testing a fingerprint identification device, including a robot, a plurality of simulated fingers, a simulated finger placement station, and a test station.
  • the fingerprint recognition device is set in the test station, and the simulation finger is set in the simulation finger placement station.
  • the robot picks up the simulated finger in the simulated finger placement station, moves the simulated finger to the top of the test station, and controls the simulated finger to test the part to be tested of the fingerprint identification device.
  • the present embodiment performs testing by using a robotic arm to carry a simulated finger. Test efficiency is high because no human intervention is required throughout the process. Since the test results do not change with changes in the surface state of the human finger, the test results are accurate. Due to the highly automated test process, it can be adapted to mass production requirements and is particularly suitable for use in industrial automated production plants.
  • the robot includes a body and an end tool disposed on the body.
  • the body is used to complete the movement of the robot, and the end tool is used to pick up and hold the simulated finger.
  • the discrete design of the body and end tools facilitates the repair and replacement of end tools and extends the life of the equipment.
  • the end tool may include a suction cup with variable air pressure. The picking and holding of the simulated finger can be achieved relatively simply by means of the suction cup.
  • the body is used to drive the simulated finger rotation.
  • the robot is also used to rotate the simulated finger according to a given parallel preset angle.
  • the robot is also used to rotate the simulated finger according to a random parallel preset angle.
  • the parallel preset angle is a radial contact angle between the simulated finger and the part to be tested. At this point, the simulated finger can be rotated a certain angle relative to the part to be tested before the test, and the measurement result is closer to the real human hand operation result, which can meet more abundant measurement requirements.
  • the robot is also used to rotate the simulated finger according to a vertical preset angle; the vertical preset angle is the axial contact angle of the simulated finger with the portion to be tested.
  • the contact angle is also common when an ordinary human hand presses the detection portion of the test fingerprint recognition device. Therefore, by rotating the simulated finger at a vertical preset angle, it is also possible to satisfy a richer measurement requirement.
  • the end tool is provided with a pressure sensing assembly for detecting the feedback pressure of the simulated finger.
  • the pressure detecting component can obtain the pressure value of the simulated finger to be tested, so that the pressure given by the robot can be controlled.
  • the robot is also used to vary the pressure of the simulated finger to the test site at a given rate of change during testing. This provides pressure on equipment with pressure detection The gradient touch test further improves the versatility of the fingerprint identification device test system.
  • the end tool further includes an end calibration assembly for calibrating the coordinate system offset values of the simulated finger and the robot.
  • the robot can directly operate the simulated finger according to the robot's own coordinate system, thereby simplifying the placement of the simulated finger and the test station. Calibration work.
  • the robot is also used to replace the simulated finger it holds before testing. By pre-setting multiple simulation fingers in different states or different fingerprints, the robot can perform repeated tests on the same fingerprint identification device to achieve more diverse testing requirements.
  • a simulated finger protection assembly is also provided on the simulated finger placement station.
  • the simulated finger protection component can be used to protect idle simulated fingers and prevent wear or damage to the simulated fingers when idle.
  • FIG. 1 is a schematic diagram of a fingerprint recognition device test system according to a first embodiment of the present invention when sucking a simulated finger;
  • FIG. 2 is a schematic diagram of a fingerprint identification device test system according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a simulated finger protection assembly in accordance with a sixth embodiment of the present invention.
  • a first embodiment of the present invention relates to a fingerprint identification device 6 test system, as shown in FIGS. 1 and 2, for testing a fingerprint identification device 6, including a robot 1, a plurality of simulated fingers 3, and a simulated finger placement station. 4 and test station 5.
  • the fingerprint recognition device 6 is disposed in the test station 5, and the simulation finger 3 is disposed in the simulation finger placement station 4.
  • the robot 1 picks up the simulated finger 3 in the simulated finger placement station 4, moves the simulated finger 3 over the test station 5, and controls the simulated finger 3 to test the portion to be tested of the fingerprint recognition device 6.
  • the robot 1 includes a body and an end tool 2 disposed on the body.
  • the body is used to complete the motion of the robot 1, and the end tool 2 is used to pick up and hold the simulated finger 3.
  • the discrete design of the body and end tool 2 facilitates the repair and replacement of the end tool 2, extending the life of the device.
  • the robot 1 can basically achieve the object of the present invention by fixing the jig itself.
  • the end tool 2 may include one or more jigs capable of grasping and dropping the dummy finger 3.
  • it may be a suction cup with variable air pressure.
  • the dummy finger 3 can be sucked up, and the dummy finger 3 can be lowered when the disk surface of the suction cup has no relative pressure.
  • the tail end of the dummy finger 3 is provided with a flat portion for sucking up the suction cup.
  • the fixtures that the end tool 2 can include have more specific configurations and forms, which do not affect the implementation of the basic purpose of some embodiments of the present invention.
