WO2017113221A1 - 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 - Google Patents

陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 Download PDF

Info

Publication number
WO2017113221A1
WO2017113221A1 PCT/CN2015/099951 CN2015099951W WO2017113221A1 WO 2017113221 A1 WO2017113221 A1 WO 2017113221A1 CN 2015099951 W CN2015099951 W CN 2015099951W WO 2017113221 A1 WO2017113221 A1 WO 2017113221A1
Authority
WO
WIPO (PCT)
Prior art keywords
bati
preparation
dielectric ceramic
organic binder
ceramic material
Prior art date
Application number
PCT/CN2015/099951
Other languages
English (en)
French (fr)
Inventor
庄后荣
陆正武
Original Assignee
深圳市大富科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富科技股份有限公司 filed Critical 深圳市大富科技股份有限公司
Priority to PCT/CN2015/099951 priority Critical patent/WO2017113221A1/zh
Publication of WO2017113221A1 publication Critical patent/WO2017113221A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates

Definitions

  • the invention relates to the technical field of dielectric resonators, in particular to a microwave dielectric ceramic material and a preparation method thereof, a resonator, a cavity filter and a radio frequency remote device.
  • the dielectric resonator is a basic microwave component.
  • the dielectric resonator can be used to form microwave circuits such as filters, oscillators and antennas. It is widely used in mobile communication, satellite communication, military radar, global positioning system, Bluetooth technology, wireless LAN, etc. In modern communication, it is the key infrastructure of modern communication technology.
  • dielectric resonators used in microwave circuits must meet the following dielectric performance requirements: (1) have a relatively high dielectric constant ⁇ r at microwave frequencies, and generally require ⁇ r >20 In order to miniaturize and integrate the microwave device; (2) have a very low dielectric loss at the microwave resonant frequency, that is, a high quality factor (Q ⁇ f), to ensure excellent frequency selection characteristics and reduce device Insertion loss at high frequencies; (3) Temperature coefficient of resonance frequency ( ⁇ f ) close to zero to ensure high stability of the resonant frequency of the device in a temperature changing environment.
  • the BaTi 4 O 9 -based dielectric ceramic material resonator is mainly a dry press molding method.
  • the cited documents are as follows:
  • the dielectric constant ⁇ r of the BaTi 4 O 9 based dielectric ceramic material prepared by the dry pressing method is low, which is not conducive to miniaturization and integration of the microwave device; the quality factor is low, and the dielectric loss is high, and the resonance frequency temperature is high.
  • the higher coefficient ( ⁇ f ) does not guarantee the high stability of the resonant frequency of the device in temperature-varying environments. Therefore, the BaTi 4 O 9 based dielectric ceramic material resonator prepared by the dry pressing method has poor dielectric properties.
  • the molding process in the prior art is mainly dry press molding.
  • the principle of dry pressing is as follows: the dielectric ceramic powder is granulated by a binder, pressed and formed by a die, and then sintered.
  • the preparation of the dielectric resonator by this process has the following disadvantages: (1) During the press forming process, internal and external friction between the particles and between the particles and the mold wall causes pressure loss to cause uneven force in various portions of the green compact, so green body and sintering The sample density distribution is not uniform.
  • the degree of unevenness is related to the selected pressing method.
  • the common pressing methods are unidirectional pressing and bidirectional pressing.
  • the density distribution is shown in Figures 1a and 1b.
  • the uniformity of density affects the dielectric properties of the dielectric resonator. It also affects the performance of the filter; (2) limited by the pressing method, the dielectric resonator is mostly columnar (or similar), not all shape sizes can be prepared by dry pressing, such as complex shaped resonators. Demolding is difficult to achieve, and resonators with large aspect ratios cannot be produced by pressing, because low density regions are likely to occur due to uneven density, which causes distortion of the resonator during sintering, resulting in poor precision in order to obtain a desired shape. Or the size also needs to be machined.
  • the density of the resonators of the prepared microwave dielectric ceramic material is not uniform, resulting in poor dielectric properties of the microwave dielectric ceramic resonator;
  • the dry pressing method cannot prepare a resonator with a complicated shape.
  • the embodiment of the invention provides a BaTi 4 O 9 -based microwave dielectric ceramic material resonator and a preparation method thereof, so as to solve the density unevenness of the microwave dielectric ceramic prepared by the dry pressing method in the prior art, resulting in the use of the microwave dielectric ceramic The technical problem of making the dielectric performance of the resonator poor.
  • an aspect of the present invention provides a method for preparing a BaTi 4 O 9 -based microwave dielectric ceramic material resonator.
  • the preparation method includes:
  • the embryo body is subjected to non-polar solvent extraction degreasing and thermal degreasing;
  • the thermally degreased green body is sintered to obtain the BaTi 4 O 9 -based microwave dielectric ceramic.
  • the BaTi 4 O 9 -based ceramic powder in the mixture has a weight percentage of 76 to 85%, and the organic binder has a weight percentage of 15 to 24%.
  • the BaTi 4 O 9 -based ceramic powder has a formula of BaTi 4 O 9 +ax+by, wherein x and y include at least MoO 3 , MnO 2 , WO 3 , SnO 2 , B One or more of 2 O 3 , ZnO, Nb 2 O 5 , ZrO 2 , CaCO 3 , SrCO 3 , and PbCO 3 , 0.005 mol ⁇ a, b ⁇ 0.20 mol.
  • the organic binder comprises a binder, a surfactant, a low melting organic compound, and a plasticizer.
  • the step of injection molding the mixture comprises:
  • the viscous melt is injected into the mold, and after being cooled in the mold, the mold is released to obtain a green body;
  • the injection temperature is 170 ° C ⁇ 200 ° C.
  • the non-polar solvent extraction degreasing process of the embryo body specifically comprises:
  • the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder;
  • the non-polar solvent is extracted and the degreased body is dried.
  • the degreased and dried embryo body is subjected to thermal degreasing by extracting the non-polar solvent to remove the remaining organic binder in the embryo body.
  • the thermal degreasing process is: the embryo body The temperature was raised to 550 ° C at a heating rate of 0.5 to 5 ° C / min, and then kept for 2 to 3 hours.
  • the sintering temperature is 1200 to 1400 ° C, and the temperature is maintained for 2 to 6 hours after heating.
  • the temperature of the non-polar solvent in the non-polar solvent extraction degreasing process is 30-50 ° C
  • the degreasing time is 12-36 hours
  • the drying temperature after degreasing is 50- 70 ° C
  • drying time is 4 ⁇ 12h.
  • the weight percentage of each component in the organic binder is: 50 to 90% of the binder; 1 to 5% of the surfactant; 2 to 11% of the low melting point organic substance Plasticizer 1 ⁇ 11%.
  • the binder comprises at least paraffin, ethylene-vinyl acetate copolymer, polypropylene, random polypropylene, polystyrene, polymethacrylate, ethylene ethyl acrylate copolymer.
  • the surfactant at least one or more of stearic acid, octanoic acid, and microcrystalline paraffin;
  • the plasticizer comprising at least dibutyl phthalate, phthalic acid One or more of diethyl ester and dioctyl phthalate.
  • the second aspect of the present invention provides a BaTi 4 O 9 -based microwave dielectric ceramic material, wherein the microwave dielectric ceramic material comprises BaTi 4 O 9 -based ceramic powder in a weight percentage of 76-85%. And an organic binder in an amount of 15 to 24% by weight.
  • the BaTi 4 O 9 -based ceramic powder has a formula of BaTi 4 O 9 +ax+by, wherein x and y include at least MoO 3 , MnO 2 , WO 3 , SnO 2 , B One or more of 2 O 3 , ZnO, Nb 2 O 5 , ZrO 2 , CaCO 3 , SrCO 3 , and PbCO 3 , 0.005 mol ⁇ a, b ⁇ 0.20 mol.
  • the organic binder comprises a binder, a surfactant, a low melting organic compound, and a plasticizer.
  • the weight percentage of each component in the organic binder is: 50 to 90% of the binder; 1 to 5% of the surfactant; 2 to 11% of the low melting point organic substance Plasticizer 1 ⁇ 11%.
  • the binder comprises at least paraffin, ethylene-vinyl acetate copolymer, polypropylene, random polypropylene, polystyrene, polymethacrylate, ethylene ethyl acrylate copolymer.
  • the surfactant at least one or more of stearic acid, octanoic acid, and microcrystalline paraffin;
  • the plasticizer comprising at least dibutyl phthalate, phthalic acid One or more of diethyl ester and dioctyl phthalate.
  • a third aspect of the invention provides a resonator which is produced by the production method according to any of the above embodiments.
  • a fourth aspect of the present invention provides a cavity filter including a cavity, a cover plate, and a resonator in the third aspect, the cover plate covering the cavity to form a resonant cavity, The resonator is mounted within the cavity.
  • a fifth aspect of the present invention provides a radio remote device, comprising: a radio frequency transceiver module, a power amplifier module, and a cavity filter according to the fourth aspect, the radio frequency transceiver module and the The power amplifier module is connected, and the power amplifier module is connected to the cavity filter.
  • a sixth aspect of the invention provides a formulation of a BaTi 4 O 9 -based microwave dielectric ceramic material, the formulation comprising the following components by weight: BaTi 4 O 9 -based ceramic powder 76-85%; organic binder 15 ⁇ 24%.
  • the BaTi 4 O 9 -based microwave dielectric ceramic material provided by the invention and the preparation method of the resonator thereof can obtain the microwave dielectric ceramic with uniform density and size distribution by injection molding BaTi 4 O 9 -based dielectric ceramics.
