WO2017111367A1 - 두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법 - Google Patents

두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법 Download PDF

Info

Publication number
WO2017111367A1
WO2017111367A1 PCT/KR2016/014514 KR2016014514W WO2017111367A1 WO 2017111367 A1 WO2017111367 A1 WO 2017111367A1 KR 2016014514 W KR2016014514 W KR 2016014514W WO 2017111367 A1 WO2017111367 A1 WO 2017111367A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
flow frame
flow
mold
frame
Prior art date
Application number
PCT/KR2016/014514
Other languages
English (en)
French (fr)
Inventor
김태윤
김수환
김병철
박상은
이남진
함성식
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2017111367A1 publication Critical patent/WO2017111367A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flow frame constituting a cell stack of a redox flow battery and a manufacturing method thereof, and more particularly to a manufacturing method for improving the thickness uniformity of the flow frame.
  • a redox flow battery is a device that converts chemical energy of an electrolyte into electrical energy through a battery cell.
  • FIG. 1 is a schematic diagram showing the configuration of a redox flow battery.
  • the positive electrolyte is stored in the positive electrolyte storage tank 210, and the negative electrolyte is stored in the negative electrolyte tank 220.
  • the positive electrolyte and the negative electrolyte stored in the positive electrolyte storage tank 210 and the negative electrolyte tank 220 are introduced into the positive cell 100A and the negative cell 100B of the cell 100 through pumps 212 and 222, respectively.
  • the cathode electrolyte and the cathode electrolyte are circulated to the cathode electrolyte storage tank 210 and the cathode electrolyte storage tank 220.
  • the anode cell 100A and the cathode cell 100B are separated by an ion exchange membrane 110 through which ions can pass.
  • the movement of ions that is, crossover, may occur between the anode cell 100A and the cathode cell 100B. That is, during the charge / discharge process of the redox flow battery, the anolyte ions of the positive cell 100A may move to the negative cell 100B, and the catholyte ions of the negative cell 100B may move to the positive cell 100A.
  • the operating voltage of the battery cell has a relatively low voltage, such as 1.0 ⁇ 1.7V. Therefore, the stack is formed by stacking cells in series to increase the operating voltage.
  • the stack has a structure in which a plurality of battery cells are electrically connected in series and share electrolytes in parallel.
  • FIG. 2 is a block diagram showing the structure of a cell stack of a redox flow battery.
  • a stack structure of a cell stack will be described with reference to FIG. 2.
  • unit cells are stacked to form a cell stack.
  • the bipolar plate 160 is disposed between the unit cells so that the negative electrode 140 and the positive electrode 150 are electrically connected through the bipolar plate 160.
  • Adjacent unit cells are connected through the bipolar plate 160 to allow electricity to flow at the charge / discharge time. That is, the unit cells are connected in series through the bipolar plate 160, and holes / electrons are moved toward the bipolar plate 160 from the bipolar plate 160 and the adjacent electrode.
  • the stack is formed by stacking dozens of flow frames. If the thickness of the flow frames is not uniform, the thickness variation is accumulated when dozens of flow frames are stacked to form a stack.
  • the thickness deviation of the thickest part and the thinnest part in one flow frame is 0.2 mm
  • the thickness deviation is accumulated to 4.0 mm in the entire stack when 20 flow frames are stacked to form a stack.
  • Another object of the present invention is to improve the airtightness of the redox flow battery cell stack by allowing the flow frame to have a uniform thickness as a whole.
  • the present invention is a flow frame for forming an electrolyte flow path on one side of the unit cell of the redox flow battery, characterized in that it comprises a thickness correction protrusion for compensating for the thickness variation on the surface where the electrolyte flow path of the flow frame is not formed It provides a flow frame.
  • the thickness correction protrusion preferably has a height corresponding to the insufficient thickness of the region where the thickness correction protrusion is formed.
  • the height of the thickness correction protrusion may have a different height in response to the thickness variation.
  • the present invention provides a mold preparing step of providing an injection mold having a molding groove corresponding to the flow frame shape; A test injection molding step of manufacturing a flow frame using the injection mold; A thickness deviation measurement step of measuring a thickness of the flow frame manufactured in the injection molding step in a plurality of regions, setting a reference thickness from the measured thickness, and deriving a short thickness that is a difference between the thickness of each region and the reference thickness; A mold modification step of further processing the projection groove having a depth corresponding to the insufficient thickness in each region of the injection mold; And an injection molding step of manufacturing a flow frame using the mold modified through the mold modification step.
  • the reference thickness is preferably set to the thickness of the thickest portion of the measured thicknesses of the flow frame.
  • the present invention is a bipolar plate; and a through-hole receiving the bipolar plate and having a same thickness as the bipolar plate; and bonded to both sides of the midframe, respectively, to form an electrolyte flow path between the midframe It includes; a pair of flow frame, wherein the flow frame provides an adhesive cell, characterized in that provided with a thickness correction protrusion for compensating the thickness variation on the surface.
  • the thickness correction protrusions of the flow frame are disposed to be in contact with each other with the midframe interposed therebetween.
  • the flow frame and the midframe is preferably formed of the same type of synthetic resin material.
  • the flow frame and the midframe may be made of a PVC material and bonded with a PVC-based adhesive.
  • the flow frame manufacturing method according to the present invention has the effect of reducing the time and cost of the mold correction operation for thickness correction by additionally processing the projection groove in the mold to correct the local thickness deviation during injection molding.
  • the flow frame according to the present invention is provided with a thickness correction protrusion to bring the effect that the flow frame can have a uniform thickness as a whole.
  • FIG. 1 is a schematic diagram showing the configuration of a redox flow battery.
  • FIG. 2 is a block diagram showing the structure of a cell stack of a redox flow battery.
  • FIG. 3 is a process flowchart showing a method of manufacturing a flow frame according to the present invention.
  • FIG. 4 is a view for explaining a test injection molding step of the flow frame manufacturing method according to the present invention.