  • a testing process of the fingerprint identification device 6 test system is provided as follows:
  • the robot 1 first drives the end tool 2 to the top of the simulated finger placement station 4, sucking the simulated finger 3;
  • the robot 1 moves the simulation finger 3 to the top of the test station 5 to perform the test.
  • test procedure is only an application scenario of the fingerprint identification device 6 test system, which does not limit the actual use range of the fingerprint identification device 6 test system.
  • the present embodiment performs the test by carrying the dummy finger 3 with the robot 1 with respect to the prior art. Test efficiency is high because no human intervention is required throughout the process. Since the test results do not change with changes in the state of the human finger, the test results are accurate. Due to the highly automated test process, it can be adapted to mass production requirements and is particularly suitable for use in industrial automated production plants.
  • the present embodiment can also select the simulated finger 3 manufactured under different manufacturing environments (temperature, humidity or other external parameter controllable environment), and is similar to these manufacturing environments. Tested in a test environment to achieve a richer evaluation. Since the simulation finger 3 in different test environments can be selected for detection, the test results of the present embodiment are not only representative, but also can adapt to different test requirements.
  • the touch pressure strategy of the simulated finger 3 can be preset by the computer control program, and the test of the fingerprint recognition device 6 is completed according to the touch pressure strategy.
  • These touch pressure strategies include, but are not limited to, defining contact time contact pressure, defining pressure contact pressure, defining finger area contact pressure, defining device contact area proportional contact pressure, and the like.
  • a second embodiment of the invention relates to a fingerprint identification device 6 test system.
  • the second embodiment is a modification of the first embodiment, and the main improvement is that in the second embodiment of the present invention, the body is used to drive the simulation finger 3 to rotate.
  • the body is provided with a rotating mechanism, and when the rotating mechanism of the body rotates, the end tool Following the rotation of the body, the simulated finger 3 is rotated as needed.
  • the robot 1 is also used to rotate the dummy finger 3 according to a given parallel preset angle.
  • the parallel preset angle is a contact angle of the simulated finger 3 to the portion to be tested in the radial direction.
  • the parallel preset angle is the two in the horizontal direction. The angle of the.
  • the robot 1 can be used to rotate the simulated finger 3 according to a random parallel preset angle.
  • the contact test angle between the simulated finger 3 and the part to be tested is also randomized, further enriching the use range of the test system of the fingerprint recognition device 6, and reducing the repeated setting of the staff.
  • Parallel preset angle of work is also randomized.
  • the simulated finger 3 is rotated at a certain angle relative to the part to be tested before the test, and the measurement result is closer to the actual manual operation result, which can meet more abundant measurement requirements.
  • the robot 1 can also be used to rotate the simulated finger 3 according to a vertical preset angle.
  • the vertical preset angle is the contact angle between the simulated finger 3 and the to-be-tested portion in the axial direction.
  • the vertical preset angle is set at 0 to 45 degrees, it can better simulate the normal finger operation of an ordinary person.
  • the contact angle is also ubiquitous when the normal human hand presses the detection portion of the test fingerprint recognition device 6, so that by rotating the simulation finger 3 at a vertical preset angle, it is also possible to satisfy a richer measurement demand.
  • the parallel rotation and the vertical rotation can be simultaneously set, that is, the simulation finger 3 can be rotated in the three-dimensional direction.
  • connection structures for realizing the three-dimensional rotation.
  • the end tool 2 can be connected to the body through a motion joint having a three-dimensional motion function, or can be sequentially passed through two A mutually perpendicular rotating mechanism is coupled to the body. Therefore, it will not be repeated here.
  • a third embodiment of the present invention relates to a fingerprint recognition device 6 test system.
  • the third embodiment is an improvement of the first and second embodiments, and the main improvement is that in the third embodiment of the present invention, the end tool 2 is provided with a pressure detecting assembly for detecting the dummy finger 3 Feedback pressure.
  • the pressure sensing assembly includes a pressure sensor and a bumper.
  • the pressure detecting component can be disposed at a joint portion of the end tool 2 and the body.
  • the pressure of the dummy finger 3 to be tested is obtained by converting the connection of the end tool 2 and the body from the hard contact to the soft contact by using the buffer, and measuring the pressure of the buffer or the portion connected to the buffer by the pressure sensor. value.
  • the actual pressure of the simulated finger 3 on the part to be tested of the fingerprint recognition device 6 can be known.
  • the robot 1 can be controlled. The size of the pressure. This is significant in the testing of the fingerprint recognition device 6.
  • the robot 1 is also used to change the pressure of the simulated finger 3 to be tested at a given rate of change during testing.
  • a fourth embodiment of the present invention relates to a fingerprint identification device 6 test system.
