WO2017113523A1 - AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件 - Google Patents

AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件 Download PDF

Info

Publication number
WO2017113523A1
WO2017113523A1 PCT/CN2016/077757 CN2016077757W WO2017113523A1 WO 2017113523 A1 WO2017113523 A1 WO 2017113523A1 CN 2016077757 W CN2016077757 W CN 2016077757W WO 2017113523 A1 WO2017113523 A1 WO 2017113523A1
Authority
WO
WIPO (PCT)
Prior art keywords
algan
substrate
layer
template
oxygen
Prior art date
Application number
PCT/CN2016/077757
Other languages
English (en)
French (fr)
Inventor
董彬忠
张武斌
艾海平
李鹏
王江波
Original Assignee
华灿光电(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华灿光电(苏州)有限公司 filed Critical 华灿光电(苏州)有限公司
Publication of WO2017113523A1 publication Critical patent/WO2017113523A1/zh
Priority to US16/022,750 priority Critical patent/US10770615B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to an AlGaN template, a method for fabricating an AlGaN template, and a semiconductor device on an AlGaN template.
  • GaN-based blue light-emitting diodes (English: light emitting diodes, abbreviations: LEDs) and GaN-based white light LEDs use sapphire substrates. Since sapphire and GaN materials always have lattice mismatch and thermal mismatch problems, and there is only a small lattice mismatch between AlN materials and GaN materials and sapphire substrates, AlN is placed as a buffer layer on the sapphire substrate. Between GaN and GaN. Specifically, an AlN buffer layer is first grown on a sapphire substrate to form an AlN template, and GaN epitaxy is grown on the AlN template to form an LED epitaxial wafer.
  • the lattice constant of the AlN buffer layer is smaller than that of GaN and sapphire.
  • GaN epitaxial growth is performed on the AlN template, it will cause a large compressive stress to be accumulated in the subsequent GaN epitaxial growth.
  • the epitaxial wafer is in a warped state when the quantum well structure in the GaN epitaxial growth is grown.
  • the growth temperature of the quantum well structure is not uniform, and the wavelength uniformity of the epitaxial wafer is poor, resulting in mass production of a high-yield epitaxial wafer.
  • FIG. 1 shows a photoluminescence (English: photoluminescence, PL: wavelength) distribution of an LED epitaxial wafer based on a 4-inch AlN template. As can be seen from FIG.
  • the epitaxial wafer edge (point A)
  • the wavelength is 458nm
  • the center of the epitaxial wafer (point B) has a wavelength of 468nm
  • the wavelength difference between the center and the edge is 10nm
  • the standard deviation of the whole chip is 4.18nm.
  • the qualified epitaxial wafer requires a standard deviation of 2nm, so the epitaxial wafer Failure to meet the eligibility requirements.
  • an embodiment of the present invention provides an AlGaN template, a method for preparing an AlGaN template, and a semiconductor device on an AlGaN template.
  • the technical solution is as follows:
  • an AlGaN template comprising a substrate, the AlGaN template further comprising an Al 1-x Ga x N crystalline film deposited on the substrate, 0 ⁇ x ⁇ 1.
  • the Al 1-x Ga x N crystal thin film has a thickness of from 1 nm to 1000 nm.
  • the Al 1-x Ga x N crystalline film includes a first AlGaN layer deposited on the substrate, the first AlGaN layer being doped with oxygen.
  • the content of oxygen in the first AlGaN layer is gradually decreased from a direction in which the substrate and the first AlGaN layer interface to a surface of the first AlGaN layer Or gradually increasing.
  • the Al 1-x Ga x N crystalline film further includes a second AlGaN layer deposited on the first AlGaN layer, the second AlGaN layer being doped with oxygen and The oxygen in the second AlGaN layer is uniformly distributed in the second AlGaN layer, and the thickness of the second AlGaN layer is greater than 1 nm.
  • the substrate is a Si, SiC, sapphire, ZnO, GaAs, GaP, MgO, Cu, W or SiO 2 substrate.
  • a semiconductor device on an AlGaN template comprising a template and a nitride semiconductor layer grown on the template,
  • the template is the aforementioned AlGaN template, and the nitride semiconductor layer is deposited on the Al 1-x Ga x N crystalline film.
  • a method for preparing an AlGaN template comprising:
  • depositing an Al 1-x Ga x N crystalline film on the substrate comprises:
  • baking time is 1 to 15 minutes
  • baking temperature is 300 to 900 degrees Celsius
  • baking pressure is less than 10 -7 Torr
  • the aluminum gallium alloy target is sputtered under a gas atmosphere in which at least Ar and N 2 are mixed to deposit the Al 1-x Ga x N crystal film on the substrate; deposition temperature
  • the temperature is 400 to 800 degrees Celsius
  • the deposition pressure is 1 to 10 mTorr
  • the sputtering power is 1 KW to 10 KW
  • the sputtering time is 10 seconds to 1000 seconds.
  • depositing an Al 1-x Ga x N crystalline film on the substrate comprises:
  • an Al source and a Ga source are evaporated by electron beam to deposit the Al 1-x Ga x N crystal film on the substrate;
  • the deposition pressure is 2 ⁇ 10 -5 to 7 ⁇ 10 -5 Torr, deposition temperature is 100 to 400 ° C, and deposition time is 10 seconds to 1000 seconds.
  • An AlGaN template is formed by depositing an Al 1-x Ga x N crystal thin film on a substrate, and subsequently growing GaN epitaxial on the AlGaN template, compared to the growth of GaN epitaxial on the AlN template, due to the homogeneity of Ga atoms and Al atoms Semiconductors, the incorporation of an appropriate amount of Ga atoms does not significantly affect the quality of the GaN epitaxial crystal grown on the AlGaN template. Since the Ga atom radius is larger than that of the Al atom, the AlGaN template doped with the Ga atom has a lattice constant closer to that of the subsequent GaN epitaxial layer than the AlN template.
  • the growth of GaN epitaxial by AlGaN template can alleviate the compressive stress in GaN epitaxy and improve the warpage of epitaxial wafers when growing quantum wells.
  • the crystallization temperature of the GaN material is lower than that of the AlN material, the inclusion of appropriate Ga in the AlN template is beneficial to improve the crystal quality of the template, thereby improving the crystal quality of the subsequent GaN epitaxial material.
  • the AlGaN template reduces the accumulated stress in the GaN epitaxial layer while maintaining or even improving the quality of the subsequent GaN epitaxial crystal, optimizes the wavelength uniformity of the LED epitaxial, and realizes mass production of the epitaxial wafer on the AlGaN template. feasibility.
  • 1 is a PL wavelength mapping diagram of an LED epitaxial wafer prepared based on an existing 4-inch AlN template provided by the present invention
  • FIG. 2 is a schematic structural view of an AlGaN template according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of an AlGaN template according to a second embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for preparing an AlGaN template according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a semiconductor device on an AlGaN template according to a fourth embodiment of the present invention.
  • FIG. 6 is a PL wavelength mapping diagram of a 4-inch LED epitaxial wafer according to a fourth embodiment of the present invention.
  • the AlGaN template includes a substrate 10 and an Al 1-x Ga x N crystal film 11 deposited on the substrate 10. 0 ⁇ x ⁇ 1.
  • the embodiment does not limit the kind of the substrate 10, and the substrate 10 may be a Si, SiC, sapphire, ZnO, GaAs, GaP, MgO, Cu, W or SiO 2 substrate.
  • the Al 1-x Ga x N crystalline thin film 11 may be deposited on a substrate by a physical vapor deposition (English: Physical Vapor Deposition, abbreviated: PVD) process or an electron beam evaporation process.
  • PVD Physical Vapor Deposition
  • the Al 1-x Ga x N crystal thin film 11 is deposited on the substrate 10 by a PVD process, Al and Ga in the Al 1-x Ga x N crystal thin film 11 are derived from an aluminum gallium alloy target.
  • Al and Ga in the Al 1-x Ga x N crystal film 11 are derived from an aluminum gallium alloy, or a metal aluminum source and Metal gallium sources, metal aluminum sources and metal gallium sources can be located in discrete crucibles.
  • the Al 1-x Ga x N crystal thin film 11 may have a thickness of 1 nm to 1000 nm.
  • the AlGaN template is suitable for growing GaN epitaxy, such as GaN-based LEDs.
  • An AlGaN template is formed by depositing an Al 1-x Ga x N crystal thin film on a substrate, and subsequently growing GaN epitaxial on the AlGaN template, compared to the growth of GaN epitaxial on the AlN template, due to the homogeneity of Ga atoms and Al atoms Semiconductors, the incorporation of an appropriate amount of Ga atoms does not significantly affect the quality of the GaN epitaxial crystal grown on the AlGaN template. Since the Ga atom radius is larger than that of the Al atom, the AlGaN template doped with the Ga atom has a lattice constant closer to that of the subsequent GaN epitaxial layer than the AlN template.
  • the growth of GaN epitaxial by AlGaN template can alleviate the compressive stress in GaN epitaxy and improve the warpage of epitaxial wafers when growing quantum wells.
  • the crystallization temperature of the GaN material is lower than that of the AlN material, the inclusion of appropriate Ga in the AlN template is beneficial to improve the crystal quality of the template, thereby improving the crystal quality of the subsequent GaN epitaxial material.
  • the AlGaN template reduces the accumulated stress in the GaN epitaxial layer while maintaining or even improving the quality of the subsequent GaN epitaxial crystal, optimizes the wavelength uniformity of the LED epitaxial, and realizes mass production of the epitaxial wafer on the AlGaN template. feasibility.
  • Fig. 3 shows an AlGaN template provided by a second embodiment of the present invention.
  • the Al 1-x Ga x N crystal film 11 described in the first embodiment will be described in detail.
  • the content of the embodiment that is the same as or similar to the first embodiment refer to the first embodiment.
  • the Al 1-x Ga x N crystalline film 11 includes a first AlGaN layer 31 deposited on a substrate, and the first AlGaN layer 31 is doped with oxygen (O).
  • the oxygen doped in the first AlGaN layer 31 may be derived from oxygen or an oxygen-containing gas incorporated during the deposition of the first AlGaN layer 31.
  • Oxygen-containing gases include, but are not limited to, hydrogen peroxide (H 2 O), carbon monoxide (CO), carbon dioxide (CO 2 ), nitrous oxide (N 2 O), nitrogen monoxide (NO), and nitrogen dioxide (NO 2 ).
  • a part of the O atoms doped in the first AlGaN layer 31 will replace the N atoms in the AlGaN, and the other part will form the interstitial atoms. Since the radius of the O atom is larger than that of the N atom, this part of the substitutional O atom and the interstitial O atom will cause a certain distortion of the AlGaN lattice, increasing the lattice constant of the Al 1-x Ga x N film, which will make Al 1
  • the lattice constants of the -x Ga x N thin film and the subsequent GaN epitaxial thin film are closer, which is advantageous for reducing the compressive stress in the GaN material when growing GaN epitaxial on the AlGaN template, and improving the warpage of the epitaxial wafer when growing the quantum well.
  • the wavelength uniformity of the epitaxial layer on the AlGaN template is further improved.
  • the proper amount of oxygen can also increase the oxidation resistance of the AlGaN template, improve the stability of the AlGaN template exposed to air or air for a long time, and improve the stability and consistency of the semiconductor epitaxial material on the AlGaN template.
  • oxygen may be uniformly distributed in the first AlGaN layer 31, for example, from the interface of the substrate 10 and the first AlGaN layer 31 to the surface of the first AlGaN layer 31, the oxygen content in the first AlGaN layer 31. It is fixed.
