WO2017113139A1 - 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备 - Google Patents

谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备 Download PDF

Info

Publication number
WO2017113139A1
WO2017113139A1 PCT/CN2015/099713 CN2015099713W WO2017113139A1 WO 2017113139 A1 WO2017113139 A1 WO 2017113139A1 CN 2015099713 W CN2015099713 W CN 2015099713W WO 2017113139 A1 WO2017113139 A1 WO 2017113139A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
rod
coupling
cavity
rods
Prior art date
Application number
PCT/CN2015/099713
Other languages
English (en)
French (fr)
Inventor
童恩东
Original Assignee
深圳市大富科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富科技股份有限公司 filed Critical 深圳市大富科技股份有限公司
Priority to PCT/CN2015/099713 priority Critical patent/WO2017113139A1/zh
Priority to CN201580079840.4A priority patent/CN107615577B/zh
Publication of WO2017113139A1 publication Critical patent/WO2017113139A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present invention relates to the field of communications, and in particular, to a resonant rod assembly, a cavity filter, and a communication device including the same.
  • a communication signal carrying communication data in a specific frequency range is generally transmitted through a transmitting antenna, and a communication signal is received through a receiving antenna.
  • the signal received by the receiving antenna includes not only the communication signal carrying the communication data in the specific frequency range described above, but also a plurality of clutter or interference signals outside the specific frequency range.
  • the cavity filter includes a plurality of resonant cavities, a cover plate, and a resonant rod respectively disposed in the resonant cavity, and the resonant rod is fixed on the bottom surface of the resonant cavity by screws. It is common to use a flying rod between two non-adjacent resonant cavities to achieve cross-coupling to out-of-band suppression of clutter outside the passband of the cavity filter.
  • the existing resonant rods are processed in a single form, which has low efficiency and increases labor and equipment costs.
  • the resonant rod is assembled into the resonant cavity, it is also assembled individually, which makes assembly efficiency low.
  • the resonant rod and the screw It will rotate at the same time, so it needs fixtures for positioning, easy to wear surface coating and smoothness, and is not easy to locate, coupling and intermodulation are unstable, affecting indicators.
  • the invention provides a resonant rod assembly, a cavity filter and a communication device including the cavity filter, which can solve the problem of low efficiency of production processing and assembly existing in the prior art.
  • a technical solution adopted by the present invention is: a resonant rod assembly comprising at least two resonant rods, the at least two resonant rods being fixedly connected by at least one connecting rod.
  • the at least two resonant rods and the at least one connecting rod are integrally formed or fixed by welding into the resonant rod assembly.
  • the method further includes at least one coupling structure disposed between the pair of resonant rods, and the coupling structure and the resonant rod are integrally formed or welded.
  • the coupling structure comprises a first coupling rod
  • the first coupling rod comprises a first rod body integrally connected and a first coupling disc disposed at an end of the first rod body.
  • the coupling structure further includes a second coupling rod
  • the second coupling rod includes an integrally connected second rod body and a second coupling disc disposed at an end of the second rod body, the first coupling disc and The second coupling discs are oppositely disposed to form a capacitive coupling.
  • the coupling structure is a conductive metal rod, and two ends of the conductive metal rod are respectively connected to the two resonant rods.
  • a cavity filter including a cavity, a resonance rod assembly mounted in the cavity, and a cover covering the cavity a plate;
  • the cavity is provided with a partition wall, the partition wall divides the cavity into at least two resonant cavities;
  • the resonant rod assembly includes at least two resonant rods, between the at least two resonant rods The connection is fixed by at least one connecting rod.
  • the at least two resonant rods and the at least one connecting rod are integrally formed or fixed by welding into the resonant rod assembly.
  • the resonant rod assembly further includes at least one coupling structure disposed between the pair of resonant rods, and the coupling structure and the resonant rod are integrally formed or welded.
  • the coupling structure comprises a first coupling rod
  • the first coupling rod comprises a first rod body integrally connected and a first coupling disc disposed at an end of the first rod body.
  • the coupling structure further includes a second coupling rod
  • the second coupling rod includes an integrally connected second rod body and a second coupling disc disposed at an end of the second rod body, the first coupling disc and The second coupling discs are oppositely disposed to form a capacitive coupling.
  • the cavity filter further comprises at least one single resonant rod, the single resonant rod comprises a third coupling rod, the third coupling rod comprises an integrally connected third rod and is disposed on the third rod
  • the third coupling disc at the end, the first coupling disc and the third coupling disc are oppositely disposed to form a capacitive coupling.
  • the coupling structure is a conductive metal rod, and two ends of the conductive metal rod are respectively connected to the two resonant rods.
  • the resonant rod assembly is fixed on the bottom surface of the cavity by screws.
  • the bottom surface of the resonant cavity is provided with a mounting hole for engaging the screw to fix the resonant rod assembly to the bottom surface of the cavity.
  • a communication device including a cavity filter for frequency selection of a communication signal; the cavity filter including a cavity and being installed in the solution a resonant rod assembly in the cavity and a cover plate enclosing the cavity, the cavity being provided with a partition wall, the partition wall separating the cavity into at least two resonant cavities, the resonance
  • the rod assembly includes at least two resonant rods, and the at least two resonant rods are fixedly coupled by at least one connecting rod.
  • the at least two resonant rods and the at least one connecting rod are integrally formed or fixed by welding into the resonant rod assembly.
  • the resonant rod assembly further includes at least one coupling structure disposed between the pair of resonant rods, and the coupling structure and the resonant rod are integrally formed or welded.
  • the resonant rod assembly is fixed on the bottom surface of the cavity by screws.
  • the communication device is a duplexer, a simplexer, a splitter, a combiner or a tower top amplifier.
  • the present invention connects a plurality of resonant rods to a resonant rod assembly through a connecting rod, and changes from a conventional single production process to an overall production process, thereby improving production efficiency and reducing equipment and personnel costs.
  • the obtained resonant rod assembly is assembled as a whole, and does not need to be installed one by one, thereby reducing the difficulty of assembly, and the resonant rod in the diagonal position can be first positioned and then fixed in the assembly, without the fixture being positioned, thereby improving
  • the assembly efficiency, and the wear of the surface coating and the finish are reduced, the loss is reduced, the assembly positioning accuracy is improved, and the stability of the index is improved.
  • FIG. 1 is a perspective structural view of an embodiment of a resonant rod assembly of the present invention
  • FIG. 2 is a plan view showing a planar structure of another embodiment of the resonant rod assembly of the present invention, showing a connecting rod in a curved shape;
  • FIG. 3 is a plan view showing the structure of another embodiment of the resonant rod assembly of the present invention, showing the structure of two large intermediate small and two small intermediate connecting rods;
  • FIG. 4 is a perspective structural view of still another embodiment of the resonant rod assembly of the present invention, showing a connecting rod that is bent downward and a coupling structure that is shaped as a conductive metal rod;
  • FIG. 5 is a schematic structural view of still another embodiment of the resonant rod assembly of the present invention, showing a connecting rod having a tree structure;
  • Figure 6 is a schematic view showing the internal structure of an embodiment of the cavity filter of the present invention.
  • Figure 7 is a schematic view showing the internal structure of another embodiment of the cavity filter of the present invention.