  • the fourth embodiment is an improvement of the first, second, and third embodiments, and the main improvement is that in the fourth embodiment of the present invention, the end tool 2 further includes an end calibration component for calibration simulation The coordinate system offset value of the finger 3 and the robot 1.
  • the coordinate calibration offset of the simulated finger 3 and the robot 1 is compensated and calibrated by the end calibration component, so that the robot 1 can directly Robot 1's own coordinate system to operate on the simulated finger 3 This simplifies the calibration of the simulated finger placement station 4 and the test station 5.
  • the end calibration component may include a calibration camera, and the relative position of the calibration camera and the simulation finger 3 is used as compensation, so that the coordinate system of the simulation finger 3 and the coordinate system of the robot 1 are agreed, thereby making the calibration camera in the simulation.
  • the calibration of the finger placement station 4 and the test station 5 is easier.
  • a fifth embodiment of the present invention relates to a fingerprint recognition device 6 test system.
  • the fifth embodiment is an improvement of the above embodiments, and the main improvement is that the robot 1 is also used to replace the dummy finger 3 held by the robot 1 before performing the test.
  • the robot 1 can automatically replace the simulated finger 3 held by it, the robot 1 can perform repeated tests on the same fingerprinting device 6 under different test environments to achieve more diverse testing requirements.
  • the robot 1 can replace the dummy finger 3 held by it in various ways.
  • each of the simulated fingers 3 can be arranged one by one in the simulated finger placement station 4.
  • the robot 1 can pick up/put down the dummy finger 3 one by one.
  • the simulated finger 3 conveyor belt can be set at the simulated finger placement station 4. After each robot 1 picks up a simulated finger 3, the conveyor transmits the next simulated finger 3 to the location of the previous simulated finger 3.
  • simulation finger 3 conveyor can be set as a loop conveyor, and the robot 1 can cycle through a set of simulation fingers 3, which will make the test work more intelligent and automated.
  • a sixth embodiment of the present invention relates to a fingerprint identification device 6 test system.
  • the sixth embodiment is an improvement of the above embodiments, and the main improvement is that the artificial finger placement station 4 is further provided with a dummy finger protection component.