  • FIG. 5 is a view for explaining the injection molding step of the flow frame manufacturing method according to the present invention.
  • FIG. 6 is a plan view showing a flow frame according to the present invention.
  • Figure 7 is an exploded perspective view showing an adhesive cell according to the present invention.
  • bipolar plate 540 midframe
  • 550a, 550b Flow Frame
  • FIG. 3 is a process flowchart showing a method of manufacturing a flow frame according to the present invention.
  • the flow frame manufacturing method is a mold preparation step (S110), a test injection molding step (S120), a thickness deviation measurement step (S130), a mold correction step (S140), injection molding Step S150 is included.
  • the mold preparing step (S110) is a step of preparing an injection mold having a molding groove corresponding to the flow frame.
  • the molding groove is processed in the mold, and the position of the gate into which the resin is injected is set.
  • Molding grooves of the mold provided in the mold preparing step (S110) is formed with the same thickness as a whole. However, even if the thickness of the molding groove is uniformly formed, the flow frame injection-molded through the mold may have a thickness variation.
  • the thickness of the manufactured flow frame may vary even when the molding groove has a uniform thickness.
  • the test injection molding step (S120) is a step of manufacturing a flow frame using the prepared injection mold.
  • the process is the same as the injection molding step described later in performing the injection molding, but the flow frame manufactured in the test injection molding step (S120) is not a final finished product, but to measure the thickness deviation of the flow frame,
  • the test injection molding step (S120) was referred to to distinguish it from the injection molding step.
  • the thickness deviation measurement step (S130) of measuring the thickness deviation by measuring the thickness of each region of the flow frame molded through the test injection molding step (S120) is performed.
  • a plurality of flow frames may be manufactured to use an average value of thicknesses of respective areas of the plurality of flow frames.
  • the thickness measurement area (or point) is set in advance, the thickness in each area (or point) is measured, and then the maximum thickness of the measured thicknesses is set as the reference thickness, and Derived thickness is derived which is the thickness difference of the regions with different thicknesses.
  • the insufficient thickness becomes the depth of the projection groove processed at the mold correction step described later.
  • Mold modification step (S140) is a step of further processing the projection groove having a depth corresponding to the insufficient thickness in each region of the injection mold.
  • the depth of the projection groove to be processed is the height of the thickness correction projection formed on the surface of the flow frame.
  • an injection molding step (S150) of manufacturing a flow frame using a mold modified through the mold modification step is performed to manufacture a flow frame as a final product.
  • the flow frame manufacturing method is a method for solving the thickness variation of the flow frame, so that the thickness correction protrusion is formed on the surface of the flow frame.
  • This method can be made relatively easily as compared to the method of locally adjusting the height of the molding groove of the mold. Adjusting the height of the molding groove affects the other parts of the adjustment part, so much effort and cost must be put into modifying to have a uniform thickness as a whole, but the projection groove processing method of the present invention is tested After deriving the thickness variation of the manufactured flow frame, the depth of the protrusion groove is derived from the process, and the process of the process of the mold is completed by processing the protrusion groove of the depth derived for each region, thereby greatly reducing the time required for mold modification. Can be.
  • FIG. 4 is a view for explaining a test injection molding step of the flow frame manufacturing method according to the present invention.
  • the mold 510 may be provided, and the flow frame 500 for thickness deviation measurement may be injection molded from the provided mold.
  • the flow frame 500 manufactured through injection molding has a local thickness variation due to various factors described above.
  • FIG. 5 is a view for explaining the injection molding step of the flow frame manufacturing method according to the present invention.
  • Injection molding step is made through the correction mold 512, the projection groove 511 is processed, as shown, the flow frame 502 manufactured therefrom is a thickness correction projection having a different height for each area on the surface ( 501).
  • FIG. 6 is a plan view showing a flow frame according to the present invention.
  • the flow frame 502 includes thickness correction protrusions 501a and 501b for compensating for thickness variation on a surface where the electrolyte flow path is not formed.
  • the thickness correction protrusion may vary in height depending on the thickness variation of each of the regions A and B.
  • the thickness deviation of the region C is within a certain range, so that the thickness correction protrusion is not required, and the region A has a relatively large thickness deviation, so that the region has a relatively high thickness correction protrusion 501a.
  • the region B represents a region having a thickness correction protrusion 501b having a relatively low height.
  • the arrangement of the regions and the number of regions can be adjusted according to the desired thickness deviation range.
  • Figure 7 is an exploded perspective view showing an adhesive cell according to the present invention.
  • the adhesive cell according to the present invention has a bipolar plate 530, a through hole accommodating the bipolar plate 5300, a midframe 540 having the same thickness as that of the bipolar plate, and both sides of the midframe 540. And a pair of flow frames 550a and 550b which are bonded to each other to form an electrolyte flow path between the midframes 540.
  • the flow frame is provided with a thickness correction protrusion (not shown) to compensate for the thickness variation on the surface.
  • the thickness correction protrusions of the flow frames 550a and 550b are disposed to be in contact with each other with the midframe 540 interposed therebetween.
  • the flow frame 550a in the upper part of the drawing has a thickness correction protrusion at the bottom thereof, and the lower part of the drawing.
  • the flow frame 550b has a thickness correction protrusion on its upper surface.
  • the flow frames 550a and 550b and the midframe 540 are preferably formed of the same kind of synthetic resin material. Since the flow frames 550a and 550b and the midframe 540 should be bonded to each other, it is preferable to use the same type of synthetic resin material and attach the same using the same type of synthetic resin adhesive.
  • the flow frame and the midframe may be made of a PVC material and bonded with a PVC-based adhesive.

