WO2017112967A1 - Dual-fuel-brennkraftmaschine - Google Patents

Dual-fuel-brennkraftmaschine Download PDF

Info

Publication number
WO2017112967A1
WO2017112967A1 PCT/AT2016/060125 AT2016060125W WO2017112967A1 WO 2017112967 A1 WO2017112967 A1 WO 2017112967A1 AT 2016060125 W AT2016060125 W AT 2016060125W WO 2017112967 A1 WO2017112967 A1 WO 2017112967A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
dual
sensor
gas
Prior art date
Application number
PCT/AT2016/060125
Other languages
English (en)
French (fr)
Inventor
Michael Hillebrecht
Dino Imhof
Georg Tinschmann
Original Assignee
Ge Jenbacher Gmbh & Co Og
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Jenbacher Gmbh & Co Og filed Critical Ge Jenbacher Gmbh & Co Og
Priority to EP16820150.7A priority Critical patent/EP3411576A1/de
Priority to US16/061,256 priority patent/US20190032582A1/en
Publication of WO2017112967A1 publication Critical patent/WO2017112967A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • F02D19/105Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous operating in a special mode, e.g. in a liquid fuel only mode for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/024Fluid pressure of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a dual-fuel internal combustion engine having the features of the preamble of claim 1 and a method for switching a dual-fuel internal combustion engine.
  • Dual-fuel internal combustion engines are typically operated in two modes of operation. A distinction is made between a mode of operation with primarily liquid fuel supply (“liquid operation” for short, “diesel operation” in the case of using diesel as a liquid fuel) and a mode of operation with primary gaseous fuel supply in which the liquid fuel serves as a pilot fuel for initiating combustion ( “Injection of liquid fuel is also referred to as pilot injection, for example liquid fuel is called diesel, it could also be heavy fuel oil or another auto-ignitable fuel, as” gas operation "or” pilot operation " Example of the gaseous fuel is called natural gas, other gaseous fuels such as biogas, etc. come into question.
  • pilot injection a small amount of liquid fuel is introduced as so-called pilot injection in a combustion chamber of a piston-cylinder unit.
  • the conditions prevailing at the time of injection ignite the introduced liquid fuel and ignite a mixture of gaseous fuel and air present in the combustion chamber of the piston-cylinder unit.
  • the amount of liquid fuel of a pilot injection is typically 0.5-5% of the total amount of energy supplied to the piston-cylinder unit in one operating cycle of the internal combustion engine.
  • the internal combustion engine is operated in pilot operation or in liquid operation.
  • the pilot operation of the internal combustion engine is referred to as a pilot mode
  • a liquid operation of the internal combustion engine is referred to as a liquid mode with respect to the control device.
  • the substitution rate indicates what proportion of the energy supplied to the internal combustion engine is supplied in the form of the gaseous fuel.
  • the aim is substitution rates between 98 and 99.5%. Such high substitution rates require a design of the internal combustion engine, for example, in terms of the compression ratio as it corresponds to that of a gas engine.
  • the object of the invention is to provide a generic dual-fuel internal combustion engine and a generic method for switching a dual-fuel internal combustion engine, in which the switching can be done without approaching the knock limit and thus at a lower mechanical load.
  • the invention is based on the following relationship: If there is more gas-air mixture in at least one combustion chamber, then increases the ignition delay of the pilot injection, it accumulates until the ignition more liquid fuel and the time course of the signals of the combustion sensor has a characteristic shape (eg, the so-called pre-maximum due to the injection of the liquid fuel is later and stronger). Thus, it can be checked during the switchover whether the actually introduced amount of gas-air mixture corresponds to the predicted (setpoint) quantity or whether corrections are required without it being necessary to approach the knocking limit.
  • the temporal course of the signals of the combustion sensor can, for. B. is then analyzed when (with respect to a time zero), a first threshold is reached or exceeded and how large a maximum of the signal in a predetermined time window (eg., From or shortly after the start of the injection of the liquid fuel to top dead center) after exceeding the first threshold value. Is the maximum within the considered time window z.
  • B. relatively late which is speed and load dependent, eg., At a speed of 1500 revolutions / minute and 100% load would be a maximum shortly before top dead center to call late
  • the substitution rate should be taken into account, e.g. For example, at a substitution rate of 80%, a relatively strong maximum will be expected, while at a substitution rate of 99%, a relatively weak maximum will be expected.
  • a time of the beginning of the injection of the liquid fuel can be used. This can be z. B. be the beginning of energization of an injector for the liquid fuel.
  • the deposited relationship can z. B. can be determined as follows (the determination can be made, for example, on a prototype of the series of internal combustion engine, the According to the invention, alternatively, the relationship in a stationary operation can be determined individually for each internal combustion engine):
  • the time of reaching or exceeding the first threshold and the size of the maximum is linked to the determined load, the specific speed and the determined substitution rate, whereby the relationship between the amount of gas / air and air is determined by the substitution rate for this load and speed. Mixture and the time course of the signal of the combustion sensor is made.