  • the simulated finger protection assembly can be used to protect the idle simulated finger 3 from wear or damage of the simulated finger 3 when idle.
  • the simulated finger protection component can take a variety of forms.
  • the simulated finger protection component may include a loading slot 41 of the simulated finger 3 disposed on the simulated finger placement station 4, and a tail for supporting the dummy finger 3 is reserved at the slot of the loading slot 41.
  • the support edge of the end is 42 and the groove depth of the receiving groove 41 is greater than the length of the tip end of the dummy finger 3.
  • the head end of the dummy finger 3 is not in contact with the bottom of the holding groove 41 due to the supporting action of the supporting edge 42, and the most fragile and important head end of the dummy finger 3 can be effectively prevented.
  • the wear of the part extends the life of the simulated finger 3. Further, when the tail end of the dummy finger 3 and the size of the support edge 42 are matched with each other, the difficulty of artificially taking out the dummy finger 3 can be increased, and the artificial finger 3 can be prevented from being damaged.
  • the simulated finger protection assembly is also not limited to the form of the housing groove 41, and the object of the invention of the embodiment can be substantially achieved by using a support frame or other form of support structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别设备(6)测试系统,其用于测试指纹识别设备(6),包括机械手(1),若干个仿真手指(3)、仿真手指安置工位(4)以及测试工位(5)。指纹识别设备(6)设置于测试工位(5)中,仿真手指(3)设置于仿真手指安置工位(4)中。机械手(1)在仿真手指安置工位(4)中拾取仿真手指(3),将仿真手指(3)移动至测试工位(5)上方,并控制仿真手指(3)对指纹识别设备(6)的待测试部位进行测试。该系统具有效率高、测试结果准确、可量产化的优点。

Description

指纹识别设备测试系统 技术领域
本专利申请涉及电子工业技术领域,特别涉及一种指纹识别设备测试系。
背景技术
指纹识别设备是用来完成指纹采集和指纹识别的模块,指纹识别设备在移动终端设备上的应用日益普及。
在现有的指纹识别设备测试工作中,通常都是采用人工采集的方式进行样本采集,其效率低。而且样本数量大时需要大量的人手,人力消耗大。此外,环境温度、湿度变化可能引起同一人手指表皮状态的改变,或者不同人的手指因表皮状态不同而形成差异,将导致针对同一台指纹识别设备在不同时间或不同测试环境下得到不同的测试结果,进而导致不能对指纹识别设备做出准确的性能评价。
发明内容
本发明部分实施例的目的在于提供一种指纹识别设备测试系统,该指纹识别设备测试系统的具有效率高、测试结果准确、可量产化的优点。
为解决上述技术问题,本发明的一个实施例提供了一种指纹识别设备测试系统,其用于测试指纹识别设备,包括机械手,若干个仿真手指、仿真手指安置工位以及测试工位。指纹识别设备设置于测试工位中,仿真手指设置于仿真手指安置工位中。机械手在仿真手指安置工位中拾取仿真手指,将仿真手指移动至测试工位上方,并控制仿真手指对指纹识别设备的待测试部位进行测试。
相对于现有技术而言,本实施例通过利用机械手臂携带仿真手指进行测试。由于全程无须人工干预,因此测试效率高。由于测试结果不随人类手指表面状态的改变而改变,因此测试结果准确。由于测试过程高度自动化,因此可以适应量产需求,特别适合工业化自动生产车间的使用。
在一个实施例中,机械手包括本体和设置于本体上的末端工具。其中,本体用于完成机械手的运动动作,末端工具用于拾取和保持仿真手指。通过本体和末端工具的分立式设计,方便了末端工具的维修和更换,延长了设备的使用寿命。其中,末端工具可以包括气压可变的吸盘。利用吸盘能够相对简单地实现对仿真手指的拾取和保持。
进一步地,在一个实施例中,本体用于带动仿真手指旋转。且更进一步地,作为优选,机械手还用于根据给定的平行预设角度旋转仿真手指。或者,机械手还用于根据随机的平行预设角度旋转仿真手指。其中,平行预设角度为仿真手指与待测试部位在径向上的接触角度。此时,仿真手指可以在测试前相对待测试部位旋转一定的角度,其测量结果更贴近真实的人手操作结果,能够满足更丰富的测量需求。
此外,在一个实施例中,机械手还用于在根据垂直预设角度旋转仿真手指;垂直预设角度为仿真手指与待测试部位在轴向上的接触角度。该接触角度也是普通人手在按压测试指纹识别设备的检测部位时普遍存在的,因此通过将仿真手指按垂直预设角度旋转,也能够满足更丰富的测量需求。