Abstract

본 발명은, 플로우 프레임 형상에 대응하는 성형홈을 구비하는 사출 금형을 마련하는 금형 마련 단계; 상기 사출 금형을 이용하여 플로우 프레임을 제조하는 시험 사출 성형 단계; 상기 사출 성형 단계에서 제조된 플로우 프레임의 두께를 복수의 영역에서 측정하고, 측정된 두께로부터 기준 두께를 설정하고, 각 영역의 두께와 기준 두께의 차이인 부족 두께를 도출하는 두께 편차 측정 단계; 상기 사출 금형의 각 영역에 상기 부족 두께에 대응하는 깊이를 가지는 돌기홈을 추가 가공하는 금형 수정 단계; 및 상기 금형 수정 단계를 통해 수정된 금형을 이용하여 플로우 프레임을 제조하는 사출 성형 단계;를 포함하는 플로우 프레임 제조방법을 제공한다.

Description

두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법
본 발명은 레독스 흐름 전지의 셀 스택을 구성하는 플로우 프레임 및 그 제조 방법에 관한 것으로, 보다 상세하게는 플로우 프레임의 두께 균일도를 향상시키기 위한 제조방법에 관한 것이다.
레독스 흐름전지는 전지 셀을 통해서 전해액의 화학 에너지를 전기 에너지로 변환하는 장치이다.
도 1은 레독스 흐름 전지의 구성을 나타낸 모식도이다.
도시한 바와 같이, 레독스 흐름 전지는 양극 전해액 저장탱크(210)에 양극 전해액이 저장되고, 음극 전해액 탱크(220)에 음극 전해액이 저장된다.
양극 전해액 저장탱크(210)와 음극 전해액 탱크(220)에 저장된 양극 전해액과 음극 전해액은 펌프(212,222)를 통해 각각 셀(100)의 양극 셀(100A) 및 음극 셀(100B)로 유입된다.
양극 셀(100A)에서는 전원/부하(300)의 동작에 따라 전극(150)을 통한 전자의 이동이 발생하며, 이에 따라 산화/환원 반응이 일어난다. 마찬가지로 음극 셀(100B)에서는 전원/부하(300)의 동작에 따라 전극(140)을 통한 전자의 이동이 발생하며, 이에 따라 산화/환원 반응이 일어난다. 산화/환원 반응을 마친 양극 전해액과 음극 전해액은 양극 전해액 저장탱크(210)와 음극 전해액 저장 탱크(220)로 순환된다.
한편, 양극 셀(100A) 및 음극 셀(100B)은 이온이 통과할 수 있는 이온교환막(110)에 의해 분리된다. 이에 따라 양극 셀(100A) 및 음극 셀(100B) 간에 이온의 이동, 즉 크로스오버가 일어날 수 있다. 즉 레독스 플로우 전지의 충전/방전 과정에서 양극 셀(100A)의 양극액 이온이 음극 셀(100B)로 이동하고, 음극 셀(100B)의 음극액 이온이 양극 셀(100A)로 이동할 수 있다.
전지 셀의 작동 전압은 1.0~1.7V 정도로 비교적 낮은 전압을 가진다. 따라서, 작동 전압을 높이기 위하여 셀을 직렬로 적층하여 스택을 구성한다. 스택은 다수의 전지 셀이 전기적으로 직렬로 연결되며, 전해액을 병렬로 공유하는 구조를 가진다.
도 2는 레독스 흐름 전지의 셀 스택의 구조를 나타낸 구성도이다.
도 2를 참조하여 셀 스택의 적층 구조를 살펴본다.
단위 셀 만으로는 출력 전압이 부족하기 때문에, 단위 셀을 적층하여 셀 스택을 형성한다. 셀 스택으로 적층 시에는 단위 셀 들의 사이에 쌍극판(160)을 배치하여 음극 전극(140)과 양극 전극(150)이 쌍극판(160)을 통해 전기적으로 연결된다. 쌍극판(160)을 통해 이웃한 단위 셀이 연결되어 충전/방전 시간에 전기가 흐르게 된다. 즉 단위 셀들은 쌍극판(160)을 통해 직렬로 연결되게 되고, 쌍극판(160)과 이웃한 전극에서 쌍극판(160) 쪽으로 각각 정공/전자가 이동되게 된다.
그런데, 스택은 수십 장의 플로우 프레임이 적층되어 형성되는 것으로, 플로우 프레임의 두께가 균일하지 않은 경우에는 수십 장의 플로우 프레임이 적층되어 스택으로 구성되면 두께 편차가 누적된다.
예를 들어, 하나의 플로우 프레임에서 가장 두꺼운 부분과 가장 얇은 부분의 두께 편차가 0.2mm 발생한 경우라면, 20장의 플로우 프레임이 적층되어 스택이 구성된 경우에 전체 스택에 있어서 두께 편차는 4.0mm 로 누적된다.