  • the switching of an internal combustion engine according to the invention is carried out so that at least in the predetermined time window, the time profile of the signals of the combustion sensor is determined and compared with the stored time course for this load and this speed. If the course is consistent (within certain tolerance limits), the controller knows that the actual amount of gas-air mixture matches the setpoint (or in other words, the actual substitution rate matches the setpoint). If the course deviates, it can take appropriate control measures to achieve the desired course.
  • the appropriate control measures may be a reduction or increase in the amount of liquid fuel injected, depending on the deviation.
  • a combustion sensor a knock sensor or a cylinder pressure sensor can be used.
  • a signal of the combustion sensor in a first crank angle range (for example -20 ° to 0 ° crank angle, where 0 ° corresponds to top dead center). This can be determined using the deposited relationship, the introduced amount of gas-air mixture.
  • a second, later crank angle range eg, 0 ° to 40 °
  • the signal of the combustion sensor may be used to detect knocking.
  • control device is designed to close from the time profile of the signals of the combustion sensor in the first crank angle range to a distance to a knock limit.
  • time course z. B. a maximum, which is earlier in the first crank angle range and is greater than expected, this shows that the distance to the knock limit is low.
  • the time of injection of the liquid fuel can be corrected accordingly (in the example given to late) to increase the distance to the knock limit.
  • an internal combustion engine has a plurality of combustion chambers.
  • the invention can be carried out individually for each cylinder, that is to say for each cylinder independently of the other cylinders.
  • the invention can preferably be used in a stationary internal combustion engine, for marine applications or mobile applications, such as so-called “non-road mobile machinery” (NRMM), preferably each designed as a reciprocating piston engine.
  • NRMM non-road mobile machinery
  • the internal combustion engine preferably has a multiplicity of combustion chambers with corresponding intake valves and injectors, and the control can be carried out individually for each combustion chamber. Invention will be discussed with reference to the figures.
  • Fig. 1 shows schematically an internal combustion engine according to the invention. It has here exemplary four combustion chambers B1 to B4, which injectors 11 to 14 liquid fuel - in this case diesel - can be fed. The intake valves for the gas-air mixture are not shown.
  • a central gas mixer GM is provided, which is connected to an air supply L and a gas reservoir G, such as a tank. Via a gas-air mixture supply R, the gas-air mixture produced in the central gas mixer GM is supplied to the combustion chambers B1 to B4. Downstream of the gas mixer GM is still a compressor V of a turbocharger provided (mixture-loaded internal combustion engine). The gas mixer GM could also be arranged after the compressor V in the air supply (air-charged internal combustion engine).
  • the number of combustion chambers B1 to B4 is purely exemplary.
  • FIG. 2a shows the time profile of a combustion sensor (here in the form of a cylinder pressure sensor for the cylinder pressure p in the combustion chamber of a selected piston-cylinder unit) over the entire crank angle range (CA - crank angle).
  • a combustion sensor here in the form of a cylinder pressure sensor for the cylinder pressure p in the combustion chamber of a selected piston-cylinder unit
  • Recognizable is the formation of a first maximum at a certain crank angle with a certain strength, which is due to the introduction of liquid fuel.
  • the first time window should be set so that this maximum can be detected.
  • Fig. 2b shows the course as in Fig. 2a but with a later and stronger first maximum (for comparison, dashed auxiliary lines at that crank angle and that cylinder pressure are shown, which position and strength of the first maximum of Fig. 2a correspond), which is a greater Zündverzug and thus close to a larger amount of gas in the gas-air mixture.
  • 2c shows the chronological progression of a combustion sensor in the form of a knock sensor (shown is an amplitude for structure-borne noise over the entire crank angle range.)
  • the formation of a first maximum which is due to the introduction of liquid fuel, should be apparent be set so that this maximum can be detected.
  • Fig. 2d shows the course as in Fig. 2c but with a later and stronger first maximum (for comparison, dashed lines at that crank angle and that cylinder pressure are shown, which position and strength of the first maximum of Fig. 2c correspond), which points to a greater Zündverzug and thus close to a larger amount of gas in the gas-air mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Dual-Fuel-Brennkraftmaschine mit zumindest einem Brennraum, wobei dem zumindest einen Brennraum ein Einlassventil für ein Gas-Luft-Gemisch und ein Injektor (I1 bis I4) für flüssigen Kraftstoff zugeordnet ist und einer Regeleinrichtung, welche in einem Umschaltmodus dazu ausgebildet ist, eine Umschaltung dadurch vorzunehmen, dass eine dem zumindest einen Brennraum durch das Gas-Luft-Gemisch zugeführte Energiemenge geändert wird und eine zugeführte Menge an flüssigem Kraftstoff und/oder ein Zeitpunkt der Einspritzung des flüssigen Kraftstoffs geändert wird, und einem Verbrennungssensor, dessen Signale charakteristisch sind für den im zumindest einen Brennraum stattfindenden Verbrennungsverlauf, wobei die Regeleinrichtung dazu ausgebildet ist, die Umschaltung unter Verwendung eines hinterlegten Zusammenhangs zwischen einem zeitlichen Verlauf der Signale des Verbrennungssensors und einer eingebrachter Menge an Gas-Luft-Gemisch vorzunehmen.

