WO2017111391A1 - 글리세린으로부터 아크릴산의 제조방법 - Google Patents

글리세린으로부터 아크릴산의 제조방법 Download PDF

Info

Publication number
WO2017111391A1
WO2017111391A1 PCT/KR2016/014740 KR2016014740W WO2017111391A1 WO 2017111391 A1 WO2017111391 A1 WO 2017111391A1 KR 2016014740 W KR2016014740 W KR 2016014740W WO 2017111391 A1 WO2017111391 A1 WO 2017111391A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acrylic acid
catalyst
glycerin
oxygen
Prior art date
Application number
PCT/KR2016/014740
Other languages
English (en)
French (fr)
Inventor
김경수
최준선
김지연
천주영
조왕래
옥혜정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160139259A external-priority patent/KR102044428B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/762,868 priority Critical patent/US10435347B2/en
Priority to JP2018535802A priority patent/JP6553820B2/ja
Priority to EP16879258.8A priority patent/EP3339284B1/en
Priority to CN201680061727.8A priority patent/CN108137463B/zh
Publication of WO2017111391A1 publication Critical patent/WO2017111391A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a method for producing a high yield of acrylic acid by maintaining the activity of the catalyst for a long time using glycerin as a starting material.
  • the activity of the catalyst in particular the activity of the glycerin dehydration reaction catalyst, gradually decreases as the reaction progresses.
  • One of the main causes of the degradation of the catalyst activity is the loss of the catalytic activity point due to the deposition of coke-like carbon produced in the reaction. to be. Since the lowering of the catalyst leads to a lower yield of acrylic acid, which is a final product, commercial production of acrylic acid using glycerin requires a method capable of maintaining the activity of the catalyst as long as possible.
  • the existing patents related to the production of acrylic acid using glycerin mainly focus on the activity of the catalyst, and thus include the results of experiments for a relatively short time under mild reaction conditions. Is not handled properly.
  • the coke-like carbon generated in the glycerin dehydration reaction catalyst in reaction reaction was carried out in real time. By oxidizing, the life of the catalyst can be maintained for a long time.
  • acrolein and acrylic acid which are products, may also be oxidized and removed together. It needs to be established.
  • the present invention is to provide a method for effectively producing acrylic acid by optimizing the composition and reaction conditions of the catalyst so that the activity of the catalyst in the production reaction of acrylic acid with glycerin as a starting material for a long time.
  • the content of oxygen in the gaseous reactant is 3.5 to 12 mol%, and a molar ratio of oxygen and glycerin (oxygen / glycerine) is 1 to 1.75.
  • M 1 and M 2 may be the same as or different from each other, and V, Fe, Nb, Zn, or a combination thereof, respectively.
  • a, b, c, d, and e represent the composition ratio of each atom, a is 0.1 to 6, b / a is ⁇ to 1, c / a is 0 to 1, and d / a is 0 to 1, e / a is 0 to 10, at least one of b and c is not 0
  • X and y are values that are determined by the binding state of the crystallized water and are 0 to 10. 'For example, a is 0.5 to 1, b is 0.01 to 0.3, and c is 0.01 To 0.3, d is 0.01 to 0.3, and e may be 1 to 5.
  • the catalyst represented by Formula 1 is , Zro.gFeo.iWo.mOy, Zr 0. 9 V 0 . ). 2 3 ⁇ 4, 0 . 9 13 ⁇ 4. 0 ⁇ 0 . 3 ⁇ 4 ,
  • x may be 2 to 6
  • y may be 1 to 3.
  • the dehydration reaction may be performed at a temperature of 250 to 350 ° C. at a gas space velocity (GHSV) of 100 to 5000 h _1 .
  • GHSV gas space velocity
  • glycerin in the gaseous reaction product in the dehydration reaction may be included in 1 to 10 mol% content.
  • Partial oxidation reaction of acrolein in the present invention can be carried out in the presence of a catalyst represented by the following formula (2) and oxygen or air.
  • M 3 is Fe, Cu, Bi, Cr, Sn, Sb, or K,
  • M 4 is an alkaline earth metal element
  • m, n, q, r, and z are Mo, W, V, A, B, respectively .
  • an atom ' ratio of 0, 1 is 5 to 15, m / 1 is 0.15 to 0.4, n / 1 is 0.1 to 0.5, q / 1 is 0.1 to 0.4, and r / 1 is 0 to 0.2
  • z is a value determined according to the oxidation state of another element.
  • the catalyst of the acrolein partial oxidation reaction is Mo 12 W 2 V 4 Cu 2 Sr 0 . 5 0 z , Mo 12 W 2 V 4 Fe 2 Sr 0 . 5 0 z , Mo 12 W 2 V 4 Sb 2 Sr 0 . 5 0 z , Mo 10 W 2 V 3 CuiSr 0 .50z, , And ⁇ ⁇ ⁇ can be one or more selected from the group consisting of.
  • the yield of acrylic acid measured at the time of 640 hours or more after the start of reaction is 50% or more, and the yield of unreacted acrolein may be 0.5% or less.
  • ⁇ Effects of the Invention ⁇ According to the present invention.
  • Example 1 is a schematic diagram of a catalyst layer in a reactor of an acrylic acid production reaction apparatus according to Example 2 of the present invention.
  • Figure 2 is a graph showing the reaction results of the production of acrylic acid after the reaction time 640 hours according to Example 1 of the present invention.
  • Figure 3 is a graph showing the reaction results of the production of acrylic acid after a reaction time of 160 hours according to Example 2 of the present invention.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • a catalyst represented by the following formula (1) and oxygen or air And performing a partial oxidation reaction of acrolein from the product obtained from the dehydration reaction, wherein the content of oxygen in the gas reaction product is 3.5 to 12 mol%, and the molar ratio of oxygen and glycerin ( Oxygen / Glycerin) is provided a method for producing acrylic acid, wherein the acid is 1 to 1.75.
  • M 1 and M 2 may be the same as or different from each other, and each may be V, Fe, Nb, Zn, or a combination thereof.
  • a, b, c, d, and e represent the composition ratio of each atom, a is 0.1 to 6, b / a is 0 to 1, c / a is 0 to 1, and d / a is 0 to 1, e / a is 0 to 10, at least one of b and c and not 0,
  • X and y are values that are determined by the binding state of the crystallized water and are 0 to 10.
  • a may be 0.5 to 1
  • b may be 0.01 to 0.3
  • c may be 0.01 to 0.3
  • d may be 0.01 to 0.3
  • e may be 1 to 5.
  • the catalyst represented by Chemical Formula 1 is ZrZno.o ⁇ o. ⁇ HA,
  • HxOy may be at least one selected from the group consisting of, wherein X is 2 to 6, y may be 1 to 3.
  • reaction conditions such as reaction temperature, space velocity, partial pressure of oxygen and water vapor in the reactants, mass transfer in the catalyst by the catalyst pore structure, and the amount and acidity of the acid point on the surface of the catalyst.
  • the acid point of the catalyst is generally an active point that promotes dehydration reaction, but in the case where an excessive strong acid point is present on the surface of the catalyst, coke carbon precursors are excessively generated due to intermolecular condensation caused by side reaction, causing deterioration of the catalyst. Results in.
  • the mixed oxide catalyst represented by Formula 1 is zirconium, tungsten and.
  • M 1 and M 2 are coke with a role of suppressing the generation of the carbon and by-products, produced coke carbon oxidation banung with oxygen or steam through the changes in C0 X mass is discharged to the gas phase.
  • M 1 and M 2 is a coke with a role of suppressing the generation of the carbon and by-products, produced coke carbon oxidation banung with oxygen or steam through the changes in C0 X mass is discharged to the gas phase.
  • the present invention relates to coke carbon impurities in which oxygen in the air supplied with glycerin to the feed, or transition metal atoms included in pure oxygen and the glycerin dehydration catalyst causes oxidation reaction, resulting in glycerin dehydration reaction.
  • the vaporization is characterized in that coke is prevented from depositing on the catalyst.
  • the present invention is characterized in that the yield reduction of the product due to excessive oxidation reaction in the acrylic acid production reaction using glycerin.
  • the catalyst of Formula 1 used in the dehydration reaction of the glycerin is ZrZno.o2Wo. 1 P2HxO y, Zro.gFeo. iWo.mOy, Zr 0 .9Vo. iWo. iP 2 H x O y , Zr 0 . gNb 0 .02Fe 0. iW 0 . iP 2 H x 0 y , Zr 0 . gZn 0 . c Feo. iW 0 . iP23 ⁇ 40y, Zr 0 . gZn 0 .02V0. iW 0 .