이러한 두께 편차의 누적은 최종 조립된 스택에서 가스켓 압출률 차이를 가져오게 된다. 가스켓의 압축률에서 차이가 발생하게 되면 압축률이 부족한 부분에서 실링 능력이 저하되어 충/방전을 위한 구동시 셀과 셀사이의 간격이 발생하여 전해액이 유출되는 문제가 발생할 수 있다.
본 발명의 목적은 사출 성형으로 레독스 흐름 전지의 플로우 프레임을 제조함에 있어서 국부적으로 발생하는 플로우 프레임의 두께 편차를 감소시킬 수 있는 방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 플로우 프레임이 전체적으로 균일한 두께를 가지도록 함으로써, 레독스 흐름 전지 셀 스택의 기밀성을 향상시키기 위한 것이다.
본 발명은 레독스 흐름 전지의 단위 셀의 일측면에서 전해액 유로를 형성하는 플로우 프레임으로, 상기 플로우 프레임의 전해액 유로가 형성되지 않은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기를 구비하는 것을 특징으로 하는 플로우 프레임을 제공한다.
상기 두께보정용 돌기는 상기 두께보정용 돌기가 형성된 영역의 부족 두께에 대응하는 높이를 가지는 것이 바람직하다.
상기 두께보정용 돌기의 높이는 두께 편차에 대응하여 서로 다른 높이를 가지도록 할 수 있다.
또한, 본 발명은 플로우 프레임 형상에 대응하는 성형홈을 구비하는 사출 금형을 마련하는 금형 마련 단계; 상기 사출 금형을 이용하여 플로우 프레임을 제조하는 시험 사출 성형 단계; 상기 사출 성형 단계에서 제조된 플로우 프레임의 두께를 복수의 영역에서 측정하고, 측정된 두께로부터 기준 두께를 설정하고, 각 영역의 두께와 기준 두께의 차이인 부족 두께를 도출하는 두께 편차 측정 단계; 상기 사출 금형의 각 영역에 상기 부족 두께에 대응하는 깊이를 가지는 돌기홈을 추가 가공하는 금형 수정 단계; 및 상기 금형 수정 단계를 통해 수정된 금형을 이용하여 플로우 프레임을 제조하는 사출 성형 단계;를 포함하는 플로우 프레임 제조방법을 제공한다.
상기 기준 두께는 상기 플로우 프레임의 측정된 두께중 가장 두꺼운 부분의 두께로 설정하는 것이 바람직하다.
또한, 본 발명은 쌍극판;과 상기 쌍극판을 수용하는 관통공를 가지며 상기 쌍극판과 동일한 두께를 가지는 미드프레임;과 상기 미드프레임의 양면에 각각 접착되어 상기 미드프레임과의 사이에 전해액 유로를 형성하는 한 쌍의 플로우 프레임;을 포함하되, 상기 플로우 프레임은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기를 구비하는 것을 특징으로 하는 접착셀을 제공한다.
이 때, 상기 플로우 프레임의 두께보정용 돌기는 상기 미드프레임을 사이에 두고 서로 맞닿도록 배치되는 것이 바람직하다.
또한, 상기 플로우 프레임과 상기 미드프레임은 동종의 합성수지 재질로 형성되는 것이 바람직하다. 예를 들면, 상기 플로우 프레임과 상기 미드프레임은 PVC 재질로 이루어지고, PVC 계열 접착제로 접착될 수 있다.
본 발명에 따른 플로우 프레임 제조방법은 사출 성형시 국부적인 두께 편차를 보정하기 위하여 금형에 돌기홈을 추가 가공함으로써 두께 보정을 위한 금형 수정 작업의 시간과 비용을 절감할 수 있는 효과를 가져온다.
본 발명에 따른 플로우 프레임은 두께보정용 돌기를 구비하여 플로우 프레임이 전체적으로 균일한 두께를 가질 수 있도록 하는 효과를 가져온다.
따라서, 레독스 흐름 전지의 완성된 셀 스택에서 두께 편차로 인한 실링 불량을 개선하는 효과를 가져온다.
도 1은 레독스 흐름 전지의 구성을 나타낸 모식도이다.
도 2는 레독스 흐름 전지의 셀 스택의 구조를 나타낸 구성도이다.
도 3은 본 발명에 따른 플로우 프레임 제조방법을 나타낸 공정순서도이다.
도 4는 본 발명에 따른 플로우 프레임 제조방법의 시험 사출 성형 단계를 설명하기 위한 도면이다.