另外,在一个实施例中,末端工具上设有压力检测组件,压力检测组件用于检测仿真手指的反馈压力。通过压力检测组件可以获取仿真手指对待测试部位压力值,使得机械手给出的压力可控。
因此进一步地,在一个实施例中,机械手还用于在测试时按给定的变化率改变仿真手指对待测试部位的压力。以此可以针对带压力检测的设备提供压力 渐变触压测试,进一步提高了该指纹识别设备测试系统的泛用性。
除此之外,在一个实施例中,末端工具还包括末端校准组件,末端校准组件用于校准仿真手指与机械手的坐标系偏移值。利用末端校准组件对仿真手指与机械手的坐标系偏移值进行补偿校准,可以使得机械手可以直接根据机械手自身的坐标系来对仿真手指进行操作,进而简化了对仿真手指安置工位和测试工位的校准工作。
在一个实施例中,机械手还用于在进行测试前更换其所持的仿真手指。通过预先设置处于不同状态或不同指纹的多根仿真手指,机械手可以针对同一个指纹识别设备进行重复测试,以达到更多样化的测试要求。
另外,在一个实施例中,仿真手指安置工位上还设置有仿真手指保护组件。该仿真手指保护组件可用于保护闲置的仿真手指,在闲置时防止仿真手指的磨损或损坏。
附图说明
图1是本发明第一实施例指纹识别设备测试系统在吸取仿真手指时的示意图;
图2是本发明第一实施例指纹识别设备测试系统在测试时的示意图;
图3是本发明第六实施例一种仿真手指保护组件的示意图。
附图标记说明:
1、机械手;2、末端工具;3、仿真手指;4、仿真手指安置工位;41、盛放槽;42、支撑沿;5、测试工位;6、指纹识别设备。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的部分实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明部分实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。
本发明的第一实施例涉及一种指纹识别设备6测试系统,参见图1和图2所示,其用于测试指纹识别设备6,包括机械手1,若干个仿真手指3、仿真手指安置工位4以及测试工位5。指纹识别设备6设置于测试工位5中,仿真手指3设置于仿真手指安置工位4中。机械手1在仿真手指安置工位4中拾取仿真手指3,将仿真手指3移动至测试工位5上方,并控制仿真手指3对指纹识别设备6的待测试部位进行测试。
在本实施例中,机械手1包括本体和设置于本体上的末端工具2。其中,本体用于完成机械手1的运动动作,末端工具2用于拾取和保持仿真手指3。通过本体和末端工具2的分立式设计,方便了末端工具2的维修和更换,延长了设备的使用寿命。但显然,机械手1本身固设有夹具的话也能够基本实现本发明的发明目标。
其中,末端工具2可以包括一种或多种能够抓取和放下仿真手指3的夹具。例如可以是气压可变的吸盘。当吸盘的盘面具有负压时,可以吸起仿真手指3,吸盘的盘面无相对压强时可以放下仿真手指3。当然,此时仿真手指3的尾端则设有供该吸盘吸起的平整部位。显然,末端工具2可以包括的夹具还有更多的具体结构和形式,这并不影响本发明部分实施例基本目的的实现。
在本实施例中,提供了一种指纹识别设备6测试系统的测试流程如下:
(1)参见图1所示,工作时,机械手1首先带动末端工具2至仿真手指安置工位4的上方,吸取仿真手指3;
(2)参见图2所示,机械手1移动仿真手指3至测试工位5的上方,进行测试。
值得一提的是,上述测试流程仅为该指纹识别设备6测试系统的一种应用场景,其并不对指纹识别设备6测试系统的实际使用范围造成限定。
相对于现有技术而言,本实施例通过利用机械手1携带仿真手指3进行测试。由于全程无须人工干预,因此测试效率高。由于测试结果不随人类手指表皮状态的改变而改变,因此测试结果准确。由于测试过程高度自动化,因此可以适应量产需求,特别适合工业化自动生产车间的使用。
值得一提的是,在测试时,外部的测试环境是可控的,仿真手指3的表皮状态也是可控的,而实际使用指纹识别设备时人手的表皮状态不尽相同。因此为了进一步保证测试和实际使用的一致性,本实施方式还可以选用在不同的制造环境(温度、湿度或其他外部参数可控的环境)下制造的仿真手指3,并在近似于这些制造环境的测试环境下进行测试,以达到更丰富的评估效果。由于可以选择处于不同测试环境的仿真手指3来检测,因此本实施方式的测试结果不但具有代表性,而且还能够适应不同的测试需求。
值得一提的是,在实际使用的过程中,可以通过计算机控制程序预设好仿真手指3的触压策略,并根据触压策略完成指纹识别设备6的测试。这些触压策略包括但不限于:限定接触时间触压、限定压力触压、限定手指区域触压、限定设备接触面积比例触压等等。
本发明的第二实施例涉及一种指纹识别设备6测试系统。第二实施例是第一实施例的改进,主要改进之处在于:在本发明的第二实施例中,本体用于带动仿真手指3旋转。
具体而言,本体上设置有旋转机构,当本体的旋转机构旋转时,末端工具 跟随本体旋转,进而使得仿真手指3根据需求旋转。
此时,机械手1还用于根据给定的平行预设角度旋转仿真手指3。其中,平行预设角度为仿真手指3至待测试部位在径向上的接触角度,当仿真手指的头端与待测试部位都处于水平状态时,该平行预设角度即为二者在水平方向上的夹角。当仿真手指3能够相对于指纹识别设备6平行旋转时,仿真手指3就可以相对指纹识别设备6的待测试部位在0至360度的范围内任意选择其测试的角度,因此更符合人类手指在实际使用时的真实情境。
甚至,机械手1还可以用于根据随机的平行预设角度旋转仿真手指3。利用随机地平行旋转仿真手指3,可以使得在仿真手指3与待测试部位的接触测试角度也变为随机的,进一步地丰富了该指纹识别设备6测试系统的使用范围,减轻了工作人员反复设置平行预设角度的工作量。
综合上述考量,仿真手指3在测试前相对待测试部位旋转一定的角度,其测量结果更贴近真实的人手操作结果,能够满足更丰富的测量需求。
当然,在本实施例中,机械手1还可以用于根据垂直预设角度旋转仿真手指3。其中,垂直预设角度为仿真手指3与待测试部位在轴向上的接触角度。这一垂直预设角度设定在0至45度时,可以较好地模拟普通人的常规手指操作。
该接触角度也是普通人手在按压测试指纹识别设备6的检测部位时普遍存在的,因此通过将仿真手指3按垂直预设角度旋转,也能够满足更丰富的测量需求。