  • Figure 8 is a schematic view showing the internal structure of still another embodiment of the cavity filter of the present invention.
  • FIG. 9 is a schematic diagram of module connection of an embodiment of the radio remote device of the present invention.
  • Figure 10 is a schematic diagram showing the connection structure of the signal transceiving device of the present invention.
  • Figure 11 is a schematic view showing the connection structure of the tower amplifier of the present invention.
  • the resonant rod assembly 1 of the present invention includes at least two resonant rods 10, and at least two resonant rods 10 are fixedly connected by at least one connecting rod 2.
  • the shape of the resonant rod 10 may be a square cylindrical resonant rod, a circular cylindrical resonant rod or a polygonal cylindrical resonant rod, and may be a resonant rod with a disk or a resonant rod without a disk.
  • the resonant rod 10 in this embodiment is a resonant rod of a circular cylindrical disk with a disk.
  • the resonant rod assembly 1 of the present embodiment at least two resonant rods 10 and at least one connecting rod 2 may be integrally formed, and the resonant rod assembly 1 may be integrally press-molded or injection-molded during the molding process.
  • the resonant rod assembly 1 may be formed by fixing the resonant rod 10 and the connecting rod 2 by welding.
  • the production process of the resonant rod assembly 1 of the present invention may be that the arrangement of the resonant cavity on the cavity is designed according to the actual situation of the cavity filter, and then the resonant rod 10 is designed according to the arrangement. Arranged, and then integrally molded according to the designed resonant rod 10, formed into a resonator assembly blank. The finished resonant rod assembly blank is then finished as a whole, such as end grinding and internal and external grinding, to meet the structure and size requirements.
  • the surface treatment is performed, for example, the surface is metallized, and the surface of the resonant rod assembly 1 can be selectively selected by metallization, and may be electroless plating, electroless plating, vacuum plating, dipping, or the like.
  • the entire resonance rod assembly 1 is simultaneously performed, and it is not necessary to carry out one by one, thereby improving production efficiency and reducing equipment and personnel costs.
  • the resonant rod assembly 1 When assembling the resonant rod assembly 1, the resonant rod assembly 1 is first placed in the cavity of the cavity filter, the resonant rod 10 is in one-to-one correspondence with the resonant cavity, and then the screw is driven into the diagonal of the resonant rod assembly 1. Position the resonator rod 10 at the ends of the line and tighten the screws, then screw the screws into the resonant rod 10 at other positions and tighten.
  • each of the resonant rods 10 is fixedly connected to the connecting rod 2, when the resonant rod assembly 1 is placed in the resonant cavity, it is not necessary to place them one by one, and it is not necessary to position one by one, and all the resonant rods 10 can be placed into the corresponding resonant cavity at one time. Save time and manpower.
  • the screws at the diagonal are tightened, since the respective resonant rods 10 are connected as a whole, and both ends of the diagonal have been positioned, the resonant rod 10 does not rotate with the rotation of the screw. Therefore, there is no need to use fixtures for positioning. Because it is an integrated assembly, it can reduce assembly difficulty and improve assembly positioning accuracy.
  • the present invention connects at least two resonant rods 10 to the resonant rod assembly 1 through the connecting rod 2, and changes from a conventional single production process to an overall production process, thereby improving production efficiency and reducing equipment and Staff costs.
  • the obtained resonant rod assembly 1 is assembled as a whole, and does not need to be installed one by one, thereby reducing the difficulty of assembly, and the resonant rod 10 in the diagonal position can be first positioned before being assembled, and then fixed, without the fixture being positioned.
  • the assembly efficiency is improved, the wear of the surface coating and the finish is reduced, the loss is reduced, the assembly positioning accuracy is improved, and the stability of the index is improved.
  • each connecting rod 12 in the resonant rod assembly 1 can be various.
  • each connecting rod 12 can be linear, such as the connecting rod 21 shown in FIG.
  • the connecting rod 2 can also be curved.
  • the connecting rod 2 is bent to the left or right according to the connecting passage between the respective resonant cavities, such as the connecting rod 22 shown in FIG.
  • the connecting rod 2 may have a shape in which the two ends are large in the middle or small in the middle, such as the connecting rod 23 and the connecting rod 24 as shown in FIG.
  • each connecting rod 2 can also be bent up and down in the vertical direction, and the curved portion can be a smooth transition or a fold line transition.
  • the intermediate portion of the connecting rod 25 is located at the lower portion of the resonant rod 10, and both ends of the connecting rod 25 are bent upward to be connected to the top of the resonant rod 10.
  • the ends of the connecting rod 25 can also be connected to the edges of the discs of the two resonant rods, respectively.
  • the connecting rod may also be a tree structure including a main connecting rod 201 and a plurality of sub-connecting rods 202.
  • the main connecting rod 201 extends along a passage between the plurality of resonant cavities, and the connecting rods are connected.
  • the resonant rod assembly 1 branches off from the main connecting rod 201 to connect the resonant rod 10 in each resonant cavity to the main connecting rod 201.
  • the shape and structure of the connecting rod 2 of the resonant rod assembly 1 can be various, and only a few of them are listed above, and do not constitute a limitation of the present invention. In the practical application of the resonant rod assembly 1, the shape of the connecting rod can be selected according to the requirements of the coupling, intermodulation and power of the cavity filter.
  • the resonant rod assembly 1 further includes at least one coupling structure 3, and the coupling structure 3 and the resonant rod 10 are integrally formed. Of course, in other embodiments, the coupling structure 3 and the resonant rod 10 can also be fixed by welding.
  • the coupling structure 3 of the resonant rod assembly 1 in this embodiment includes a first coupling rod 31 including a first rod body 310 and a first coupling disc 311 that are integrally connected, as shown in FIG. .
  • the resonant rod assembly 1 of the present embodiment further includes a second coupling rod 32.
  • the second coupling rod 32 includes a second rod body 320 and a second coupling disc 321 that are integrally connected.
  • the first coupling disc 311 and the second coupling disc 321 are opposite.
  • the arrangement forms a capacitive coupling as shown in Figures 1, 2 and 5.
  • the coupling structure 3 in this embodiment is a capacitive coupling structure. Of course, it may also be an inductive coupling structure.
  • the coupling structure is a conductive connection connecting the resonant rods in the two adjacent resonant cavities.
  • the metal rod 33 is a conductive metal rod 33 as shown in Figs. 4 and 7, and the two ends of the conductive metal rod 33 are respectively connected to the resonance rods 10 in the two resonators.
  • the coupling structure 3 in the embodiment of the present invention is not limited to the above two structures, and may be other forms and structures of coupling structures, which do not constitute a limitation of the present invention.
  • the coupling structure 3 is also integrally formed with the resonance rod 10 or integrated by welding, it is not necessary to add other parts for fixing, such as a flying rod holder, to reduce the material cost and reduce the type of parts. And the indicators caused by the dimensional tolerance risk are unstable. In addition, it can be installed together with the resonant rod assembly 1 at the time of installation, and it is not necessary to separately install it, thereby reducing assembly difficulty.
  • the present invention also provides a cavity filter comprising a cavity 4, a resonant rod assembly 1 and a cover plate (not shown) that is capped on the cavity 4.
  • the cavity 4 is provided with a partition wall 40 which divides the cavity into at least two resonant cavities 41.
  • the resonant rod assembly 1 includes at least two resonant rods 10 , and at least two resonant rods 10 are fixedly connected by at least one connecting rod 2 .
  • at least two resonant rods 10 and at least one The connecting rod 2 is integrally formed or fixed to the resonant rod assembly 1 by welding.
  • the resonant rod assembly 1 is mounted in at least two resonant cavities 41, wherein at least two resonant rods 10 are mounted in at least two resonant cavities 41, respectively.