Description

Dual-Fuel-Brennkraftmaschine
Die vorliegende Erfindung betrifft eine Dual-Fuel-Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1 und ein Verfahren zum Umschalten einer Dual-Fuel-Brennkraftmaschine.
Dual-Fuel-Brennkraftmaschinen werden typischerweise in zwei Betriebsmodi betrieben. Dabei unterscheidet man einen Betriebsmodus mit primär flüssiger Kraftstoffzufuhr (kurz „Flüssigbetrieb"; im Falle der Verwendung von Diesel als flüssigem Kraftstoff „Dieselbetrieb" genannt) und einen Betriebsmodus mit primär gasförmiger Kraftstoffzufuhr, bei welchem der flüssige Kraftstoff als Pilotkraftstoff zum Initiieren der Verbrennung dient („Gasbetrieb", oder auch als„Pilotbetrieb" oder„Zündstrahlbetrieb" bezeichnet). Die Einspritzung des flüssigen Kraftstoffs wird auch als Piloteinspritzung bezeichnet. Als Beispiel für den flüssigen Kraftstoff sei Diesel genannt. Es könnte auch Schweröl oder ein anderer selbstzündfähiger Kraftstoff sein. Als Beispiel für den gasförmigen Kraftstoff sei Erdgas genannt. In Frage kommen noch andere gasförmige Kraftstoffe wie Biogas etc.
Im Pilotbetrieb wird eine geringe Menge an flüssigem Kraftstoff als sogenannte Piloteinspritzung in einen Brennraum einer Kolben-Zylindereinheit eingebracht. Durch die zum Einspritzzeitpunkt herrschenden Bedingungen entzündet sich der eingebrachte flüssige Kraftstoff und zündet ein im Brennraum der Kolben-Zylindereinheit vorliegendes Gemisch aus gasförmigem Kraftstoff und Luft. Die Menge an flüssigem Kraftstoff einer Piloteinspritzung beträgt typischerweise 0,5 - 5 % der gesamten, der Kolben- Zylindereinheit in einem Arbeitszyklus der Brennkraftmaschine zugeführten Energiemenge.
Zur Begriffsklärung wird definiert, dass die Brennkraftmaschine im Pilotbetrieb oder im Flüssigbetrieb betrieben wird. Bezüglich der Regeleinrichtung wird der Pilotbetrieb der Brennkraftmaschine als Pilotmodus bezeichnet, ein Flüssigbetrieb der Brennkraftmaschine wird bezüglich der Regeleinrichtung als Flüssigmodus bezeichnet. Daneben gibt es noch einen Mischbetrieb. Die Substitutionsrate gibt an, welcher Anteil der der Brennkraftmaschine zugeführten Energie in Form des gasförmigen Kraftstoffes zugeführt wird. Angestrebt werden Substitutionsraten zwischen 98 und 99,5 %. Derart hohe Substitutionsraten erfordern eine Auslegung der Brennkraftmaschine beispielsweise hinsichtlich des Verdichtungsverhältnisses wie sie der eines Gasmotors entspricht. Die teilweise gegensätzlichen Anforderungen an die Brennkraftmaschine für einen Pilotbetrieb und einen Flüssigbetrieb führen zu Kompromissen in der Auslegung, beispielsweise hinsichtlich des Kompressionsverhältnisses. Die US 7,313,673 beschreibt eine gattungsgemäße Brennkraftmaschine und ein gattungsgemäßes Verfahren. Die Umschaltung erfolgt unter Auswertung der Signale eines Klopfsensors so nahe wie möglich an der Klopfgrenze, damit die Umschaltung so schnell wie möglich erfolgen kann. Die Annäherung an die Klopfgrenze ist erforderlich, weil während der Umschaltung (anders als außerhalb der Umschaltung) die einem Brennraum zugeführte Menge an Gas-Luft-Gemisch nur als vorausberechneter Wert bekannt ist, aber keine Informationen über Abweichungen vorliegen. Dies gilt insbesondere, wenn kein Sensor für den Zylinderdruckverlauf vorgesehen ist.