  • Oxygen may also be unevenly distributed in the first AlGaN layer 31, for example, from the interface of the substrate 10 and the first AlGaN layer 31 to the surface of the first AlGaN layer 31, the oxygen content in the first AlGaN layer 31. It is gradually reduced, or the content of oxygen in the first AlGaN layer 31 is gradually increased, or the content of oxygen in the first AlGaN layer 31 is gradually changed (increased or decreased) and then fixed and finally gradually changed.
  • the content of oxygen doped in the first AlGaN layer 31 is gradually reduced or gradually increased.
  • the substrate 10 is a sapphire substrate
  • a gradual reduction of doping oxygen in the first AlGaN layer 31 is also advantageous for the sapphire substrate (Al 2 O 3 ) and the Al 1-x Ga x N crystal film. 11
  • the defects of the interface are reduced, and the bonding force of the interface is improved.
  • the surface of the AlGaN template has the highest oxygen content in the first AlGaN layer 31, and the surface of the AlGaN template has the highest oxygen content, thereby improving the oxidation resistance of the AlGaN template for long-term storage. Stability and consistency of AlGaN templates in mass production.
  • the content of oxygen in the first AlGaN layer 31 may be increased in a continuous manner, or may be increased in a manner of varying intervals. It is also possible to increase the combination of continuous change and interval change.
  • the flow rate of the oxygen or oxygen-containing gas to be incorporated may be controlled to increase with time, such as linearly with time, such that the oxygen content in the first AlGaN layer 31 is Increase in a continuously changing manner.
  • the flow rate of the oxygen or oxygen-containing gas to be mixed may be increased every time interval during the film formation of the first AlGaN layer 31, so that the content of oxygen in the first AlGaN layer 31 is changed in intervals. increase.
  • the flow rate of the oxygen or oxygen-containing gas to be incorporated may be controlled to increase with time for a period of time, and the flow rate of the oxygen or oxygen-containing gas to be incorporated may be controlled for another period of time.
  • Interval one The predetermined time is increased, so that the content of oxygen in the first AlGaN layer 31 is increased in such a manner that the continuous change and the interval change are combined.
  • the excessive O in the AlGaN layer causes the crystal quality of the AlGaN layer to decrease, which affects the crystal quality of the subsequent GaN epitaxial film, and does not reflect the superior quality of the AlGaN template crystal.
  • the content of oxygen in the first AlGaN layer 31 is gradually increased or gradually decreased, and thus, a portion of the first AlGaN layer 31 includes The small amount of oxygen doping enables the first AlGaN layer 31 to maintain a good crystal quality, thereby demonstrating the superior quality of the GaN epitaxial film crystal on the AlGaN template; the other portion of the first AlGaN layer 31 contains more oxygen doping,
  • the lattice constant in the first AlGaN layer 31 is made closer to the subsequent GaN epitaxial film, and the compressive stress in the subsequent GaN epitaxial film is reduced, thereby improving the wavelength uniformity of the LED epitaxial wafer
  • the content of oxygen may be 1 to 10% of the nitrogen content in the first AlGaN layer 31.
  • the oxygen content may be 2% of the nitrogen content in the first AlGaN layer 31.
  • the LED epitaxial wafer can be uniformly uniform in different GaN epitaxial growth processes. Sex.
  • the first AlGaN layer 31 is formed by laminating a plurality of AlGaN sub-layers, and from the interface of the first AlGaN layer 31 and the substrate 10 to the surface of the first AlGaN layer 31, in a plurality of AlGaN sub-layers
  • the oxygen content is increased layer by layer or layer by layer.
  • the oxygen in the single AlGaN sublayer is uniformly distributed, or the oxygen in the single AlGaN sublayer is unevenly distributed. If the content of oxygen in the single AlGaN sub-layer is constant from the interface of the first AlGaN layer 31 and the substrate 10 to the surface of the first AlGaN layer 31, the oxygen in the single AlGaN sub-layer is uniformly distributed. At this time, the content of oxygen in the first AlGaN layer 31 is increased in such a manner as to vary in interval.
  • the content of oxygen in the single AlGaN sub-layer is gradual (eg, increasing) from the direction of the interface of the first AlGaN layer 31 and the substrate 10 to the surface of the first AlGaN layer 31, then the oxygen in the single AlGaN sub-layer is Unevenly distributed, at this time, the content of oxygen in the first AlGaN layer 31 is changed in a continuously varying manner.
  • the content of oxygen in a part of the AlGaN sub-layer is constant, and the content of oxygen in the other part of the AlGaN sub-layer is gradually increased or decreased, and then the oxygen in the single AlGaN sub-layer is also unevenly distributed.
  • the content of oxygen in an AlGaN layer 31 is changed in such a manner as to combine continuous change and interval change.
  • the thickness of any two AlGaN sublayers may be the same or different.
  • the number of AlGaN sublayers is 1 to 50, and the thickness of the AlGaN sublayer is 1 to 10 nm.
  • the number of AlGaN sublayers is 5 to 10, and the thickness of the AlGaN sublayer is 2 to 5 nm.
  • the oxygen in the individual AlGaN sublayers is uniformly distributed.
  • each AlGaN sub-layer will have a certain thickness, and the thickness of each layer is preferably from 1 to 10 nm, more preferably from 2 to 5 nm.
  • a certain thickness of oxygen-doped AlGaN sub-layer will allow the Al 1-x Ga x N film to release the stress caused by oxygen atoms in sufficient time and thickness, and at the same time achieve better crystal quality of Al 1-x Ga x N crystal film layer. .
  • the Al 1-x Ga x N crystalline film further includes a second AlGaN layer 32 deposited on the first AlGaN layer 31.
  • Oxygen is also doped in the second AlGaN layer 32 and the oxygen doped in the second AlGaN layer 32 is uniformly distributed in the second AlGaN layer 32.
  • the thickness of the second AlGaN layer 32 is greater than 1 nm.
  • the oxygen doped in the second AlGaN layer 32 may also be derived from oxygen or an oxygen-containing gas incorporated during the deposition of the second AlGaN layer 32.
  • the oxygen content is gradually increased or gradually decreased.
  • the second AlGaN layer 32 has a thickness of 3 nm to 5 nm.
  • the oxygen in the second AlGaN layer 32 is uniformly distributed, which can maximize the stress state of the AlGaN template surface layer. Stable and consistent, ensuring that the stress of AlGaN template produced in different batches is stable and controllable, and it is beneficial to realize the stability of stress in the subsequent GaN epitaxial layer in mass production, thereby maximizing the stable control of wavelength uniformity in batch growth.
  • FIG. 4 shows a method for fabricating an AlGaN template according to a third embodiment of the present invention, which is applicable to the AlGaN template provided by the first embodiment or the second embodiment. As shown in FIG. 4, the method includes the following steps.
  • Step 401 providing a substrate.
  • the substrate can be a Si, SiC, sapphire, ZnO, GaAs, GaP, MgO, Cu, W or SiO 2 substrate.
  • the substrate is a sapphire substrate.
  • Step 402 depositing an Al 1-x Ga x N crystalline film on the substrate, 0 ⁇ x ⁇ 1.
  • the deposition process includes steps 4021 and 4022.
  • Step 4021 the substrate is placed in a nitrogen atmosphere or a stream of nitrogen ions.
  • the substrate sheet is mounted on a plating pot, and then the plating pot is loaded into an electron beam evaporator stage evaporation chamber.
  • the deposition target temperature may be 100 to 400 degrees Celsius, preferably 300 degrees Celsius.
  • the evaporation chamber into N 2, N 2 and maintained at a partial pressure of 2 ⁇ 10 -5 ⁇ 7 ⁇ 10 -5 Torr.
  • the flow rate of N 2 may be 2 to 100 sccm, preferably 30 sccm. After passing through N 2 , it can be stabilized for 1-3 minutes.
  • an N-ion source can be used as the N source, and the ion source power can be 1-5 KW.
  • step 4021 includes: arranging the substrate into an atmosphere mixed with nitrogen and oxygen (oxygen may be replaced by an oxygen-containing gas), or The substrate is arranged into a stream of nitrogen ions and a stream of oxygen ions.
  • Step 4022 evaporating the Al source and the Ga source by electron beam in a nitrogen atmosphere or a nitrogen ion beam to deposit an Al 1-x Ga x N crystal film on the substrate; the deposition pressure is 2 ⁇ 10 -5 ⁇ 7 ⁇ 10 -5 Torr, deposition temperature is 100-400 degrees Celsius, deposition time is 10 seconds to 1000 seconds.
  • surface impurities of the two metal sources of the Al source and the Ga source may be removed first.
  • the plating pot is first rotated, and then the electron gun is turned on to generate an electron beam.
  • the power of the electron gun slowly rises to about 20% of the total power, the power sink is stabilized for about 2 minutes to remove surface impurities from the metal source in the crucible.
  • the ratio of Ga atoms in the Al 1-x Ga x N crystal film can be adjusted, for example, the Al source and the Ga source are alternately evaporated by 0.9 s and 0.1 s, respectively.
  • the deposition time is determined by the thickness of the desired film. For example, the total deposition thickness required is 30 nm, and the electron beam evaporation machine is equipped with a device (generally a crystal oscillator) that automatically monitors the deposition thickness, and the thickness can be set to 30 nm before deposition.
  • the evaporation baffle of the electron beam evaporation machine will automatically turn off, isolating the metal atoms evaporated by the substrate and the electron beam.
  • the evaporation baffle After the evaporation baffle is closed, gradually reduce the power of the electron gun to 0, turn off the power supply of the electron gun, and lower the temperature of the deposition chamber. When the temperature is below 50 degrees, the vacuum is broken. When the deposition chamber vacuum reaches 1 atm, the deposition chamber is opened, and the plating pot and the substrate sheet are taken out to obtain the desired AlGaN template.
  • the deposition process includes steps 4023 and 4024.
  • Step 4023 the substrate is placed in a vacuum environment, and the substrate is baked; the baking time is 1 to 15 minutes, the baking temperature is 300 to 900 degrees Celsius, and the baking pressure is less than 10 -7 Torr.
  • the substrate is placed on a tray of SiC material, and the tray is placed in a PVD sputtering machine and transferred to a machine deposition chamber.
  • the deposition chamber is evacuated, and the substrate is heated and heated while vacuuming.
  • the background vacuum is drawn below 10 -7 Torr, the heating temperature is stabilized at 300 to 900 ° C, and the substrate is baked, and the baking time is 1 to 15 minutes.
  • Step 4024 after the baking is completed, the aluminum gallium alloy target is sputtered under a gas atmosphere in which at least Ar and N 2 are mixed to deposit an Al 1-x Ga x N crystal film on the substrate;
  • the deposition temperature is 400 to 800 degrees Celsius, deposition pressure is 1 to 10 mTorr, sputtering power is 1 KW to 10 KW, and sputtering time is 10 seconds to 1000 seconds.
  • the sputtering duration is a deposition time of the Al 1-x Ga x N film.
  • the sputtering power and the sputtering duration affect the thickness of the Al 1-x Ga x N film.
  • the thickness of the Al 1-x Ga x N film is 1 to 1000 nm.
  • the flow ratio of Ar:N 2 may be 1:3 to 1:10.
  • the Ga content of the deposited Al 1-x Ga x N thin film can be controlled by adjusting the ratio of Al and Ga components in the aluminum gallium alloy target, sputtering power, sputtering atmosphere Ar/N ratio, and sputtering pressure.