  • the cavity 4 of the cavity filter may include a resonant rod assembly 1 or a plurality of resonant rod assemblies 1, or may also include both the resonant rod assembly 1 and the single resonant rod 2, specifically The form is set according to the actual needs of the cavity filter.
  • the resonant rod assembly further includes at least one coupling structure 3, and the coupling structure 3 and the resonant rod 10 are integrally formed or welded.
  • the coupling structure 3 of the resonant rod assembly 1 in this embodiment includes a first coupling rod 31 including a first rod body 310 and a first coupling disc 311 which are integrally connected, and the resonance of the present embodiment
  • the rod assembly 1 further includes a second coupling rod 32.
  • the second coupling rod 32 includes an integrally coupled second coupling rod 320 and a second coupling disc 321 .
  • the first coupling disc 311 and the second coupling disc 321 are oppositely disposed to form a capacitive coupling. As shown in Figures 1 and 2 and Figure 8.
  • the coupling structure 3 of the resonant rod assembly 1 includes a first coupling rod 31 including a first rod body 310 and a first coupling disc 311 that are integrally connected, and further, the cavity filter 4 further comprising at least one single resonant rod 11 comprising a third coupling rod 34, the third coupling rod 34 comprising an integrally connected third rod 340 and a third coupling disc 341, a first coupling disc 311 and a
  • the three coupling discs 341 are oppositely disposed to form a capacitive coupling, as shown in FIG.
  • the coupling structure 3 can also be a conductive metal rod 33 connecting the resonant rods 10 in the two adjacent resonant cavities, the conductive metal rod The two resonant rods 10 are respectively connected to the two ends of 33, as shown in FIG.
  • the resonant rod assembly 1 is fixed to the bottom surface of the cavity by screws.
  • the bottom surface of the cavity is provided with a mounting hole for engaging the screw to fix the resonant rod assembly 1 to the bottom surface of the cavity.
  • the mounting hole may be directly disposed on the bottom surface of the resonant cavity 41, or a mounting platform may be disposed on the bottom surface of the resonant cavity 41, and a mounting hole may be disposed on the mounting platform.
  • the axial height of the mounting hole is increased, so that the depth of the screw entering the bottom surface of the cavity is larger, so that the contact between the resonant rod 10 and the bottom surface of the resonant cavity 41 is more reliable.
  • the cavity filter of the present invention is formed integrally by the resonance rod assembly 1 by integral molding or welding, so that the assembly positioning is accurate and has reliable index stability.
  • the present invention also provides a communication device comprising a cavity filter for frequency selection of a communication signal.
  • the cavity filter includes a cavity 4, a resonant rod assembly 1 and a cover that covers the cavity.
  • the cavity 4 is provided with a partition wall 40 that partitions the cavity 4 into a plurality of resonant cavities 41.
  • the resonant rod assembly 1 includes at least two resonant rods 10, and at least two resonant rods 10 are fixedly connected by at least one connecting rod 2.
  • at least two resonant rods 10 and at least one connecting rod 2 are integrally formed or fixed to the resonant rod assembly 1 by welding.
  • the resonant rod assembly 1 is mounted in at least two resonant cavities 41, wherein at least two resonant rods 10 are mounted in at least two resonant cavities 41, respectively.
  • the resonant rod assembly 1 in the communication device further includes at least one coupling structure 3, the coupling structure 3 includes a first coupling rod 31, and the first coupling rod 31 includes a first rod body 310 and a first coupling plate 311 that are integrally connected.
  • the cavity filter 4 further includes at least one single resonant rod 11, the single resonant rod 11 includes a third coupling rod 34, and the third coupling rod 34 includes an integrally connected third rod 340 and a third coupling plate 341.
  • the first coupling disk 311 and the third coupling disk 341 are oppositely disposed to form a capacitive coupling, as shown in FIG.
  • the coupling structure 3 of the resonant rod assembly 1 in the communication device includes a first coupling rod 31 including an integrally connected first rod 310.
  • the first coupling disc 311, the resonant rod assembly 1 of the present embodiment further includes a second coupling rod 32
  • the second coupling rod 32 includes an integrally connected second rod 320 and a second coupling disc 321, a first coupling disc 311 and a
  • the two coupling disks 321 are oppositely disposed to form a capacitive coupling.
  • the coupling structure 3 can also be a conductive metal rod 33 connecting the resonant rods 10 in the two adjacent resonant cavities.
  • the two ends of the conductive metal rod 33 are respectively connected to the two resonant rods 10, as shown in FIG. Show.
  • the resonant rod 10 is fixed to the bottom surface of the resonant cavity 41 by screws.
  • the bottom surface of the resonant cavity 41 is provided with a mounting hole for engaging the screw to fix the resonant rod 10 to the bottom surface of the resonant cavity 41.
  • the mounting hole may be directly disposed on the bottom surface of the resonant cavity 41, or a mounting platform may be disposed on the bottom surface of the resonant cavity 41, and then a mounting hole is provided on the mounting platform, and a mounting platform is provided on the bottom surface of the cavity to not thicken the cavity
  • the axial height of the mounting hole is increased, so that the depth of the screw entering the bottom surface of the cavity is larger, so that the contact between the resonant rod 10 and the bottom surface of the resonant cavity 41 is more reliable.
  • the communication device of the present invention may be a duplexer, a simplexer, a splitter, a combiner or a tower amplifier.
  • the cavity filter is the basic structural component of the communication device in this embodiment.
  • the duplexer is composed of two cavity filters at the receiving end and the transmitting end of the duplexer, and implements a filtering function for transmitting and receiving signals;
  • the combiner is realized by combining two cavity filters to form a combined circuit.
  • the cavity filter is also used as the basic structural component, and an example is not given here.
  • the communication device of the present invention has reliable index stability by using the cavity filter of the present invention as a basic structural component.
  • the invention also provides a radio remote device comprising a radio frequency transceiver module 01, a power amplifier module 02 and the cavity filter 03, the radio transceiver module 01 is connected with the power amplifier module 02, and the power amplifier module 02 and The cavity filter 03 is connected.
  • RRU When working in the downlink time slot, the transmission signal from the two channels of the RF transceiver module 01 enters the cavity filter 03 through the power amplifier module 02, and the cavity filter 03 completes filtering on the transmission signal, and then the power is combined and transmitted to the antenna port.
  • RRU When working in the uplink time slot, the signal received from the antenna port is filtered by the cavity filter 03 and then enters the power amplifier module 02, and then amplified by the power amplifier module 02 and output to the receiving channel corresponding to the RF transceiver module 01.
  • the present invention also provides a signal transceiving device including a receiving antenna 001, a cavity filter 002, a radio frequency low noise amplifier 003, a circulator 004, a combiner 005, a radio frequency power amplifier 006, and a transmitting antenna.
  • the cavity filter 002 is a cavity filter in any of the above embodiments.
  • the cavity filter 002 is connected to the receiving antenna 001 and filters the received signal.
  • the RF low noise amplifier 003 is coupled to the signal output of the cavity filter 002.
  • the circulator 004 is connected to the signal output of the low noise amplifier 003.
  • the combiner 005 is coupled to the circulator 004.
  • the input of the RF power amplifier 006 is connected to the signal output of the combiner 005, and the output of the combiner 005 is connected to the cavity filter 002.
  • the transmit antenna 007 receives the output signal of the cavity filter and transmits the signal.
  • the present invention also provides a tower top amplifier comprising a low noise amplifier and a band pass cavity filter, the band pass cavity filter being the cavity filter.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备。该谐振杆组件包括至少二个谐振杆,至少二个谐振杆之间通过至少一个连接杆固定连接。腔体滤波器包括腔体、上述谐振杆组件以及封盖在腔体上的盖板;腔体上设有隔离壁,隔离壁将腔体分隔成至少二个谐振腔;至少二个谐振杆分别安装在至少二个谐振腔内。本发明能提高生产、装配效率,还能提高装配定位的精确性,从而提高指标稳定性。