  • the material, the resonator made of the microwave dielectric ceramic material not only has high dimensional accuracy, but also has a high dielectric constant ⁇ r, a high quality factor Q ⁇ f value and a low resonance frequency temperature coefficient ( ⁇ f).
  • the prepared cavity filter has better dielectric properties and stability.
  • Figure 1a is a density distribution diagram of a unidirectionally pressed sample prepared by dry pressing
  • Figure 1b is a density distribution diagram of a biaxially compressed sample prepared by dry pressing
  • FIG. 2 is a schematic flow chart of a preferred embodiment of a method for preparing a BaTi 4 O 9 -based microwave dielectric ceramic material resonator of the present invention
  • Figure 3a is an electron microscope scan of the BaTi 4 O 9 -based dielectric resonator port after dry pressing
  • Figure 3b is an electron microscope scan of the mouthpiece of the BaTi 4 O 9 -based dielectric resonator prepared by injection molding;
  • FIG. 4 is a block diagram showing the structural composition of a preferred embodiment of the radio remote device of the present invention.
  • FIG. 2 is a schematic flow chart of a preferred embodiment of a method for preparing a BaTi 4 O 9 -based microwave dielectric ceramic material according to the present invention; the preparation method includes but is not limited to the following steps:
  • step S100 a mixture is prepared.
  • the mixture includes at least BaTi 4 O 9 -based ceramic powder and an organic binder.
  • the BaTi 4 O 9 -based ceramic powder and the organic binder are mixed on a mixer until uniform mixing, preferably for a mixing time of 4 to 8 hours, to obtain an injection molding mixture, and different components in the mixture.
  • the content of the powder is related to the particle size, morphology and density of the powder, so different powders have different mixture formulations; for the BaTi 4 O 9 -based dielectric ceramics in the present invention, BaTi 4 O 9 -based ceramic powder is used in the injection molding mixture.
  • the weight percentage of the body is preferably from 76 to 85%, and the weight percent of the organic binder is preferably from 15 to 24%.
  • the BaTi 4 O 9 -based microwave dielectric ceramic prepared by using the BaTi 4 O 9 -based ceramic powder in a weight percentage content has excellent dielectric properties and quality stability.
  • the formula of BaTi 4 O 9 -based ceramic powder is BaTi 4 O 9 +ax+by, and x and y include at least MoO 3 , MnO 2 , WO 3 , SnO 2 , B 2 O 3 , ZnO, Nb 2 O 5 , one or more of ZrO 2 , CaCO 3 , SrCO 3 , PbCO 3 , and the range of a and b in the chemical formula is preferably 0.005 mol ⁇ a, b ⁇ 0.20 mol.
  • the microwave dielectric ceramic material obtained by injection molding can have a high dielectric constant ⁇ r, a high quality factor Q ⁇ f value, and a low value.
  • the formulation of the BaTi 4 O 9 group is determined mainly by the solid phase method, and is prepared in proportion, generally BaCO 3 and TiO 2 are obtained in a ratio of 1:4, followed by ball milling and calcination (calcination).
  • the temperature is from 1000 ° C to 1200 ° C) and milling; wherein the ball-milling medium for the calcined (ie, after the reaction) powder is placed in a ball mill for ball milling is a zirconia ball, the ball milling time is 4 to 12 h, and the ball milling process is added 2 % to 5% of the PVA (polyvinyl alcohol) binder is granulated on a spray tower, and then the granulated powder is placed in a mold for press molding (pressure is 100 MPa to 200 MPa) to test the properties of the material itself. Finally, it is ground and pulverized by a grinder to obtain a desired BaTi 4 O 9 -based microwave dielectric material.
  • the ball-milling medium for the calcined (ie, after the reaction) powder is placed in a ball mill for ball milling is a zirconia ball
  • the ball milling time is 4 to 12 h
  • the ball milling process is added 2 % to 5% of
  • the organic binder may include a binder, a surfactant, a low melting point organic substance, a plasticizer, and the like.
  • the weight percentage of each component in the organic binder is preferably: 50 to 90% of the binder; 1 to 5% of the surfactant; 2 to 11% of the low melting organic substance; and 1 to 11% of the plasticizer.
  • the binder comprises at least one or more of paraffin, ethylene-vinyl acetate copolymer, polypropylene, random polypropylene, polystyrene, polymethacrylate, ethylene ethyl acrylate copolymer
  • the surfactant includes at least one or more of stearic acid, octanoic acid, and microcrystalline paraffin;
  • the plasticizer includes at least dibutyl phthalate, diethyl phthalate, dioctyl phthalate One or more of the fats.
  • step S200 the mixture is injection molded to obtain a green body.
  • the step S200 further comprises: heating the mixture into a viscous melt in an injection molding machine; then injecting the viscous melt into the mold, cooling in the mold, and demolding to obtain a green body.
  • the injection temperature is preferably from 170 ° C to 200 ° C, and the viscous melt is injected into the mold and released from the mold in 2 to 4 minutes to obtain a green body.
  • the injection temperature and the cooling time in this step can make the density and size distribution of the obtained microwave dielectric ceramic material more uniform, and the performance is more stable.
  • step S300 the embryo body is subjected to non-polar solvent extraction degreasing and thermal degreasing.
  • the non-polar solvent extraction degreasing process is as follows: the injection-molded body is placed in a non-polar solvent such as gasoline, carbon disulfide, xylene, diethyl ether, really, chloroform, carbon tetrachloride or naphtha to dissolve and remove Part of the organic binder, the temperature of the non-polar solvent is preferably controlled between 30 and 50 ° C, and the degreasing time is 12 to 36 hours.
  • the non-polar solvent extract degreased body is sufficiently dried in an oven, and the drying temperature is preferably 50 to 70 ° C for 4 to 12 hours.
  • the non-polar solvent extraction degreasing process in this step is very necessary because if the direct thermal desorption occurs, the sample is decomposed during the degreasing process due to the excessively high organic binder component in the embryo body.
  • the thermal degreasing process is as follows: the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the process is to raise the embryo body to a temperature of 550 ° C at a temperature increase rate of 0.5 to 5 ° C / min, followed by incubation for 2 to 3 hours.
  • the heating rate and holding time parameters in this step can ensure that the obtained microwave dielectric ceramic material has a dense structure without cracks and further improves the stability of performance under the premise of satisfying the production efficiency.
  • step S400 the thermally degreased green body is sintered to obtain a BaTi 4 O 9 -based microwave dielectric ceramic.
  • the sintering temperature is preferably between 1200 and 1400 ° C and the temperature is maintained for 2 to 6 hours.
  • the present invention is prepared by injection molding method BaTi 4 O 9-yl microwave dielectric ceramic material by BaTi 4 O 9-yl dielectric ceramic injection molding, it is possible to obtain uniform density and size distribution of microwave dielectric ceramic material, the use of microwave dielectric ceramic material
  • the resonator not only has high dimensional accuracy, but also has a high dielectric constant ⁇ r, a high quality factor Q ⁇ f value, and a low temperature coefficient of resonance frequency ( ⁇ f).
  • the main material formulation of the present embodiment adopts a chemical formula: BaTi 4 O 9 +0.5 mol% MoO 3 as a chemical composition, and compares the performance of the dielectric resonator prepared by the dry pressing method and the injection molding method, respectively, and the dielectric properties of the main material itself in this embodiment.
  • the relative dielectric constant ⁇ r was 37
  • the quality factor (Q ⁇ f) value was 45000 GHz
  • the resonance frequency temperature coefficient ⁇ f was +5 ppm / ° C.
  • the BaTi 4 O 9 based dielectric resonator prepared by the injection molding process is realized by the following process steps:
  • (1) Mixed ceramic powder and organic binder BaTi 4 O 9 -based ceramic powder and organic binder are uniformly mixed to obtain an injection molding mixture.
  • the content of different components in the mixture is the same as the particle size and morphology of the powder. Density-related, so different powders have different mixture formulations; for BaTi 4 O 9 -based dielectric ceramics, the BaTi 4 O 9 -based ceramic powder has a weight percentage of 80%, organic bonding in the injection molding mixture The weight percentage of the agent is 20%; wherein the organic binder is composed of a binder, a surfactant, a low melting point organic substance and a plasticizer, and the weight percentage of each component is: binder 80%; surface Active agent 5%; low melting organic matter 10%; plasticizer 5%.
  • injection molding The injection molding mixture was injection molded on an injection molding machine to obtain a green body, and the injection temperature was 180 ° C. After injection into the mold, the molded body was released in 2 minutes.
  • Non-polar solvent extraction degreasing the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder.
  • the temperature of the non-polar solvent is 30 ° C, and the degreasing time is 24 hours.
  • the non-polar solvent extraction degreased body is dried in an oven.
  • the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the temperature is raised to 550 ° C at a heating rate of 0.5 ° C / min. Keep warm for 2 hours.
  • 60 dielectric resonators were prepared by dry pressing and injection molding respectively.
  • the sample is shown in Fig. 3. It can be seen from Fig. 3 that the injection molding is more uniform in grain size and the particle size is better than that prepared by dry pressing. Small, this is positively correlated with the final performance and stability of the BaTi 4 O 9 based dielectric resonator product. At the same time, the performance of the sample was tested. The performance is shown in Table 1:
  • Table 1 Comparison of performance parameters of dielectric resonators prepared by injection molding and dry compression molding
  • the main material formulation of the present embodiment adopts a chemical formula: BaTi 4 O 9 + 5 mol% MoO 3 as a chemical composition, and compares the performance of the dielectric resonator prepared by the dry pressing method and the injection molding method, respectively, and the dielectric properties of the main material itself in this embodiment are relatively
  • the dielectric constant ⁇ r was 36.4
  • the quality factor (Q ⁇ f) value was 53050 GHz
  • the resonance frequency temperature coefficient ⁇ f was +2 ppm / ° C.
  • the BaTi 4 O 9 based dielectric resonator prepared by the injection molding process is realized by the following process steps:
  • the BaTi 4 O 9 -based ceramic powder has a weight percentage of 76%, and the weight percentage of the organic binder is 24%; the weight percentage of each component in the organic binder is 80% of binder; 5% of surfactant; 10% of low melting organic matter; 5% of plasticizer.
  • injection molding The injection molding mixture was injection molded on an injection molding machine to obtain a green body, and the injection temperature was 180 ° C. After injection into the mold, the molded body was released in 2 minutes.
  • Non-polar solvent extraction degreasing the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder.
  • the temperature of the non-polar solvent is 30 ° C, and the degreasing time is 24 hours.
  • the non-polar solvent extraction degreased body is dried in an oven.
  • the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the temperature is raised to 550 ° C at a heating rate of 0.5 ° C / min. Keep warm for 2 hours.
  • Table 2 Comparison of performance parameters of dielectric resonators prepared by injection molding and dry compression molding
  • the main material formulation of the present embodiment adopts a chemical formula: BaTi 4 O 9 + 10 mol% MoO 3 as a chemical composition, and compares the performance of the dielectric resonator prepared by the dry pressing method and the injection molding method, respectively, and the dielectric properties of the main material itself in this embodiment are relatively
  • the dielectric constant ⁇ r was 35
  • the quality factor (Q ⁇ f) value was 69,200 GHz
  • the resonance frequency temperature coefficient ⁇ f was -3 ppm / ° C.
  • the BaTi 4 O 9 based dielectric resonator prepared by the injection molding process is realized by the following process steps:
  • the BaTi 4 O 9 -based ceramic powder has a weight percentage of 75%, and the weight percentage of the organic binder is 25%; the weight percentage of each component in the organic binder is 80% of binder; 5% of surfactant; 10% of low melting organic matter; 5% of plasticizer.
  • injection molding The injection molding mixture was injection molded on an injection molding machine to obtain a green body, and the injection temperature was 180 ° C. After injection into the mold, the molded body was released in 2 minutes.
  • Non-polar solvent extraction degreasing the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder.
  • the temperature of the non-polar solvent is 30 ° C, and the degreasing time is 24 hours.
  • the non-polar solvent extraction degreased body is dried in an oven.
  • the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the temperature is raised to 550 ° C at a heating rate of 0.5 ° C / min. Keep warm for 2 hours.
  • the main material formulation of the present embodiment adopts a chemical formula: BaTi 4 O 9 + 10 mol% MoO 3 + 0.5 mol% B 2 O 3 as a chemical composition, and compares the properties of the dielectric resonator prepared by the dry pressing method and the injection molding method, respectively.
  • the dielectric material itself has a dielectric property relative dielectric constant ⁇ r of 34, a quality factor (Q ⁇ f) value of 61000 GHz, and a resonance frequency temperature coefficient ⁇ f of -1.5 ppm/°C.
  • the dry pressing method mainly obtains a dielectric resonator by granulation, press molding, and sintering, and the process is simple.
  • the BaTi 4 O 9 based dielectric resonator prepared by the injection molding process is realized by the following process steps:
  • the BaTi 4 O 9 -based ceramic powder has a weight percentage of 75%, and the weight percentage of the organic binder is 25%; the weight percentage of each component in the organic binder is 80% of binder; 5% of surfactant; 10% of low melting organic matter; 5% of plasticizer.
  • injection molding The injection molding mixture was injection molded on an injection molding machine to obtain a green body, and the injection temperature was 180 ° C. After injection into the mold, the molded body was released in 2 minutes.
  • Non-polar solvent extraction degreasing the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder.
  • the temperature of the non-polar solvent is 30 ° C, and the degreasing time is 24 hours.
  • the non-polar solvent extraction degreased body is dried in an oven.
  • the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the temperature is raised to 550 ° C at a heating rate of 0.5 ° C / min. Keep warm for 2 hours.
  • the main material formulation of the present embodiment adopts a chemical formula: 0.62 mol BaTi 4 O 9 + 0.35 mol ZnO + 0.03 mol Nb 2 O 5 as a chemical composition, and compares the performance of the dielectric resonator prepared by the dry pressing method and the injection molding method, respectively, the main material of this embodiment itself
  • the dielectric properties have a relative dielectric constant ⁇ r of 36.4, a quality factor (Q ⁇ f) of 45,500 GHz, and a resonant frequency temperature coefficient ⁇ f of +0 ppm/°C.
  • the BaTi 4 O 9 based dielectric resonator prepared by the injection molding process is realized by the following process steps:
  • the BaTi 4 O 9 -based ceramic powder has a weight percentage of 85%, and the weight percentage of the organic binder is 15%; the weight percentage of each component in the organic binder is: binder 80%; surfactant 3%; low melting organic matter 11%; plasticizer 6%.
  • injection molding The injection molding mixture was injection molded on an injection molding machine to obtain a green body, and the injection temperature was 180 ° C. After injection into the mold, the molded body was released in 2 minutes.
  • Non-polar solvent extraction degreasing the injection-molded body is placed in a non-polar solvent to dissolve and remove part of the organic binder.
  • the temperature of the non-polar solvent is 30 ° C, and the degreasing time is 24 hours.
  • the non-polar solvent extraction degreased body is dried in an oven.
  • the dried body is placed in an electric heating furnace for thermal degreasing to remove the remaining organic binder.
  • the temperature is raised to 550 ° C at a heating rate of 0.5 ° C / min. Keep warm for 2 hours.
  • the method for preparing a BaTi 4 O 9 -based microwave dielectric ceramic material resonator provided by the invention can obtain a resonator having uniform density and size distribution and high dimensional accuracy after sintering by injection molding a BaTi 4 O 9 -based dielectric ceramic.
  • the material cost is low and the preparation process is simple. It also has a high quality factor Q x f value and performance stability compared to dry pressed resonators.
  • an embodiment of the present invention further provides a resonator and a cavity filter which are prepared by the preparation method described in the above embodiments.
  • the dielectric resonator of the BaTi 4 O 9 -based material is prepared by the dry pressing method and the injection molding method, respectively, and the dielectric resonator prepared by the dry pressing method has a Q value of 3300 to 3800 and a frequency of 1.8.
  • G and the dielectric resonator prepared by injection molding can have a Q value of 3800 to 4000 and a frequency of 1.8G.
  • the dielectric resonator of the BaTi 4 O 9 -based material prepared by injection molding in the present invention has a higher Q value and more stable performance.
  • the cavity filter includes the resonator in the above embodiment, and the resonator has a high quality factor Q ⁇ f value and a low resonance frequency temperature coefficient ( ⁇ f), so that the cavity filter is prepared. Has better dielectric properties and stability.
  • the technical features of the structure and parameters of other parts of the cavity filter are within the understanding of those skilled in the art, and are not described herein again.
  • FIG. 4 is a structural block diagram of a preferred embodiment of the radio remote device of the present invention.
  • the radio remote device includes but is not limited to the following structural units: a radio frequency transceiver module 510, a power amplifier module 520, and a cavity filter. 530.
  • the radio frequency transceiver module 510 is connected to the power amplifier module 520, and the power amplifier module 520 is further connected to the cavity filter 530.
  • the radio remote device When the radio remote device operates in the downlink time slot, two channels from the radio transceiver module 510 The transmitting signal enters the cavity filter 530 through the power amplifier module 520, and the cavity filter 530 filters the transmitted signal, and then the power is combined and transmitted to the antenna port; when the radio remote device operates in the uplink time slot, it receives from the antenna port.
  • the signal is filtered by the cavity filter 530 and then enters the power amplifier module 520. After being amplified by the power amplifier module 520, the signal is output to the corresponding receiving channel of the RF transceiver module 510.
  • the radio remote device may further include a power module 540, and the power module 540 is configured to supply power to each module of the radio remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明提供了一种BaTi4O9基微波介质陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备,其中,介质陶瓷材料的制备方法包括步骤:制备混合料,混合料中至少包括BaTi4O9基陶瓷粉体和有机粘结剂;将混合料注射成型,得到坯体;将胚体先后进行非极性溶剂萃取脱脂和热脱脂;将热脱脂后的坯体进行烧结,以得到BaTi4O9基微波介质陶瓷。该制备方法,通过将BaTi4O9基介质陶瓷注射成型,可以得到具有密度和尺寸分布均匀、烧结后尺寸精度高的介质陶瓷材料,且材料成本低,制备工艺简单。与干压制备的谐振器相比,具有高的品质因数Q×f值和性能稳定性。