并且,平行旋转与垂直旋转是可以同时设置的,也就是说,仿真手指3能够在三维方向旋转。实现该三维方向旋转的连接结构有多种,具体而言,末端工具2可以通过具有三维运动功能的运动关节与本体连接,也可以依次通过两 个相互垂直的旋转机构与本体连接。因此在此不再予以赘述。
本发明的第三实施例涉及一种指纹识别设备6测试系统。第三实施例是第一、第二实施例的改进,主要改进之处在于:在本发明的第三实施例中,末端工具2上设有压力检测组件,压力检测组件用于检测仿真手指3的反馈压力。
具体而言,该压力检测组件包括压力传感器和缓冲器。并且压力检测组件可以设置于末端工具2与本体的连接部位。利用缓冲器将末端工具2与本体的连接从硬接触转化为软接触,并利用压力传感器测得缓冲器或与缓冲器连接的部位所承受的压力,即可获取仿真手指3对待测试部位的压力值。
通过所获取到的仿真手指3对待测试部位的压力值,可以得知仿真手指3对指纹识别设备6的待测试部位的实际压力,反过来说,通过控制该压力值即可控制机械手1给出的压力大小。这在指纹识别设备6的测试中意义重大。
因此进一步地,在本实施例中,机械手1还用于在测试时按给定的变化率改变仿真手指3对待测试部位的压力。
当仿真手指3对待测试部位的压力处于连续变化时,测试所产生的结果图像的清晰度也是不同的,以此可以针对带压力检测的设备提供压力渐变触压测试,进一步提高了该指纹识别设备6测试系统的泛用性。
本发明的第四实施例涉及一种指纹识别设备6测试系统。第四实施例是第一、第二、第三实施例的改进,主要改进之处在于:在本发明的第四实施例中,末端工具2还包括末端校准组件,末端校准组件用于校准仿真手指3与机械手1的坐标系偏移值。
由于以仿真手指3为原点的坐标系和以机械手为原点的坐标系并不重合,利用末端校准组件对仿真手指3与机械手1的坐标系偏移值进行补偿校准,可以使得机械手1可以直接根据机械手1自身的坐标系来对仿真手指3进行操 作,进而简化了对仿真手指安置工位4和测试工位5的校准工作。
具体而言,该末端校准组件可以包括校准摄像头,利用校准摄像头与仿真手指3的相对位置作为补偿,可以使得仿真手指3的坐标系与机械手1的坐标系达成一致,进而使得校准摄像头在对仿真手指安置工位4和测试工位5的校准工作更加轻松。
本发明的第五实施例涉及一种指纹识别设备6测试系统。第五实施例是上述各实施例的改进,主要改进之处在于:机械手1还用于在进行测试前更换其所持的仿真手指3。
由于机械手1可以自动化地更换其所持的仿真手指3,因此机械手1可以在不同测试环境下针对同一个指纹识别设备6进行重复测试,以达到更多样化的测试要求。
在本实施例中,机械手1可以有多种方式更换其所持的仿真手指3。例如,可以在仿真手指安置工位4中将各个仿真手指3逐一阵列排布。通过输入机械手1的平移参数,即可令机械手1逐一拾取/放下仿真手指3。再例如,可以在仿真手指安置工位4设置仿真手指3传送带。机械手1每拾取一枚仿真手指3后,传送带将下一枚仿真手指3传送至上一枚仿真手指3的所在部位。
值得一提的是,可以将仿真手指3传送带设为循环传送带,机械手1可以循环拾取一组仿真手指3,这将使得测试工作更加智能化和自动化。
本发明的第六实施例涉及一种指纹识别设备6测试系统。第六实施例是上述各实施例的改进,主要改进之处在于:仿真手指安置工位4上还设置有仿真手指保护组件。
该仿真手指保护组件可用于保护闲置的仿真手指3,在闲置时防止仿真手指3的磨损或损坏。具体而言,该仿真手指保护组件可以有多种形式。例如, 参见图3所示,该仿真手指保护组件可以包括在仿真手指安置工位4上设置的仿真手指3的盛放槽41,盛放槽41的槽口处预留有用于支撑仿真手指3的尾端的支撑沿42,且盛放槽41的槽深度大于仿真手指3的头端长度。
当仿真手指放置在盛放槽内时,由于支撑沿42的支撑作用,使得仿真手指3的头端得以不与盛放槽41的底部接触,能够有效防止仿真手指3最为脆弱而重要的头端部的磨损,延长仿真手指3的使用寿命。进一步地,当仿真手指3的尾端与支撑沿42的尺寸相互匹配时,还可以加大人为取出仿真手指3的难度,防止仿真手指3的人为损坏。显然,该仿真手指保护组件也不限于盛放槽41的形式,采用支撑架或其他形式的支撑结构也能够基本实现本实施例的发明目标。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的部分具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (11)

  1. 一种指纹识别设备测试系统,用于测试指纹识别设备,
    包括机械手,N个仿真手指、仿真手指安置工位以及测试工位,所述N为然数;
    所述指纹识别设备设置于所述测试工位中,所述仿真手指设置于所述仿真手指安置工位中;
    所述机械手在所述仿真手指安置工位中拾取所述仿真手指,将所述仿真手指移动至所述测试工位上方,并控制所述仿真手指对所述指纹识别设备的待测试部位进行测试。
  2. 根据权利要求1所述的指纹识别设备测试系统,其中,所述机械手包括本体和设置于所述本体上的末端工具;
    其中,所述本体用于完成所述机械手的运动动作,所述末端工具用于拾取和保持所述仿真手指。
  3. 根据权利要求2所述的指纹识别设备测试系统,其中,所述末端工具包括气压可变的吸盘。
  4. 根据权利要求2所述的指纹识别设备测试系统,其中,所述本体用于带动所述仿真手指旋转。
  5. 根据权利要求4所述的指纹识别设备测试系统,其中,所述机械手还用于根据给定的平行预设角度旋转所述仿真手指;
    或者,所述机械手还用于根据随机的平行预设角度旋转所述仿真手指;
    所述平行预设角度为所述仿真手指与所述待测试部位在径向上的接触角 度。
  6. 根据权利要求4所述的指纹识别设备测试系统,其中,所述机械手还用于根据垂直预设角度旋转所述仿真手指;所述垂直预设角度为所述仿真手指与所述待测试部位在轴向上的接触角度。
  7. 根据权利要求2到6任一项所述的指纹识别设备测试系统,其中,所述末端工具上设有压力检测组件,所述压力检测组件用于检测所述仿真手指的反馈压力。
  8. 根据权利要求7所述的指纹识别设备测试系统,其中,所述机械手还用于在测试时按给定的变化率改变所述仿真手指对所述待测试部位的压力。
  9. 根据权利要求2到8任一项所述的指纹识别设备测试系统,其中,所述末端工具还包括末端校准组件,所述末端校准组件用于校准所述仿真手指与所述机械手的坐标系偏移值。
  10. 根据权利要求1到9任一项所述的指纹识别设备测试系统,其中,所述机械手还用于在进行测试前更换其所持的仿真手指。