  • Zr o. 9 Zn 0 .02V0.1W0.1, Zr 0. sZn 0 .02 (FeV) 0. iW 0 . iP 2 H x 0 y , Zr 0 . sZn 0 . 0 2Fe 0 .2W0. IF, Zro. 8 Zno.o 2 Vo. 2 o.iP 2 H ⁇ O yi and Zro.gsZno.o Wo. ⁇ HxOy may be one or more selected from the group consisting of.
  • the amount of the catalyst of Formula 1 may be appropriately adjusted according to the amount and concentration of glycerin as a reactant, for example, the catalyst may be charged at a weight space velocity of 10 to 300 glycerol in ol / h ⁇ ⁇ ⁇ , preferably from 10 to 100 glycer in mmol / h - it is the more preferable g cat, can be layered with the weight space velocity of 5 to 50 glycer in ⁇ 0 1/11 * & ⁇ .
  • the yield of the final acrylic acid may be lowered due to the decrease in glycerin conversion, and when the amount of the catalyst is too large, the excessive increase of the contact time may promote the generation of impurities, resulting in a decrease in the yield of the acrylic acid.
  • the concentration of the aqueous solution of glycerin may be 80 wt% or less or 25 to 80 wt, preferably 75 wt% or less.
  • the concentration of the aqueous glycerin solution can be maintained at 80 wt% or less, preferably 75 wtV or less.
  • the gas feed may include glycerin in an amount of 1 to 10 mol%, preferably 2 to 9 mol%, and more preferably 4 to 8 mol%. It represents the concentration of glycerin in a gaseous feed containing oxygen nitrogen in aqueous solution of glycerin, and the concentration of glycerin in this gaseous reactant maintains the molar ratio as described above with oxygen.
  • the gaseous reaction product may contain oxygen in an amount of 3.5 to 12 mol%, preferably 4.5 to 11 mol%, and more preferably 5 to 10 mol%. If the oxygen content in the gaseous reaction product is too high, the oxidation reaction of the product may be promoted, leading to a decrease in the yield of the entire process, and a safety problem may occur due to excessive temperature rise in the reaction product. Also, When the content of oxygen in the reaction product is too low, there is a problem that the removal efficiency of the coke carbon generated on the catalyst in the reaction product is reduced and the catalyst activity is easily lowered. Therefore, controlling the concentration of oxygen contained in the semi-aerated water within an appropriate range is very important for improving the yield of the entire process through suppression of activity deactivation of the catalyst.
  • the molar ratio of oxygen and glycerin (oxygen / glycerine) present in the reaction product should be carried out under the conditions of 1 to 1.75, preferably under the conditions of 1. 1 to 1.65, more preferably 1. 15 to 1.5. Can be done. If the amount of oxygen is too low compared to glycerin, the reaction reaction may not occur sufficiently, and coke carbon removal and acrylic acid production may be suppressed. If the amount of oxygen is too high, the reaction reaction may occur excessively. Therefore, controlling the molar ratio of oxygen and glycerin contained in the reaction product within an appropriate range is very important for improving the yield of the entire process through suppression of the activity degradation of the catalyst.
  • the glycerin reaction process may be performed at a gas space velocity (GHSV) of 100 to 5000 h 1 , preferably 250 to 3000 h "1 , more preferably 500 to 1000 h 1 .
  • GHSV gas space velocity
  • GHSV gas hourly space velocity
  • the step of reacting the glycerin may be carried out at a temperature of 250 to 350 ° C, more preferably 280 to 320 ° C.
  • the step of dehydrating the glycerin is endothermic reaction, it is preferable to perform reaction in the silver range of the above range in order to increase the yield of the final acrylic acid by producing acrolein with high conversion and selectivity. If the reaction temperature is too low, the conversion rate of glycerin can be reduced, and if the reaction temperature is too high, the selectivity of acrolein may decrease due to excessive side reaction.
  • the catalyst used for the acrolein partial oxidation reaction may be any catalyst known in the art and generally used for the acrolein partial oxidation reaction.
  • a catalyst represented by the following Chemical Formula 2 may be used in terms of securing high catalytic activity in producing acrylic acid.
  • M 3 is Fe, Cu, Bi, Cr, Sn, Sb, or K,
  • M 4 is an alkaline earth metal element
  • 1, m, n, q, r, and z represent atomic ratios of Mo, W, V, A, B and 0, respectively, 1 is 5 to 15, m / 1 is 0.15 to 0.4, and n / 1 Is 0.1 to 0.5, q / 1 is 0.1 to 0.4, r / 1 is 0 to 0.2, and z is a value determined according to the oxidation state of another element.
  • M 3 may be Cu
  • M 4 may be Sr
  • 1 is 8 to 14
  • m / 1 is 0.15 to 0.2
  • n / 1 may be 0.25 to 0.4
  • q / 1 may be 0.15 to 0.2
  • r / 1 may be 0.01 to 0.06.
  • the catalyst of Formula 2 used in the partial oxidation of acrolein is ⁇ ⁇ ⁇ ⁇ , Mo 12 W 2 V 4 Fe 2 Sr 0 . 5 0 z , Mo 12 V 4 Sb 2 Sr 0 . 5 0 z , MoioW 2 V 3 CuiSro. 50 Z l MoioW 2 V 3 FeiSro.50 z , and It may be one or more selected from the group consisting of.
  • partial oxidation reaction of the additive acrolein can be carried out in the presence of oxygen or air with the catalyst of the formula (2).
  • This partial oxidation reaction may be carried out at a gas space velocity (GHSV) of 100 to 5000 h 1 , preferably 250 to 3000 h "1 , more preferably 500 to 1000 h 1 . It may be carried out at a temperature of 250 to 350 ° C., more preferably 280 to 320 ° C. At this time, 5 to 10 mol% of the gaseous reactants may include oxygen.
  • GHSV gas space velocity
  • the method for producing acrylic acid according to the present invention can maintain a glycerine conversion rate of 100%, acrylic acid yield of 50% or more measured at a time of 640 hours or more after the start of reaction, and a decrease in acrylic acid yield compared to the initial reaction amount of reaction can be less than 5%. have.
  • a yield of 0.5% or less may be obtained even when measured at a time point of 640 hours or more after the start of reaction.
  • an ⁇ -alumina ball was filled at the bottom of a stainless steel reactor having an outer diameter of 1 inch and a height of 3 m, and a silica-alumina ball was placed thereon.
  • 200 g of the supported acrolein partial oxidation catalyst was mixed with ⁇ -alumina balls and filled.
  • 250 g of the glycerin dehydration reaction catalyst was mixed with the ⁇ -alumina balls and layered thereon.
  • the ⁇ -alumina ball was filled at the top of the reaction vessel. After the reaction was heated to the reaction temperature, a gas feed was supplied.
  • Table 1 Table 1 below.
  • Example 1 Reactor inner diameter 1 cm outer diameter 1 inch, height 3 m stainl ess steel stainless steel glycerin dehydration catalyst Zro. 9 no.o2 o. iP2H x O y , lg Zro.9Zno.o2Vo . iP 2 H x O y , 250 g Acrolein Mo 12 W 2 V 4 Cu 2 Sro. 5 O z , 2g Mo 12 W 2 V 4 Cu 2 Sr 0 . 5 0 Z) 200 g partial oxidation catalyst (silica-alumina ball supported catalyst) Concentration of aqueous solution of glycerin 75 wt% 75 wt
  • Heteropolyacid catalyst H 0. 5 Cs 2. 5 PW 12 0 40
  • a is an acrylic acid production process was carried out in the same manner as in Example 1 except for using. Comparative Example 2
  • the acrylic acid production process was carried out according to Examples 1 and 2, and the reaction product was analyzed according to the elapsed time point of 50 hours after the reaction in the following manner, and the analysis results are shown in Table 2 below.
  • Figure 2 shows a graph of the reaction product analysis results of the production process of acrylic acid performed until the reaction time 640 hours or more in accordance with Example 1, Figure 3 until the reaction time of 160 hours or more in accordance with Example 2 The result of reaction product analysis of the production process of acrylic acid was shown.
  • Figures 2 and 3 in the case of Examples 1 and 2 according to the present invention, even after a long time of 640 hours or 160 hours after the reaction was maintained 100% glycerin conversion, 50% acrylic acid yield or more, the initial reaction The reduction of the acrylic acid yield was found to be less than 5%. In the case of Mibanung Acrolein, the yield of the catalyst was 0.5% or less even when the reaction was completed, indicating that the catalyst activity was maintained for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 글리세린으로부터 아크릴산을 제조하는 방법에 관한 것으로, 보다 상세하게는, 특정의 촉매 조성 및 공정 조건을 적용하여 촉매의 코크탄소 생성을 최소화하여 아크롤레인의 선택도를 개선할 수 있고, 반응 동안 촉매 활성을 높게 유지하며 상기 탈수 반웅을 보다 긴 작업 기간 동안 수행될 수 있기 때문에, 아크릴산을 보다 높은 생산성으로 보다 긴 지속 시간 동안 제조할 수 있는 방법이 제공된다.