도 5는 본 발명에 따른 플로우 프레임 제조방법의 사출 성형 단계를 설명하기 위한 도면이다.
도 6은 본 발명에 따른 플로우 프레임을 나타낸 평면도이다.
도 7은 본 발명에 따른 접착셀을 나타낸 분리사시도이다.
* 도면의 주요 부분에 관한 부호의 설명 *
S110 : 금형 마련 단계 S120 : 시험 사출 성형 단계
S130 : 두께 편차 측정 단계 S140 : 금형 수정 단계
S150 : 사출 성형 단계 500, 502 : 플로우 프레임
510,512 : 금형 511 : 두께보정용 돌기
530 : 쌍극판 540 : 미드프레임
550a, 550b : 플로우 프레임
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 3은 본 발명에 따른 플로우 프레임 제조방법을 나타낸 공정순서도이다.
도시한 바와 같이, 본 발명에 따른 플로우 프레임 제조방법은 금형 마련 단계(S110)와, 시험 사출 성형 단계(S120)와, 두께 편차 측정 단계(S130)와, 금형 수정 단계(S140)와, 사출 성형 단계(S150)를 포함한다.
금형 마련 단계(S110)는 플로우 프레임 대응하는 성형홈을 구비하는 사출 금형을 마련하는 단계이다. 금형 마련 단계(S110)에서는 금형에 성형홈을 가공하고, 수지가 주입되는 게이트의 위치를 설정한다.
금형 마련 단계(S110)에서 마련된 금형의 성형홈은 전체적으로 동일한 두께로 형성된다. 그러나 성형홈의 두께가 균일하게 형성되더라도 금형을 통해서 사출 성형된 플로우 프레임은 두께 편차를 가질 수 있다.
사출 성형 수지의 재질, 금형의 형상 또는 수지가 주입되는 게이트의 개수와 게이트의 위치등이 변수로 작용하기 때문에 성형홈이 균일한 두께를 가지더라도 제조된 플로우 프레임의 두께는 편차가 발생할 수 있다.
편차가 발생하는 게이트의 위치와 수량등을 변경하여 보정할 수 있으나, 이러한 보정만으로는 원하는 수준의 두께 균일도를 확보하기 곤란한 문제점을 가지고 있었다.
시험 사출 성형 단계(S120)는 마련된 사출 금형을 이용하여 플로우 프레임을 제조하는 단계이다. 공정 상으로는 사출 성형을 실시함에 있어서 후술하는 사출 성형 단계와 동일하나, 시험 사출 성형 단계(S120)에서 제조된 플로우 프레임은 최종 완성품이 아니고 플로우 프레임의 두께 편차를 측정하기 위한 것으로, 최종 제품을 성형하는 사출 성형 단계와 구별하기 위하여 시험 사출 성형 단계(S120)로 칭하였다.
다음으로, 시험 사출 성형 단계(S120)를 통해 성형된 플로우 프레임의 각 영역의 두께를 측정하여 두께 편차를 측정하는 두께 편차 측정 단계(S130)을 수행한다.
두께 편차 측정 단계(S130)는 복수개의 플로우 프레임을 제조하여 복수개의 플로우 프레임의 영역별 두께의 평균값을 이용할 수도 있다.
두께 편차 측정 단계(S130)는 미리 두께 측정 영역(또는 지점)을 설정하고, 각 영역(또는 지점)에서의 두께를 측정한 후, 측정된 두께 중 최대 두께를 기준 두께로 설정하고, 기준 두께와 두께가 다른 영역들의 두께 차이인 부족 두께를 도출한다. 부족 두께는 후술하는 금형 수정 단계에서 가공되는 돌기홈의 깊이가 된다.
금형 수정 단계(S140)는 상기 사출 금형의 각 영역에 상기 부족 두께에 대응하는 깊이를 가지는 돌기홈을 추가 가공하는 단계이다. 여기서 가공되는 돌기홈의 깊이가 플로우 프레임의 표면에 형성되는 두께보정용 돌기의 높이가 된다.
다음으로, 상기 금형 수정 단계를 통해 수정된 금형을 이용하여 플로우 프레임을 제조하는 사출 성형 단계(S150)를 수행하여 최종제품인 플로우 프레임을 제조한다.