  11. 根据权利要求1到10任一项所述的指纹识别设备测试系统,其中,所述仿真手指安置工位上还设置有仿真手指保护组件。
PCT/CN2016/090475 2015-12-30 2016-07-19 指纹识别设备测试系统 WO2017113762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511022959.6 2015-12-30
CN201511022959.6A CN106767995B (zh) 2015-12-30 2015-12-30 指纹识别设备测试系统

Publications (1)

Publication Number Publication Date
WO2017113762A1 true WO2017113762A1 (zh) 2017-07-06

Family

ID=58965317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090475 WO2017113762A1 (zh) 2015-12-30 2016-07-19 指纹识别设备测试系统

Country Status (2)

Country Link
CN (1) CN106767995B (zh)
WO (1) WO2017113762A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222125B1 (en) 2020-07-13 2022-01-11 Alipay (Hangzhou) Information Technology Co., Ltd. Biometric recognition attack test methods, apparatuses, and devices
EP3940590A1 (en) * 2020-07-13 2022-01-19 Alipay (Hangzhou) Information Technology Co., Ltd. Methods, apparatuses, devices, and systems for testing biometric recognition device
CN115278220A (zh) * 2022-07-29 2022-11-01 重庆长安汽车股份有限公司 车载摄像头仿真测试方法、系统、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454938B (zh) * 2017-06-05 2021-06-25 深圳市汇顶科技股份有限公司 芯片测试头、芯片测试装置及测试方法
CN107462273B (zh) * 2017-07-17 2020-05-12 江苏邦融微电子有限公司 一种电容式传感器模组的量产测试装置及其方法
WO2019075660A1 (zh) * 2017-10-18 2019-04-25 深圳市汇顶科技股份有限公司 一种指纹模块的测试系统及测试方法
CN110249316A (zh) * 2017-12-07 2019-09-17 深圳市汇顶科技股份有限公司 调试器以及芯片调试方法
CN111563047B (zh) * 2020-07-13 2023-05-23 支付宝(杭州)信息技术有限公司 一种生物特征识别的攻击测试方法、装置及设备
CN115686986A (zh) * 2023-01-04 2023-02-03 北京东舟技术股份有限公司 智慧屏指纹测试系统及指纹测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202836960U (zh) * 2012-10-29 2013-03-27 邵冉 一种控制面板的机械性能检测装置
CN103076770A (zh) * 2012-12-05 2013-05-01 瞬联软件科技(北京)有限公司 基于机械手的移动设备远程测试系统
CN203241253U (zh) * 2013-05-06 2013-10-16 东莞市卓安精机自动化设备有限公司 触摸屏电子设备交互界面自动测试系统
CN104181431A (zh) * 2014-09-05 2014-12-03 东南大学 一种电容式触屏测试机械手
JP2015191366A (ja) * 2014-03-27 2015-11-02 富士通フロンテック株式会社 試験装置、試験方法、及び試験プログラム
CN204903898U (zh) * 2015-06-11 2015-12-23 深圳市中检南方检测有限公司 液晶屏测试装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513989A (zh) * 2011-11-30 2012-06-27 湖北众友科技实业股份有限公司 电子产品的机械手操作执行装置
CN103954860B (zh) * 2014-04-22 2017-10-27 上海大学 一种用于触控设备功能和性能的测试工具
CN104808095B (zh) * 2015-04-27 2017-11-21 深圳市共进电子股份有限公司 一种自动化生产测试系统及其产品测试方法
CN105025142A (zh) * 2015-08-21 2015-11-04 成都博视广达科技有限责任公司 一种手机多工位并行测试系统及其实现方法
CN204903679U (zh) * 2015-08-29 2015-12-23 深圳市强瑞电子有限公司 指纹模块测试机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202836960U (zh) * 2012-10-29 2013-03-27 邵冉 一种控制面板的机械性能检测装置
CN103076770A (zh) * 2012-12-05 2013-05-01 瞬联软件科技(北京)有限公司 基于机械手的移动设备远程测试系统
CN203241253U (zh) * 2013-05-06 2013-10-16 东莞市卓安精机自动化设备有限公司 触摸屏电子设备交互界面自动测试系统
JP2015191366A (ja) * 2014-03-27 2015-11-02 富士通フロンテック株式会社 試験装置、試験方法、及び試験プログラム