Description

【명세서】
【발명의 명칭】
글리세린으로부터 아크릴산의 제조방법 【기술분야】
관련 출원들과의 상호 인용
본 출원은 2015년 12월 23일자 한국 특허 출원 제 10-2015-0184612호 및 2016년 10월 25일자 한국 특허. 출원 제 10-2016-0139259호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 글리세린을 출발물질로 하여 장시간 동안 촉매의 활성이 유지되며 높은 수율의 아크릴산을 효과적으로 제조하는 방법에 관한 것이다.
[배경 기술】
글리세린을 출발물질로 하여 아크릴산을 생산하는 촉매 반웅 공정은
1 단계인 글리세린 탈수 반웅과 2단계인 아크를레인 부분 산화반웅으로 이뤄진다. 두 반웅 모두 촉매의 존재 하에 일어나므로 활성이 높은.촉매의 사용은 필수적이다.
하지만, 촉매의 활성, 특히, 글리세린 탈수반웅 촉매의 활성은 반웅이 진행되면서 점차적으로 감소하는데 이러한 촉매 활성 저하의 가장 큰 원인 중 하나는 반웅 중 생성되는 코크 형태 탄소의 침적으로 인한 촉매 활성점의 손실이다. 촉매의 활성 저하는 최종 생성물인 아크릴산의 수율 저하를 초래하므로 글리세린을 이용하여 아크릴산을 상업적으로 생산하기 위해서는 촉매의 활성을 가능한 오래 유지할 수 있는 방안이 필요하다. 하지만, 기존의 글리세린을 이용한 아크릴산 생성 반웅과 관련된 특허에서는 주로 촉매의 활성에 초점을 맞추고 있기 때문에 마일드 (mi Id)한 반웅 조건에서 비교적 짧은 시간 동안 실험한 결과만을 포함하고 있어 촉매의 수명에 관한 내용은 제대로 다뤄지지 않고 있다.
한편, 촉매에 특정 성분을 첨가하고 반웅 조건을 변화시킴으로써 반웅 중 글리세린 탈수반웅 촉매에 생성된 코크 형태의 탄소를 실시간으로 산화시킴으로써 촉매의 수명을 장시간 유지할 수 있다 . 하지만, 코크탄소가 산화되는 반웅 조건에서 생성물인 아크롤레인과 아크릴산 또한 함께 산화되어 제거될 수 있기 때문에 생성물에는 큰 영향을 주지 않으면서 선택적으로 코크탄소를 제거할 수 있는 촉매의 조성과 그에 맞는 반응 조건의 정립이 필요하다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 글리세린을 출발물질로 한 아크릴산 생성 반웅에서 촉매의 활성이 장시간 동안 유지되도록 촉매의 조성과 반웅 조건을 최적화하여 아크릴산을 효과적으로 제조하는 방법을 제공하고자 한다.
[과제의 해결 수단]
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 촉매 및 산소 또는 공기의 존재 하에서 글리세린을 탈수 반웅시키는 단계 ; 및 상기 탈수 반웅으로부터 얻어진 생성물로부터 아크를레인의 부분 산화 반웅을 수행하는 단계 ;를 포함하고,
상기 탈수 반웅에서 기체 반응물 중 산소의 함량은 3.5 내지 12 mol%이고, 산소와 글리세린의 몰 비 (산소 /글리세린)는 1 내지 1.75인 아크릴산의 제조 방법이 제공된다.
[화학식 1]
Figure imgf000004_0001
상기 화학식 1에서,
M1 및 M2는 서로 같거나 다를 수 있으며, 각각 V, Fe , Nb, Zn, 또는 이들의 조합이고,
a , b , c , d, 및 e는 각 원자의 조성 비율을 나타내며, a는 0. 1 내지 6이고, b/a는 ◦ 내지 1이며, c/a는 0 내지 1이며, d/a는 0 내지 1이며, e/a는 0 내지 10이며, 이 중에서 b 및 c 중 하나 이상은 0이 아니고
X 및 y는 결정수의 결합 상태에 따라 결정되는 값으로 0 내지 10이다. ' 일 예로, a는 0.5 내지 1이고, b는 0.01 내지 0.3이며, c는 0.01 내지 0.3이며, d는 0.01 내지 0.3이며, e는 1 내지 5일 수 있다.
구체적으로, 상기 화학식 1로 표시돠는 촉매는
Figure imgf000005_0001
, Zro.gFeo.iWo.mOy , Zr0.9V0. ). 2 ¾ , 0.91¾.00. ¾,
Zr0. gZn0.02Fe0. iW0. ιΡ2¾0γ, Zr0. gZn0.02 Vo . iW0. iP2Hx0y , Zr0. gZn0.02V0. iW0. iP2HxOy , Zr 0. sZn0.02 (FeV ) 0. iW0. iP2Hx0y , Zr 0. sZn0.02Fe0.2W0. iP2Hx0y , Zro.8Zn0.o2Vo.2 o.i 2HxOy, 또는 Zro.95Zno.02Vo.05Wo. 2HA이고, 상기 x는 2 내지 6이며, y는 1 내지 3일 수 있다.
상기 탈수 반웅은 100 내지 5000 h_1의 기체공간속도 (GHSV)로, 250 내지 350 °C의 온도에서 수행할 수 있다.
또한, 상기 탈수 반웅에서 기체 반웅물 중 글리세린은 1 내지 10 mol% 함량으로 포함될 수 있다.
본 발명에서 아크롤레인의 부분 산화 반웅은 하기 화학식 2로 표시되는 촉매 및 산소 또는 공기의 존재 하에서 수행할 수 있다.
[화학식 2]
Mo,WmVm(M3)q(M4)r 02
상기 화학식 2에서,
M3은 Fe, Cu, Bi, Cr, Sn, Sb, 또는 K이고,
M4는 알칼리토 금속 원소이고,
1, m, n, q, r, 및 z는 각각 Mo, W, V, A, B .및 0의 원자'비율을 나타내며, 1은 5 내지 15이고, m/1는 0.15 내지 0.4이고, n/1는 0.1 내지 0.5이고, q/1는 0.1 내지 0.4이고, r/1는 0 내지 0.2이고, z는 다른 원소의 산화 상태에 따라 정해지는 값이다.
또한, 상기 아크롤레인 부분 산화 반응의 촉매는 Mo12W2V4Cu2Sr0.50z, Mo12W2V4Fe2Sr0.50z, Mo12W2V4Sb2Sr0.50z, Mo10W2V3CuiSr0.50z,
Figure imgf000005_0002
, 및 ^^^ ^ ^로 이루어진 군에서 선택되는 1종 이상이 될 수 있다.
본 발명의 아크릴산의 제조 방법은, 반웅 개시 후 640 시간 이상 경과한 시점에서 측정한 아크릴산 수율이 50% 이상이며, 미반응 아크를레인의 수율이 0.5% 이하가 될 수 있다. 【발명의 효과】 본 발명에 따르면.ᅳ 특정의 글리세린 탈수반웅용 촉매와 공정 조건을 적용하여 촉매의 코크탄소 생성을 최소화하여 반웅 동안 촉매 활성을 높게 유지함으로써 장시간 동안 높은 수율로 아크릴산을 효과적으로 제조할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 2에 따른 아크릴산 제조 반웅 장치의 반응기 내 촉매층의 모식도이다.