  • an AlGa alloy target with a Ga content of 20% an Al 1-x Ga x N template with a Ga content of 15% to 25% can be prepared, such as setting an Ar/N sputtering gas ratio of 1:5, deposition.
  • a pressure of 4.0 mTorr and a sputtering power of 2 kW an Al 1-x Ga x N template having a Ga content of 20% can be obtained.
  • the Ga content in the Al 1-x Ga x N template can be changed, such as increasing (decreasing) the deposition pressure, and the Ga content in the Al 1-x Ga x N template will increase (decrease).
  • the Al 1-x Ga x N crystalline film includes a first AlGaN layer deposited on a substrate, the first AlGaN layer being doped with oxygen.
  • Step 4024 includes: after the baking is completed, sputtering the aluminum gallium alloy target under a gas atmosphere in which Ar, N 2 and O 2 are mixed or in a gas atmosphere in which Ar, N 2 and an oxygen-containing gas are mixed, to An Al 1-x Ga x N crystalline film is deposited on the substrate.
  • Ar, N 2 and O 2 are introduced (O 2 may be replaced by an oxygen-containing gas).
  • the flow rate of the introduced O 2 may be 10% of the flow sum of both Ar and N 2 .
  • the total gas flow rate of Ar, N 2 and O 2 is preferably maintained at a pressure of 1 to 10 mTorr in the PVD deposition chamber.
  • the substrate heating temperature is set to the deposition temperature, and a preferred deposition temperature range is between 400 and 800 degrees Celsius.
  • a sputtering power source is turned on to sputter the aluminum gallium alloy target, and an oxygen - doped Al 1-x Ga x N crystal film is deposited on the substrate.
  • the sputtering power can be set to 1 KW to 10 KW depending on the deposition rate, and the thickness of the Al 1-x Ga x N crystal film during sputtering is set to be 10 seconds to 1000 seconds.
  • the flow rate of the introduced O 2 can be varied.
  • the flow of O 2 that is introduced is gradually increased or decreased.
  • the flow rate of the introduced O 2 may be continuously increased or continuously decreased, such as linearly increasing and linearly decreasing, such that the content of oxygen in the deposited Al 1-x Ga x N film is continuously changed.
  • the variation may also be an increase in spacing or a decrease in spacing, such as step increment and step decrement, such that the deposited Al 1-x Ga x N film is a laminated structure, and the oxygen content in the Al 1-x Ga x N film is The interval varies. This variation can also be a combination of continuous variation and interval variation.
  • step 4024 further includes gradually increasing or gradually reducing the flow rate of the introduced O 2 during the deposition of the Al 1-x Ga x N crystal film.
  • the first AlGaN layer may be divided. 5 to 10 layers are grown, the oxygen in each layer is evenly distributed, and the content of oxygen in 5 to 10 layers is gradually changed.
  • the sputtering power of the aluminum gallium alloy target can be set to 3 KW; the first AlGaN sublayer to the sixth AlGaN sublayer
  • the deposition time of each of the AlGaN sub-layers is 10 seconds, so that the deposition thickness of each of the AlGaN sub-layers is about 4 nm.
  • the flow rate of O 2 introduced when the first AlGaN sub-layer is grown is 0.5% of the flow rate of Ar and N 2
  • the flow rate of oxygen supplied to the second to sixth AlGaN sub-layers after the growth is sequentially adjusted to Ar and 1%, 3%, 5%, 10%, 15% of the N 2 flow rate.
  • an AlGaN template having a total thickness of 24 nm and a layered gradient of oxygen doping amount was prepared in 6 layers.
  • the oxygen that is introduced can be linearly increased when the first AlGaN layer is deposited.
  • the flow rate of oxygen-containing gas For example, in the deposition process of the first AlGaN layer, the sputtering power of the aluminum gallium alloy target can be set to 2 KW, and the sputtering time is 100 seconds, and the thickness of the first AlGaN layer is about 25 nm. Meanwhile, the 100 seconds, the O 2 flow rate increases from both the flow rate of Ar and N 2 and 10% linear to both the flow rate of Ar and N 2 and 12%.
  • the Al 1-x Ga x N crystalline film further includes a second AlGaN layer deposited on the first AlGaN layer, the second AlGaN layer is doped with oxygen and the oxygen in the second AlGaN layer is uniformly distributed;
  • the thickness of the two AlGaN layers is greater than 1 nm.
  • the thickness of the second AlGaN layer is 3 to 5 nm.
  • the step 4024 further includes: adjusting the flow rate of the O 2 or the oxygen-containing gas that is passed in at the current time to a specified flow rate until the deposition ends after the deposition process has passed the specified length of time and the deposition has not been completed.
  • the specified flow rate is not greater than the O 2 introduced within the specified length of time. Or the flow rate of the oxygen-containing gas, such that the oxygen content gradually decreases from the first AlGaN layer to the second AlGaN layer.
  • the specified flow rate is not less than O 2 or oxygen contained in the specified length of time. The flow rate of the body is such that the oxygen content gradually increases from the first AlGaN layer to the second AlGaN layer.
  • the specified duration is 285 seconds; the sputtering power is 4 KW, and the O 2 flow rate at the initial time is 0.2% of the flow rate of Ar and N 2 .
  • the sputtering was continued for 15 seconds to obtain an AlGaN template.
  • the second AlGaN layer will keep the stress state of the AlGaN template surface layer stable and consistent to the maximum extent, ensure that the stress of the AlGaN template produced in different batches is stable and controllable, and is beneficial to realize the stability of stress in the subsequent GaN epitaxial layer in mass production. To maximize the stable control of wavelength uniformity in batch growth.
  • the tray is transferred out of the PVD deposition chamber, and after cooling the sample, the desired AlGaN template is obtained.
  • FIG. 5 shows a semiconductor device on an AlGaN template according to a fourth embodiment of the present invention.
  • the semiconductor device includes a template 51 and a nitride semiconductor layer 52.
  • the template comprises a substrate 511 and an Al 1-x Ga x N crystal film 512 deposited on the substrate, and the nitride semiconductor layer 52 is deposited on the Al 1-x Ga x N crystal film 512, 0 ⁇ x ⁇ 1 .
  • the template 51 may be an AlGaN template provided by the first embodiment or the second embodiment, and details are not described herein again.
  • the method of preparing the AlGaN template 51 can be referred to the third embodiment.
  • the nitride semiconductor layer 52 may include a single-layer or multi-layer n-type nitride layer 521 sequentially stacked on the Al 1-x Ga x N crystal thin film 512, and a single-layer or multi-layer nitride multi-quantum well active Layer 522, a single or multiple p-type nitride layer 523, and a nitride contact layer (not shown).
  • the quantum barrier layer in the nitride multiple quantum well active layer 522 includes In; the p-type nitride layer 523 includes one or more layers of an electron blocking layer containing Al; and the nitride contact layer includes n-type and p-type nitrides.
  • a contact layer an n-type nitride contact layer for forming an n-electrode, an n-type nitride contact layer on a single-layer or a plurality of n-type nitride layers 521; a p-type nitride contact layer for forming a p-electrode, p-type nitrogen
  • the material contact layer is on the single or multi-layer p-type nitride layer 523.
  • the nitride semiconductor layer 52 may be a GaN-based LED epitaxial layer.
  • the GaN-based LED epitaxial layer includes a first high temperature GaN layer, a second high temperature GaN layer, an n-type GaN layer, a multiple quantum well active layer, and a p-type layer which are sequentially laminated on the Al 1-x Ga x N crystal thin film 512.
  • the GaN-based LED epitaxial layer can be grown by a metal-organic chemical vapor deposition (MOCVD) process.
  • MOCVD metal-organic chemical vapor deposition
  • the first high temperature GaN layer has a growth temperature of 950 to 1050 degrees Celsius, preferably 1000 degrees Celsius, a growth pressure of 50 to 600 Torr, and a first high temperature GaN layer having a thickness of 0.5 to 3 micrometers.
  • the second high temperature GaN layer has a growth temperature of 1020-1100 degrees Celsius, preferably 1060 degrees Celsius, a growth pressure of 50 to 600 Torr, and a second high temperature GaN layer thickness of 0.2 to 3 micrometers.
  • the second high temperature GaN layer may not be doped with Si or lightly doped with Si.
  • the Si doping concentration is 0 to 2 ⁇ 10 18 cm -3
  • the preferred Si doping concentration is 8 ⁇ 10 17 cm -3 .
  • the growth temperature of the n-type GaN layer is 1020-1100 degrees Celsius, preferably 1060 degrees Celsius, the growth pressure is 50-600 Torr, the thickness of the n-type GaN layer is 0.5-3 micrometers, and the n-type is achieved by doping Si, Si doping The concentration is 2 ⁇ 10 18 to 5 ⁇ 10 19 cm -3 , and a preferable Si doping concentration is 1 ⁇ 10 19 cm -3 .
  • the quantum well is an InGaN quantum well, wherein the In content can be controlled at 1 to 30% depending on the needs of different wavelengths.
  • the In content is controlled at 3% and the wavelength is 450 nm.
  • the In content of the blue LED is controlled at 13%, and the In content of the green LED with a wavelength of 520 nm is controlled at 20%.
  • the quantum well has a thickness of 1 to 5 nm, and a preferred quantum well has a thickness of 3 nm.
  • the material of the quantum barrier is AlGaN, the Al content can be controlled at 0 to 30%, the thickness of the quantum barrier is 3 to 50 nm, and the thickness of the preferred quantum barrier is 12 nm.
  • the number of quantum well pairs is from 1 to 20, preferably 10 quantum well pairs.
  • the p-type AlGaN electron blocking layer has a growth temperature of 800 to 950 degrees Celsius, an Al content of 10 to 30%, and a p-type AlGaN electron blocking layer having a thickness of 10 to 50 nm.
  • the thickness of the preferred p-type AlGaN electron blocking layer is 25nm.
  • the p-type is achieved by doping Mg, and the doping concentration of Mg is 1 ⁇ 10 18 to 1 ⁇ 10 20 cm -3 .
  • the growth temperature of the P-type GaN layer is 800 to 950 degrees Celsius, the thickness of the P-type GaN layer is 20 to 500 nm, and the thickness of the preferred P-type GaN layer is 70 nm.
  • the p-type is achieved by doping Mg, and the doping concentration of Mg is 1 ⁇ 10 18 to 1 ⁇ 10 20 cm -3 .
  • the In content can be controlled to be 0 to 20%, and the P-type InGaN contact layer has a thickness of 0.5 to 10 nm.
  • the p-type is achieved by doping with Mg, and the P-type doping concentration is higher, so as to facilitate subsequent chip processing to form an ohmic contact, and the Mg doping concentration is 5 ⁇ 10 19 to 1 ⁇ 10 22 cm ⁇ 3 .
  • a 4 inch or 6 inch AlGaN template can be prepared by the method provided in the third embodiment, and then a GaN-based LED epitaxial layer is grown on a 4 inch or 6 inch AlGaN template by the above MOCVD process to obtain a 4 inch or 6 inch LED.
  • Figure 6 shows the PL wavelength mapping of a 4-inch LED epitaxial wafer.
  • the center of the epitaxial wafer (G point) has a wavelength of 458 nm
  • the edge of the epitaxial wafer (H point) has a wavelength of 461 nm.
  • the edge wavelength difference is 3nm
  • the standard deviation of the whole chip is 1.35nm.
  • the standard deviation of the wavelength is reduced by nearly 3nm, and the wavelength uniformity is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供一种AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件,属于半导体技术领域。AlGaN模板包括:衬底(10)和在衬底(10)上沉积的Al 1-xGa xN结晶薄膜(11),0<x<1。半导体器件包括:模板和氮化物半导体层,所述模板为AlGaN模板,所述氮化物半导体层沉积在所述Al 1-xGa xN结晶薄膜上。方法包括:提供衬底(10);在衬底(10)上沉积Al 1-xGa xN结晶薄膜(11),0<x<1。