본 발명에 따른 플로우 프레임 제조 방법은 플로우 프레임의 두께 편차를 해소하기 위한 방법으로, 플로우 프레임의 표면에 두께보정용 돌기가 형성되도록 하는 것이다. 이러한 방법은 금형의 성형홈의 높이를 국부적으로 조절하는 방법에 비하여 비교적 손쉽게 이루어질 수 있다. 성형홈의 높이를 조절하게 되면 조절된 부분이 다른 부분에도 영향을 미치기 때문에 전체적으로 균일한 두께를 가지도록 수정함에 있어서 대단히 많은 노력과 비용이 투입될 수 밖에 없으나, 본 발명의 돌기홈 가공방식은 시험 제조된 플로우 프레임의 두께 편차를 도출한 후, 그로부터 돌기홈의 깊이를 도출하고, 영역별로 도출된 깊이의 돌기홈을 가공하는 것으로 금형의 수정이 완료되기 때문에 금형 수정에 소요되는 시간을 대폭 감축시킬 수 있다.
도 4는 본 발명에 따른 플로우 프레임 제조방법의 시험 사출 성형 단계를 설명하기 위한 도면이다.
도시한 바와 같이, 금형(510)을 마련하고 마련된 금형으로부터 두께 편차 측정용 플로우 프레임(500)을 사출 성형할 수 있다. 실제로 사출 성형을 통해 제조된 플로우 프레임(500)은 앞서 설명한 여러 요인들로 인하여 국부적인 두께 편차를 가지게 된다.
물론, 도면은 이러한 점을 이해시키기 위하여 과장되게 도시한 것이다.
도 5는 본 발명에 따른 플로우 프레임 제조방법의 사출 성형 단계를 설명하기 위한 도면이다.
사출 성형 단계는 도시한 바와 같이, 돌기홈(511)이 가공된 수정 금형(512)을 통해서 이루어지게 되며, 이로부터 제조된 플로우 프레임(502)은 표면에 영역별로 다른 높이를 가지는 두께보정용 돌기(501)를 구비하게 된다.
도 6은 본 발명에 따른 플로우 프레임을 나타낸 평면도이다.
본 발명에 따른 플로우 프레임(502)은 도시된 바와 같이, 전해액 유로가 형성되지 않은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기(501a,501b)를 구비한다.
두께보정용 돌기는 도시한 바와 같이 각 영역(A,B)의 두께 편차에 따라 높이를 달리 할 수 있다.
도시한 실시예의 경우 C영역의 두께 편차가 일정범위 이내여서 두께보정용 돌기가 필요치 않은 영역을 나타낸 것이고, 영역 A는 상대적으로 두께 편차가 커서 상대적으로 높이가 높은 두께보정용 돌기(501a)를 구비하는 영역을 나타낸 것이고, 영역 B는 상대적으로 높이가 낮은 두께보정용 돌기(501b)를 구비하는 영역을 나타낸 것이다.
영역의 배치형태와, 영역의 개수는 원하는 두께 편차 범위에 따라 조절될 수 있다.
도 7은 본 발명에 따른 접착셀을 나타낸 분리사시도이다.
본 발명에 따른 접착셀은 쌍극판(530)과, 상기 쌍극판(5300)을 수용하는 관통공를 가지며 상기 쌍극판과 동일한 두께를 가지는 미드프레임(540)과, 상기 미드프레임(540)의 양면에 각각 접착되어 상기 미드프레임(540)과의 사이에 전해액 유로를 형성하는 한 쌍의 플로우 프레임(550a,550b)을 포함한다.
이때, 상기 플로우 프레임은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기(미도시)를 구비한다.
상기 플로우 프레임(550a,550b)의 두께보정용 돌기는 상기 미드프레임(540)을 사이에 두고 서로 맞닿도록 배치되는 것으로, 도면 상부의 플로우 프레임(550a)은 저면에 두께보정용 돌기를 구비하고, 도면 하부의 플로우 프레임(550b)은 상면에 두께보정용 돌기를 구비한다.
상기 플로우 프레임(550a,550b)과 상기 미드프레임(540)은 동종의 합성수지 재질로 형성되는 것이 바람직하다. 플로우 프레임(550a,550b)과 미드프레임(540)은 서로 접착되어야 하므로 동종의 합성수지 재질을 이용하고, 동종의 합성수지계열 접착제로 부착하는 것이 바람직하다.
예를 들어, 상기 플로우 프레임과 상기 미드프레임은 PVC 재질로 이루어지고, PVC 계열 접착제로 접착될 수 있다.
전술된 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 상세한 설명보다는 후술될 특허청구범위에 의해 나타내어질 것이다. 그리고 후술될 특허청구범위의 의미 및 범위는 물론, 그 등가개념으로부터 도출되는 모든 변경 및 변형 가능한 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (9)