Description

谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备
【技术领域】
本发明涉及通信领域,具体涉及一种谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备。
【背景技术】
在移动通信的基站系统中,通常通过发射天线发射特定频率范围内的承载通信数据的通信信号,并通过接收天线接收通信信号。由接收天线接收的信号中不仅包含上述特定频率范围内的承载通信数据的通信信号,而且还包括许多上述特定频率范围外的杂波或干扰信号。要从接收天线接收的信号中获取发射天线发射的特定频率范围内的承载通信数据的通信信号,通常需要将该接收天线接收的信号通过腔体滤波器进行滤波,将该承载通信数据的通信信号特定频率外的杂波或干扰信号滤除。
腔体滤波器作为一种频率选择装置被广泛应用。现有技术,腔体滤波器包括多个谐振腔、盖板、分别设置在谐振腔内的谐振杆,谐振杆通过螺钉固定在谐振腔的底面上。通常采用在两个不相邻的谐振腔之间设置飞杆来实现交叉耦合从而对腔体滤波器通带外的杂波进行带外抑制。
现有的谐振杆是以单个形式加工而成的,效率低,增加了人力及设备成本;将谐振杆装配到谐振腔时也是单个进行装配,使得装配效率低,单独装配时,谐振杆与螺钉会同时转动,因而需要工装夹具进行定位,易磨损表面镀层及光洁度,且不易定位,耦合、互调不稳定,影响指标。
【发明内容】
本发明提出了一种谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备,能够解决现有技术存在的生产加工及装配的效率低的问题。
为解决上述技术问题,本发明采用的一个技术方案是:一种谐振杆组件,其包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
其中,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
其中,还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
其中,所述耦合结构包括第一耦合杆,所述第一耦合杆包括一体连接的第一杆体和设置在所述第一杆体的端部的第一耦合盘。
其中,所述耦合结构还包括第二耦合杆,所述第二耦合杆包括一体连接的第二杆体和设置在所述第二杆体的端部的第二耦合盘,所述第一耦合盘和第二耦合盘相对设置形成容性耦合。
其中,所述耦合结构是一导电金属杆,所述导电金属杆的两端分别与两个所述谐振杆连接。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种腔体滤波器,其包括腔体、安装在所述腔体内的谐振杆组件以及封盖在所述腔体上的盖板;所述腔体上设有隔离壁,所述隔离壁将所述腔体分隔成至少二个谐振腔;所述谐振杆组件包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
其中,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
其中,所述谐振杆组件还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
其中,所述耦合结构包括第一耦合杆,所述第一耦合杆包括一体连接的第一杆体和设置在所述第一杆体的端部的第一耦合盘。
其中,所述耦合结构还包括第二耦合杆,所述第二耦合杆包括一体连接的第二杆体和设置在所述第二杆体的端部的第二耦合盘,所述第一耦合盘和第二耦合盘相对设置形成容性耦合。
其中,所述腔体滤波器还包括至少一单体谐振杆,所述单体谐振杆包括第三耦合杆,所述第三耦合杆包括一体连接的第三杆体和设置在所述第三杆体的端部的第三耦合盘,所述第一耦合盘和第三耦合盘相对设置形成容性耦合。
其中,所述耦合结构是一导电金属杆,所述导电金属杆的两端分别与两个所述谐振杆连接。
其中,所述谐振杆组件通过螺钉固定在所述腔体的底面上。
其中,所述谐振腔的底面上设有安装孔,用于与所述螺钉配合将所述谐振杆组件固定于所述腔体的底面上。
为解决上述技术问题,本发明采用的又一个技术方案是:一种通信设备,其包括用于对通信信号进行频率选择的腔体滤波器;所述腔体滤波器包括腔体、安装在所述腔体内的谐振杆组件以及封盖在所述腔体上的盖板,所述腔体上设有隔离壁,所述隔离壁将所述腔体分隔成至少二个谐振腔,所述谐振杆组件包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
其中,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
其中,所述谐振杆组件还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
其中,所述谐振杆组件通过螺钉固定在所述腔体的底面上。
其中,所述通信设备为双工器、单工器、分路器、合路器或者塔顶放大器。
区别于现有技术,本发明将多个谐振杆通过连接杆进行固定连接成谐振杆组件,从传统的单个生产加工改为整体生产加工,从而能提高生产效率,并且降低设备及人员成本。所得谐振杆组件作为一个整体进行装配,无需逐个安装,从而降低了装配的难度,并且,装配的时候可以先将对角位置的谐振杆先定位,然后再进行固定,无需工装夹具进行定位,提高了装配效率,并且减少了表面镀层及光洁度的磨损,减少损耗,并能提高装配定位精度,提高指标的稳定性。
【附图说明】
图1是本发明谐振杆组件实施例的立体结构示意图;
图2是本发明谐振杆组件的另一实施例的平面结构示意图,显示了呈曲线状的连接杆;
图3是本发明谐振杆组件的另一实施例的平面结构示意图,显示了两头大中间小和两头小中间大的连接杆的结构;