도 2는 본 발명의 실시예 1에 따라 반웅시간 640 시간 경과시 아크릴산의 제조 반웅 결과를 나타낸 그래프이다.
도 3은 본 발명의 실시예 2에 따라 반웅시간 160 시간 경과시 아크릴산의 제조 반웅 결과를 나타낸 그래프이다.
【발명올 실시하기 위한 구체적민 내용】
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" , "구비하다" 또는 "가지다'' 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들올 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이하에서는 본 발명의 바람직한 일 구현예에 따른 아크릴산의 제조 방법에 관하여 보다 구체적 로 설명하기로 한다 .
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 촉매 및 산소 또는 공기의 존재 하에서 글리세린올 탈수 반웅시키는 단계; 및 상기 탈수 반웅으로부터 얻어진 생성물로부터 아크를레인의 부분 산화 반응을 수행하는 단계;를 포함하고, 상기 탈수 반웅에서 기체 반웅물 중 산소의 함량은 3.5 내지 12 mol%이고, 산소와 글리세린의 몰 비 (산소 /글리세린)는 1 내지 1.75인 아크릴산의 제조 방법이 제공된다.
[화학식 1]
Figure imgf000007_0001
상기 화학식 1에서,
M1 및 M2는 서로 같거나 다를 수 있으며, 각각 V, Fe , Nb , Zn , 또는 이들의 조합이고,
a , b , c , d , 및 e는 각 원자의 조성 비율을 나타내며, a는 0. 1 내지 6이고, b/a는 0 내지 1이며, c/a는 0 내지 1이며, d/a는 0 내지 1이며, e/a는 0 내지 10이며, 이 중에서 b 및 c 중 하나 이상이고 0이 아니고,
X 및 y는 결정수의 결합 상태에 따라 결정되는 값으로 0 내지 10이다. 일 예로, a는 0.5 내지 1이고, b는 0.01 내지 0.3이며, c는 0.01 내지 0.3이며, d는 0.01 내지 0.3이며, e는 1 내지 5일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 촉매는 ZrZno.o^o. ^HA ,
Zr0.9Feo. iWo. iP2HxOy, Zr0.9Vo. iWo. iP2HxOy, Zr0.9Nb0.02Fe0. . ,
' Zr 0. gZn0.02Fe0. iWo . , Zr0. gZn0.02V0. iW0. iP2Hx0y, Zr0. gZn0.02 0. iW0. iP2Hx0y , Zr 0. sZn0.02 ( FeV ) 0.1W0. iP2Hx0y , Zr 0. sZn0.02Fe0.2 0. iP2Hx0y , Zr 0. s n0.02 V0.2W0. iP2Hx0y , 및 ZinZno.oaWo. ^HxOy으로 이루어진 군에서 선택되는 1종 이상이 될 수 있으며, 상기 X는 2 내지 6이며, y는 1 내지 3일 수 있다.
상술한 바대로, 기존의 방식에 따른 글리세린의 탈수 반응은 반웅이 진행됨에 따라 촉매 상에 코크 형태의 탄소가 침적되어 촉매가 비활성화되며 촉매 수명을 단축시키는 문제가 초래되었다. 특히, 기존에 알려진 산촉매 중에서 브뢴스테드 산점이 많은 산촉매는 아크를레인의 생산 효율이 좋기는 하지만, 탈수 반웅 중 산촉매 상에 탄소가 침적되어 쉽게 비활성화되어 탈수 반응을 장시간으로 수행하기 어려운 문제가 있다.
이러한 촉매 활성 저하의 가장 큰 원인 중 하나는 반웅 증 생성되는 코크탄소의 침적으로 인한 촉매 활성점의 손실이다. 특히, 글리세린 탈수 반응에서 코크탄소의 생성에 영향을 미치는 인자로서 반웅온도, 공간속도, 반응물 중 산소 및 수증기 분압 등의 반웅조건, 촉매 기공구조에 의한 촉매 내 물질 전달, 촉매 표면의 산점의 양과 산점이 세기 등이 있다. 촉매의 산점은 일반적으로 탈수반웅을 촉진시키는 활성점이지만 촉매 표면에 강한 산점이 과량으로 존재하는 경우 부반웅으로 인한 분자간의 축합으로 코크탄소의 전구체가 과도하게 생성되어 촉매의 활성저하를 야기하는 문제를 초래한다.
따라서, 본 발명에서는 이러한 종래 문제점을 해결하기 위해, 특정의 촉매 조성과 공정 조건을 적용하여 반웅 중 코크탄소의 생성을 억제하고 이를 통해 촉매의 수명을 효과적으로 연장시켜 우수한 수율로 아크릴산올 효과적으로 제조하는 방법을 제공하고자 한다.
상기 화학식 1로 표시되는 상기 흔합 산화물 촉매는 지르코늄, 텅스텐 및. 인 이외에 M1 및 M2로 표시되는 금속을 더 포함할 수 있는데ᅳ 상기 M1 및 M2는 코크탄소와 부산물의 생성을 억제하는 역할과 함께, 생성되는 코크탄소를 산소 또는 스팀과의 산화반웅을 통해 C0X 물질로 변화시키고 기상으로 배출시킨다. 이 과정을 통해 촉매의 비활성화를 야기하는 페놀 또는 폴리 방향족 화합물로 구성되는 코크탄소의 침적을 억제할 수 있어, 촉매의 활성을 연장시킬 수 있다.
특히, 본 발명은 반웅물 ( feed)에 글리세린과 함께 공급되는 공기중의 산소, 또는 순수한 산소와 글리세린 탈수 촉매에 포함된 전이금속 원자가 산화반웅을 일으켜 글리세린 탈수 반웅 증 생성되는 코크 형태의 탄소 불순물을 기화시킴으로써 촉매상에 코크가 침적되는 것을 방지하는 것을 특징으로 한다. 또한, 본 발명은 글리세린을 이용한 아크릴산 생성 반응에서 과도한 산화반웅으로 인한 생성물의 수율 감소를 방지하는 것을 특징으로 한다.
일례로, 상기 글리세린의 탈수 반웅에 사용되는 화학식 1의 촉매는 ZrZno.o2Wo.1P2HxOy , Zro.gFeo. iWo.mOy, Zr0.9Vo. iWo. iP2HxOy , Zr0. gNb0.02Fe0. iW0. iP2Hx0y, Zr0. gZn0. c Feo . iW0. iP2¾0y, Zr0. gZn0.02V0. iW0. ιΡ2¾0γ , Zr o .9Zn0.02V0.1W0.1 , Zr0. sZn0.02 ( FeV ) 0. iW0. iP2Hx0y, Zr0. sZn0.02Fe0.2W0. IF , Zro.8Zno.o2Vo.2 o.iP2HxOy i 및 Zro.gsZno.o Wo. ^HxOy으로 이루어진 군에서 선택되는 1종 이상이 될 수 있다.