Description

陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 【技术领域】
本发明涉及介质谐振器的技术领域,具体是涉及一种微波介质陶瓷材料及其制备方法、谐振器、腔体滤波器及射频拉远设备。
【背景技术】
介质谐振器是一个最基本的微波元件,利用介质谐振器可以构成滤波器、振荡器和天线等微波电路,广泛应用于移动通讯、卫星通信、军用雷达、全球定位系统、蓝牙技术、无线局域网等现代通信中,是现代通信技术的关键基础器件。应用于微波电路的介质谐振器,除了必备的机械强度外,还需满足如下介电性能要求:(1)在微波频率下具有相对较高的介电常数εr,一般要求εr>20,以便于微波器件小型化、集成化;(2)在微波谐振频率下具有极低的介电损耗,即很高的品质因数(Q×f),以保证优良的选频特性和降低器件在高频下的插入损耗;(3)接近零的谐振频率温度系数(τf),以保证器件在温度变化环境中谐振频率的高度稳定性。
Mhaisalkar等人[1]报道了BaTi4O9材料的介电性能:εr=37,Q×f=22 700GHz,τf=+15ppm/℃。Mhaisalkar等人[1]也研究了掺杂物如Mn、Sn、Zr、Ca、Sr、Pb对BaTi4O9介电性能的影响。研究结果表明掺杂Mn、Sn、Pb会严重地降低Q×f值,而掺杂Zr、Ca、Sr则能增大Q×f值。由于BaTi4O9陶瓷具有高的正谐振频率温度系数τf(+15ppm/℃)所以限制了其实际应用。
根据介质谐振器的性能要求,对BaTi4O9添加不同的化合物。目前制备BaTi4O9基介质陶瓷材料谐振器主要是干压成型法。引用的文献如下:
[1]S.G.Mhaisalker,D.W.Readey,S.A.Akbar,Microwave dielectric properties of doped BaTi4O9,J.Am.Ceram.Soc.,74 1894-1898(1991).
目前利用干压法制备的BaTi4O9基介质陶瓷材料谐振器介电常数εr较低,不利于微波器件小型化、集成化;品质因数较低,从而介电损耗较高,谐振频率温度系数(τf)较高,无法保证保证器件在温度变化环境中谐振频率的高度稳定性。因此,利用干压法制备的BaTi4O9基介质陶瓷材料谐振器介电性能较差。
虽然注射成型的研究和应用在不断的发展,从聚合物到金属再到陶瓷(主要 应用于结构陶瓷,氧化铝、氧化锆等)。但对于介质陶瓷谐振器的注射成型研究和生产几乎没有。现有技术中的成型工艺主要是干压成型。干压成型的原理是:对介质陶瓷粉末加粘结剂造粒、通过模具进行压制成型后进行烧结。此工艺制备介质谐振器存在如下缺点:(1)压制成型过程中,颗粒间以及颗粒与模壁间存在的内、外摩擦引起压力损失使压坯各部位受力不均,因此生坯、烧结样品密度分布不均匀。不均匀的程度与选用的压制方式有关,常用的压制方式有单向压制和双向压制,其密度分布情况如图1a和1b所示,密度的均匀性会影响介质谐振器的介电性能,进而也会影响滤波器的工作性能;(2)受限于压制方式,介质谐振器大部分是柱状(或类似形状),并不是所有形状尺寸能用干压法进行制备,比如形状复杂的谐振器脱模难以实现,长径比大的谐振器也无法通过压制制得,因为容易因密度不均匀而出现低密度区,进而导致烧结过程中谐振器变形,制作精度差,为了得到想要的形状或尺寸还需要进行机加工获得。
综上所述,现有技术中通常采用的干压法制备的微波介质陶瓷,存在所制备微波介质陶瓷材料谐振器的密度不均匀,导致微波介质陶瓷材料谐振器介电性能较差;同时,干压法无法制备形状复杂的谐振器。
【发明内容】
本发明实施例提供一种BaTi4O9基微波介质陶瓷材料谐振器及其制备方法,以解决现有技术中采用干压成型法制得的微波介质陶瓷的密度不均,导致使用该微波介质陶瓷做成谐振器的介电性能较差的技术问题。
为解决上述问题,本发明一方面提供了一种BaTi4O9基微波介质陶瓷材料谐振器的制备方法所述制备方法包括:
制备混合料,所述混合料中至少包括BaTi4O9基陶瓷粉体和有机粘结剂;
将所述混合料注射成型,得到坯体;
将所述胚体先后进行非极性溶剂萃取脱脂和热脱脂;
将热脱脂后的坯体进行烧结,以得到所述BaTi4O9基微波介质陶瓷。
根据本发明一优选实施例,所述混合料中的BaTi4O9基陶瓷粉体的重量百分含量为76~85%,所述有机粘结剂的重量百分含量为15~24%。
根据本发明一优选实施例,所述BaTi4O9基陶瓷粉体的配方化学式为BaTi4O9+ax+by,其中x、y至少包括MoO3、MnO2、WO3、SnO2、B2O3、ZnO、 Nb2O5、ZrO2、CaCO3、SrCO3、PbCO3中的一种或多种,0.005mol≤a,b≤0.20mol。
根据本发明一优选实施例,所述有机粘结剂包括粘结剂、表面活性剂、低熔点有机物以及增塑剂。
根据本发明一优选实施例,所述将混合料注射成型的步骤包括:
将所述混合料在注射成型机中加热成粘稠性熔体;
将所述粘稠性熔体注入模具内,在模具内冷却后脱模得到坯体;
其中,注射温度为170℃~200℃。
根据本发明一优选实施例,所述胚体的非极性溶剂萃取脱脂过程具体包括:
将注射成型得到的坯体放入非极性溶剂中,以溶解脱除部分有机粘结剂;
将非极性溶剂萃取脱脂后的坯体进行干燥。
根据本发明一优选实施例,将经由非极性溶剂萃取脱脂并干燥的胚体继续进行热脱脂,以脱除胚体中剩余的有机粘结剂,所述热脱脂的过程为:将胚体以0.5~5℃/min的升温速率升温至550℃,然后保温2~3小时。
根据本发明一优选实施例,所述烧结的温度为1200~1400℃,加热后保温2~6小时。
根据本发明一优选实施例,所述胚体非极性溶剂萃取脱脂过程中的非极性溶剂的温度为30~50℃,脱脂时间为12~36小时;脱脂后进行干燥的温度为50~70℃,干燥时间为4~12h。
根据本发明一优选实施例,所述有机粘结剂中各组分的重量百分含量为:粘结剂50~90%;表面活性剂1~5%;低熔点有机物2~11%以及增塑剂1~11%。
根据本发明一优选实施例,所述粘结剂至少包括石蜡、乙烯-乙酸乙烯脂共聚物、聚丙烯、无规聚丙烯、聚苯乙烯、聚甲基丙烯酸酯、乙烯丙烯酸乙酯共聚物中的一种或多种;所述表面活性剂至少包括硬脂酸、辛酸、微晶石蜡中的一种或多种;所述增塑剂至少包括邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二辛脂中的一种或多种。
为解决上述技术问题,本发明第二方面提供一种BaTi4O9基微波介质陶瓷材料,所述微波介质陶瓷材料中包括重量百分含量为76~85%的BaTi4O9基陶瓷粉体以及重量百分含量为15~24%的有机粘结剂。
根据本发明一优选实施例,所述BaTi4O9基陶瓷粉体的配方化学式为BaTi4O9+ax+by,其中x、y至少包括MoO3、MnO2、WO3、SnO2、B2O3、ZnO、Nb2O5、ZrO2、CaCO3、SrCO3、PbCO3中的一种或多种,0.005mol≤a,b≤0.20mol。
根据本发明一优选实施例,所述有机粘结剂包括粘结剂、表面活性剂、低熔点有机物以及增塑剂。
根据本发明一优选实施例,所述有机粘结剂中各组分的重量百分含量为:粘结剂50~90%;表面活性剂1~5%;低熔点有机物2~11%以及增塑剂1~11%。
根据本发明一优选实施例,所述粘结剂至少包括石蜡、乙烯-乙酸乙烯脂共聚物、聚丙烯、无规聚丙烯、聚苯乙烯、聚甲基丙烯酸酯、乙烯丙烯酸乙酯共聚物中的一种或多种;所述表面活性剂至少包括硬脂酸、辛酸、微晶石蜡中的一种或多种;所述增塑剂至少包括邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二辛脂中的一种或多种。
本发明第三方面提供一种谐振器,所述谐振器由上述实施例中的任一项所述的制备方法制得。
本发明第四方面提供一种腔体滤波器,所述腔体滤波器包括腔体、盖板以及第三方面中的谐振器,所述盖板封盖所述腔体以形成谐振腔,所述谐振器安装在所述腔体内。