CN104181431A (zh) * 2014-09-05 2014-12-03 东南大学 一种电容式触屏测试机械手
CN204903898U (zh) * 2015-06-11 2015-12-23 深圳市中检南方检测有限公司 液晶屏测试装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222125B1 (en) 2020-07-13 2022-01-11 Alipay (Hangzhou) Information Technology Co., Ltd. Biometric recognition attack test methods, apparatuses, and devices
EP3940561A1 (en) * 2020-07-13 2022-01-19 Alipay (Hangzhou) Information Technology Co., Ltd. Biometric recognition attack test methods and devices
EP3940590A1 (en) * 2020-07-13 2022-01-19 Alipay (Hangzhou) Information Technology Co., Ltd. Methods, apparatuses, devices, and systems for testing biometric recognition device
US11307976B2 (en) 2020-07-13 2022-04-19 Alipay (Hangzhou) Information Technology Co., Ltd. Methods, apparatuses, devices, and systems for testing biometric recognition device
TWI779581B (zh) * 2020-07-13 2022-10-01 大陸商支付寶(杭州)信息技術有限公司 生物識別設備的測試方法、裝置、設備及系統
CN115278220A (zh) * 2022-07-29 2022-11-01 重庆长安汽车股份有限公司 车载摄像头仿真测试方法、系统、电子设备及存储介质
CN115278220B (zh) * 2022-07-29 2024-04-30 重庆长安汽车股份有限公司 车载摄像头仿真测试方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN106767995A (zh) 2017-05-31
CN106767995B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2017113762A1 (zh) 指纹识别设备测试系统
JP7027299B2 (ja) ビジョンベース操作システムのキャリブレーション及びオペレーション
US20110320039A1 (en) Robot calibration system and calibrating method thereof
CN109732401B (zh) 一种关于五轴数控机床双回转轴位置无关误差的检测方法
CN207832115U (zh) 一种基于三轴运动控制的视觉检测系统
WO2018196232A1 (zh) 机器人和末端执行器的自动标定方法及系统
JP7214861B2 (ja) ツールオフセットを有するカメラ-ロボットシステムの自動較正
CN108453785A (zh) 机器人系统、机器人控制装置以及机器人控制方法
TWI648135B (zh) 機械手臂之工具校正裝置
CN105397807A (zh) 机器人零点校准装置、机器人零点校准系统及校准方法
CN105572035B (zh) 一种自动检测连接器插拔力的装置
Denei et al. On the development of a tactile sensor for fabric manipulation and classification for industrial applications
CN114188254A (zh) 一种晶圆搬运机械手位置教具及其示教方法
Zhang et al. Vision-guided robot alignment for scalable, flexible assembly automation
TW201902644A (zh) 轉移待測元件的方法以及執行此方法的機器人
US20230161317A1 (en) Parametric and Modal Work-holding Method for Automated Inspection
He et al. Design and experiment of end effect for kiwifruit harvesting based on optimal picking parameters.
CN108253959A (zh) 一种基于标准样板的机器人轨迹、负载、位姿特性的检测装置
KR102333281B1 (ko) 툴이 이동할 위치를 티칭하는 로봇암 및 로봇암의 동작 방법
THILAKANAYAKE et al. Development of a stereo vision-based pick and place system for robotic manipulators
WO2017068240A3 (en) A method and a system for generating data for calibrating a robot
CN208313313U (zh) 基于标准样板的机器人轨迹、负载、位姿特性的检测装置
CN113524147B (zh) 一种基于3d相机的工业机器人示教系统及方法
TWI660254B (zh) 軌跡優化系統
CN108011589A (zh) 一种光伏电池智能位置检测与反馈控制矫正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880559

Country of ref document: EP

Kind code of ref document: A1