图4是本发明谐振杆组件的又一实施例的立体结构示意图,显示了向下弯曲的连接杆及形状为导电金属杆的耦合结构;
图5是本发明谐振杆组件的再一实施例的结构示意图,显示了呈树状结构的连接杆;
图6是本发明腔体滤波器一个实施例的内部结构示意图;
图7是本发明腔体滤波器另一个实施例的内部结构示意图;
图8 是本发明腔体滤波器另又一个实施例的内部结构示意图;
图9是本发明射频拉远设备实施例的模块连接示意图;
图10是本发明信号收发装置的连接结构示意图;
图11是本发明塔顶放大器的连接结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参阅图1,本发明的谐振杆组件1包括至少二个谐振杆10,至少二个谐振杆10之间通过至少一个连接杆2固定连接。其中,谐振杆10的形状可以是方形柱状谐振杆、圆形柱状谐振杆或者多边形柱状谐振杆,可以是带圆盘的谐振杆也可以是不带圆盘的谐振杆。本实施例中的谐振杆10为圆形柱状带圆盘的谐振杆。
举例来说,本实施例的谐振杆组件1中,至少二个谐振杆10和至少一个连接杆2可以一体成型,在成型过程中可以整体压制成型或者注塑成型得到谐振杆组件1。又或者,还可以通过焊接的方式将谐振杆10与连接杆2固定而形成谐振杆组件1。
以一体成型为例,本发明的谐振杆组件1的生产加工,可以是先根据腔体滤波器的实际情况设计好腔体上谐振腔的排布,然后根据该排布设计好谐振杆10的排布,然后再根据该设计好的谐振杆10进行整体成型,成型为谐振杆组件毛坯。再对成型的谐振杆组件毛坯整体进行精加工,例如端面研磨及内外圆磨加工,以满足结构和尺寸的需要。精加工之后,再进行表面处理,例如表面做金属化处理,谐振杆组件1的表面作金属化处理方式可以灵活选择,可以是化学镀、先化学镀后电镀、真空镀、浸渍等。在整个生产加工表面处理的过程中,都是对谐振杆组件1整体同时进行,无需逐个进行,因而能提高生产效率,降低设备及人员成本。
对谐振杆组件1进行装配的时候,先把谐振杆组件1放到腔体滤波器的腔体内,谐振杆10与谐振腔一一对应,然后再把螺钉打入位于谐振杆组件1的对角线两端位置处的谐振杆10内进行定位,并拧紧螺钉,然后再把螺钉打入其它位置处的谐振杆10内,并拧紧。由于各个谐振杆10与连接杆2固定连接,所以在将谐振杆组件1放到谐振腔的时候,无需逐个放入,也无需逐个定位,可以一次将所有谐振杆10放入到对应的谐振腔内,节省了时间和人力。通过该方式进行装配,在拧紧对角线处的螺钉的时候,由于各个谐振杆10相连为一个整体,且对角线两端已经进行定位,因而谐振杆10不会随着螺钉的转动而转动,因而无需使用工装夹具进行定位。由于是一体装配,所以能降低装配难度、提高装配定位精度。
区别于现有技术,本发明将至少二个谐振杆10通过连接杆2进行固定连接成谐振杆组件1,从传统的单个生产加工改为整体生产加工,从而能提高生产效率,并且降低设备及人员成本。所得谐振杆组件1作为一个整体进行装配,无需逐个安装,从而降低了装配的难度,并且,装配的时候可以先将对角位置的谐振杆10先定位,然后再进行固定,无需工装夹具进行定位,提高了装配效率,同时减少了表面镀层及光洁度的磨损,减少损耗,并能提高装配定位精度,提高指标的稳定性。
谐振杆组件1中的连接杆2的形状可以有多种,举例而言,每个连接杆12可以呈直线状,如图1中所示的连接杆21。连接杆2也可以呈曲线状,例如,连接杆2根据各个谐振腔之间的连接通路向左或者右弯曲,如图2所示的连接杆22。或者,该连接杆2还可以呈两头大中间小或者两头小中间大的形状,如图3中所示的连接杆23和连接杆24。此外,每个连接杆2在竖直方向上,还可以上下弯曲,弯曲处可以是曲线光滑过渡,也可以是折线过渡。例如,如图4所示的连接杆25,连接杆25的中间部分均位于谐振杆10的下部,连接杆25的两端则向上弯曲后与谐振杆10的顶部相连。如果是带圆盘的谐振杆,则连接杆25的两端还可以分别连接在两个谐振杆的圆盘的边缘处。另外,如图5所示,该连接杆还可以是包括主连接杆201和多个分连接杆202的树状结构,主连接杆201沿着多个谐振腔之间的通路延伸,分连接杆202则从主连接杆201分叉出来,将各个谐振腔内的谐振杆10进行连接到主连接杆201上。谐振杆组件1的连接杆2的形状结构可以多种多样,以上仅是列举了其中的几种,不构成对本发明的限制。实际应用的谐振杆组件1中,可以根据腔体滤波器的耦合、互调和功率等指标要求来选择连接杆的形状。该谐振杆组件1还包括至少一个耦合结构3,耦合结构3和谐振杆10一体成型,当然,在其他实施例中,耦合结构3和谐振杆10还可以通过焊接固定。举例而言,本实施例中的谐振杆组件1的耦合结构3包括第一耦合杆31,该第一耦合杆31包括一体连接的第一杆体310和第一耦合盘311,如图3所示。此外,本实施例的谐振杆组件1还包括第二耦合杆32,第二耦合杆32包括一体连接的第二杆体320和第二耦合盘321,第一耦合盘311和第二耦合盘321相对设置形成容性耦合,如图1、图2及图5所示。本实施例中的耦合结构3是一种容性耦合结构,当然,其还可以是感性耦合结构,例如,该耦合结构是一根连接该不相邻的两个谐振腔内的谐振杆的导电金属杆33,如图4和图7中所示的导电金属杆33,该导电金属杆33的两端分别与两个谐振腔内的谐振杆10连接。本发明实施例中的耦合结构3不限于以上提到的两种结构,还可以为其他形式和结构的耦合结构,均不构成对本发明的限制。
由于耦合结构3也与谐振杆10一体成型或者通过焊接成为一个整体,因而安装的时候无需再增加其它用于固定的零件,例如飞杆卡座等,能减少物料成本,并能通过减少零件种类及尺寸公差风险带来的指标不稳定。此外,在安装的时候可以与谐振杆组件1一起进行安装,不用单独再安装,因而能降低装配难度。