本发明第五方面提供一种射频拉远设备,所述射频拉远设备包括:射频收发信机模块、功放模块以及第四方面所述的腔体滤波器,所述射频收发信机模块与所述功放模块连接,所述功放模块与所述腔体滤波器连接。
本发明第六方面提供一种BaTi4O9基微波介质陶瓷材料的配方,该配方包括以下重量百分含量的组分:BaTi4O9基陶瓷粉体76~85%;有机粘结剂15~24%。
相对于现有技术,本发明提供的BaTi4O9基微波介质陶瓷材料及其谐振器的制备方法,通过将BaTi4O9基介质陶瓷注射成型,可以得到密度和尺寸分布均匀的微波介质陶瓷材料,使用该微波介质陶瓷材料制成的谐振器不但尺寸精度高,还具有较高的介电常数εr、较高的品质因数Q×f值和较低的谐振频率温度系数(τf)等优点,进而使制备得到的腔体滤波器具有较佳的介电性能和稳定性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是干压法中的单向压制制备样品的密度分布图;
图1b是干压法中的双向压制制备样品的密度分布图;
图2是本发明BaTi4O9基微波介质陶瓷材料谐振器的制备方法一优选实施例的流程示意图;
图3a是干压成型制备的BaTi4O9基介质谐振器端口腐蚀后的电子显微镜扫描图;
图3b是注射成型制备的BaTi4O9基介质谐振器端件口腐蚀后的电子显微镜扫描图;以及
图4是本发明射频拉远设备一优选实施例的结构组成框图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图2,图2是本发明BaTi4O9基微波介质陶瓷材料的制备方法一优选实施例的流程示意图;该制备方法包括但不限于以下步骤:
步骤S100,制备混合料。混合料中至少包括BaTi4O9基陶瓷粉体和有机粘结剂。
在本实施例中,将BaTi4O9基陶瓷粉体和有机粘结剂在混炼机上进行混合,直至混合均匀,优选混合时间为4~8h,得到注射成型混合料,混料中不同成分的含量跟粉末的粒度、形貌、密度有关,所以不同的粉末其混合物配方不同;针对于本发明中的BaTi4O9基介质陶瓷,在注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量优选为76~85%,有机粘结剂的重量百分含量优选为15~24%。采用该重量百分含量BaTi4O9基陶瓷粉体的配置方式制备的BaTi4O9基微波介质陶瓷,具有优良的介电性能和品质稳定性。
其中,BaTi4O9基陶瓷粉体的配方化学式为BaTi4O9+ax+by,x、y至少包括 MoO3、MnO2、WO3、SnO2、B2O3、ZnO、Nb2O5、ZrO2、CaCO3、SrCO3、PbCO3中的一种或多种,而化学式中的a、b的取值范围优选为:0.005mol≤a,b≤0.20mol。利用本发明中化学式的配比系数的BaTi4O9基陶瓷粉体,可以使注射成型得到的微波介质陶瓷材料具有较高的介电常数εr、较高的品质因数Q×f值以及较低的谐振频率温度系数(τf)。
这其中,BaTi4O9基的配方确定主要通过固相法制备获得,按比例配料,一般为BaCO3和TiO2按照1∶4的比例进行配比反应得到,之后再经球磨、煅烧(煅烧温度为1000℃~1200℃)以及碾磨;其中,对煅烧好的(即反应后)粉末放入球磨机进行球磨时的球磨介质为氧化锆球,球磨时间为4~12h,球磨过程中加入2%~5%的PVA(聚乙烯醇)粘结剂,经在喷雾塔上进行造粒,然后将造粒粉末放入模具进行压制成型后(压力为100MPa~200MPa)进行煅烧测试材料本身性能,最终经过研磨机研磨粉碎后得到所需要的BaTi4O9基微波介质材料。
该有机粘结剂可以包括粘结剂、表面活性剂、低熔点有机物以及增塑剂等。其中,有机粘结剂中各组分的重量百分含量优选为:粘结剂50~90%;表面活性剂1~5%;低熔点有机物2~11%以及增塑剂1~11%。
进一步优选地,粘结剂至少包括石蜡、乙烯-乙酸乙烯脂共聚物、聚丙烯、无规聚丙烯、聚苯乙烯、聚甲基丙烯酸酯、乙烯丙烯酸乙酯共聚物中的一种或多种;表面活性剂至少包括硬脂酸、辛酸、微晶石蜡中的一种或多种;增塑剂至少包括邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二辛脂中的一种或多种。从以上提供的多种粘结剂的种类进行合理选取,在满足材料功能的同时,还可以节省一定成本。
步骤S200,将混合料注射成型,得到坯体。
步骤S200中进一步包括:将混合料在注射成型机中加热成粘稠性熔体;然后将该粘稠性熔体注入模具内,在模具内冷却后脱模得到坯体。其中,注射温度优选为170℃~200℃,粘稠性熔体注入模具后在2~4分钟内脱模得到成型坯体。该步骤中的注射温度以及冷却时间,可以使得到的微波介质陶瓷材料的密度和尺寸分布更加均匀,进而性能更稳定。
步骤S300,将胚体先后进行非极性溶剂萃取脱脂和热脱脂。
非极性溶剂萃取脱脂过程如下:将注射成型得到的坯体放入汽油、二硫化碳、二甲苯、乙醚、笨、氯仿、四氯化碳、石脑油等非极性溶剂中,以溶解脱除部分有机粘结剂,非极性溶剂的温度优选控制在30~50℃之间,脱脂时间在 12~36小时。非极性溶剂萃取脱脂后的坯体在烘箱中充分干燥,干燥温度优选为50~70℃,时间为4~12h。
该步骤中的非极性溶剂萃取脱脂过程是非常必要的,因为如果直接进行热脱会由于胚体中有机粘结剂成分过高,而导致样品在脱脂过程中的碎裂。
热脱脂过程如下:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂。该过程优选为将胚体以0.5~5℃/min的升温速率升温至550℃,然后保温2~3小时。该步骤中的升温速率及保温时间参数,在满足生产效率的前提下,可以确保使得到的微波介质陶瓷材料结构致密,不出现裂纹,进一步提升性能的稳定性。
步骤S400,将热脱脂后的坯体进行烧结,以得到BaTi4O9基微波介质陶瓷。
在该步骤中,烧结温度优选在1200~1400℃之间,保温2~6小时。
本发明用注射成型法制备BaTi4O9基微波介质陶瓷材料,通过将BaTi4O9基介质陶瓷注射成型,可以得到密度和尺寸分布均匀的微波介质陶瓷材料,使用该微波介质陶瓷材料制成的谐振器不但尺寸精度高,还具有较高的介电常数εr、较高的品质因数Q×f值和较低的谐振频率温度系数(τf)等优点。
下面几个具体实施例来详细说明本发明中BaTi4O9基微波介质陶瓷材料谐振器制作过程和成品谐振器的性能参数。
实施例一
本实施例主材料配方采用化学式:BaTi4O9+0.5mol%MoO3为化学组成,分别比较干压法和注射成型法制备的介质谐振器的性能,本实施例主材料本身的介电性能相对介电常数εr为37,品质因数(Q×f)值为45000GHz,谐振频率温度系数τf为+5ppm/℃。注射成型工艺制备BaTi4O9基介质谐振器通过以下工艺步骤实现:
(1)混合陶瓷粉体和有机粘结剂:将BaTi4O9基陶瓷粉体和有机粘结剂混合均匀得到注射成型混合料,混料中不同成分的含量跟粉末的粒度、形貌、密度有关,所以不同的粉末其混合物配方不同;针对于BaTi4O9基介质陶瓷,所述注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量为80%,有机粘结剂的重量百分含量为20%;其中,有机粘结剂由粘结剂、表面活性剂、低熔点有机物和增塑剂组成,各组分重量百分含量为:粘结剂80%;表面活性剂5%;低熔点有机物10%;增塑剂5%。
(2)注射成型:注射成型混合料在注射成型机上注射成型得到坯体,注射温度为180℃,注入模具后在2分钟内脱模得到成型坯体。
(3)非极性溶剂萃取脱脂:将注射成型得到的坯体放入非极性溶剂中,溶解脱除部分有机粘结剂,非极性溶剂的温度为30℃,脱脂时间为24小时,非极性溶剂萃取脱脂后的坯体在烘箱中进行干燥。
(4)热脱脂:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂,该实施例中,以0.5℃/min的升温速率升温至550℃,保温2小时。
(5)烧结:热脱脂后的坯体进行烧结,烧结温度为1350℃,保温4小时,得到介质谐振器。
分别用干压和注射成型工艺制备60个介质谐振器,样品如图3所示,从图3中可以看出注射成型与干压成型法制备的相比,晶粒尺寸更加均匀,颗粒尺寸更小,这对于BaTi4O9基介质谐振器产品最终的性能和稳定性影响呈正相关关系。同时对样品的性能进行了测试,性能如表1:
表1:注射成型和干压成型制备介质谐振器的性能参数对照
Figure PCTCN2015099951-appb-000001
从表1可以看出注射成型制备的介质谐振器比传统干压法制备的性能更优,且性能稳定。
实施例二
本实施例主材料配方采用化学式:BaTi4O9+5mol%MoO3为化学组成,分别比较干压法和注射成型法制备的介质谐振器的性能,本实施例主材料本身的介电性能相对介电常数εr为36.4,品质因数(Q×f)值为53050GHz,谐振频率温度系数τf为+2ppm/℃。注射成型工艺制备BaTi4O9基介质谐振器通过以下工艺步骤实现:
(1)混合陶瓷粉体和有机粘结剂:该实施例的注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量为76%,有机粘结剂的重量百分含量为24%;有机粘结剂中各组分重量百分含量为粘结剂80%;表面活性剂5%;低熔点有机物10%;增塑剂5%。
(2)注射成型:注射成型混合料在注射成型机上注射成型得到坯体,注射温度为180℃,注入模具后在2分钟内脱模得到成型坯体。
(3)非极性溶剂萃取脱脂:将注射成型得到的坯体放入非极性溶剂中,溶解脱除部分有机粘结剂,非极性溶剂的温度为30℃,脱脂时间为24小时,非极性溶剂萃取脱脂后的坯体在烘箱中进行干燥。
(4)热脱脂:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂,该实施例中,以0.5℃/min的升温速率升温至550℃,保温2小时。
(5)烧结:热脱脂后的坯体进行烧结,烧结温度为1340℃,保温4小时,得到介质谐振器。
分别用干压和注射成型工艺制备60个介质谐振器,并对样品的性能进行了测试,性能如表2:
表2:注射成型和干压成型制备介质谐振器的性能参数对照
Figure PCTCN2015099951-appb-000002
实施例三
本实施例主材料配方采用化学式:BaTi4O9+10mol%MoO3为化学组成,分别比较干压法和注射成型法制备的介质谐振器的性能,本实施例主材料本身的介电性能相对介电常数εr为35,品质因数(Q×f)值为69200GHz,谐振频率温度系数τf为-3ppm/℃。注射成型工艺制备BaTi4O9基介质谐振器通过以下工艺步骤实现:
(1)混合陶瓷粉体和有机粘结剂:该实施例的注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量为75%,有机粘结剂的重量百分含量为25%;有机粘结剂中各组分重量百分含量为粘结剂80%;表面活性剂5%;低熔点有机物10%;增塑剂5%。
(2)注射成型:注射成型混合料在注射成型机上注射成型得到坯体,注射温度为180℃,注入模具后在2分钟内脱模得到成型坯体。
(3)非极性溶剂萃取脱脂:将注射成型得到的坯体放入非极性溶剂中,溶解脱除部分有机粘结剂,非极性溶剂的温度为30℃,脱脂时间为24小时,非极性溶剂萃取脱脂后的坯体在烘箱中进行干燥。
(4)热脱脂:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂,该实施例中,以0.5℃/min的升温速率升温至550℃,保温2小时。
(5)烧结:热脱脂后的坯体进行烧结,烧结温度为1340℃,保温4小时,得到介质谐振器。
分别用干压和注射成型工艺制备60个介质谐振器,并对样品的性能进行了测试,性能如表3:
表3:注射成型和干压成型制备介质谐振器的性能参数对照
Figure PCTCN2015099951-appb-000003
从表3可以看出注射成型制备的介质谐振器比传统干压法制备的性能更优,且性能稳定。
实施例四
本实施例主材料配方采用化学式:BaTi4O9+10mol%MoO3+0.5mol%B2O3为化学组成,分别比较干压法和注射成型法制备的介质谐振器的性能,本实施例主材料本身的介电性能相对介电常数εr为34,品质因数(Q×f)值为61000GHz,谐振频率温度系数τf为-1.5ppm/℃。干压法主要通过造粒、压制成型后,进行烧结得到介质谐振器,工艺简单。注射成型工艺制备BaTi4O9基介质谐振器通过以下工艺步骤实现:
(1)混合陶瓷粉体和有机粘结剂:该实施例的注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量为75%,有机粘结剂的重量百分含量为25%;有机粘结剂中各组分重量百分含量为粘结剂80%;表面活性剂5%;低熔点有机物10%;增塑剂5%。
(2)注射成型:注射成型混合料在注射成型机上注射成型得到坯体,注射温度为180℃,注入模具后在2分钟内脱模得到成型坯体。
(3)非极性溶剂萃取脱脂:将注射成型得到的坯体放入非极性溶剂中,溶解脱除部分有机粘结剂,非极性溶剂的温度为30℃,脱脂时间为24小时,非极性溶剂萃取脱脂后的坯体在烘箱中进行干燥。
(4)热脱脂:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂,该实施例中,以0.5℃/min的升温速率升温至550℃,保温2小时。
(5)烧结:热脱脂后的坯体进行烧结,烧结温度为1150℃,保温4小时,得到介质谐振器。
分别用干压和注射成型工艺制备60个介质谐振器,并对样品的性能进行了测试,性能如表4:
表4:注射成型和干压成型制备介质谐振器的性能参数对照
Figure PCTCN2015099951-appb-000004
实施例五
本实施例主材料配方采用化学式:0.62molBaTi4O9+0.35molZnO+0.03molNb2O5为化学组成,分别比较干压法和注射成型法制备的介质谐振器的性能,本实施例主材料本身的介电性能相对介电常数εr为36.4,品质因数(Q×f)值为45500GHz,谐振频率温度系数τf为+0ppm/℃。注射成型工艺制备BaTi4O9基介质谐振器通过以下工艺步骤实现:
(1)混合陶瓷粉体和有机粘结剂:该实施例的注射成型混合料中,BaTi4O9基陶瓷粉体的重量百分含量为85%,有机粘结剂的重量百分含量为15%;有机粘结剂中各组分重量百分含量为:粘结剂80%;表面活性剂3%;低熔点有机物11%;增塑剂6%。
(2)注射成型:注射成型混合料在注射成型机上注射成型得到坯体,注射温度为180℃,注入模具后在2分钟内脱模得到成型坯体。
(3)非极性溶剂萃取脱脂:将注射成型得到的坯体放入非极性溶剂中,溶解脱除部分有机粘结剂,非极性溶剂的温度为30℃,脱脂时间为24小时,非极性溶剂萃取脱脂后的坯体在烘箱中进行干燥。
(4)热脱脂:将干燥后的坯体放入电加热炉内进行热脱脂,以脱除剩余的有机粘结剂,该实施例中,以0.5℃/min的升温速率升温至550℃,保温2小时。
(5)烧结:热脱脂后的坯体进行烧结,烧结温度为1275℃,保温4小时,得到介质谐振器。
分别用干压和注射成型工艺制备60个介质谐振器,并对样品的性能进行了测试,性能如表5:
表5:注射成型和干压成型制备介质谐振器的性能参数对照
Figure PCTCN2015099951-appb-000005
本发明提供的BaTi4O9基微波介质陶瓷材料谐振器的制备方法,通过将BaTi4O9基介质陶瓷注射成型,可以得到具有密度和尺寸分布均匀、烧结后尺寸精度高的谐振器,且材料成本低,制备工艺简单。与干压制备的谐振器相比,还具有高的品质因数Q×f值和性能稳定性。
另外,本发明实施例还提供一种谐振器和一种腔体滤波器,该谐振器由上述实施例所述的制备方法制得。从上述实施例中的对比数据可知,分别用干压法和注射成型方法制备BaTi4O9基材料的介质谐振器,干压法制备的介质谐振器的Q值为3300~3800,频率为1.8G,而注射成型制备的介质谐振器Q值可以达到3800~4000,频率为1.8G。可以看出,本发明中的利用注射成型制备的BaTi4O9基材料的介质谐振器Q值更高,且性能更为稳定。
腔体滤波器包括上述实施例中的谐振器,由该谐振器具有较高的品质因数Q×f值和较低的谐振频率温度系数(τf)等优点,使之制备得到的腔体滤波器具有较佳的介电性能和稳定性。而关于腔体滤波器的其他部分的结构及参数的技术特征在本领域技术人员的理解范围内,此处不再赘述。
请参阅图4,图4是本发明射频拉远设备一优选实施例的结构组成框图,该射频拉远设备包括但不限于以下结构单元:射频收发信机模块510、功放模块520以及腔体滤波器530。其中,射频收发信机模块510与功放模块520连接,功放模块520进一步与腔体滤波器530连接。
射频拉远设备工作在下行时隙时,来自射频收发信机模块510的两个通道 的发射信号通过功放模块520进入腔体滤波器530,腔体滤波器530对发射信号完成滤波,然后功率合成后发射到天线口;射频拉远设备工作在上行时隙时,从天线口接收到的信号通过腔体滤波器530滤波后进入功放模块520,在经功放模块520放大后输出给射频收发信机模块510对应的接收通道。
进一步地,该射频拉远设备还可以包括电源模块540,该电源模块540用于对该射频拉远设备的各个模块供电。
以上所述仅为本发明的部分实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种BaTi4O9基微波介质陶瓷材料的制备方法,其特征在于,所述制备方法包括:
    制备混合料,所述混合料中至少包括BaTi4O9基陶瓷粉体和有机粘结剂;
    将所述混合料注射成型,得到坯体;
    将所述胚体先后进行非极性溶剂萃取脱脂和热脱脂;
    将热脱脂后的坯体进行烧结,以得到所述BaTi4O9基微波介质陶瓷。
  2. 根据权利要求1所述的制备方法,其特征在于,所述混合料中的BaTi4O9基陶瓷粉体的重量百分含量为76~85%,所述有机粘结剂的重量百分含量为15~24%。
  3. 根据权利要求2所述的制备方法,其特征在于,所述BaTi4O9基陶瓷粉体的配方化学式为BaTi4O9+ax+by,其中x、y至少包括MoO3、MnO2、WO3、SnO2、B2O3、ZnO、Nb2O5、ZrO2、CaCO3、SrCO3、PbCO3中的一种或多种,0.005mol≤a,b≤0.20mol。
  4. 根据权利要求1所述的制备方法,其特征在于,所述有机粘结剂包括粘结剂、表面活性剂、低熔点有机物以及增塑剂。
  5. 根据权利要求1所述的制备方法,其特征在于,所述将混合料注射成型的步骤包括:
    将所述混合料在注射成型机中加热成粘稠性熔体;
    将所述粘稠性熔体注入模具内,在模具内冷却后脱模得到坯体;
    其中,注射温度为170℃~200℃。
  6. 根据权利要求1所述的制备方法,其特征在于,所述胚体的非极性溶剂萃取脱脂过程具体包括:
    将注射成型得到的坯体放入非极性溶剂中,以溶解脱除部分有机粘结剂;
    将非极性溶剂萃取脱脂后的坯体进行干燥。
  7. 根据权利要求6所述的制备方法,其特征在于,将经由非极性溶剂萃取脱脂并干燥的胚体继续进行热脱脂,以脱除胚体中剩余的有机粘结剂,所述热脱脂的过程为:将胚体以0.5~5℃/min的升温速率升温至550℃,然后保温2~3小时。
  8. 根据权利要求1所述的制备方法,其特征在于,所述烧结的温度为 1200~1400℃,加热后保温2~6小时。
  9. 根据权利要求6所述的制备方法,其特征在于,所述胚体非极性溶剂萃取脱脂过程中的非极性溶剂的温度为30~50℃,脱脂时间为12~36小时;脱脂后进行干燥的温度为50~70℃,干燥时间为4~12h。
  10. 根据权利要求4所述的制备方法,其特征在于,所述有机粘结剂中各组分的重量百分含量为:粘结剂50~90%;表面活性剂1~5%;低熔点有机物2~11%以及增塑剂1~11%。
  11. 根据权利要求10所述的制备方法,其特征在于,所述粘结剂至少包括石蜡、乙烯-乙酸乙烯脂共聚物、聚丙烯、无规聚丙烯、聚苯乙烯、聚甲基丙烯酸酯、乙烯丙烯酸乙酯共聚物中的一种或多种;所述表面活性剂至少包括硬脂酸、辛酸、微晶石蜡中的一种或多种;所述增塑剂至少包括邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二辛脂中的一种或多种。
  12. 一种BaTi4O9基微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料中包括重量百分含量为76~85%的BaTi4O9基陶瓷粉体以及重量百分含量为15~24%的有机粘结剂。
  13. 根据权利要求12所述的微波介质陶瓷材料,其特征在于,所述BaTi4O9基陶瓷粉体的配方化学式为BaTi4O9+ax+by,其中x、y至少包括MoO3、MnO2、WO3、SnO2、B2O3、ZnO、Nb2O5、ZrO2、CaCO3、SrCO3、PbCO3中的一种或多种,0.005mol≤a,b≤0.20mol。
  14. 根据权利要求12所述的微波介质陶瓷材料,其特征在于,所述有机粘结剂包括粘结剂、表面活性剂、低熔点有机物以及增塑剂。
  15. 根据权利要求14所述的微波介质陶瓷材料,其特征在于,所述有机粘结剂中各组分的重量百分含量为:粘结剂50~90%;表面活性剂1~5%;低熔点有机物2~11%以及增塑剂1~11%。
  16. 根据权利要求14所述的微波介质陶瓷材料,其特征在于,所述粘结剂至少包括石蜡、乙烯-乙酸乙烯脂共聚物、聚丙烯、无规聚丙烯、聚苯乙烯、聚甲基丙烯酸酯、乙烯丙烯酸乙酯共聚物中的一种或多种;所述表面活性剂至少包括硬脂酸、辛酸、微晶石蜡中的一种或多种;所述增塑剂至少包括邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二辛脂中的一种或多种。
  17. 一种谐振器,其特征在于,所述谐振器由权利要求1-11任一项所述的制备方法制得。
  18. 一种腔体滤波器,其特征在于,所述腔体滤波器包括腔体、盖板以及权利要求17所述的谐振器,所述盖板封盖所述腔体以形成谐振腔,所述谐振器安装在所述腔体内。
  19. 一种射频拉远设备,其特征在于,所述射频拉远设备包括:射频收发信机模块、功放模块以及权利要求18所述的腔体滤波器,所述射频收发信机模块与所述功放模块连接,所述功放模块与所述腔体滤波器连接。
  20. 一种BaTi4O9基微波介质陶瓷材料的配方,其特征在于,包括以下重量百分含量的组分:
    BaTi4O9基陶瓷粉体 76~85%;
    有机粘结剂 15~24%。
PCT/CN2015/099951 2015-12-30 2015-12-30 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备 WO2017113221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099951 WO2017113221A1 (zh) 2015-12-30 2015-12-30 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099951 WO2017113221A1 (zh) 2015-12-30 2015-12-30 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备