상기 화학식 1의 촉매의 사용량은 반응물인 글리세린의 양과 농도에 따라 적절히 조절될 수 있으며, 예를 들어 상기 촉매를 10 내지 300 glycer in 隱 ol/h · §^의 중량공간속도로 충진할 수 있고, 바람직하게는 10 내지 100 glycer in mmol /h - gcat , 좀 더 바람직하게는 5 내지 50 glycer in 醒 01/11 * &^의 중량공간속도로 층진할 수 있다. 촉매의 양이 너무 적은 경우 글리세린 전환율 감소로 인한 최종 아크릴산의 수율 저하가 생길 수 있고, 촉매의 양이 너무 많은 경우 접촉 시간의 과도한 증가로 불순물 생성이 촉진되아아크릴산의 수율 저하가 발생할 수 있다.
한편, 본 발명의 글리세린 탈수 반응에서 상기 화학식 1의 촉매와 함께 반응물인 글리세린 피드에 산소 또는 공기를 함께 투입할 수 있다. 먼저, 상기 탈수 반웅에 글리세린 공급원으로 글리세린 수용액을 사용하는 경우, 글리세린 수용액의 농도는 80 wt% 이하 또는 25 내지 80 wt , 바람직하게는 75 wt% 이하가 될 수 있다. 여기서, 반웅물 ( feed) 내 수증기의 양 또한 코크탄소 생성 억제에 중요한 역할을 하기 때문에 글리세린 수용액의 농도는 80 wt% 이하, 바람직하게는 75 wtV 이하로 유지할 수 있다. 이와 함께, 기체 반웅물 ( feed) 중에서는 1 내지 10 mol% , 바람직하게는 2 내지 9 mol%, 좀더 바람직하게는 4 내지 8 mol%의 함량으로 글리세린을 포함할 수 있다. 이는 글리세린 수용액에 산소 질소를 포함한 기체 상태의 반응물 ( feed) 내 글리세린 농도를 나타내는 것으로, 이러한 기체 반웅물 중 글리세린의 농도는 산소와 전술한 바와 같은 몰 비를 유지하는 것이다.
특히, 상기 기체 반웅물은 3.5 내지 12 mol%로 산소를 포함하며, 바람직하게는 4.5 내지 11 mol%, 좀더 바람직하게는 5 내지 10 mol%의 함량으로 포함할 수 있다. 기체 반웅물 중 산소의 함량이 너무 높은 경우, 생성물의 산화 반응이 촉진되어 전체 공정의 수율 감소를 유발하며, 반웅가 내 과도한 온도 상승으로 인한 안전상의 문제가 발생할 수 있다. 또한, 반웅물 중 산소의 함량이 너무 낮은 경우, 반웅 중 촉매 상에 생성되는 코크탄소의 제거효율이 감소하여 촉매 활성이 쉽게 저하되는 문제가 발생한다. 따라서, 반웅물에 포함되는 산소의 농도를 적합한 범위내로 조절하는 것은 촉매의 활성 저하 억제를 통한 전체 공정의 수율 향상에 매우 중요하다.
또한, 반웅물 내 존재하는 산소와 글리세린의 몰 비 (산소 /글리세린)는 1 내지 1.75의 조건 하에서 수행되어야 하고, 바람직하게는 1. 1 내지 1.65 , 좀더 바람직하게는 1. 15 내지 1.5의 조건 하에서 수행할 수 있다. 글리세린에 비해 산소가 너무 적으면 반웅 증 산화반웅이 층분히 일어나지 못하여 코크탄소 제거 및 아크릴산 생성이 억제될 수 있으며, 산소가 글리세린에 비해 너무 많으면 산화 반웅이 과도하게 일어날 수 있다. 따라서, 반웅물에 포함되는 산소와 글리세린의 몰비를 적합한 범위내로 조절하는 것은 촉매의 활성 저하 억제를 통한 전체 공정의 수율 향상에 매우 중요하다.
본 발명에서 상기 글리세린 반응 공정은 100 내지 5000 h 1의 바람직하게는 250 내지 3000 h"1 , 좀더 바람직하게는 500 내지 1000 h 1의 기체공간속도 (GHSV)로 수행할 수 있다.
특히, 글리세린 반응 공정에서 기체 공간 속도 (GHSV : Gas Hour ly Space Veloci ty)가 커지면 단위 시간 및 촉매당 처리할 수 있는 반웅물이 많아진다는 의미이므로 높은 GHSV에서 반웅된다는 뜻은 촉매의 활성이 매우 우수하다는 것을 나타낸다.
또한, 상기 글리세린을 반응시키는 단계는 250 내지 350 °C, 좀더 바람직하게는 280 내지 320 °C의 온도에서 수행될 수 있다. 상기 글리세린을 탈수시키는 단계는 흡열반웅으로, 높은 전환율 및 선택도로 아크를레인을 제조하여 최종 아크릴산의 수율을 높이기 위해서는 상기 범위의 은도에서 반웅을 수행하는 것이 바람직하다. 반웅 온도가 너무 낮은 경우 글리세린의 전환율이 감소할 수 밌으며, 반웅온도가 너무 높은 경우 과도한부반웅으로 인해 아크를레인의 선택도가 감소할 수 있다.
한편, 본 발명에서는 상기 탈수 반웅을 수행한 후에, 상기 탈수 반웅으로부터 얻어진 생성물로부터 아크를레인의 부분 산화 반웅을 수행하여, 글리세린의 탈수 반웅을 통해 생성된 아크를레인을 아크릴산으로 최종 전환시킨다.
상기 아크를레인 부분 산화 반웅에 사용되는 촉매는 기존에 알려진 일반적으로 아크롤레인 부분 산화 반웅에 사용되는 모든 촉매를 사용할 수 있다. 다만, 아크릴산 제조시 높은 촉매 활성을 확보하는 측면에서 하기 화학식 2로 표시되는 촉매를 사용할 수 있다.
[화학식 2]
Mo,WmVm(M3)q(M4)r 0Z
상기 화학식 2에서,
M3은 Fe, Cu, Bi, Cr, Sn, Sb, 또는 K이고,
M4는 알칼리토 금속 원소이고,
1, m, n, q, r, 및 z는 각각 Mo, W, V, A, B 및 0의 원자 비율을 나타내며, 1은 5 내지 15이고, m/1는 0.15 내지 0.4이고, n/1는 0.1 내지 0.5이고, q/1는 0.1 내지 0.4이고, r/1는 0 내지 0.2이고, z는 다른 원소의 산화상태에 따라 정해지는 값이다.
상기 아크롤레인의 부분 산화 반웅 촉매로서 화학식 2의 바람직한 일례에서, M3로는 Cu가 될 수 있고, M4로는 Sr이 될 수 있고, 1은 8 내지 14이고, m/1는 0.15 내지 0.2이고, n/1는 0.25 내지 0.4, q/1는 0.15 내지 0.2, r/1는 0.01 내지 0.06가 될 수 있다.
일례로, 상기 아크를레인의 부분 산화 반응 에 사용되는 화학식 2의 촉매는 ^ᅵ^^ ^ , Mo12W2V4Fe2Sr0.50z, Mo12 V4Sb2Sr0.50z, MoioW2V3CuiSro.50Z l MoioW2V3FeiSro.50z, 및
Figure imgf000011_0001
등으로 이루어진 군에서 선택되는 1종 이상이 될 수 있다.