请参阅图6,本发明还提供了一种腔体滤波器,该腔体滤波器包括腔体4、谐振杆组件1以及封盖在腔体4上的盖板(图未示)。腔体4上设有隔离壁40,隔离壁40将腔体分隔成至少二个谐振腔41。请继续参阅图1,该谐振杆组件1包括至少二个谐振杆10,至少二个谐振杆10之间通过至少一个连接杆2固定连接,本实施例中,至少二个谐振杆10和至少一个连接杆2一体成型或者通过焊接固定成谐振杆组件1。谐振杆组件1安装在至少二个谐振腔41中,其中,至少二个谐振杆10分别安装在至少二个谐振腔41内。可以理解地,该腔体滤波器的腔体4内可以是包括一个谐振杆组件1,或者多个谐振杆组件1,或者还可以是既包括谐振杆组件1也包括单个谐振杆2,具体的形式根据腔体滤波器的实际需求来设定。
该谐振杆组件还包括至少一个耦合结构3,耦合结构3和谐振杆10一体成型或者焊接固定。举例而言,本实施例中的谐振杆组件1的耦合结构3包括第一耦合杆31,该第一耦合杆31包括一体连接的第一杆体310和第一耦合盘311,本实施例的谐振杆组件1还包括第二耦合杆32,第二耦合杆32包括一体连接的第二耦杆体320和第二耦合盘321,第一耦合盘311和第二耦合盘321相对设置形成容性耦合,如图1和图2以及图8所示。
在另一实施例中,谐振杆组件1的耦合结构3包括第一耦合杆31,该第一耦合杆31包括一体连接的第一杆体310和第一耦合盘311,此外,该腔体滤波器4还包括至少一单体谐振杆11,单体谐振杆11包括第三耦合杆34,第三耦合杆34包括一体连接的第三杆体340和第三耦合盘341,第一耦合盘311和第三耦合盘341相对设置形成容性耦合,如图6所示。
第一耦合杆第二耦合杆第一耦合杆第二耦合杆该耦合结构3也可以是一根连接该不相邻的两个谐振腔内的谐振杆10的导电金属杆33,该导电金属杆33的两端分别连接两个谐振杆10,如图7所示。
谐振杆组件1通过螺钉固定在腔体的底面上。具体而言,腔体的底面上设有安装孔,用于与螺钉配合将谐振杆组件1固定于腔体的底面上。安装孔可以直接设置在谐振腔41底面上,也可以在谐振腔41底面上设置安装台,再在安装台上设置安装孔,通过在谐振腔41底面上设置安装台,可以在不加厚腔体底面的情况下,增加安装孔的轴向高度,使得螺钉进入腔体底面的深度更大,进而使得谐振杆10与谐振腔41底面的接触更加可靠。
本发明的腔体滤波器由于其谐振杆组件1通过一体成型或者焊接等方式形成了一个整体,使得装配定位精确,具有可靠的指标稳定性。
本发明还提供了一种通信设备,该通信设备包括腔体滤波器,该腔体滤波器用于用于对通信信号进行频率选择。请继续参阅图6,该腔体滤波器包括腔4、谐振杆组件1以及封盖在腔体上的盖板。腔体4上设有隔离壁40,隔离壁40将腔体4分隔成多个谐振腔41。请再参阅图1,该谐振杆组件1包括至少二个谐振杆10,至少二个谐振杆10之间通过至少一个连接杆2固定连接。本实施例中,至少二个谐振杆10和至少一个连接杆2一体成型或者通过焊接固定成谐振杆组件1。谐振杆组件1安装在至少二个谐振腔41中,其中,至少二个谐振杆10分别安装在至少二个谐振腔41内。
其中,该通信设备中的谐振杆组件1还包括至少一个耦合结构3,该耦合结构3包括第一耦合杆31,该第一耦合杆31包括一体连接的第一杆体310和第一耦合盘311,此外,该腔体滤波器4还包括至少一单体谐振杆11,单体谐振杆11包括第三耦合杆34,第三耦合杆34包括一体连接的第三杆体340和第三耦合盘341,第一耦合盘311和第三耦合盘341相对设置形成容性耦合,如图6所示。
请再参阅图1和图8,在另一实施例中,该通信设备中的谐振杆组件1的耦合结构3包括第一耦合杆31,该第一耦合杆31包括一体连接的第一杆体310和第一耦合盘311,本实施例的谐振杆组件1还包括第二耦合杆32,第二耦合杆32包括一体连接的第二杆体320和第二耦合盘321,第一耦合盘311和第二耦合盘321相对设置形成容性耦合。
该耦合结构3也可以是一根连接该不相邻的两个谐振腔内的谐振杆10的导电金属杆33,该导电金属杆33的两端分别连接两个谐振杆10,如图7所示。
谐振杆10通过螺钉固定在谐振腔41的底面上。具体而言,谐振腔41的底面上设有安装孔,用于与螺钉配合将谐振杆10固定于谐振腔41的底面上。安装孔可以直接设置在谐振腔41底面上,也可以在谐振腔41底面上设置安装台,再在安装台上设置安装孔,通过在腔体底面上设置安装台,可以在不加厚腔体底面的情况下,增加安装孔的轴向高度,使得螺钉进入腔体底面的深度更大,进而使得谐振杆10与谐振腔41底面的接触更加可靠。
本发明的通信设备可为双工器、单工器、分路器、合路器或塔顶放大器。腔体滤波器作为本实施例中的通信设备的基本结构部件,例如,双工器是由两个腔体滤波器在双工器的接收端和发送端构成,实现收发信号的滤波功能;而合路器则是由两个腔体滤波器合并构成一个合路来实现的,对于塔顶放大器同样以腔体滤波器作为基本结构部件,在此不作出一一举例。 本发明的通信设备由于使用以本发明的腔体滤波器作为基本结构部件,因而具有可靠的指标稳定性。
本发明还提供了一种射频拉远设备,该射频拉远设备包括射频收发机模块01、功放模块02以及上述腔体滤波器03,射频收发机模块01与功放模块02连接,功放模块02与腔体滤波器03连接。
如图9所示,RRU 工作在下行时隙时,来自射频收发机模块01两个通道的发射信号通过功放模块02进入腔体滤波器03,腔体滤波器03对发射信号完成滤波,然后功率合成后发射到天线口。RRU 工作在上行时隙时,从天线口接收到的信号通过腔体滤波器03滤波后进入功放模块02,再经功放模块02放大后输出给射频收发机模块01对应的接收通道。
另外,本发明还提供了一种信号收发装置,该信号收发装置包括接收天线001、腔体滤波器002、射频低噪声放大器003、环行器004、合路器005、射频功率放大器006以及发射天线007。其中,腔体滤波器002是上述任一实施例中的腔体滤波器。
请参阅图10,腔体滤波器002与接收天线001相连接,并对接收信号进行滤波。射频低噪声放大器003与腔体滤波器002的信号输出端连接。环行器004与低噪声放大器003的信号输出端连接。合路器005与环行器004连接。射频功率放大器006的输入端与合路器005的信号输出端相连接,合路器005的输出端与腔体滤波器002连接。发射天线007接收腔体滤波器的输出信号并将信号发射。
请参阅图11,本发明还提供了一种塔顶放大器,该塔顶放大器包括低噪声放大器和带通腔体滤波器,该带通腔体滤波器即为上述腔体滤波器。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种谐振杆组件,其特征在于,包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
  2. 根据权利要求1所述的谐振杆组件,其特征在于,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
  3. 根据权利要求1所述的谐振杆组件,其特征在于,还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
  4. 根据权利要求2所述的谐振杆组件,其特征在于,所述耦合结构包括第一耦合杆,所述第一耦合杆包括一体连接的第一杆体和设置在所述第一杆体的端部的第一耦合盘。
  5. 根据权利要求4所述的谐振杆组件,其特征在于,所述耦合结构还包括第二耦合杆,所述第二耦合杆包括一体连接的第二杆体和设置在所述第二杆体的端部的第二耦合盘,所述第一耦合盘和第二耦合盘相对设置形成容性耦合。
  6. 根据权利要求5所述的谐振杆组件,其特征在于,所述耦合结构是一导电金属杆,所述导电金属杆的两端分别与两个所述谐振杆连接。
  7. 一种腔体滤波器,其特征在于,包括腔体、安装在所述腔体内的谐振杆组件以及封盖在所述腔体上的盖板;
    所述腔体上设有隔离壁,所述隔离壁将所述腔体分隔成至少二个谐振腔;
    所述谐振杆组件包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
  8. 根据权利要求7所述的谐振杆组件,其特征在于,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
  9. 根据权利要求7所述的腔体滤波器,其特征在于,所述谐振杆组件还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
  10. 根据权利要求9所述的腔体滤波器,其特征在于,所述耦合结构包括第一耦合杆,所述第一耦合杆包括一体连接的第一杆体和设置在所述第一杆体的端部的第一耦合盘。
  11. 根据权利要求10所述的腔体滤波器,其特征在于,所述耦合结构还包括第二耦合杆,所述第二耦合杆包括一体连接的第二杆体和设置在所述第二杆体的端部的第二耦合盘,所述第一耦合盘和第二耦合盘相对设置形成容性耦合。
  12. 根据权利要求10所述的腔体滤波器,其特征在于,所述腔体滤波器还包括至少一单体谐振杆,所述单体谐振杆包括第三耦合杆,所述第三耦合杆包括一体连接的第三杆体和设置在所述第三杆体的端部的第三耦合盘,所述第一耦合盘和第三耦合盘相对设置形成容性耦合。
  13. 根据权利要求9所述的腔体滤波器,其特征在于,所述耦合结构是一导电金属杆,所述导电金属杆的两端分别与两个所述谐振杆连接。
  14. 根据权利要求7所述的腔体滤波器,其特征在于,所述谐振杆组件通过螺钉固定在所述腔体的底面上。
  15. 根据权利要求14所述的腔体滤波器,其特征在于,所述谐振腔的底面上设有安装孔,用于与所述螺钉配合将所述谐振杆组件固定于所述腔体的底面上。
  16. 一种通信设备,其特征在于,包括用于对通信信号进行频率选择的腔体滤波器;
    所述腔体滤波器包括腔体、安装在所述腔体内的谐振杆组件以及封盖在所述腔体上的盖板,所述腔体上设有隔离壁,所述隔离壁将所述腔体分隔成至少二个谐振腔,所述谐振杆组件包括至少二个谐振杆,所述至少二个谐振杆之间通过至少一个连接杆固定连接。
  17. 根据权利要求16所述的通信设备,其特征在于,所述至少二个谐振杆和所述至少一个连接杆一体成型或者通过焊接固定成所述谐振杆组件。
  18. 根据权利要求17所述的通信设备,其特征在于,所述谐振杆组件还包括至少一耦合结构,所述耦合结构设置在一对谐振杆之间,所述耦合结构和所述谐振杆一体成型或焊接固定。
  19. 根据权利要求18所述的通信设备,其特征在于,所述谐振杆组件通过螺钉固定在所述腔体的底面上。
  20. 根据权利要求19所述的通信设备,其特征在于,所述通信设备为双工器、单工器、分路器、合路器或者塔顶放大器。
PCT/CN2015/099713 2015-12-30 2015-12-30 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备 WO2017113139A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/099713 WO2017113139A1 (zh) 2015-12-30 2015-12-30 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备
CN201580079840.4A CN107615577B (zh) 2015-12-30 2015-12-30 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099713 WO2017113139A1 (zh) 2015-12-30 2015-12-30 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备

Publications (1)

Publication Number Publication Date
WO2017113139A1 true WO2017113139A1 (zh) 2017-07-06

Family

ID=59224130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099713 WO2017113139A1 (zh) 2015-12-30 2015-12-30 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备

Country Status (2)

Country Link
CN (1) CN107615577B (zh)
WO (1) WO2017113139A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111786069B (zh) * 2019-04-04 2021-09-21 上海诺基亚贝尔股份有限公司 谐振器和滤波器
CN112436255B (zh) * 2020-10-26 2021-10-26 华信咨询设计研究院有限公司 一种抗5g基站干扰滤波器
CN113300064A (zh) * 2021-04-27 2021-08-24 大富科技(安徽)股份有限公司 混合腔体、滤波器和通信基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373270A (en) * 1993-12-06 1994-12-13 Radio Frequency Systems, Inc. Multi-cavity dielectric filter
CN201134486Y (zh) * 2007-12-27 2008-10-15 奥雷通光通讯设备(上海)有限公司 含长方体式谐振柱的梳状线腔体滤波器
CN202695684U (zh) * 2012-07-16 2013-01-23 苏州市大富通信技术有限公司 一种腔体滤波器
CN103633401A (zh) * 2012-08-24 2014-03-12 鼎桥通信技术有限公司 一种宽带腔体滤波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544658A (zh) * 2012-01-10 2012-07-04 深圳市大富科技股份有限公司 一种腔体滤波器及腔体滤波器的交叉耦合结构
CN203166049U (zh) * 2013-01-21 2013-08-28 深圳市海纳电讯设备有限公司 滤波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373270A (en) * 1993-12-06 1994-12-13 Radio Frequency Systems, Inc. Multi-cavity dielectric filter
CN201134486Y (zh) * 2007-12-27 2008-10-15 奥雷通光通讯设备(上海)有限公司 含长方体式谐振柱的梳状线腔体滤波器
CN202695684U (zh) * 2012-07-16 2013-01-23 苏州市大富通信技术有限公司 一种腔体滤波器
CN103633401A (zh) * 2012-08-24 2014-03-12 鼎桥通信技术有限公司 一种宽带腔体滤波器

Also Published As

Publication number Publication date
CN107615577B (zh) 2020-03-24
CN107615577A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2017030336A1 (ko) 캐비티 필터
WO2017113139A1 (zh) 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备
WO2015090189A1 (zh) 双工器及具有该双工器的通信系统
WO2014026474A1 (zh) 射频拉远单元设备及其组合件
CN108539338B (zh) 一种基于开槽结构的四分之一模基片集成波导滤波器
WO2013044743A1 (zh) 通信腔体器件及其椭圆函数型低通滤波通路
WO2014075628A1 (zh) 一种可调谐耦合装置及射频通信装置
WO2009157672A2 (ko) Rf 필터의 공진기 제조 방법 및 그 공진기를 구비한 rf 필터
CN201859933U (zh) Ka波段E面纵向膜片加载波导滤波器
CN107251314A (zh) 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
CN112821021B (zh) 一种薄板焊接式小型滤波器及其制作方法
WO2016106635A1 (zh) 腔体滤波器、双工器、信号收发装置、射频拉远设备和塔顶放大器
CN216120688U (zh) 一种三频段合路器
CN207925641U (zh) 小型化的Ka频段功率合成模块
CN217063733U (zh) 一种射频发送和接收结构体
CN107615572A (zh) 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
CN202662753U (zh) 一种gsm紧凑型滤波器
CN212257635U (zh) 设有屏蔽孔的介质滤波器耦合转换结构及通信设备
CN215119198U (zh) 一种超宽频通用合路器
CN208272091U (zh) 一种交叉耦合滤波器
WO2017113166A1 (zh) 腔体滤波器、盖板及其压铆螺牙套
WO2020014980A1 (zh) 一种交叉耦合结构及腔体滤波器
CN105337010A (zh) 一种新型低互调双脊波导环行器/隔离器
CN111740189B (zh) 设有屏蔽孔的介质滤波器耦合转换结构及通信设备
WO2013135206A1 (zh) 腔体滤波器、功放模块及信号收发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911768

Country of ref document: EP

Kind code of ref document: A1