  1. 레독스 흐름 전지의 단위 셀의 일측면에서 전해액 유로를 형성하는 플로우 프레임으로,
    상기 플로우 프레임의 전해액 유로가 형성되지 않은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기를 구비하는 것을 특징으로 하는 플로우 프레임.
  2. 제 1 항에 있어서,
    상기 두께보정용 돌기는
    상기 두께보정용 돌기가 형성된 영역의 부족 두께에 대응하는 높이를 가지는 것을 특징으로 하는 플로우 프레임.
  3. 제 1 항에 있어서,
    돌기의 높이가 두께 편차에 대응하여 서로 다른 높이를 가지는 것을 특징으로 하는 플로우 프레임.
  4. 플로우 프레임 형상에 대응하는 성형홈을 구비하는 사출 금형을 마련하는 금형 마련 단계;
    상기 사출 금형을 이용하여 플로우 프레임을 제조하는 시험 사출 성형 단계;
    상기 사출 성형 단계에서 제조된 플로우 프레임의 두께를 복수의 영역에서 측정하고, 측정된 두께로부터 기준 두께를 설정하고, 각 영역의 두께와 기준 두께의 차이인 부족 두께를 도출하는 두께 편차 측정 단계;
    상기 사출 금형의 각 영역에 상기 부족 두께에 대응하는 깊이를 가지는 돌기홈을 추가 가공하는 금형 수정 단계;
    상기 금형 수정 단계를 통해 수정된 금형을 이용하여 플로우 프레임을 제조하는 사출 성형 단계;를 포함하는 플로우 프레임 제조방법.
  5. 제 4 항에 있어서,
    상기 기준 두께는 상기 플로우 프레임의 측정된 두께중 가장 두꺼운 부분의 두께로 설정하는 것을 특징으로 하는 플로우 프레임 제조방법.
  6. 쌍극판;
    상기 쌍극판을 수용하는 관통공를 가지며 상기 쌍극판과 동일한 두께를 가지는 미드프레임;과
    상기 미드프레임의 양면에 각각 접착되어 상기 미드프레임과의 사이에 전해액 유로를 형성하는 한 쌍의 플로우 프레임;을 포함하되,
    상기 플로우 프레임은 표면에 두께 편차를 보상하기 위한 두께보정용 돌기를 구비하는 것을 특징으로 하는 접착셀.
  7. 제 6 항에 있어서,
    상기 플로우 프레임의 두께보정용 돌기는 상기 미드프레임을 사이에 두고 서로 맞닿도록 배치되는 것을 특징으로 하는 접착셀.
  8. 제 6 항에 있어서,
    상기 플로우 프레임과 상기 미드프레임은 동종의 합성수지 재질로 형성되는 것을 특징으로 하는 접착셀.
  9. 제 8 항에 있어서,
    상기 플로우 프레임과 상기 미드프레임은 PVC 재질로 이루어지고, PVC 계열 접착제로 접착된 것을 특징으로 하는 접착셀.
PCT/KR2016/014514 2015-12-24 2016-12-12 두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법 WO2017111367A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150186860A KR101717383B1 (ko) 2015-12-24 2015-12-24 두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법
KR10-2015-0186860 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017111367A1 true WO2017111367A1 (ko) 2017-06-29