한편, 상가 아크를레인의 부분 산화 반웅은 상기 화학식 2의 촉매와 함께 산소 또는 공기의 존재 하에서 수행할 수 있다. 이러한 부분 산화 반웅은 100 내지 5000 h 1의 바람직하게는 250 내지 3000 h"1, 좀더 바람직하게는 500 내지 1000 h 1의 기체공간속도 (GHSV)로 수행할 수 있다. 또한, 상기 부분 산화 반웅은 250 내지 350 °C, 좀더 바람직하게는 280 내지 320 °C의 온도에서 수행될 수 있다. 이때, 기체 반응물 중 5 내지 10 mol%로 산소를 포함할 수 있다. 본 발명에 따른 아크릴산의 제조 방법은, 반웅 개시 후 640 시간 이상 경과한 시점에서 측정한 글리세린 전환율 100%, 아크릴산 수율 50% 이상을 유지할 수 있으며, 반웅 초기 대비 아크릴산 수율 감소는 5% 미만이 될 수 있다. 또한, 미반응 아크를레인의 경우, 반웅 개시 후 640 시간 이상 경과한 시점에서 측정한 시점에서도 0.5% 이하의 수율을 나타낼 수 있다. 이하, 본 발명의 바람직한 실시예를 상세히. 설명하기로 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
<실시예>
실시예 1
내경 1 cm의 스테인레스 스틸 (stainless steel) 반웅기에 아크롤레인 부분 산화 촉매 1 g을 층진한 후 그 위에 글래스 울 (glass wool)을 충진 후 다시 그 위에 탈수촉매 2 g을 층진하였다. 이후 반웅기를 반웅 온도까지 가열한 후 기체 반응물 (feed)를 공급하였다. 세부 반웅 조건은 하가표 1에 나타낸 바와 같다. 시예 2
도 1에 나타낸 바와 같이, 외경 1 inch, 높이 3 m의 스테인레스 스틸 (stainless steel) 반응기 최하단부에 α-알루미나 볼 (a-alumina ball)을 충진하고 그 위에 실리카-알루미나 볼 (silica-alumina ball)에 담지된 아크를레인 부분산화촉매 200 g을 α-알루미나 볼과 흔합하여 충진하였다. 부분산화촉매층 상단에 다시 α-알루미나 볼을 충진한 후 그 위에 글리세린 탈수반웅 촉매 250 g을 α-알루미나 볼과 흔합하여 층진하였다. 마지막으로 반웅기 최상단부에 α-알루미나 볼을 충진하였다. 이후 반웅기를 반웅 온도까지 가열한 후 기체 반웅물 (feed)를 공급하였다. 세부 반웅,조건은 하기 표 1에 나타낸 바와 같다.
[표 1]
실시예 1 실시예 2 반응기 내경 1cm 외경 1 inch , 높이 3 m stainl ess steel stainless steel 글리세린 탈수촉매 Zro.9 no.o2 o. iP2HxOy, lg Zro.9Zno.o2Vo.iP2HxOy, 250 g 아크를레인 Mo12W2V4Cu2Sro.5Oz , 2g Mo12W2V4Cu2Sr0.50Z ) 200 g 부분산화촉매 (실리카-알루미나볼담지 촉매) 글리세린수용액의 농도 75 wt% 75 wt
GHSV 1500 h"1 1695 h"1
(글리세린 탈수촉매 기준) (글리세린 탈수촉매 기준) 반응온도 290 °C 295 °C
기체'반응물조성 글리세린 5. ¾, 산소 6.5%, 글리세린 4.7% , 산소 7%,
수증기 8.9%, 질소 79.4%― 수증기 8%, 질소 81% (산소 /글리세린의 몰비 (산소 /글리세린의 몰비
1.25) 1.49) 비교예 1
헤테로폴리산 촉매 (H0.5Cs2.5PW12040)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 아크릴산의 제조 공정을 수행하였다. 비교예 2
헤테로폴리산 촉매 ( .5 10.75 12040)를 사용한. 것을 제외하고는, 실시예 1과 동일한 방법으로 아크릴산의 제조 공정을 수행하였다. 비교예 3
헤테로폴리산 촉매 (C .sPW^C )를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 아크릴산의 제조 공정을 수행하였다. 비교예 4
기체 반웅물 ( feed) 내 산소와 글리세린의 몰 비 (산소 /글리세린)를 0.8로 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 아크릴산의 제조 공정을 수행하였다. 비교예 5
기체 반웅물 ( feed) 내 산소의 농도를 2.7%로 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 아크릴산의 제조 공정을 수행하였다. 실험예: 아크릴산 제조공정의 성능 평가
실시예 1 및 2에 따라 아크릴산 제조 공정을 수행하고, 다음과 같은 방법으로 반웅 후 50 시간 .경과 시점에 따른 반웅 생성물을 분석하고, 분석 결과를 하기 표 2에 나타내었다.
반웅 후 생성물을 웅축하여 포집 후 액상 생성물은 GC를 이용하여 FID로 분석하였고 비웅축성 가스는 TCD로 분석하였다. 이 후 하기 계산식 1 및 계산식 2에 따라 아크릴산 수율 및 아크를레인 수율을 측정하였다.
[계산식 1] m수욺 m - 아크 ¾산¾ 수 / s¾s 121*11121 §수) χ ωο
[계산식 2]
¾크景 수을 ί¾ = mm o a률 ei !의올수. /공¾¾ m 뭏수) χ loo
[표 2]
Figure imgf000014_0001
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2의 경우 반웅을 수행한 50 시간 경과 시점에서 반웅 생성물을 분석한 결과, 아크릴산수율 각각 58% 및 50%로 우수함을 알수 있다.
또한, 도 2에는 실시예 1에 따라 반웅시간 640 시간 이상 경과시까지 수행한 아크릴산의 제조 공정의 반웅 생성물 분석 결과 그래프를 나타내었으며, 도 3에는 실시예 2에 따라 반웅시간 160 시간 이상 경과시까지 수행한 아크릴산의 제조 공정의 반웅 생성물 분석 결과 그래프를 나타내었다. 도 2 및 도 3에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 2의 경우 반웅을 수행한 640 시간 또는 160 시간의 장시간 경과 후에도 글리세린 전환율 100%, 아크릴산 수율 50% 이상을 유지하였으며, 반응 초기 대비 아크릴산 수율 감소는 5% 미만으로 나타났다. 또한, 미반웅 아크를레인의 경우 반웅 종료 시점에서도 0.5% 이하의 수율을 나타내어 촉매의 활성이 장시간 유지되었음을 확인할 수 있다ᅳ