Aufgabe der Erfindung ist die Bereitstellung einer gattungsgemäßen Dual-Fuel- Brennkraftmaschine und eines gattungsgemäßen Verfahrens zum Umschalten einer Dual-Fuel-Brennkraftmaschine, bei welchen die Umschaltung ohne Annäherung an die Klopfgrenze und damit bei geringerer mechanischer Belastung erfolgen kann.
Diese Aufgabe wird durch eine Dual-Fuel-Brennkraftmaschine mit den Merkmalen des Anspruchs 1 und ein Verfahren zum Umschalten einer Dual-Fuel-Brennkraftmaschine mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen definiert.
Bei der Erfindung ist keine Annäherung an die Klopfgrenze erforderlich und es tritt eine geringere mechanische Belastung auf. Es ist eine schnelle und ruhige Umschaltung möglich. Über den hinterlegten Zusammenhang zwischen
- einem zeitlichen Verlauf der Signale des Verbrennungssensors und
- einer eingebrachter Menge an Gas-Luft-Gemisch kann nämlich überprüft werden, ob die eingebrachte Menge an Gas-Luft-Gemisch mit dem Sollwert übereinstimmt.
Die Erfindung beruht auf folgendem Zusammenhang: Befindet sich mehr Gas-Luft- Gemisch im zumindest einen Brennraum, dann erhöht sich der Zündverzug der Piloteinspritzung, es sammelt sich bis zur Entzündung mehr flüssiger Kraftstoff an und der zeitliche Verlauf der Signale des Verbrennungssensors hat eine charakteristische Form (z. B. liegt das auf die Einspritzung des flüssigen Kraftstoffes zurückzuführende sogenannte Vormaximum später und ist stärker). So kann während der Umschaltung überprüft werden, ob die tatsächlich eingebrachte Menge an Gas-Luft-Gemisch der vorausberechneten (Soll-) Menge entspricht oder ob Korrekturen erforderlich sind, ohne dass ein Herantasten an die Klopfgrenze notwendig wäre.
Der zeitliche Verlauf der Signale des Verbrennungssensors kann z. B. daraufhin analysiert werden, wann (in Bezug auf einen zeitlichen Nullpunkt) ein erster Schwellwert erreicht oder überschritten wird und wie groß ein Maximum des Signals in einem vorbestimmten Zeitfenster (z. B. ab oder kurz nach Beginn der Einspritzung des flüssigen Kraftstoffes bis zum oberen Totpunkt) nach Überschreiten des ersten Schwellwertes ist. Liegt das Maximum innerhalb des betrachteten Zeitfensters z. B. relativ spät (das ist drehzahl- und lastabhängig, z. B. bei einer Drehzahl von 1500 Umdrehungen/Minute und 100 % Last wäre ein Maximum kurz vor dem oberen Totpunkt als spät zu bezeichnen) und/oder ist es relativ stark, bedeutet dies, das die Menge an flüssigem Kraftstoff hoch ist. Bei der Beurteilung der Stärke des Maximums ist sollte die Substitutionsrate berücksichtigt werden, z. B. wird bei einer Substitutionsrate von 80 % ein relativ starkes Maximum zu erwarten sein, während bei einer Substitutionsrate von 99 % ein relativ schwaches Maximum zu erwarten sein wird.
Als zeitlicher Nullpunkt kann z. B. ein Zeitpunkt des Beginns der Einspritzung des flüssigen Kraftstoffs verwendet werden. Dies kann z. B. der Beginn einer Bestromung eines Injektors für den flüssigen Kraftstoff sein.
Der hinterlegte Zusammenhang kann z. B. wie folgt ermittelt werden (die Ermittlung kann z. B. an einem Prototypen der Serie der Brennkraftmaschine erfolgen, die erfindungsgemäß ausgebildet sein soll, alternativ kann individuell für jede Brennkraftmaschine der Zusammenhang in einem stationären Betrieb ermittelt werden):
- Es werden in einem stationären Betrieb (d. h. außerhalb einer Umschaltung) eine bestimmte Last, eine bestimmte Drehzahl und eine bestimmte Substitutionsrate eingestellt (z. B. Last 100 %, Drehzahl 1500 Umdrehungen/Minute, Substitutionsrate = 80%).