Family

ID=58497996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014514 WO2017111367A1 (ko) 2015-12-24 2016-12-12 두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101717383B1 (ko)
WO (1) WO2017111367A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259777B (zh) * 2023-05-16 2023-09-08 中国科学院宁波材料技术与工程研究所 一种燃料电池的金属极板及电堆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246061A (ja) * 2001-02-15 2002-08-30 Sumitomo Electric Ind Ltd レドックスフロー2次電池用セルフレーム構造およびその製造方法
JP2004346648A (ja) * 2003-05-23 2004-12-09 Takiron Co Ltd 防水パン
JP2013246388A (ja) * 2012-05-29 2013-12-09 Konica Minolta Inc 光学素子の製造方法および光学素子
KR20150007750A (ko) * 2013-07-12 2015-01-21 오씨아이 주식회사 레독스 흐름 전지 및 셀 프레임
KR20150062007A (ko) * 2013-11-28 2015-06-05 롯데케미칼 주식회사 가스켓을 구비한 레독스 흐름 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246061A (ja) * 2001-02-15 2002-08-30 Sumitomo Electric Ind Ltd レドックスフロー2次電池用セルフレーム構造およびその製造方法
JP2004346648A (ja) * 2003-05-23 2004-12-09 Takiron Co Ltd 防水パン
JP2013246388A (ja) * 2012-05-29 2013-12-09 Konica Minolta Inc 光学素子の製造方法および光学素子
KR20150007750A (ko) * 2013-07-12 2015-01-21 오씨아이 주식회사 레독스 흐름 전지 및 셀 프레임
KR20150062007A (ko) * 2013-11-28 2015-06-05 롯데케미칼 주식회사 가스켓을 구비한 레독스 흐름 전지

Also Published As

Publication number Publication date
KR101717383B1 (ko) 2017-03-16

Similar Documents

Publication Publication Date Title
US20090197151A1 (en) Method for operating redox flow battery and redox flow battery cell stack
WO2019124738A1 (ko) 배터리 충전관리 장치 및 방법
WO2016099217A1 (ko) 플로우 배터리의 전해액 재생 모듈 및 이를 이용한 플로우 배터리의 전해액 재생 방법
WO2017007228A1 (ko) 레독스 흐름 전지
EP3029472B1 (en) Detector for detecting with precision charging current
WO2017111367A1 (ko) 두께 균일도를 향상시킨 레독스 흐름 전지의 플로우 프레임, 이를 이용한 접착셀 및 그 제조방법
US11764414B2 (en) Formation equipment for the formation of cylindrical secondary batteries with positive and negative electrodes on top
WO2021033795A1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
WO2020130201A1 (ko) 인시츄 광학 및 전기화학 분석 방법 및 이를 위한 전지 셀 측정 모듈
WO2012042288A1 (en) Frameless electrochemical cell stack having self centering rigid plastic bushings in aligned through holes of interconnects and membrane assemblies
CN113369177A (zh) 一种锂电池一致性的筛选方法
WO2017023068A1 (ko) 레독스 흐름 전지용 열교환기 및 이를 포함하는 레독스 흐름 전지
WO2017007227A1 (ko) 레독스 흐름 전지
US11316179B2 (en) Method for producing a composite of a bipolar plate and a membrane electrode assembly with the aid of a magnetic fixing
WO2023080475A1 (ko) 전해액의 분할 주입을 포함하는 이차전지의 제조방법
KR20170025153A (ko) 레독스 흐름전지
US6320741B1 (en) Electrical double layer capacitor
CN109490780A (zh) 一种蓄电池极片极化分布的检测方法
TWI661605B (zh) 液流電池堆
WO2018062888A1 (ko) 레독스 흐름 전지
WO2017082700A1 (ko) 기밀성과 조립성을 향상시킨 레독스 흐름전지
ATE411626T1 (de) Separator für festoxidbrennstoffzellen mit internen reaktionsgaskanälen
KR20220031376A (ko) 요철 구조를 가지는 분리판을 포함하는 연료전지 스택
CN111916841A (zh) 提升锂电池电解液浸润效果及减少隔膜褶皱的方法和锂电池
KR20140057999A (ko) 접착 방지 효과가 우수한 연료전지용 금속 분리판의 자동 검수 장치 및 그 자동 검수 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879234

Country of ref document: EP

Kind code of ref document: A1