Description

AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件 技术领域
本发明涉及半导体技术领域,特别涉及一种AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件。
背景技术
目前,大部分GaN基蓝光发光二极管(英文:light emitting diode,缩写:LED)与GaN基白光LED采用蓝宝石衬底。由于蓝宝石和GaN材料一直存在晶格失配和热失配问题,而AlN材料与GaN材料、蓝宝石衬底间仅有较小的晶格不匹配,因此将AlN作为缓冲层置入到蓝宝石衬底和GaN之间。具体地,先在蓝宝石衬底上生长一AlN缓冲层,制成AlN模板,再在AlN模板上生长GaN外延,制成LED外延片。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
AlN缓冲层的晶格常数小于GaN和蓝宝石,在AlN模板上生长GaN外延时,将导致后续GaN外延积累较大的压应力,在生长GaN外延中的量子阱结构时外延片处于翘曲状态,使得量子阱结构的生长温度不均匀,外延片波长均匀性较差,从而导致无法进行高良率的外延片的量产。图1示出了基于4英寸AlN模板的LED外延片的光致发光(英文:photoluminescence,缩写:PL)波长分布(英文:mapping)图,从图1可以看到,外延片边缘(A点)波长为458nm,外延片中心(B点)波长为468nm,中心和边缘的波长差达10nm,整片的波长标准方差达4.18nm,而合格的外延片要求波长标准方差为2nm,因此该外延片未达到合格要求。
发明内容
为了解决在现有的AlN模板上生长GaN外延时,导致后续GaN外延积累较大的应力,在生长GaN外延中的量子阱结构时外延片处于翘曲状态,使得量子阱结构的生长温度不均匀,外延片波长均匀性较差,从而导致无法 进行高良率的外延片的量产的问题,本发明实施例提供了一种AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件。所述技术方案如下:
第一方面,提供了一种AlGaN模板,包括衬底,所述AlGaN模板还包括在所述衬底上沉积的Al1-xGaxN结晶薄膜,0<x<1。
在第一方面的第一实施方式中,所述Al1-xGaxN结晶薄膜的厚度为1nm~1000nm。
在第一方面的第二实施方式中,所述Al1-xGaxN结晶薄膜包括在所述衬底上沉积的第一AlGaN层,所述第一AlGaN层中掺有氧。
在第一方面的第三实施方式中,从所述衬底与所述第一AlGaN层界面到所述第一AlGaN层的表面的方向,所述第一AlGaN层中的氧的含量是逐渐减少或逐渐增多的。
在第一方面的第四实施方式中,所述Al1-xGaxN结晶薄膜还包括在所述第一AlGaN层上沉积的第二AlGaN层,所述第二AlGaN层中掺有氧且所述第二AlGaN层中的氧是均匀分布在所述第二AlGaN层中的,所述第二AlGaN层的厚度大于1nm。
在第一方面的第五实施方式中,所述衬底为Si、SiC、蓝宝石、ZnO、GaAs、GaP、MgO、Cu、W或SiO2衬底。
第二方面,提供了一种AlGaN模板上的半导体器件,包括模板和在所述模板上生长的氮化物半导体层,
所述模板为前述AlGaN模板,所述氮化物半导体层沉积在所述Al1-xGaxN结晶薄膜上。
第三方面,提供了一种AlGaN模板的制备方法,所述方法包括:
提供衬底;
在所述衬底上沉积Al1-xGaxN结晶薄膜,0<x<1。
在第三方面的第一实施方式中,在所述衬底上沉积Al1-xGaxN结晶薄膜,包括:
将所述衬底布置在真空环境中,并对所述衬底进行烘烤;烘烤时间为1~15分钟,烘烤温度为300~900摄氏度,烘烤压力小于10-7Torr;
完成烘烤后,在至少混合了Ar和N2的气体氛围下,对铝镓合金靶材进行溅射,以在所述衬底上沉积所述Al1-xGaxN结晶薄膜;沉积温度为400~800摄氏度,沉积压力为在1~10mTorr,溅射功率为1KW~10KW,溅射时长为10秒~1000秒。
在第三方面的第二实施方式中,在所述衬底上沉积Al1-xGaxN结晶薄膜,包括:
将所述衬底布置到氮气氛围或者氮离子束流中;
再在所述氮气氛围或者所述氮离子束流中,采用电子束蒸发Al源和Ga源,以在所述衬底上沉积所述Al1-xGaxN结晶薄膜;沉积压力为2×10-5~7×10-5Torr,沉积温度为100~400摄氏度,沉积时间为10秒~1000秒。
本发明实施例提供的技术方案带来的有益效果是:
通过在衬底上沉积Al1-xGaxN结晶薄膜,形成AlGaN模板,后续在AlGaN模板上生长GaN外延时,相较于在AlN模板上生长GaN外延,由于Ga原子和Al原子同属族半导体,适量的Ga原子的掺入,不会对在AlGaN模板上生长的GaN外延的晶体质量有明显影响。而由于Ga原子半径较Al原子大,掺入Ga原子的AlGaN模板和AlN模板相比,其晶格常数同后续的GaN外延层更加接近。因此,采用AlGaN模板生长GaN外延,可以缓解GaN外延中的压应力,改善生长量子阱时外延片的翘曲。同时由于GaN材料的结晶温度较AlN材料低,在AlN模板中掺入适当的Ga,有利于提高模板的晶体质量,从而提高后续GaN外延材料的晶体质量。这样,该AlGaN模板在保持甚至提高后续GaN外延晶体质量的同时,减小了GaN外延层中的积累应力,优化了LED外延的波长均匀性,有了实现AlGaN模板上外延片大规模量产的可行性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于现有的4英寸AlN模板制备的LED外延片的PL波长mapping图;
图2是本发明第一实施例提供的一种AlGaN模板的结构示意图;
图3是本发明第二实施例提供的一种AlGaN模板的结构示意图;
图4是本发明第三实施例提供的一种AlGaN模板的制备方法的流程图;
图5是本发明第四实施例提供的一种AlGaN模板上的半导体器件的结构示意图;
图6是本发明第四实施例提供的4英寸LED外延片的PL波长mapping图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图2示出了本发明第一实施例提供的一种AlGaN模板,如图2所示,该AlGaN模板包括衬底10和在衬底10上沉积的Al1-xGaxN结晶薄膜11,0<x<1。
其中,本实施例不限定衬底10的种类,衬底10可以为Si、SiC、蓝宝石、ZnO、GaAs、GaP、MgO、Cu、W或SiO2衬底。
在实现时,可以采用物理气相沉积(英文:Physical Vapor Deposition,缩写:PVD)工艺或电子束蒸发工艺在衬底上沉积该Al1-xGaxN结晶薄膜11。当采用PVD工艺在衬底10上沉积该Al1-xGaxN结晶薄膜11时,Al1-xGaxN结晶薄膜11中的Al和Ga来源于铝镓合金靶材。当采用电子束蒸发工艺在衬底10上沉积Al1-xGaxN结晶薄膜11时,Al1-xGaxN结晶薄膜11中的Al和Ga来源于铝镓合金、或者金属铝源和金属镓源,金属铝源和金属镓源可以位于分立坩埚中。
其中,Al1-xGaxN结晶薄膜11的厚度可以为1nm~1000nm。
在实现时,该AlGaN模板适用于生长GaN外延,例如制成GaN基LED。
通过在衬底上沉积Al1-xGaxN结晶薄膜,形成AlGaN模板,后续在AlGaN模板上生长GaN外延时,相较于在AlN模板上生长GaN外延,由于Ga原子和Al原子同属族半导体,适量的Ga原子的掺入,不会对在AlGaN模板上生长的GaN外延的晶体质量有明显影响。而由于Ga原子半径较Al原子大,掺入Ga原子的AlGaN模板和AlN模板相比,其晶格常数同后续的GaN外延层更加接近。因此,采用AlGaN模板生长GaN外延,可以缓解GaN外延中的压应力,改善生长量子阱时外延片的翘曲。同时由于GaN材料的结晶温度较AlN材料低,在AlN模板中掺入适当的Ga,有利于提高模板的晶体质量,从而提高后续GaN外延材料的晶体质量。这样,该AlGaN模板在保持甚至提高后续GaN外延晶体质量的同时,减小了GaN外延层中的积累应力,优化了LED外延的波长均匀性,有了实现AlGaN模板上外延片大规模量产的可行性。
图3示出了本发明第二实施例提供的一种AlGaN模板,在本实施例中,将对第一实施例描述的Al1-xGaxN结晶薄膜11进行详细介绍。其中,本实施例与第一实施例相同或相似的内容,请参见第一实施例。
如图3所示,Al1-xGaxN结晶薄膜11包括在衬底上沉积的第一AlGaN层31,第一AlGaN层31中掺有氧(O)。
第一AlGaN层31中掺的氧可以来源于在第一AlGaN层31的沉积过程中掺入的氧气或含氧气体。含氧气体包括但不限于氧化氢(H2O)、一氧化碳(CO)、二氧化碳(CO2)、一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)。
第一AlGaN层31中掺入的O原子,一部分会替代AlGaN中N原子,另一部分会形成填隙原子。由于O原子半径比N原子大,这部分替位O原子和填隙O原子,都会使AlGaN晶格产生一定的畸变,增加Al1-xGaxN薄膜的晶格常数,这将使Al1-xGaxN薄膜和后续GaN外延薄膜的晶格常数更接近,从而有利于在AlGaN模板上生长GaN外延时减小GaN材料中的压应力,改善生长量子阱时外延片的翘曲,进而改善基于AlGaN模板上外延层的波长均匀性。同时掺入适量的氧,也能增加AlGaN模板的抗氧化能力, 提高AlGaN模板曝露空气下或空气中长时间存放的稳定性,进而提高AlGaN模板上半导体外延材料特性的稳定和一致性。
其中,氧在第一AlGaN层31中可以是均匀分布的,例如,从衬底10与第一AlGaN层31界面到第一AlGaN层31的表面的方向,第一AlGaN层31中的氧的含量是固定不变的。氧在第一AlGaN层31中也可以是不均匀分布的,例如,从衬底10与第一AlGaN层31界面到第一AlGaN层31的表面的方向,第一AlGaN层31中的氧的含量是逐渐减少的,或者第一AlGaN层31中的氧的含量是逐渐增多的,或者第一AlGaN层31中的氧的含量先逐渐变化(增多或减少)再固定不变最后逐渐变化。
优选的,从衬底10与第一AlGaN层31界面到第一AlGaN层31的表面的方向,第一AlGaN层31中掺的氧的含量是逐渐减少或逐渐增多的。
此外,当衬底10为蓝宝石衬底时,在第一AlGaN层31中采用掺杂氧逐渐减少的方式,还有利于蓝宝石衬底(Al2O3)和Al1-xGaxN结晶薄膜11界面的缺陷降低,提高界面的键合力。而当衬底10为蓝宝石衬底时,在第一AlGaN层31中采用掺杂氧逐渐增多的方式,制备的AlGaN模板表面氧组分最高,这样能提高AlGaN模板长期存放的抗氧化能力,提高量产中AlGaN模板的稳定性和一致性。
以氧的含量是逐渐增多为例,介绍一下氧的含量的变化方式。从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,第一AlGaN层31中的氧的含量可以是以连续变化的方式增多,也可以是以间隔变化的方式增多,还可以是以将连续变化和间隔变化两种方式结合的方式增多。
实现时,可以在第一AlGaN层31的成膜过程中,控制掺入的氧气或含氧气体的流量随时间递增,比如随时间线性递增,这样,第一AlGaN层31中的氧的含量是以连续变化的方式增多。类似的,可以在第一AlGaN层31的成膜过程中,每间隔一定时间增多掺入的氧气或含氧气体的流量,这样,第一AlGaN层31中的氧的含量是以间隔变化的方式增多。类似的,可以在第一AlGaN层31的成膜过程中,一段时间内控制掺入的氧气或含氧气体的流量随时间递增,另一段时间内控制掺入的氧气或含氧气体的流量每间隔一 定时间增多,这样,第一AlGaN层31中的氧的含量是以将连续变化和间隔变化两种方式结合的方式增多。
试验表明,在AlGaN层中掺入过多的O会使得AlGaN层本身的晶体质量出现下降,进而影响后续GaN外延薄膜的晶体质量,不能体现AlGaN模板晶体质量佳的优势。而通过从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,第一AlGaN层31中的氧的含量逐渐增多或逐渐减少,这样,一部分第一AlGaN层31包含较少的掺氧量,能使第一AlGaN层31保有较好的晶体质量,从而体现AlGaN模板上GaN外延薄膜晶体质量佳的优势;另一部分第一AlGaN层31包含较多的掺氧量,将使第一AlGaN层31中的晶格常数同后续GaN外延薄膜更加接近,减小后续GaN外延薄膜中的压应力,从而提高LED外延片的波长均匀性。
其中,在第一AlGaN层31中,氧的含量可以为第一AlGaN层31中氮含量的1~10%。优选的,氧的含量可以为第一AlGaN层31中氮含量的2%。
通过控制第一AlGaN层31中的氧的含量和氧的含量的变化方式,可以和后续的GaN外延生长工艺灵活搭配互补,可以在不同GaN外延生长工艺上都实现较佳的LED外延片波长均匀性。
作为可选的实施方式,第一AlGaN层31由若干AlGaN子层层叠而成,且从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,若干AlGaN子层中的氧的含量是逐层增多或逐层减少的。
其中,单个AlGaN子层中的氧是均匀分布的,或者,单个AlGaN子层中的氧是不均匀分布的。如果从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,单个AlGaN子层中的氧的含量是不变的,那么,单个AlGaN子层中的氧是均匀分布的,这时,第一AlGaN层31中的氧的含量是以间隔变化的方式增多。如果从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,单个AlGaN子层中的氧的含量是渐变的(比如递增),那么,单个AlGaN子层中的氧是不均匀分布的,这时,第一AlGaN层31中的氧的含量是以连续变化的方式变化。如果从第一AlGaN层31与衬底10界面到第一AlGaN层31的表面的方向,若干AlGaN子层中, 一部分AlGaN子层中的氧的含量是不变的,另一部分AlGaN子层中的氧的含量是逐渐增加或减少的,那么,单个AlGaN子层中的氧也是不均匀分布的,这时,第一AlGaN层31中的氧的含量是以将连续变化和间隔变化两种方式结合的方式变化。
其中,任意两个AlGaN子层的厚度可以相同,也可以不同。
可选的,AlGaN子层的数量为1~50,AlGaN子层的厚度为1~10nm。
优选的,AlGaN子层的数量为5~10,AlGaN子层的厚度为2~5nm。
作为优选的实施方式,单个AlGaN子层中的氧是均匀分布的。当单个AlGaN子层中的氧是均匀分布时,将使每一AlGaN子层具有一定的厚度,每层厚度在1-10nm较好,较优的为2-5nm。一定厚度的掺氧AlGaN子层,将使Al1-xGaxN薄膜有充分的时间和厚度释放氧原子带来的应力,同时实现较好的Al1-xGaxN结晶膜层晶体质量。
可选的,再次参见图3,Al1-xGaxN结晶薄膜还包括沉积在第一AlGaN层31上的第二AlGaN层32。第二AlGaN层32中也掺有氧且第二AlGaN层32中掺的氧是均匀分布在第二AlGaN层32中的。第二AlGaN层32的厚度大于1nm。
从第一AlGaN层31与第二AlGaN层32界面到第二AlGaN层32的表面的方向,第二AlGaN层32中掺的氧的含量是固定的。
具体地,与第一AlGaN层31类似,第二AlGaN层32中掺的氧也可以来源于在第二AlGaN层32的沉积过程中掺入的氧气或含氧气体。
可选的,从第一AlGaN层31到第二AlGaN层32,氧的含量逐渐增多或逐渐减少。
优选的,第二AlGaN层32的厚度为3nm~5nm。
通过将Al1-xGaxN薄膜的表层设置为厚度大于1nm的第二AlGaN层32,第二AlGaN层32中的氧是均匀分布的,这能使得AlGaN模板表层的应力状况保持最大限度的稳定和一致,确保不同批次生产出来的AlGaN模板应力稳定可控,在批量生产中有利于实现后续GaN外延层中应力的稳定,从而最大限度的实现批量生长中波长均匀性的稳定控制。
图4示出了本发明第三实施例提供的一种AlGaN模板的制备方法,适用于第一实施例或第二实施例提供的AlGaN模板。如图4所示,该方法包括如下步骤。
步骤401、提供衬底。
衬底可以为Si、SiC、蓝宝石、ZnO、GaAs、GaP、MgO、Cu、W或SiO2衬底。优选的,该衬底为蓝宝石衬底。
步骤402、在衬底上沉积Al1-xGaxN结晶薄膜,0<x<1。
以采用电子束蒸发工艺在衬底上沉积Al1-xGaxN结晶薄膜为例,介绍一下Al1-xGaxN结晶薄膜的沉积过程,该沉积过程包括步骤4021和步骤4022。
步骤4021、将衬底布置到氮气氛围或者氮离子束流中。
具体地,首先,将衬底片安装到镀锅上,然后将镀锅装入电子束蒸发机台蒸发腔室。其次,对蒸发腔室抽真空到10-6Torr以下,继续抽10分钟以减少蒸发腔室残余其他,同时加热到沉积目标温度。沉积目标温度可以是100~400摄氏度,较好的为300摄氏度。然后,向蒸发腔室通入N2,并保持N2分压在2×10-5~7×10-5Torr。其中N2的流量可以是2-100sccm,较好的为30sccm。通入N2后,可以稳定1-3分钟。或者,可以采用N离子源做为N来源,离子源功率可以是1-5KW。
需要说明的是,假若Al1-xGaxN结晶薄膜中掺有氧,则步骤4021包括:将衬底布置到混合有氮气和氧气(氧气可以由含氧气体替代)的氛围中,或者将衬底布置到氮离子束流和氧离子束流中。
步骤4022、在氮气氛围或者氮离子束流中,采用电子束蒸发Al源和Ga源,以在衬底上沉积Al1-xGaxN结晶薄膜;沉积压力为2×10-5~7×10-5Torr,沉积温度为100~400摄氏度,沉积时间为10秒~1000秒。
在采用电子束蒸发Al源和Ga源之前,还可以先去除Al源和Ga源两种金属源的表面杂质。具体地,先使镀锅旋转,再开启电子枪产生电子束。当电子枪的功率缓慢升高到大约总功率的20%时,开始稳定功率融源约2分钟,以去除坩埚中金属源的表面杂质。
在去除坩埚中金属源的表面杂质之后,打开蒸发腔室中的蒸发挡板(用 于隔离镀锅和坩埚),同时使蒸发速率稳定在2A/s(2A/s可以是速率控制模式,速率控制模式将自动控制电子束输出功率),此时电子束蒸发的金属原子会沉积在衬底上,并同反应气体N2形成金属氮化物AlGaN。通过控制电子束交替在Al源和Ga源的蒸发时间,能够调整Al1-xGaxN结晶膜中Ga原子的掺入比例,如Al源和Ga源分别交替蒸发0.9s和0.1s,能得到Ga:Al=1:9的AlGaN薄膜。其中,沉积时间由所需薄膜的厚度决定。例如,所需的沉积总厚度为30nm,电子束蒸发机台配置有自动监测沉积厚度的装置(一般是晶振),可以在沉积前就设定厚度为30nm。当该装置监测Al1-xGaxN结晶膜到达设定厚度后(30nm约需要沉积150s),电子束蒸发机台的蒸发挡板将自动关闭,隔离衬底和电子束蒸发的金属原子。
在蒸发挡板关闭后,逐步降低电子枪功率为0,关闭电子枪电源,同时降低沉积室温度。当温度低于50度时,开始破真空。沉积室真空达到1个大气压时,打开沉积腔室,取出镀锅和衬底片,即得到所需的AlGaN模板。
再以采用PVD工艺在衬底上沉积Al1-xGaxN结晶薄膜为例,介绍一下Al1-xGaxN结晶薄膜的沉积过程,该沉积过程包括步骤4023和步骤4024。
步骤4023、将衬底布置在真空环境中,并对衬底进行烘烤;烘烤时间为1~15分钟,烘烤温度为300~900摄氏度,烘烤压力小于10-7Torr。
具体地,首先,将衬底放置于SiC材质的托盘上,并将托盘放入PVD溅射机台,并传送至机台沉积腔室。其次,在衬底放入后,对沉积腔室进行抽真空,抽真空的同时开始对衬底进行加热升温。本底真空抽至低于10-7Torr时,将加热温度稳定在300~900摄氏度,对衬底进行烘烤,烘烤时间为1~15分钟。
步骤4024、完成烘烤后,在至少混合了Ar和N2的气体氛围下,对铝镓合金靶材进行溅射,以在衬底上沉积Al1-xGaxN结晶薄膜;沉积温度为400~800摄氏度,沉积压力为1~10mTorr,溅射功率为1KW~10KW,溅射时长为10秒~1000秒。
其中,该溅射时长为Al1-xGaxN薄膜的沉积时间。溅射功率和溅射时长影响Al1-xGaxN薄膜的厚度,当溅射功率为1KW~10KW,溅射时长为10 秒~1000秒时,Al1-xGaxN薄膜的厚度为1~1000nm。
其中,Ar:N2的流量比可以为1:3~1:10。
其中,沉积的Al1-xGaxN薄膜的Ga含量可以通过调整铝镓合金靶材中Al和Ga成份比例、及溅射功率、溅射气氛Ar/N比、溅射压力来控制。比如说采用Ga含量20%的AlGa合金靶材,可以实现Ga含量为15%-25%的Al1-xGaxN模板的制备,如设定Ar/N溅射气体比例1:5,沉积压力为4.0mTorr,溅射功率为2KW的工艺实现,则可获得Ga含量为20%的Al1-xGaxN模板。通过调整溅射工艺,可以改变Al1-xGaxN模板中的Ga含量,如增加(降低)沉积压力,Al1-xGaxN模板中的Ga含量将增加(降低)。
作为可选的实施方式,Al1-xGaxN结晶薄膜包括在衬底上沉积的第一AlGaN层,第一AlGaN层中掺有氧。步骤4024包括:完成烘烤后,在混合了Ar、N2和O2的气体氛围或者混合了Ar、N2和含氧气体的气体氛围下,对铝镓合金靶材进行溅射,以在所述衬底上沉积Al1-xGaxN结晶薄膜。
具体地,通入Ar、N2和O2(O2可以由含氧气体替代)。其中,通入的O2的流量可以为Ar和N2两者流量和的10%。在沉积过程中,Ar、N2和O2三者的总气体流量将PVD沉积腔室压力维持在1~10mTorr为佳。同时,将衬底加热温度设定到沉积温度,较好的沉积温度范围为400~800摄氏度之间。在沉积温度稳定10~60秒之后,开通溅射电源,对铝镓合金靶材进行溅射,此时将在衬底上沉积掺有氧的Al1-xGaxN结晶薄膜。其中,溅射功率视沉积速率的要求可设定为1KW~10KW,溅射时长视Al1-xGaxN结晶薄膜厚度的不同设定为10秒~1000秒。
在Al1-xGaxN结晶薄膜的沉积过程中,可以变化通入的O2的流量。例如,逐渐增多或减少通入的O2的流量。通入的O2的流量的变化方式可以是连续增多或连续减少,比如线性递增和线性递减,这样,沉积的Al1-xGaxN薄膜中的氧的含量是连续变化的。该变化方式也可以是间隔增多或间隔减少,比如阶梯递增和阶梯递减,这样,沉积的Al1-xGaxN薄膜为层叠结构,且Al1-xGaxN薄膜中的氧的含量是间隔变化的。该变化方式还可以是将连续变化和间隔变化结合起来变化。
优选地,从第一AlGaN层与衬底界面到第一AlGaN层的表面的方向,第一AlGaN层中的氧的含量是逐渐增多或逐渐减少的。则步骤4024还包括:在Al1-xGaxN结晶薄膜的沉积过程中,逐渐增多或逐渐减少通入的O2的流量。
假设沉积的第一AlGaN层中的氧的含量从衬底/第一AlGaN层界面到第一AlGaN层的表面的方向阶梯递增,那么,在沉积第一AlGaN层时,可以将第一AlGaN层分5~10层生长,每层中氧均匀分布,5~10层中的氧的含量逐层渐变。以第一AlGaN层包括6个AlGaN子层为例,在沉积第一AlGaN层时,可以设定铝镓合金靶材的溅射功率为3KW;第1个AlGaN子层到第6个AlGaN子层,每个AlGaN子层的沉积时长为10秒,这样每个AlGaN子层的沉积厚度约为4nm。并且,生长第1个AlGaN子层时通入的O2流量为Ar、N2流量和的0.5%,生长其后的第2至6个AlGaN子层时通入的氧气流量依次调整为Ar和N2流量和的1%、3%、5%、10%、15%。这样就制备出了总厚度为24nm厚,分6层进行氧掺杂量分层渐变的AlGaN模板。
假设沉积的第一AlGaN层中的氧的含量从衬底/第一AlGaN层界面到第一AlGaN层的表面的方向线性递增,那么,在沉积第一AlGaN层时,可以线性增多通入的氧气或含氧气体的流量。比如,在第一AlGaN层的沉积过程中,可以设定铝镓合金靶材的溅射功率为2KW,溅射时长为100秒,此时第一AlGaN层的厚度约为25nm。同时,在这100秒内,将O2流量由Ar和N2两者流量和的10%线性递增到Ar和N2两者流量和的12%。
可选的,Al1-xGaxN结晶薄膜还包括在第一AlGaN层上沉积的第二AlGaN层,第二AlGaN层中掺有氧且第二AlGaN层中的氧是均匀分布的;第二AlGaN层的厚度大于1nm。优选的,该第二AlGaN层的厚度是3至5nm。则,该步骤4024还包括:在沉积过程经过指定时长且还未完成沉积时,调整当前时间通入的O2或含氧气体的流量为指定流量,直到沉积结束。
优选地,当从第一AlGaN层与衬底界面到第一AlGaN层的表面的方向,第一AlGaN层中的氧的含量是逐渐减少时,该指定流量不大于指定时长内通入的O2或含氧气体的流量,这样,从第一AlGaN层到第二AlGaN层, 氧的含量逐渐减少。当从第一AlGaN层与衬底界面到第一AlGaN层的表面的方向,第一AlGaN层中的氧的含量是逐渐增多时,该指定流量不小于指定时长内通入的O2或含氧气体的流量,这样,从第一AlGaN层到第二AlGaN层,氧的含量逐渐增多。
例如,假设整个沉积过程维持300秒(溅射时长),指定时长为285秒;溅射功率为4KW,初始时间通入的O2流量为Ar、N2流量和的0.2%。在前285秒内,将通入的O2流量为Ar、N2流量和的12%线性递增到10%,在后15秒内,保持O2流量为Ar和N2流量和的10%不变,继续溅射15秒钟,得到AlGaN模板。
该第二AlGaN层将使得AlGaN模板表层的应力状况保持最大限度的稳定和一致,确保不同批次生产出来的AlGaN模板应力稳定可控,在批量生产中有利于实现后续GaN外延层中应力的稳定,从而最大限度的实现批量生长中波长均匀性的稳定控制。
沉积完毕后,将托盘传出PVD沉积腔室,对样品冷却后,即得到所需的AlGaN模板。
图5示出了本发明第四实施例提供的一种AlGaN模板上的半导体器件,如图5所示,该半导体器件包括模板51和氮化物半导体层52。其中,该模板包括衬底511和在衬底上沉积的Al1-xGaxN结晶薄膜512,氮化物半导体层52沉积在Al1-xGaxN结晶薄膜512上,0<x<1。
其中,该模板51可以是第一实施例或第二实施例提供的AlGaN模板,在此不再赘述。该AlGaN模板51的制备方法可以参见第三实施例。
其中,该氮化物半导体层52可以包括顺次层叠在Al1-xGaxN结晶薄膜512上的单层或多层n型氮化物层521、单层或多层氮化物多量子阱有源层522、单层或多层p型氮化物层523以及氮化物接触层(图未示出)。其中,氮化物多量子阱有源层522中的量子垒层包含In;p型氮化物层523包括一层或多层包含Al的电子阻挡层;氮化物接触层包括n型和p型氮化物接触层,n型氮化物接触层用于形成n电极,n型氮化物接触层位于单层或多层n型氮化物层521上;p型氮化物接触层用于形成p电极,p型氮化物接触 层位于单层或多层p型氮化物层523上。
可选的,该氮化物半导体层52可以是GaN基LED外延层。优选的,GaN基LED外延层包括依次层叠在Al1-xGaxN结晶薄膜512上的第一高温GaN层、第二高温GaN层、n型GaN层、多量子阱有源层、p型AlGaN电子阻挡层、p型GaN层和p型InGaN接触层。
实现时,该GaN基LED外延层可以采用金属有机化合物化学气相沉淀(英文:Metal-organic Chemical Vapor Deposition,缩写:MOCVD)工艺生长。
具体地,第一高温GaN层的生长温度为950~1050摄氏度,较好的为1000摄氏度,生长压力为50~600Torr,第一高温GaN层的厚度为0.5~3微米。
第二高温GaN层的生长温度为1020-1100摄氏度,较好的为1060摄氏度,生长压力为50~600Torr,第二高温GaN层的厚度0.2~3微米。其中,第二高温GaN层中可不掺Si或轻掺Si。掺杂Si时,Si掺杂浓度为0~2×1018cm-3,较好的Si掺杂浓度为8×1017cm-3
n型GaN层的生长温度为1020-1100摄氏度,较好的为1060摄氏度,生长压力为50~600Torr,n型GaN层的厚度为0.5~3微米,n型通过掺入Si实现,Si掺杂浓度为2×1018~5×1019cm-3,较好的Si掺杂浓度为1×1019cm-3
多量子阱有源层中,量子阱为InGaN量子阱,其中In含量视不同波长的需要可控制在1~30%,如波长为390nm的紫光LED中In含量控制在3%,波长为450nm的蓝光LED中In含量控制在13%,而波长为520nm的绿光LED中In含量控制在20%。量子阱的厚度为1~5nm,较好的量子阱的厚度为3nm。量子垒的材料为AlGaN,Al含量可控制在0~30%,量子垒的厚度为3~50nm,较好的量子垒的厚度为12nm。量子阱对的数量为1~20个,较好的为10个量子阱对。
p型AlGaN电子阻挡层的生长温度为800~950摄氏度,Al含量可控制在10~30%,p型AlGaN电子阻挡层的厚度为10~50nm,较好的p型AlGaN 电子阻挡层的厚度为25nm。p型通过掺入Mg实现,Mg的掺杂浓度为1×1018~1×1020cm-3
P型GaN层的生长温度为800~950摄氏度,P型GaN层的厚度为20~500nm,较好的P型GaN层的厚度为70nm。p型通过掺入Mg实现,Mg的掺杂浓度为1×1018~1×1020cm-3
P型InGaN接触层中,In含量可控制在0~20%,P型InGaN接触层的厚度为0.5~10nm。p型通过掺入Mg实现,P型掺杂浓度较高,以利于后续芯片加工形成欧姆接触,Mg掺杂浓度为5×1019~1×1022cm-3
实现时,可以通过第三实施例提供的方法制备出4英寸或6英寸AlGaN模板,再采用上述MOCVD工艺在4英寸或6英寸AlGaN模板上生长GaN基LED外延层,得到4英寸或6英寸LED外延片。图6示出了4英寸LED外延片的PL波长mapping图,从图6可以看出,该外延片的中心(G点)波长为458nm,外延片的边缘(H点)波长为461nm,中心和边缘波长差为3nm,整片的波长标准方差为1.35nm,与基于现有的AlGaN模板制备的LED外延片(波长标准方差为4.18nm)相比,波长标准方差降低了接近3nm,波长均匀性得到根本性的改善。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种AlGaN模板,包括衬底,其特征在于,所述AlGaN模板还包括在所述衬底上沉积的Al1-xGaxN结晶薄膜,0<x<1。
  2. 根据权利要求1所述的AlGaN模板,其特征在于,所述Al1-xGaxN结晶薄膜的厚度为1nm~1000nm。
  3. 根据权利要求1所述的AlGaN模板,其特征在于,所述Al1-xGaxN结晶薄膜包括在所述衬底上沉积的第一AlGaN层,所述第一AlGaN层中掺有氧。
  4. 根据权利要求3所述的AlGaN模板,其特征在于,从所述衬底与所述第一AlGaN层界面到所述第一AlGaN层的表面的方向,所述第一AlGaN层中的氧的含量是逐渐减少或逐渐增多的。
  5. 根据权利要求3所述的AlGaN模板,其特征在于,所述Al1-xGaxN结晶薄膜还包括在所述第一AlGaN层上沉积的第二AlGaN层,所述第二AlGaN层中掺有氧且所述第二AlGaN层中的氧是均匀分布在所述第二AlGaN层中的,所述第二AlGaN层的厚度大于1nm。
  6. 根据权利要求1所述的AlGaN模板,其特征在于,所述衬底为Si、SiC、蓝宝石、ZnO、GaAs、GaP、MgO、Cu、W或SiO2衬底。
  7. 一种AlGaN模板上的半导体器件,包括模板和在所述模板上生长的氮化物半导体层,其特征在于,
    所述模板为权利要求1至6中任一项所述的AlGaN模板,所述氮化物半导体层沉积在所述Al1-xGaxN结晶薄膜上。
  8. 一种AlGaN模板的制备方法,其特征在于,所述方法包括:
    提供衬底;
    在所述衬底上沉积Al1-xGaxN结晶薄膜,0<x<1。
  9. 根据权利要求8所述的方法,其特征在于,在所述衬底上沉积Al1-xGaxN结晶薄膜,包括:
    将所述衬底布置在真空环境中,并对所述衬底进行烘烤;烘烤时间为1~15分钟,烘烤温度为300~900摄氏度,烘烤压力小于10-7Torr;
    完成烘烤后,在至少混合了Ar和N2的气体氛围下,对铝镓合金靶材进行溅射,以在所述衬底上沉积所述Al1-xGaxN结晶薄膜;沉积温度为400~800摄氏度,沉积压力为在1~10mTorr,溅射功率为1KW~10KW,溅射时长为10秒~1000秒。
  10. 根据权利要求8所述的方法,其特征在于,在所述衬底上沉积Al1-xGaxN结晶薄膜,包括:
    将所述衬底布置到氮气氛围或者氮离子束流中;
    再在所述氮气氛围或者所述氮离子束流中,采用电子束蒸发Al源和Ga源,以在所述衬底上沉积所述Al1-xGaxN结晶薄膜;沉积压力为2×10-5~7×10-5Torr,沉积温度为100~400摄氏度,沉积时间为10秒~1000秒。
PCT/CN2016/077757 2015-12-31 2016-03-29 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件 WO2017113523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/022,750 US10770615B2 (en) 2015-12-31 2018-06-29 Al—Ga—N template, a method for preparing Al—Ga—N template, and semiconductor device comprising Al—Ga—N template

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511029673.0 2015-12-31
CN201511029673.0A CN105633223B (zh) 2015-12-31 2015-12-31 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/022,750 Continuation-In-Part US10770615B2 (en) 2015-12-31 2018-06-29 Al—Ga—N template, a method for preparing Al—Ga—N template, and semiconductor device comprising Al—Ga—N template

Publications (1)

Publication Number Publication Date
WO2017113523A1 true WO2017113523A1 (zh) 2017-07-06

Family

ID=56047957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077757 WO2017113523A1 (zh) 2015-12-31 2016-03-29 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件

Country Status (3)

Country Link
US (1) US10770615B2 (zh)
CN (1) CN105633223B (zh)
WO (1) WO2017113523A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703726B (zh) * 2016-09-19 2020-09-01 新世紀光電股份有限公司 含氮半導體元件
CN107316928B (zh) * 2017-07-20 2019-06-25 厦门三安光电有限公司 氮化物半导体元件及其制作方法
CN111146282B (zh) * 2018-11-06 2023-03-28 世界先进积体电路股份有限公司 高电子迁移率晶体管装置及其制造方法
CN110176524B (zh) * 2019-06-11 2021-03-16 厦门乾照光电股份有限公司 一种薄膜生长组件、方法和led制备方法
US11114555B2 (en) * 2019-08-20 2021-09-07 Vanguard International Semiconductor Corporation High electron mobility transistor device and methods for forming the same
CN114267756B (zh) * 2021-12-20 2024-09-10 江西兆驰半导体有限公司 一种发光二极管外延片制备方法及外延片
CN117071071B (zh) * 2023-08-22 2024-02-09 湖北大学 一种p型氧化镓薄膜及其制备方法和应用
CN116759505B (zh) * 2023-08-23 2023-11-17 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151962A (ja) * 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd 窒素−3属元素化合物半導体発光素子及び製造方法
GB2344461B (en) * 1998-12-02 2002-05-22 Arima Optoelectronics Corp Semiconductor devices
CN101540365A (zh) * 2008-03-18 2009-09-23 三菱电机株式会社 氮化物半导体层压结构、光半导体装置及它们的制造方法
CN103500780A (zh) * 2013-09-29 2014-01-08 山西飞虹微纳米光电科技有限公司 一种氮化镓基led外延结构及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064078A (en) * 1998-05-22 2000-05-16 Xerox Corporation Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities
KR100648759B1 (ko) * 1998-09-10 2006-11-23 로무 가부시키가이샤 반도체발광소자 및 그 제조방법
JP2009081406A (ja) * 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2012033575A (ja) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151962A (ja) * 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd 窒素−3属元素化合物半導体発光素子及び製造方法
GB2344461B (en) * 1998-12-02 2002-05-22 Arima Optoelectronics Corp Semiconductor devices
CN101540365A (zh) * 2008-03-18 2009-09-23 三菱电机株式会社 氮化物半导体层压结构、光半导体装置及它们的制造方法
CN103500780A (zh) * 2013-09-29 2014-01-08 山西飞虹微纳米光电科技有限公司 一种氮化镓基led外延结构及其制备方法

Also Published As

Publication number Publication date
US20180323337A1 (en) 2018-11-08
CN105633223B (zh) 2018-10-09
US10770615B2 (en) 2020-09-08
CN105633223A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017113523A1 (zh) AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件
TWI395259B (zh) 成長於金屬層上之複合半導體基板、其製造方法及利用該複合半導體基板形成之複合半導體元件
CN105470357B (zh) AlN模板、AlN模板的制备方法及AlN模板上的半导体器件
JP6001194B2 (ja) 窒化物半導体層の成膜方法及び半導体装置の製造方法
RU2643176C1 (ru) Неполярная светодиодная эпитаксиальная пластина синего свечения на подложке из lao и способ ее получения
JP2006210578A (ja) 窒化物半導体素子および窒化物半導体結晶層の成長方法
CN105633233B (zh) AlN模板、AlN模板的制备方法及AlN模板上的半导体器件
CN102484180B (zh) 氮化镓系化合物半导体发光元件
CN109768127A (zh) GaN基发光二极管外延片及其制备方法、发光二极管
CN109786513B (zh) 发光二极管的外延片及其制作方法
WO2016011810A1 (zh) 一种氮化物半导体的制备方法
WO2008029915A1 (fr) Dispositif d&#39;émission de lumière à semiconducteur et son procédé de fabrication
CN109509817A (zh) 一种发光二极管外延片及其制备方法
JP7352271B2 (ja) 窒化物半導体基板の製造方法
CN112687773B (zh) 紫外发光二极管的外延片及其制备方法
CN109786530B (zh) 一种GaN基发光二极管外延片及其制备方法
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
CN109545918B (zh) 一种氮化镓基发光二极管外延片及其制备方法
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
CN110364598B (zh) 发光二极管外延片及其制作方法
CN109301048A (zh) 一种氮化镓基发光二极管外延片及其生长方法
CN109671819A (zh) 一种GaN基发光二极管外延片及其制备方法
JP2007103955A (ja) 窒化物半導体素子および窒化物半導体結晶層の成長方法
CN109888063B (zh) AlN模板及氮化镓基发光二极管外延片的制备方法
JP7296614B2 (ja) 窒化物半導体の製造方法、窒化物半導体、及び発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880331

Country of ref document: EP

Kind code of ref document: A1