Publications (1)

Publication Number Publication Date
WO2017113221A1 true WO2017113221A1 (zh) 2017-07-06

Family

ID=59223996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099951 WO2017113221A1 (zh) 2015-12-30 2015-12-30 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备

Country Status (1)

Country Link
WO (1) WO2017113221A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153694A (zh) * 2020-01-06 2020-05-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN112266253A (zh) * 2020-09-21 2021-01-26 深圳顺络电子股份有限公司 注射成型用微波介质材料的粒料及微波介质器件制造方法
CN114409396A (zh) * 2021-11-18 2022-04-29 无锡鑫圣慧龙纳米陶瓷技术有限公司 高温度稳定型wifi用微波介质陶瓷及其制备方法
CN114804858A (zh) * 2021-01-28 2022-07-29 山东国瓷功能材料股份有限公司 一种滤波器用低温共烧陶瓷材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084662A1 (en) * 2000-05-03 2001-11-08 Allen Telecom Inc. Coupling mechanisms for dielectric resonator loaded cavity filters
WO2008066282A1 (en) * 2006-11-30 2008-06-05 Korea Institute Of Ceramic Engineering & Technology Glass-free microwave dielectric ceramics and the manufacturing method thereof
CN101618568A (zh) * 2009-02-27 2010-01-06 清华大学 一种超细陶瓷粉体注射成型混合料的制备方法
CN101643360A (zh) * 2009-09-02 2010-02-10 清华大学 一种注射成型制造齿状异形陶瓷部件的方法
CN103151584A (zh) * 2013-03-26 2013-06-12 深圳市大富科技股份有限公司 腔体滤波器、射频拉远设备、信号收发装置及塔顶放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084662A1 (en) * 2000-05-03 2001-11-08 Allen Telecom Inc. Coupling mechanisms for dielectric resonator loaded cavity filters
WO2008066282A1 (en) * 2006-11-30 2008-06-05 Korea Institute Of Ceramic Engineering & Technology Glass-free microwave dielectric ceramics and the manufacturing method thereof
CN101618568A (zh) * 2009-02-27 2010-01-06 清华大学 一种超细陶瓷粉体注射成型混合料的制备方法
CN101643360A (zh) * 2009-09-02 2010-02-10 清华大学 一种注射成型制造齿状异形陶瓷部件的方法
CN103151584A (zh) * 2013-03-26 2013-06-12 深圳市大富科技股份有限公司 腔体滤波器、射频拉远设备、信号收发装置及塔顶放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MHAISALKAR S.G. ET AL: "Microwave Dielectric Properties of Doped BaTi409", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 74, no. 8, 31 August 1991 (1991-08-31), pages 1894 - 1898, XP002215265 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153694A (zh) * 2020-01-06 2020-05-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN111153694B (zh) * 2020-01-06 2022-04-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法
CN112266253A (zh) * 2020-09-21 2021-01-26 深圳顺络电子股份有限公司 注射成型用微波介质材料的粒料及微波介质器件制造方法
CN114804858A (zh) * 2021-01-28 2022-07-29 山东国瓷功能材料股份有限公司 一种滤波器用低温共烧陶瓷材料及其制备方法与应用
CN114409396A (zh) * 2021-11-18 2022-04-29 无锡鑫圣慧龙纳米陶瓷技术有限公司 高温度稳定型wifi用微波介质陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN105622093B (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN105732021B (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN103396120B (zh) 可低温烧结的钼基微波介电陶瓷Ba4Li2Mo2O11
WO2017113221A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN103496959A (zh) 可低温烧结的微波介电陶瓷Li2Ca2Si2O7及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN103880422A (zh) 超低温烧结的微波介电陶瓷Li3Nb3B2O12及其制备方法
WO2017113218A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN104671784A (zh) 温度稳定型高品质因数微波介电陶瓷Nd2La2W3O15及其制备方法
CN103539452A (zh) 可低温烧结的微波介电陶瓷Li2BiNb3O10及其制备方法
CN103922723A (zh) 超低温烧结的微波介电陶瓷Li3V3Bi2O12及其制备方法
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN103467095A (zh) 可低温烧结的微波介电陶瓷SrCuV2O7及其制备方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN103496981A (zh) 低温烧结温度稳定型微波介电陶瓷Bi14W2O27及其制备方法
WO2017113223A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN103435342B (zh) 钛酸盐微波介电陶瓷Ba2Ti5Zn1-xMgxO13及其制备方法
CN104649669A (zh) 温度稳定型高介电常数微波介电陶瓷Ba6Ti3Zr5Nb8O42及其制备方法
CN111548145A (zh) 微波介质陶瓷滤波器注塑成型方法及其陶瓷滤波器
CN103553608A (zh) 可低温烧结的微波介电陶瓷LiSmNb2O7及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN103073285A (zh) 一种低损耗中介电常数微波介质陶瓷及其制备工艺
WO2017113224A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN101805170B (zh) 低温烧结锂基微波介电陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911850

Country of ref document: EP

Kind code of ref document: A1