- Es wird der zeitliche Verlauf der Signale des Verbrennungssensors zumindest im vorbestimmten Zeitfenster ermittelt.
- Es wird betrachtet, wann in dem vorbestimmten Zeitfenster ein erster Schwellwert erreicht oder überschritten wurde und wie groß ein Maximum des Signals im vorbestimmten Zeitfenster ist.
- Der Zeitpunkt des Erreichens oder Überschreitens des ersten Schwellwerte und die Größe des Maximums wird verknüpft mit der bestimmten Last, der bestimmten Drehzahl und der bestimmten Substitutionsrate, wodurch für diese Last und diese Drehzahl über die Substitutionsrate der Zusammenhang zwischen der Menge an Gas-Luft-Gemisch und dem zeitlichen Verlauf des Signals des Verbrennungssensors hergestellt ist.
- Dieser Vorgang wird für verschiedene Lasten, Drehzahlen und Substitutionsraten wiederholt, wodurch sich der allgemeine Zusammenhang zwischen der Menge an
Gas-Luft-Gemisch und dem zeitlichen Verlauf des Signals des Verbrennungssensors ergibt.
Die Umschaltung einer erfindungsgemäßen Brennkraftmaschine wird so vorgenommen, dass zumindest im vorbestimmten Zeitfenster der zeitliche Verlauf der Signale des Verbrennungssensors ermittelt und mit dem hinterlegten zeitlichen Verlauf für diese Last und diese Drehzahl verglichen wird. Stimmt der Verlauf (innerhalb gewisser Toleranzgrenzen) überein, weiß die Regeleinrichtung, dass die tatsächliche Menge an Gas-Luft-Gemisch mit dem Sollwert übereinstimmt (oder mit andern Worten: die tatsächliche Substitutionsrate mit dem Sollwert übereinstimmt). Weicht der Verlauf ab, so kann sie geeignete Regelmaßnahmen treffen, um den gewünschten Verlauf zu erreichen. Die geeigneten Regelmaßnahmen können je nach Abweichung eine Reduzierung oder Steigerung der eingespritzten Menge an flüssigem Kraftstoff sein. Als Verbrennungssensor kann ein Klopfsensor oder ein Zylinderdrucksensor eingesetzt werden.
Es kann vorgesehen sein, in einem ersten Kurbelwinkelbereich (z. B. -20° bis 0° Kurbelwinkel, wobei 0° dem oberen Totpunkt entspricht) ein Signal des Verbrennungssensors zu erfassen und zu analysieren. Daraus kann unter Verwendung des hinterlegten Zusammenhangs die eingebrachte Menge an Gas-Luft-Gemisch ermittelt werden. In einem zweiten, späteren Kurbelwinkelbereich (z. B. 0° bis 40°) kann das Signal des Verbrennungssensors verwendet werden, um Klopfen zu detektieren.
Es kann vorgesehen sein, dass die Regeleinrichtung dazu ausgebildet ist, aus dem zeitlichen Verlauf der Signale des Verbrennungssensor im ersten Kurbelwinkelbereich auf einen Abstand zu einer Klopfgrenze zu schließen. Weist der zeitliche Verlauf z. B. ein Maximum auf, welches früher im ersten Kurbelwinkelbereich liegt und größer ist als erwartet, zeigt dies, dass der Abstand zur Klopfgrenze gering ist. Der Zeitpunkt der Einspritzung des flüssigen Kraftstoffs kann entsprechend korrigiert werden (im gegebenen Beispiel nach spät) um den Abstand zur Klopfgrenze zu vergrößern.
Üblicherweise weist eine Brennkraftmaschine eine Vielzahl von Brennräumen auf. Die Erfindung kann zylinderindividuell, das heißt für jeden Zylinder unabhängig von den anderen Zylindern, durchgeführt werden.
Es kann zylinderindividuell eine zugeführte Menge an flüssigem Kraftstoff und der Verbrennungsablauf überprüft werden.
Die Erfindung kann bevorzugt bei einer stationären Brennkraftmaschine, für Marineanwendungen oder mobile Anwendungen wie sogenannte„Non-Road-Mobile- Machinery" (NRMM) - vorzugsweise jeweils als Hubkolbenmaschine ausgebildet - eingesetzt werden. Die Brennkraftmaschine kann als mechanischer Antrieb dienen, z. B. zum Betreiben von Verdichteranlagen oder mit einem Generator zu einem Genset zur Erzeugung elektrischer Energie gekoppelt sein. Die Brennkraftmaschine weist bevorzugt eine Vielzahl von Brennräumen mit entsprechender Einlassventilen und Injektoren auf. Die Regelung kann individuell für jeden Brennraum erfolgen. Erfindung wird anhand der Figuren diskutiert.
Fig. 1 zeigt schematisch eine erfindungsgemäße Brennkraftmaschine. Sie verfügt über hier exemplarisch vier Brennräume B1 bis B4, welchen über Injektoren 11 bis 14 flüssiger Kraftstoff - in diesem Fall Diesel - zuführbar ist. Die Einlassventile für das Gas-Luft-Gemisch sind nicht gezeigt.
Zur Herstellung des Gas-Luft-Gemisches ist ein zentraler Gasmischer GM vorgesehen, welcher mit einer Luftzufuhr L und einem Gasreservoir G, wie beispielsweise ein Tank, verbunden ist. Über eine Gas-Luft-Gemisch-Zufuhr R wird das in dem zentralen Gasmischer GM hergestellte Gas-Luft-Gemisch den Brennräumen B1 bis B4 zugeführt. Dem Gasmischer GM nachgeschaltet ist noch ein Verdichter V eines Turboladers vorgesehen (gemischaufgeladene Brennkraftmaschine). Der Gasmischer GM könnte aber auch nach dem Verdichter V in der Luftzufuhr angeordnet sein (luftaufgeladene Brennkraftmaschine). Die Anzahl der Brennräume B1 bis B4 ist rein beispielhaft.
Die Erfindung kann bei Dual-Fuel-Brennkraftmaschinen mit 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 Brennräumen zum Einsatz kommen. Fig. 2a zeigt den zeitlichen Verlauf eines Verbrennungssensor (hier in Form eines Zylinderdrucksensors für den Zylinderdruck p im Brennraum einer ausgewählten Kolben-Zylinder-Einheit) über den gesamten Kurbelwinkelbereich (CA - crank angle).
Erkennbar ist die Ausbildung eines ersten Maximums bei einem bestimmten Kurbelwinkel mit einer bestimmten Stärke, welches auf die Einbringung von flüssigen Kraftstoff zurückzuführen ist. Das erste Zeitfenster sollte so gelegt sein, dass dieses Maximum erfasst werden kann.
Fig. 2b zeigt den Verlauf wie in Fig. 2a aber mit einem späteren und stärkeren ersten Maximum (zum Vergleich sind strichlierte Hilfslinien bei jenem Kurbelwinkel und jenem Zylinderdruck eingezeichnet, welche Lage und Stärke des ersten Maximums der Fig. 2a entsprechen), was auf eine größeren Zündverzug und damit auf eine größere Menge an Gas im Gas-Luft-Gemisch schließen lässt. Fig. 2c zeigt den zeitlichen Verlauf eines Verbrennungssensors in Form eines Klopfsensors (gezeigt ist eine Amplitude für den Körperschall über den gesamten Kurbelwinkelbereich. Erkennbar ist auch hier die Ausbildung eines ersten Maximums, welches auf die Einbringung von flüssigen Kraftstoff zurückzuführen ist. Das erste Zeitfenster sollte so gelegt sein, dass dieses Maximum erfasst werden kann.
Fig. 2d zeigt den Verlauf wie in Fig. 2c aber mit einem späteren und stärkeren ersten Maximum (zum Vergleich sind strichlierte Hilfslinien bei jenem Kurbelwinkel und jenem Zylinderdruck eingezeichnet, welche Lage und Stärke des ersten Maximums der Fig. 2c entsprechen), was auf eine größeren Zündverzug und damit auf eine größere Menge an Gas im Gas-Luft-Gemisch schließen lässt.

Claims

Patentansprüche:
Dual-Fuel-Brennkraftmaschine mit zumindest einem Brennraum, wobei dem zumindest einen Brennraum ein Einlassventil für ein Gas-Luft-Gemisch und ein Injektor (11 bis 14) für flüssigen Kraftstoff zugeordnet ist und einer Regeleinrichtung, welche in einem Umschaltmodus dazu ausgebildet ist, eine Umschaltung dadurch vorzunehmen, dass
- eine dem zumindest einen Brennraum durch das Gas-Luft-Gemisch zugeführte Energiemenge geändert wird und
- eine zugeführte Menge an flüssigem Kraftstoff und/oder ein Zeitpunkt der Einspritzung des flüssigen Kraftstoffs geändert wird,
und einem Verbrennungssensor, dessen Signale charakteristisch sind für den im zumindest einen Brennraum stattfindenden Verbrennungsverlauf,
dadurch gekennzeichnet, dass die Regeleinrichtung dazu ausgebildet ist, die Umschaltung unter Verwendung eines hinterlegten Zusammenhangs zwischen
- einem zeitlichen Verlauf der Signale des Verbrennungssensors und
- einer eingebrachter Menge an Gas-Luft-Gemisch
vorzunehmen.
Dual-Fuel-Brennkraftmaschine nach Anspruch 1 , wobei der Verbrennungssensor ein Klopfsensor ist.
Dual-Fuel-Brennkraftmaschine nach Anspruch 1 , wobei der Verbrennungssensor ein Zylinderdrucksensor ist.
Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüchen, wobei die Regeleinrichtung dazu ausgebildet ist, in einem ersten Kurbelwinkelbereich ein Signal des Verbrennungssensors zu erfassen und daraus auf die eingebrachte Menge an Gas-Luft-Gemisch rückzuschließen.
Dual-Fuel-Brennkraftmaschine nach dem vorangehenden Anspruch, wobei die Regeleinrichtung dazu ausgebildet ist, in einem zweiten, späteren Kurbelwinkelbereich ein Signal des Verbrennungssensors zu erfassen und damit ein Klopfen zu detektieren.
Dual-Fuel-Brennkraftmaschine nach wenigstens einem der beiden vorangehenden Ansprüche, wobei die Regeleinrichtung dazu ausgebildet ist, aus dem zeitlichen Verlauf der Signale des Verbrennungssensor im ersten Kurbelwinkelbereich auf einen Abstand zu einer Klopfgrenze zu schließen.
Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüchen, wobei eine Vielzahl von Kolben-Zylinder-Einheiten mit Brennräumen vorgesehen ist und die Regeleinrichtung dazu ausgebildet ist, zylinderindividuell eine zugeführte Menge an flüssigem Kraftstoff und den Verbrennungsablauf zu überprüfen.
Verfahren zum Umschalten einer Dual-Fuel-Brennkraftmaschine, bei welchem Umschalten
- eine zumindest einem Brennraum durch ein Gas-Luft-Gemisch zugeführte
Energiemenge geändert wird und
- eine zugeführte Menge an flüssigem Kraftstoff und/oder ein Zeitpunkt einer Einspritzung des flüssigen Kraftstoffs geändert wird,
dadurch gekennzeichnet, dass das Umschalten unter Verwendung eines hinterlegten Zusammenhangs zwischen
- einem zeitlichen Verlauf der Signale eines Verbrennungssensors und
- einer eingebrachter Menge an Gas-Luft-Gemisch
erfolgt.
PCT/AT2016/060125 2015-12-29 2016-12-14 Dual-fuel-brennkraftmaschine WO2017112967A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16820150.7A EP3411576A1 (de) 2015-12-29 2016-12-14 Dual-fuel-brennkraftmaschine
US16/061,256 US20190032582A1 (en) 2015-12-29 2016-12-14 Dual-fuel combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA51109/2015 2015-12-29
ATA51109/2015A AT518121A1 (de) 2015-12-29 2015-12-29 Dual-Fuel-Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2017112967A1 true WO2017112967A1 (de) 2017-07-06

Family

ID=57708239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2016/060125 WO2017112967A1 (de) 2015-12-29 2016-12-14 Dual-fuel-brennkraftmaschine

Country Status (4)

Country Link
US (1) US20190032582A1 (de)
EP (1) EP3411576A1 (de)
AT (1) AT518121A1 (de)
WO (1) WO2017112967A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204881A1 (en) * 2017-05-05 2018-11-08 Woodward, Inc. Dual fuel combustion intensity
WO2019213064A1 (en) * 2018-04-30 2019-11-07 Woodward, Inc. Acoustic knock detection in dual-fuel engines
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982246B2 (en) * 2020-11-23 2024-05-14 Transportation Ip Holdings, Llc Methods and systems for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007325A1 (de) * 2008-02-02 2009-08-13 Man Diesel Se Prüfverfahren für Zündfluid-Injektoren
WO2012057691A1 (en) * 2010-10-29 2012-05-03 Afv Alternative Fuel Vehicle Dual fuel engine system
US20140373822A1 (en) * 2013-06-20 2014-12-25 Cummins Inc. System and method for a self-adjusting dual fuel gas control
CA2889605A1 (en) * 2015-04-23 2015-06-24 Westport Power Inc. Detecting and mitigating abnormal combustion characteristics
US20150219027A1 (en) * 2014-02-06 2015-08-06 Cummins Inc. Cylinder pressure based control of dual fuel engines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913673B2 (en) * 2009-06-30 2011-03-29 Clean Air Power, Inc. Method and apparatus for controlling liquid fuel delivery during transition between modes in a multimode engine
IT1396414B1 (it) * 2009-10-14 2012-11-23 Magneti Marelli Spa Metodo di controllo della detonazione in un motore a combustione interna provvisto di un dispositivo di controllo della apertura delle valvole di aspirazione.
CN104066960B (zh) * 2011-11-22 2018-05-11 西港能源有限公司 一种给柔性燃料内燃机添加燃料的设备及方法
US9759145B2 (en) * 2015-08-21 2017-09-12 Ford Global Technologies, Llc Method and system for pre-ignition control
US10227934B2 (en) * 2015-09-29 2019-03-12 Cummins Inc. Dual-fuel engine combustion mode transition controls

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007325A1 (de) * 2008-02-02 2009-08-13 Man Diesel Se Prüfverfahren für Zündfluid-Injektoren
WO2012057691A1 (en) * 2010-10-29 2012-05-03 Afv Alternative Fuel Vehicle Dual fuel engine system
US20140373822A1 (en) * 2013-06-20 2014-12-25 Cummins Inc. System and method for a self-adjusting dual fuel gas control
US20150219027A1 (en) * 2014-02-06 2015-08-06 Cummins Inc. Cylinder pressure based control of dual fuel engines
CA2889605A1 (en) * 2015-04-23 2015-06-24 Westport Power Inc. Detecting and mitigating abnormal combustion characteristics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204881A1 (en) * 2017-05-05 2018-11-08 Woodward, Inc. Dual fuel combustion intensity
US10935449B2 (en) 2017-05-05 2021-03-02 Woodward, Inc. Dual fuel combustion intensity
WO2019213064A1 (en) * 2018-04-30 2019-11-07 Woodward, Inc. Acoustic knock detection in dual-fuel engines
CN112352093A (zh) * 2018-04-30 2021-02-09 伍德沃德有限公司 双燃料发动机的声学爆震检测
US10995683B2 (en) 2018-04-30 2021-05-04 Woodward, Inc. Acoustic knock detection in dual-fuel engines
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine
US11125180B2 (en) 2019-04-05 2021-09-21 Woodward, Inc. Auto-ignition control in a combustion engine

Also Published As

Publication number Publication date
EP3411576A1 (de) 2018-12-12
US20190032582A1 (en) 2019-01-31
AT518121A1 (de) 2017-07-15

Similar Documents

Publication Publication Date Title
DE102015206074B4 (de) Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
EP3015687B1 (de) Verfahren zur regelung eines dual-fuel-motors
EP3411576A1 (de) Dual-fuel-brennkraftmaschine
DE102006013041A1 (de) Steuergerät für einen Dieselmotor
DE102007013119A1 (de) Einspritzverfahren und zugehörige Verbrennungskraftmaschine
EP2772640B1 (de) Verfahren und Vorrichtung zum Betrieb eines Dieselmotors mit Emulsionskraftstoffen variabler Zusammensetzung
DE102012113141A1 (de) Steuersystem und Steuerverfahren eines Benzin-Direkteinspritzung-Verbrennungsmotors
DE102015122666A1 (de) Kraftstoffeinspritzsteuervorrichtung
DE102008036300B3 (de) Verfahren zur Steuerung einer Brennkraftmaschine in V-Anordnung
WO2013092188A1 (de) Verfahren und vorrichtung zur klopfregelung einer brennkraftmaschine
WO2013075965A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE112011105067T5 (de) Steuervorrichtung für eine Brennkraftmaschine
EP3414443B1 (de) Dual-fuel-brennkraftmaschine
DE112014003993B4 (de) Steuervorrichtung und Steuerverfahren für eine Brennkraftmaschine
DE102015221076A1 (de) Zuführeinrichtung zum Zuführen eines Brennstoffs in eine Vorkammer einer Brennkraftmaschine, Brennkraftmaschine mit einer solchen Zuführeinrichtung, und Verfahren zum Betreiben einer solchen Brennkraftmaschine
DE102004043528B4 (de) Verfahren zum Optimieren eines internen Direktstarts einer fremdgezündeten Brennkraftmaschine mit veränderlichem Verdichtungsverhältnis
DE102004046812B4 (de) Verbrennungsgeräusch und Momentstoss reduzierendes Brennstoffeinspritzsystem
DE102013214261B4 (de) Verfahren zur Steuerung einer Kraftstoff-Direkteinspritzung
AT517962B1 (de) Dual-Fuel-Brennkraftmaschine
AT518122B1 (de) Dual-Fuel-Brennkraftmaschine
DE102013009147B4 (de) Verfahren zum Regeln eines Drucks und Anordnung zum Regeln eines Drucks
WO2018108301A1 (de) Verfahren zum betreiben einer brennkraftmaschine sowie brennkraftmaschine
DE102016219864A1 (de) Verfahren und Vorrichtung zur Einspritzung eines Kühlfluids in einen Motor
DE112020001921T5 (de) Transiente steuervorrichtung und verfahren für einen zweistoffmotor
WO2010108777A1 (de) Verfahren zum betreiben einer brennkraftmaschine, steuereinrichtung für eine brennkraftmaschine und brennkraftmaschine mit direkteinspritzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016820150

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016820150

Country of ref document: EP

Effective date: 20180730