Claims

【청구범위】 【청구항 1】 하기 화학식 1로 표시되는 촉매 및 산소 또는 공기의 존재 하에서 글리세린을 탈수 반응시키는 단계 ; 및 상기 탈수 반웅으로부터 얻어진 생성물로부터 아크를레인의 부분 산화 반웅을 수행하는 단계; 를 포함하고, 상기 탈수 반웅에서 기체 반웅물 중 산소의 함량은 3.5 내지 12 mol%이고, 산소와 글리세린의 몰 비 (산소 /글리세린)는 1 내지 1/75인 아크릴산의 제조 방법 :
[화학식 1]
Figure imgf000016_0001
상기 화학식 1에서,
M1 및 M2는 서로 같거나 다를 수 있으며, 각각 V, Fe, Nb, Zn, 또는 이 들의 조합이고,
a, b, c, d, 및 e는 각 원자의 조성 비율을 나타내며, a는 0.1 내지 6이고, b/a는 0 내지 1이며, c/a는 0 내지 1이며, d/a는 0 내지 1이며, e/a는 0 내지 10이며, 이 중에서 b 및 c 중 하나 이상은 0이 아니고,
X 및 y는 결정수의 결합 상태에 따라 결정되는 값으로 0 내지 10이다.
【청구항 2】
제 1항에 있어서,
상기 화학식 1에서 a는 0.5 내지 1이고, b는 0.01 내지 0.3이며, (는 0.01 내지 0.3이며, d는 0.01 내지 0.3이며, e는 1 내지 5인 아크릴산의 제조 방법 .
【청구항 3】
게 1항에 있어서,
상기 촉매는 ZrZno W F ixOy, Zr0.9Feo.iWo.iP2HxOy) .. Zro.gVo.iWo.mOy,
Figure imgf000016_0002
, Zro.9Zno.o2Feo.i o.iP2HxOy, Zro.9Zno.o2Vo.iWo.iP2HxOy, Zr0.9Zno.o2Vo.iWo.iP2HxOy, Z r 0. sZn0.02 ( Fe V ) 0.1W0. iP2Hx0y , Zr 0. s n0.02Fe0.2W0. iP2Hx0y , Zro.8Zno.o2Vo.2Wo.iP2HxOy, 및 Zro.gsZno.ozVo.osWo.^HxOy로 이루어진 군에서 선택되는 1종 이상이며, 상기 X는 2 내지 6이며, y는 1 내지 3인 아크릴산의 제조 방법 .
【청구항 4]
거 U항에 있어서,
상기 탈수 반웅은 100 내지 5000 h 1의 기체공간속도 (GHSV)로 수행하는 아크릴산의 제조 방법 .
【청구항 5】
거 U항에 있어서,
상기 탈수 반웅은 250 내지 350 °C의 온도에서 수행하는 아크릴산의 제조 방법 .
【청구항 6】
제 1항에 있어서,
상기 탈수 반웅에서 기체 반웅물 중 글리세린은 1 내지 10 mol¾>인 아크릴산의 제조 방법 . '
【청구항 7】
제 1항에 있어서,
상기 부분 산화 반웅은 하기 화학식 2로 표시되는 촉매 및.산소 또는 공기의 존재 하에서 수행하는 아크릴산의 제조 방법.
[화학식 2]
Figure imgf000017_0001
상기 화학식 2에서,
M3은 Fe, Cu, Bi, Cr, Sn, Sb, 또는 K이고,
M4는 알칼리토 금속 원소이고,
1, m, n, q, r, 및 z는 각각 Mo, W, V, A, B 및 0의 원자 비율을 나타내며, 1은 5 내지 15이고, m/1는 0.15 내지 0.4이고, n/1는 0.1 내지 0.5이고, q/1는 0.1 내지 0.4이고, r/1는 0 내지 0.2이고, z는 다른 원소의 산화 상태에 따라 정해지는 값이다.
【청구항 8】
제 7항에 있어서,
상기 촉매는 Mo12W2V4Cu2Sr0.50z, Mo12W2V4Fe2Sr0.50z, Mo12W2V4Sb2Sr0.50z, MoioW2V3CuiSro.5Oz,
Figure imgf000018_0001
및 Moi0W2V4SbiSro.50z≤- 이루어진 군에서 선택되는 1종 이상인 아크릴산의 제조 방법.
【청구항 9】
게 1항에 있어서,
반웅 개시 후 640 시간 이상 경과한 시점에서 측정한 아크릴산 수율이 50% 이상이며, 미반웅 아크를레인의 수율이 0.5% 이하인 아크릴산의 제조 방법 .
PCT/KR2016/014740 2015-12-23 2016-12-15 글리세린으로부터 아크릴산의 제조방법 WO2017111391A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/762,868 US10435347B2 (en) 2015-12-23 2016-12-15 Method for preparing acrylic acid from glycerin
JP2018535802A JP6553820B2 (ja) 2015-12-23 2016-12-15 グリセリンからアクリル酸の製造方法
EP16879258.8A EP3339284B1 (en) 2015-12-23 2016-12-15 Method for preparing acrylic acid from glycerin
CN201680061727.8A CN108137463B (zh) 2015-12-23 2016-12-15 由甘油制备丙烯酸的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150184612 2015-12-23
KR10-2015-0184612 2015-12-23
KR10-2016-0139259 2016-10-25
KR1020160139259A KR102044428B1 (ko) 2015-12-23 2016-10-25 글리세린으로부터 아크릴산의 제조방법

Publications (1)

Publication Number Publication Date
WO2017111391A1 true WO2017111391A1 (ko) 2017-06-29

Family

ID=59089573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014740 WO2017111391A1 (ko) 2015-12-23 2016-12-15 글리세린으로부터 아크릴산의 제조방법

Country Status (1)

Country Link
WO (1) WO2017111391A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315194A4 (en) * 2015-12-22 2018-08-08 LG Chem, Ltd. Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118549A1 (en) * 2006-03-30 2009-05-07 Etsushige Matsunami Process for Production of Acrolein
US20100010260A1 (en) * 2006-12-01 2010-01-14 Nippon Shokubai Co., Ltd. Process for producing acrylic acid
KR20120093853A (ko) * 2009-09-18 2012-08-23 아르끄마 프랑스 글리세린의 탈수 반응에 의한 아크롤레인 및/또는 아크릴산의 제조용 촉매 및 방법
JP2013040179A (ja) * 2012-09-14 2013-02-28 Nippon Kayaku Co Ltd グリセリンの脱水反応によってアクロレインおよび/またはアクリル酸を製造するための触媒および方法
KR20150009452A (ko) * 2013-07-16 2015-01-26 주식회사 엘지화학 글리세린 탈수반응용 촉매, 이의 제조 방법 및 아크롤레인의 제조 방법
KR101541934B1 (ko) * 2007-09-20 2015-08-04 아르끄마 프랑스 글리세롤로부터 아크롤레인을 제조하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118549A1 (en) * 2006-03-30 2009-05-07 Etsushige Matsunami Process for Production of Acrolein
US20100010260A1 (en) * 2006-12-01 2010-01-14 Nippon Shokubai Co., Ltd. Process for producing acrylic acid
KR101541934B1 (ko) * 2007-09-20 2015-08-04 아르끄마 프랑스 글리세롤로부터 아크롤레인을 제조하는 방법
KR20120093853A (ko) * 2009-09-18 2012-08-23 아르끄마 프랑스 글리세린의 탈수 반응에 의한 아크롤레인 및/또는 아크릴산의 제조용 촉매 및 방법
JP2013040179A (ja) * 2012-09-14 2013-02-28 Nippon Kayaku Co Ltd グリセリンの脱水反応によってアクロレインおよび/またはアクリル酸を製造するための触媒および方法
KR20150009452A (ko) * 2013-07-16 2015-01-26 주식회사 엘지화학 글리세린 탈수반응용 촉매, 이의 제조 방법 및 아크롤레인의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315194A4 (en) * 2015-12-22 2018-08-08 LG Chem, Ltd. Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
US10569259B2 (en) 2015-12-22 2020-02-25 Lg Chem, Ltd. Catalyst for dehydration of glycerin, preparation method thereof, and production method of acrolein using the catalyst

Similar Documents

Publication Publication Date Title
KR102121079B1 (ko) 에틸렌 및 아세트산의 제조 방법
TWI330632B (en) Improved processes for the preparation of olefins and unsaturated carboxylic acids from alkanes
JP2011518111A (ja) グリセリンからアクロレインを製造する方法
CN102371158A (zh) 氧化法制丙烯酸催化剂及其制备方法
TW201100394A (en) Simplified method for producing alkylene oxides with a high efficiency catalyst as it ages
US20140206527A1 (en) Catalyst For Preparing Acrolein And Acrylic Acid By Dehydration Of Glycerin, And Its Production Process
JP4680473B2 (ja) 低級不飽和炭化水素の酸化による不飽和カルボン酸の生成のための二段階プロセス
JPH0710802A (ja) アクリル酸の製造方法
TW201602071A (zh) 用於共同生產乙酸及二甲醚之方法(一)
EP2103590A1 (en) Method for producing acrolein and glycerin-containing composition
JPS58189038A (ja) 特にメタクロレインの気相酸化によるメタクリル酸製造用の酸化触媒
TW201226402A (en) Method of starting-up a process of producing an alkylene oxide using a high-efficiency catalyst
WO2017111391A1 (ko) 글리세린으로부터 아크릴산의 제조방법
JP2016527267A (ja) 酸化的エステル化方法を介するメチルメタクリレートの調製
JP6837749B2 (ja) メタクリル酸製造用触媒
JPS6048496B2 (ja) メタクリル酸の製造方法
JP6553820B2 (ja) グリセリンからアクリル酸の製造方法
CN102675067B (zh) 一种催化合成间苯氧基苯甲醛的方法
JP2005272313A (ja) メタクリル酸の製造方法
JP5134443B2 (ja) アクロレイン及びアクリル酸の製造方法
EP0013578A2 (en) Process for producing methacrylic acid
JP5162128B2 (ja) グリセリンからのアクロレインの製造方法
WO2021045153A1 (ja) ガンマブチロラクトンの製造方法およびn-メチルピロリドンの製造方法
JP5153462B2 (ja) アクロレインの製造方法及びアクリル酸の製造方法
US9187395B2 (en) Method for preparing acrolein from glycerol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016879258

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15762868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018535802

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE