WO2017111158A1 - Electromagnetic wave shielding film and method for manufacturing same - Google Patents

Electromagnetic wave shielding film and method for manufacturing same Download PDF

Info

Publication number
WO2017111158A1
WO2017111158A1 PCT/JP2016/088678 JP2016088678W WO2017111158A1 WO 2017111158 A1 WO2017111158 A1 WO 2017111158A1 JP 2016088678 W JP2016088678 W JP 2016088678W WO 2017111158 A1 WO2017111158 A1 WO 2017111158A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
electromagnetic wave
wave shielding
shielding film
Prior art date
Application number
PCT/JP2016/088678
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 靖
善治 柳
輝明 都地
剛司 西山
藤 信男
Original Assignee
タツタ電線株式会社
東レKpフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社, 東レKpフィルム株式会社 filed Critical タツタ電線株式会社
Priority to KR1020187014245A priority Critical patent/KR102608700B1/en
Priority to CN201680076117.5A priority patent/CN108476607B/en
Priority to JP2017558325A priority patent/JP6949724B2/en
Publication of WO2017111158A1 publication Critical patent/WO2017111158A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to an electromagnetic wave shielding film and a manufacturing method thereof.
  • smartphones and tablet information terminals are required to have a capability of transmitting a large amount of data at high speed, and it is necessary to use a high-frequency signal in order to transmit a large amount of data at high speed.
  • a high-frequency signal when used, electromagnetic noise is generated from the signal circuit provided on the printed wiring board, and peripheral devices are liable to malfunction. Therefore, in order to prevent such a malfunction, it is important to shield the printed wiring board from electromagnetic waves.
  • the conductive adhesive layer is overlapped with the opening provided in the insulating layer covering the ground circuit of the printed wiring board, heated and pressed, and the opening is filled with the conductive adhesive.
  • the shield layer and the ground circuit of the printed wiring board are connected via the conductive adhesive, and the printed wiring board is shielded.
  • the shielded printed wiring board is exposed to a high temperature of about 270 ° C. in a reflow process in order to connect the printed wiring board and the electronic component.
  • the printed wiring board is heated to peel off the electronic component from the printed wiring board, and then attached again. Sometimes called work is performed. And since it is necessary to affix an electronic component on a printed wiring board after passing through repair work, an electromagnetic wave shield film will be again exposed to high temperature in a reflow process.
  • the present invention has been made in view of the above problems, and an electromagnetic wave shielding film capable of maintaining a stable connection with a printed wiring board even when exposed to a plurality of reflow processes. And a method of manufacturing the same.
  • an electromagnetic wave shielding film of the present invention includes a shield layer composed of a first metal layer mainly composed of nickel and a second metal layer mainly composed of copper, and a first layer of the shield layer. And an adhesive layer provided on the second metal layer side and a protective layer provided on the first metal layer side of the shield layer, wherein the average crystal grain size of the second metal layer is from 50 nm to 200 nm.
  • the connection with the printed wiring board can be stably maintained even when exposed to a plurality of reflow processes. it can.
  • the electromagnetic wave shielding film 1 of the present invention has a shield layer 2 composed of a first metal layer 5 and a second metal layer 6, and a surface of the shield layer 2 on the second metal layer 6 side.
  • the adhesive layer 3 provided and the protective layer 4 provided on the surface of the shield layer 2 on the first metal layer side are provided.
  • the shield layer 2 includes a first metal layer 5 provided on one surface of the protective layer 4 and a second metal layer 6 provided on the surface of the first metal layer 5. .
  • the average crystal grain size of the second metal layer 6 is set to 50 nm or more and 200 nm or less from the viewpoint of preventing a decrease in electrical connection between the electromagnetic wave shielding film 1 and the printed wiring board. It is necessary to control, and it is more preferable to control to 50 nm or more and 150 nm or less. In order to suppress surface oxidation, the average crystal grain size should be small, but the film formation rate may be slow. Therefore, it is stable by depositing the film so that the average crystal grain size is 50 nm or more by vacuum evaporation. Can be manufactured. Moreover, the surface oxidation prevention effect of the 2nd metal layer 6 is acquired by making an average crystal grain diameter 200 nm or less, and a higher effect is acquired by making it 150 nm or less.
  • the first metal layer 5 and the second metal layer 6 can be a metal film or a conductive film made of conductive particles.
  • the first metal layer 5 is mainly composed of nickel.
  • the two metal layers 6 are mainly composed of copper. This is because, when a copper film is formed on the protective layer 4 only by a vacuum deposition method, a sufficient adhesion force between the protective layer 4 and the copper film cannot be ensured.
  • the first metal layer 5 is formed as a base layer, and the second metal layer 6 mainly composed of copper is deposited thereon.
  • the second metal is formed by vacuum deposition on the influence of copper formed by sputtering having a large average crystal grain size.
  • the average crystal grain size of the layer 6 also becomes large and control becomes difficult. Therefore, it is preferable to form a nickel film having a small influence on the average crystal grain size on the second metal layer 6 as the first metal layer 5 by a sputtering method.
  • this thin oxide film is considered to function as a protective film even in a high temperature environment and suppress the progress of oxidation. Therefore, even when the shield printed wiring board is exposed to a plurality of reflow processes, it is possible to prevent a decrease in electrical connection due to an increase in the oxide film between the electromagnetic wave shielding film 1 and the printed wiring board. . Therefore, a stable connection between the electromagnetic wave shielding film 1 and the printed wiring board can be maintained.
  • the “average crystal grain size” referred to here means the result of measuring the average crystal grain size using X-ray diffraction (RIGAKU Ultimate IV). Also, voltage and current of the X-ray tube: 40 kV-40 mA, scanning speed: 2 ° / min, diverging slit (DS): 2/3 °, scattering slit (SS): 2/3 °, light receiving slit (RS) : Measured under measurement conditions of 0.3 mm, and the average crystal grain size is calculated using the Scherrer equation from the half-value width (FWHM) of the (111) diffraction line that is the preferred orientation plane of the second metal layer 6 To do.
  • FWHM half-value width
  • the thickness T 1 of the first metal layer 5, the sum of the thickness T 2 of the second metal layer 6 is more than 0.105 ⁇ m 3.03 ⁇ m or less (i.e., 0.105 ⁇ m ⁇ T 1 + T 2 ⁇ 3.03 ⁇ m). If the thickness is less than 0.105 ⁇ m, the performance as an electromagnetic wave shield is insufficient, and the thickness of the second metal layer 6 is preferably thick from the viewpoint of the electromagnetic wave shielding performance, but is larger than 3.03 ⁇ m. This is because the average crystal grain size of the second metal layer 6 becomes too large, and there may be a disadvantage that the effect of preventing the surface oxidation of the second metal layer 6 cannot be obtained.
  • the thickness T 2 of the second metal layer 6 is preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less. This is because when the thickness is less than 0.1 ⁇ m, there may be a disadvantage that the electromagnetic wave shielding performance becomes insufficient. Moreover, even if it is 0.1 ⁇ m or more, the electromagnetic shielding performance is insufficient depending on the application, and the thickness of the second metal layer 6 is preferably 0.2 ⁇ m or more from the viewpoint of improving the electromagnetic shielding performance.
  • the second metal layer 6 is preferably thinner.
  • the thickness of the second metal layer 6 is 1.5 ⁇ m. The following is more preferable.
  • the thickness T 1 of the first metal layer 5 is preferably 5 nm or more and 30 nm or less, and more preferably 7 nm or more and 15 nm or less. This is because if the thickness is less than 5 nm, there may be a disadvantage that the adhesion between the first metal layer 5 and the protective layer 4 is lowered. In reflow used for solder mounting or the like, when the heating conditions become more severe due to the use of lead-free solder, it is necessary to further stabilize the adhesion, and it is more preferable that the thickness is 7 nm or more.
  • the average crystal grain size of the second metal layer 6 formed on the first metal layer 5 is further increased, and the effect of preventing the surface oxidation of the second metal layer 6 cannot be obtained. This is because inconvenience may occur.
  • it is preferable thickness T 1 of the first metal layer 5 is thin, in the reflow used in soldering or the like, when the heating condition is more severe the lead-free solder used is 15 nm The following is preferable.
  • the adhesive layer 3 is not particularly limited as long as the electromagnetic wave shielding film 1 can be fixed to the printed wiring board, but is preferably a conductive adhesive layer having an adhesive resin composition and a conductive filler.
  • the adhesive resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Thermoplastic resin compositions such as amide resin compositions or acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, or alkyd resin compositions
  • a thermosetting resin composition such as a product can be used. These may be used alone or in combination of two or more.
  • a curing accelerator In the adhesive layer 3, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and At least one of a viscosity modifier and the like may be included.
  • the thickness of the adhesive layer 3 is not particularly limited and can be appropriately set as necessary. However, the thickness can be 3 ⁇ m or more, preferably 4 ⁇ m or more, 10 ⁇ m or less, preferably 7 ⁇ m or less.
  • the conductive filler is not particularly limited, and for example, a metal filler, a metal-coated resin filler, a carbon filler, and a mixture thereof can be used.
  • the metal filler include copper powder, silver powder, nickel powder, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and gold-coated nickel powder. These metal powders can be electrolyzed, atomized, or reduced. It can be produced by the method.
  • the average particle diameter of the conductive filler is 3 to 50 ⁇ m.
  • examples of the shape of the conductive filler include a spherical shape, a flake shape, a dendritic shape, and a fibrous shape. Among these, it is preferable that it is at least 1 selected from the group which consists of silver powder, silver coat copper powder, and copper powder from a viewpoint of connection resistance and cost.
  • It can be set as an anisotropic conductive adhesive layer or an isotropic conductive adhesive layer because the adhesive layer 3 contains a conductive filler.
  • the blending amount of the conductive filler can be added in the range of more than 39 wt% and 400 wt% or less with respect to the total amount of the adhesive layer 3.
  • it can be added in the range of 3 wt% to 39 wt% with respect to the total amount of the adhesive layer 3.
  • the protective layer 4 only needs to satisfy predetermined mechanical strength, chemical resistance, heat resistance, and the like that can protect the shield layer 2.
  • the protective layer 4 is not particularly limited as long as it has sufficient insulating properties and can protect the adhesive layer 3 and the shield layer 2.
  • the protective layer 4 is a thermoplastic resin composition, a thermosetting resin composition, or active energy ray curable. A composition or the like can be used.
  • the thermoplastic resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Alternatively, an acrylic resin composition or the like can be used.
  • the thermosetting resin composition is not particularly limited, but is a phenolic resin composition, an epoxy resin composition, a urethane resin composition having an isocyanate group at the terminal, a urea resin having an isocyanate group at the terminal, and a terminal. Urethane urea resins having an isocyanate group, melamine resin compositions, alkyd resin compositions, and the like can be used.
  • the active energy ray-curable composition is not particularly limited, and for example, a polymerizable compound having at least two (meth) acryloyloxy groups in the molecule can be used. These resins may be used alone or in combination of two or more.
  • the urethane urea resin having an isocyanate group at the terminal or the terminal is used.
  • a resin obtained by using a urethane urea resin having an isocyanate group and an epoxy resin in combination is preferable.
  • the urethane resin having an isocyanate group at the terminal or the urethane urea resin having an isocyanate group at the terminal preferably has an acid value of 1 to 30 mgKOH / g, and preferably has an acid value of 3 to 20 mgKOH / g. More preferred.
  • Two or more urethane resins or urethane urea resins having an acid value in the range of 1 to 30 mgKOH / g and different acid values may be used in combination.
  • the acid value is 1 mgKOH / g or more, the reflow resistance of the electromagnetic wave shielding film is good, and when it is 30 mgKOH / g or less, the bending resistance of the electromagnetic wave shielding film is good.
  • the acid value is measured according to JIS K 0070-1992.
  • the protective layer 4 may be formed of a single material or may be formed of two or more kinds of materials.
  • a curing accelerator for the protective layer 4, a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, viscosity adjustment, as necessary At least one of an agent, an anti-blocking agent and the like may be included.
  • the protective layer 4 may be a laminate of two or more layers having different materials, physical properties such as hardness or elastic modulus. For example, if a laminate of an outer layer having a low hardness and an inner layer having a high hardness is used, the outer layer has a cushioning effect, so that the pressure applied to the shield layer 2 is reduced in the process of heating and pressurizing the electromagnetic wave shielding film 1 to the printed wiring board. it can. For this reason, it can suppress that the shield layer 2 is destroyed by the level
  • the thickness of the protective layer 4 is not particularly limited and can be appropriately set as necessary, but is 1 ⁇ m or more, preferably 4 ⁇ m or more, and 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. can do.
  • the thickness of the protective layer 4 is 1 ⁇ m or more, preferably 4 ⁇ m or more, and 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. can do.
  • the thickness of the protective layer 4 By setting the thickness of the protective layer 4 to 1 ⁇ m or more, the adhesive layer 3 and the shield layer 2 can be sufficiently protected.
  • the thickness of the protective layer 4 By setting the thickness of the protective layer 4 to 20 ⁇ m or less, the flexibility of the electromagnetic wave shielding film 1 can be ensured, and it is easy to apply the single electromagnetic wave shielding film 1 to a member that requires flexibility. It becomes.
  • the manufacturing method of the electromagnetic wave shielding film 2 of this invention is not specifically limited, For example, the process of forming the protective layer 4, the process of forming the 1st metal layer 5 on the surface of the protective layer 4, and the 1st metal layer 5 After forming the second metal layer 6 on the surface opposite to the protective layer 4 and applying the adhesive layer composition on the surface of the second metal layer 6 opposite to the first metal layer 5, The manufacturing method which has the process of hardening
  • a protective layer composition is prepared.
  • This protective layer composition can be prepared by adding an appropriate amount of a solvent and other compounding agents to the resin composition.
  • the solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like.
  • a crosslinking agent, a polymerization catalyst, a curing accelerator, a colorant, and the like can be added. Other compounding agents may be added as necessary.
  • the prepared protective layer composition is applied to one side of the support substrate.
  • the method for applying the protective layer composition to one side of the support substrate is not particularly limited, and known techniques such as lip coating, comma coating, gravure coating, slot die coating, and the like can be employed.
  • the support substrate can be formed into a film, for example.
  • the supporting substrate is not particularly limited, and can be formed of, for example, a polyolefin-based material, a polyester-based material, a polyimide-based material, a polyphenylene sulfide-based material, or the like.
  • the protective layer 4 is formed by heat-drying and removing a solvent.
  • a support base material can be peeled from the protective layer 4, peeling of a support base material can be performed after affixing the electromagnetic wave shielding film 1 on a printed wiring board. In this way, the electromagnetic wave shielding film 1 can be protected by the support base material.
  • the first metal layer 5 is formed on the surface of the protective layer 4. More specifically, a film is placed in a batch-type vacuum evaporation apparatus (EBH-800 manufactured by ULVAC), a nickel target having a size of 50 mm ⁇ 550 mm is used, and the degree of vacuum is 5 ⁇ 10 ⁇ 1 Pa or less in an argon gas atmosphere.
  • the first metal layer 5 can be formed by continuously applying the DC power source for a predetermined metal film thickness.
  • the vacuum evaporation which forms the 2nd metal layer 6 implemented after sputtering it processed continuously and it was made not to contact air
  • the first metal layer 5 when the first metal layer 5 is formed by sputtering, sufficient adhesion with the protective layer 4 can be obtained. Further, by using nickel as the first metal layer 5, the average crystal grain size of the second metal layer 6 can be suppressed, and the surface oxidation of the second metal layer 6 can be suppressed.
  • the second metal layer 6 is formed on the surface of the first metal layer 5 opposite to the protective layer 4. More specifically, a film is placed in a batch-type vacuum vapor deposition apparatus (EBH-800 manufactured by ULVAC), and after an amount of copper of a desired thickness is placed on the vapor deposition boat, a vacuum degree of 9.0 is reached. After evacuation until x10 ⁇ 3 Pa or less, vacuum evaporation was carried out by heating the evaporation boat. In addition, about formation of the 1st metal layer 5 and formation of the 2nd metal layer 6, it processed so that it might not be exposed to air
  • a batch-type vacuum vapor deposition apparatus EH-800 manufactured by ULVAC
  • a vacuum deposition method is preferable as a method of forming the second metal layer 6 having a small average crystal grain size.
  • the growth rate of the metal crystal is high, and it is difficult to control the average crystal grain size to 200 nm or less. Therefore, it is preferable to form the second metal layer 6 by a vacuum evaporation method.
  • the adhesive layer composition is applied to the surface of the second metal layer 6 opposite to the first metal layer 5 to form the adhesive layer 3.
  • the composition for adhesive layers contains a resin composition and a solvent.
  • the resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin.
  • Compositions, or thermoplastic resin compositions such as acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc. It can be set as a thermosetting resin composition or the like. These may be used alone or in combination of two or more.
  • the solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like.
  • the adhesive layer composition may include a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant. , And at least one of a viscosity modifier and the like may be included. What is necessary is just to set the ratio of the resin composition in the composition for adhesive layers suitably according to the thickness etc. of the adhesive layer 3. FIG.
  • the method for applying the composition for the adhesive layer on the second metal layer 6 is not particularly limited, and lip coating, comma coating, gravure coating, slot die coating, or the like can be used.
  • the electromagnetic wave shielding film 1 of this embodiment can be used for the shield printed wiring board 30 shown in FIG. 2, for example.
  • the shield printed wiring board 30 includes the printed wiring board 20 and the electromagnetic wave shielding film 1.
  • the printed wiring board 20 includes a base layer 11, a printed circuit (ground circuit) 12 formed on the base layer 11, and an insulating adhesive layer 13 provided on the base layer 11 adjacent to the printed circuit 12. And an opening 15 for exposing a part of the printed circuit 12, and an insulating coverlay 14 provided so as to cover the insulating adhesive layer 13.
  • the insulating adhesive layer 13 and the coverlay 14 constitute an insulating layer of the printed wiring board 20.
  • the base layer 11, the insulating adhesive layer 13, and the coverlay 14 are not particularly limited, and may be, for example, a resin film. In this case, it can be formed of a resin such as polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, or polyphenylene sulfide.
  • the printed circuit 12 can be, for example, a copper wiring pattern formed on the base layer 11.
  • the electromagnetic wave shielding film 1 is bonded to the printed wiring board 20 with the adhesive layer 3 facing the cover lay 14 side.
  • the electromagnetic wave shielding film 1 is placed on the printed wiring board 20 and pressurized while being heated by a press. A part of the adhesive layer 3 softened by heating flows into the opening 15 formed in the cover lay 14 by pressurization. As a result, the shield layer 2 and the ground circuit 12 of the printed wiring board 20 are connected via the conductive adhesive, and the shield layer 2 and the ground circuit 12 are connected.
  • Example 1 Manufacture of electromagnetic shielding film>
  • a PET film having a thickness of 60 ⁇ m and a surface subjected to a release treatment was used as a supporting substrate.
  • a protective layer composition solid content 30% by mass
  • bisphenol A type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd., jER1256
  • methyl ethyl ketone is applied onto the support substrate and dried by heating.
  • a supporting substrate with a protective layer having a thickness of 5 ⁇ m was produced.
  • a shield layer was formed on the surface of the protective layer. More specifically, a support base material with a protective layer is installed in a batch type vacuum deposition apparatus (ULHB EBH-800) and adjusted to a vacuum level of 5 ⁇ 10 ⁇ 1 Pa or less in an argon gas atmosphere. Nickel was deposited to a thickness of 5 nm by magnetron sputtering (DC power output: 3.0 kW) to form a first metal layer.
  • ULHB EBH-800 batch type vacuum deposition apparatus
  • an adhesive layer made of an epoxy resin and silver-coated copper powder having an average particle size of 3 ⁇ m and a spherical particle size (blending amount of 50 wt%) is applied to the surface of the shield layer to form an adhesive layer having a thickness of 5 ⁇ m. Formed.
  • the printed wiring board has two copper foil patterns extending parallel to each other at an interval, and has an insulating layer (thickness: 25 ⁇ m) made of polyimide while covering the copper foil pattern. An opening (diameter: 1 mm) for exposing each copper foil pattern was provided. Moreover, the adhesive layer of the electromagnetic wave shielding film and the printed wiring board were overlapped so that the opening was completely covered with the electromagnetic wave shielding film.
  • the electrical resistance between the two copper foil patterns 41 formed on the printed wiring board 40 as shown in FIG. The value was measured with an ohmmeter 42 and the connectivity between the copper foil pattern 41 and the electromagnetic wave shielding film 43 was evaluated.
  • Example 2 Except that the nickel film thickness of the first metal layer was changed to 10 nm, an electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
  • Example 3 Except that the nickel film thickness of the first metal layer was changed to 7 nm, an electromagnetic wave shield film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
  • Example 4 Except that the nickel film thickness of the first metal layer was changed to 3 nm, an electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
  • Example 1 An electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1 except that the metal forming the first metal layer was changed to copper and the copper film thickness was changed to 10 nm, and reflow resistance evaluation was performed. Went. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

An electromagnetic wave shielding film (1) is provided with: a shielding layer (2) configured from a first metal layer (5) having nickel as a primary component, and a second metal layer (6) having copper as a primary component; an adhesive layer (3) provided to the second-metal-layer (6)-side surface of the shielding layer (2); and a protective layer (4) provided to the first-metal-layer-side surface of the shielding layer (2). The average crystal grain size of the second metal layer (6) is 50-200 nm.

Description

電磁波シールドフィルム及びその製造方法Electromagnetic wave shielding film and manufacturing method thereof
 本開示は、電磁波シールドフィルム及びその製造方法に関する。 The present disclosure relates to an electromagnetic wave shielding film and a manufacturing method thereof.
 近年、スマートフォンやタブレット型情報端末には、大容量のデータを高速に伝送する性能が求められており、また、大容量のデータを高速伝送するためには高周波信号を用いる必要がある。しかし、高周波信号を用いると、プリント配線板に設けられた信号回路から電磁波ノイズが発生し、周辺機器が誤動作しやすくなる。そこで、このような誤動作を防止するために、プリント配線板を電磁波からシールドすることが重要となる。 In recent years, smartphones and tablet information terminals are required to have a capability of transmitting a large amount of data at high speed, and it is necessary to use a high-frequency signal in order to transmit a large amount of data at high speed. However, when a high-frequency signal is used, electromagnetic noise is generated from the signal circuit provided on the printed wiring board, and peripheral devices are liable to malfunction. Therefore, in order to prevent such a malfunction, it is important to shield the printed wiring board from electromagnetic waves.
 プリント配線板をシールドする方法として、シールド層と導電性接着剤層とを有する電磁波シールドフィルムを使用することが検討されている(例えば、特許文献1~3を参照)。 As a method for shielding a printed wiring board, use of an electromagnetic wave shielding film having a shield layer and a conductive adhesive layer has been studied (see, for example, Patent Documents 1 to 3).
 これら電磁波シールドフィルムは、導電性接着剤層を、プリント配線板のグランド回路を被覆する絶縁層に設けられた開口部と重ねあわせて、加熱加圧し、開口部に導電性接着剤を充填する。これにより、シールド層とプリント配線板のグランド回路とが、導電性接着剤を介して接続され、プリント配線板がシールドされる。その後、シールドされたプリント配線板は、プリント配線板と電子部品とを接続するために、リフロー工程において270℃程度の高温に曝される。 In these electromagnetic wave shielding films, the conductive adhesive layer is overlapped with the opening provided in the insulating layer covering the ground circuit of the printed wiring board, heated and pressed, and the opening is filled with the conductive adhesive. Thereby, the shield layer and the ground circuit of the printed wiring board are connected via the conductive adhesive, and the printed wiring board is shielded. Thereafter, the shielded printed wiring board is exposed to a high temperature of about 270 ° C. in a reflow process in order to connect the printed wiring board and the electronic component.
 また、電子部品をプリント配線板に貼り付けた後、電子部品の位置を微修正するために、プリント配線板を加熱して電子部品をプリント配線板から剥がした後に、再度、貼り付ける、リペアと呼ばれる作業が行われる場合がある。そして、リペア作業を経た後、電子部品をプリント配線板に貼り付ける必要があるため、電磁波シールドフィルムは、リフロー工程において、再び、高温に曝されることになる。 In addition, after attaching the electronic component to the printed wiring board, in order to finely correct the position of the electronic component, the printed wiring board is heated to peel off the electronic component from the printed wiring board, and then attached again. Sometimes called work is performed. And since it is necessary to affix an electronic component on a printed wiring board after passing through repair work, an electromagnetic wave shield film will be again exposed to high temperature in a reflow process.
特開2004-095566号公報JP 2004-095566 A WO2006/088127号パンフレットWO2006 / 088127 pamphlet WO2009/019963号パンフレットWO2009 / 019963 pamphlet
 ここで、上記特許文献1~3に記載の電磁波シールドフィルムにおいては、シールドプリント配線板を複数回のリフロー工程に曝すと、導電性接着剤層の流動および金属表面の酸化が生じて、シールドフィルムとプリント配線板との電気的な接続が低下し、結果として、シールド特性が低下するという問題があった。 Here, in the electromagnetic wave shielding films described in Patent Documents 1 to 3, when the shield printed wiring board is exposed to a plurality of reflow processes, the conductive adhesive layer flows and the metal surface is oxidized, and the shield film As a result, there is a problem that the shield connection is deteriorated.
 そこで、本発明は、上記問題を鑑みてなされたものであり、複数回のリフロー工程に曝された場合であっても、プリント配線板との安定的な接続を維持することができる電磁波シールドフィルム、及びその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an electromagnetic wave shielding film capable of maintaining a stable connection with a printed wiring board even when exposed to a plurality of reflow processes. And a method of manufacturing the same.
 上記目的を達成するために、本発明の電磁波シールドフィルムは、ニッケルを主成分とする第1金属層と銅を主成分とする第2金属層とにより構成されたシールド層と、シールド層の第2金属層側に設けられた接着剤層と、シールド層の第1金属層側に設けられた保護層とを備え、第2金属層の平均結晶粒径が50nm以上200nm以下であることを特徴とする。 In order to achieve the above object, an electromagnetic wave shielding film of the present invention includes a shield layer composed of a first metal layer mainly composed of nickel and a second metal layer mainly composed of copper, and a first layer of the shield layer. And an adhesive layer provided on the second metal layer side and a protective layer provided on the first metal layer side of the shield layer, wherein the average crystal grain size of the second metal layer is from 50 nm to 200 nm. And
 本発明の電磁波シールドフィルムは、第2金属層の平均結晶粒径が50nm以上200nm以下であるため、複数回のリフロー工程に曝されてもプリント配線板との接続を安定的に維持することができる。 In the electromagnetic wave shielding film of the present invention, since the average crystal grain size of the second metal layer is 50 nm or more and 200 nm or less, the connection with the printed wiring board can be stably maintained even when exposed to a plurality of reflow processes. it can.
本発明の実施形態に係る電磁波シールドフィルムの断面図である。It is sectional drawing of the electromagnetic wave shielding film which concerns on embodiment of this invention. 本発明の実施形態に係るシールドプリント配線板の断面図である。It is sectional drawing of the shield printed wiring board which concerns on embodiment of this invention. 実施例の耐リフロー性評価における電気抵抗値の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the electrical resistance value in reflow-proof evaluation of an Example.
 以下、本発明の電磁波シールドフィルムについて具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において、適宜変更して適用することができる。
<電磁波シールドフィルム>
 図1に示すように、本発明の電磁波シールドフィルム1は、第1金属層5と第2金属層6とにより構成されたシールド層2と、シールド層2の第2金属層6側の面に設けられた接着剤層3と、シールド層2の第1金属層側の面に設けられた保護層4とを備えている。
Hereinafter, the electromagnetic wave shielding film of the present invention will be specifically described. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably and can apply.
<Electromagnetic wave shielding film>
As shown in FIG. 1, the electromagnetic wave shielding film 1 of the present invention has a shield layer 2 composed of a first metal layer 5 and a second metal layer 6, and a surface of the shield layer 2 on the second metal layer 6 side. The adhesive layer 3 provided and the protective layer 4 provided on the surface of the shield layer 2 on the first metal layer side are provided.
 <シールド層>
 シールド層2は、図1に示すように、保護層4の片面に設けられた第1金属層5と、第1金属層5の表面に設けられた第2金属層6とにより構成されている。
<Shield layer>
As shown in FIG. 1, the shield layer 2 includes a first metal layer 5 provided on one surface of the protective layer 4 and a second metal layer 6 provided on the surface of the first metal layer 5. .
 ここで、本実施形態においては、電磁波シールドフィルム1とプリント配線板との間の電気的な接続の低下を防止するとの観点から、第2金属層6の平均結晶粒径を50nm以上200nm以下に制御することが必要であり、50nm以上150nm以下に制御することがより好ましい。表面酸化を抑制するには平均結晶粒径は小さいほうがよいが、成膜速度が遅くなることもあるため、真空蒸着法によって平均結晶粒径が50nm以上となるように製膜することにより、安定して製造することができる。また、平均結晶粒径を200nm以下にすることにより、第2金属層6の表面酸化防止効果が得られ、150nm以下にすることで、より高い効果が得られる。 Here, in this embodiment, the average crystal grain size of the second metal layer 6 is set to 50 nm or more and 200 nm or less from the viewpoint of preventing a decrease in electrical connection between the electromagnetic wave shielding film 1 and the printed wiring board. It is necessary to control, and it is more preferable to control to 50 nm or more and 150 nm or less. In order to suppress surface oxidation, the average crystal grain size should be small, but the film formation rate may be slow. Therefore, it is stable by depositing the film so that the average crystal grain size is 50 nm or more by vacuum evaporation. Can be manufactured. Moreover, the surface oxidation prevention effect of the 2nd metal layer 6 is acquired by making an average crystal grain diameter 200 nm or less, and a higher effect is acquired by making it 150 nm or less.
 第1金属層5と第2金属層6は、金属膜又は導電性粒子からなる導電膜等とすることができ、本実施形態においては、第1金属層5はニッケルを主成分としており、第2金属層6は銅を主成分としている。これは、真空蒸着法のみで保護層4上に銅膜を成膜すると、保護層4と銅膜の密着力が十分に確保できないため、密着力確保の目的で、保護層4上にスパッタリング法により下地層として第1金属層5を形成し、その上に銅を主成分とした第2金属層6を蒸着する方法がとられる。しかし、下地層である第1金属層5として銅をスパッタリング法で成膜すると、平均結晶粒径の大きいスパッタリング法で形成された銅の影響を受け、その上に真空蒸着で形成する第2金属層6の平均結晶粒径も大きくなってしまい制御が困難になる。そこで、第2金属層6への平均結晶粒径への影響が小さいニッケルを、第1金属層5としてスパッタリング法で成膜することが好ましい。 The first metal layer 5 and the second metal layer 6 can be a metal film or a conductive film made of conductive particles. In the present embodiment, the first metal layer 5 is mainly composed of nickel. The two metal layers 6 are mainly composed of copper. This is because, when a copper film is formed on the protective layer 4 only by a vacuum deposition method, a sufficient adhesion force between the protective layer 4 and the copper film cannot be ensured. Thus, the first metal layer 5 is formed as a base layer, and the second metal layer 6 mainly composed of copper is deposited thereon. However, when copper is formed by sputtering as the first metal layer 5 which is the underlayer, the second metal is formed by vacuum deposition on the influence of copper formed by sputtering having a large average crystal grain size. The average crystal grain size of the layer 6 also becomes large and control becomes difficult. Therefore, it is preferable to form a nickel film having a small influence on the average crystal grain size on the second metal layer 6 as the first metal layer 5 by a sputtering method.
 そして、このような構成のとき、第2金属層6の接着剤層3側の表面には安定した薄い酸化膜が形成されると推察される。また、この薄い酸化膜は高温環境においても保護膜として働き、酸化の進行を抑制すると考えられる。そのため、シールドプリント配線板を複数回のリフロー工程に曝した場合であっても、電磁波シールドフィルム1とプリント配線板との間の酸化膜の増加による電気的な接続の低下を防止することができる。従って、電磁波シールドフィルム1とプリント配線板との安定的な接続を維持することができる。 And in such a configuration, it is assumed that a stable thin oxide film is formed on the surface of the second metal layer 6 on the adhesive layer 3 side. In addition, this thin oxide film is considered to function as a protective film even in a high temperature environment and suppress the progress of oxidation. Therefore, even when the shield printed wiring board is exposed to a plurality of reflow processes, it is possible to prevent a decrease in electrical connection due to an increase in the oxide film between the electromagnetic wave shielding film 1 and the printed wiring board. . Therefore, a stable connection between the electromagnetic wave shielding film 1 and the printed wiring board can be maintained.
 なお、ここで言う「平均結晶粒径」は、X線回折(RIGAKU Ultima IV)を用いて平均結晶粒径を測定した結果のことをいう。また、X線管球の電圧と電流:40kV-40mA、走査速度:2°/min、発散スリット(DS):2/3°、散乱スリット(SS):2/3°、受光スリット(RS):0.3mmの測定条件で測定し、平均結晶粒径の測定には、第2金属層6の優先配向面である(111)回折線の半価幅(FWHM)からシェラー式を使って計算する。 Note that the “average crystal grain size” referred to here means the result of measuring the average crystal grain size using X-ray diffraction (RIGAKU Ultimate IV). Also, voltage and current of the X-ray tube: 40 kV-40 mA, scanning speed: 2 ° / min, diverging slit (DS): 2/3 °, scattering slit (SS): 2/3 °, light receiving slit (RS) : Measured under measurement conditions of 0.3 mm, and the average crystal grain size is calculated using the Scherrer equation from the half-value width (FWHM) of the (111) diffraction line that is the preferred orientation plane of the second metal layer 6 To do.
 また、本実施形態においては、第1金属層5の厚みTと、第2金属層6の厚みTとの合計が、0.105μm以上3.03μm以下(即ち、0.105μm≦T+T≦3.03μm)であることが好ましい。これは、0.105μm未満の場合は、電磁波シールドとしての性能が不十分であり、また、電磁波シールド性能の観点から第2金属層6の厚みは厚い方が好ましいが、3.03μmよりも大きい場合は、第2金属層6の平均結晶粒径が大きくなり過ぎてしまい、第2金属層6の表面酸化防止の効果が得られないという不都合が生じる場合があるためである。 In the present embodiment, the thickness T 1 of the first metal layer 5, the sum of the thickness T 2 of the second metal layer 6 is more than 0.105μm 3.03μm or less (i.e., 0.105μm ≦ T 1 + T 2 ≦ 3.03 μm). If the thickness is less than 0.105 μm, the performance as an electromagnetic wave shield is insufficient, and the thickness of the second metal layer 6 is preferably thick from the viewpoint of the electromagnetic wave shielding performance, but is larger than 3.03 μm. This is because the average crystal grain size of the second metal layer 6 becomes too large, and there may be a disadvantage that the effect of preventing the surface oxidation of the second metal layer 6 cannot be obtained.
 また、本実施形態においては、第2金属層6の厚みTが0.1μm以上3μm以下であることが好ましく、0.2μm以上1.5μm以下であることがより好ましい。0.1μm未満の場合は、電磁波シールド性能が不十分になるという不都合が生じる場合があるためである。また、0.1μm以上であっても、用途によっては電磁波シールド性能が不十分であり、電磁波シールド性能を向上させるとの観点から、第2金属層6の厚みは0.2μm以上が好ましい。また、3μmよりも大きい場合は、第2金属層6の平均結晶粒径がさらに大きくなり過ぎてしまい、第2金属層6の表面酸化防止の効果が得られないという不都合が生じる場合があるためである。また、表面酸化防止の観点から、第2金属層6はより薄いことが好ましく、鉛フリー半田使用によりリフロー時の加熱条件がさらに厳しくなる場合には、第2金属層6の厚みは1.5μm以下であることがより好ましい。 In the present embodiment, the thickness T 2 of the second metal layer 6 is preferably 0.1 μm or more and 3 μm or less, and more preferably 0.2 μm or more and 1.5 μm or less. This is because when the thickness is less than 0.1 μm, there may be a disadvantage that the electromagnetic wave shielding performance becomes insufficient. Moreover, even if it is 0.1 μm or more, the electromagnetic shielding performance is insufficient depending on the application, and the thickness of the second metal layer 6 is preferably 0.2 μm or more from the viewpoint of improving the electromagnetic shielding performance. On the other hand, when the average particle size is larger than 3 μm, the average crystal grain size of the second metal layer 6 becomes excessively large, which may cause a disadvantage that the effect of preventing the surface oxidation of the second metal layer 6 cannot be obtained. It is. From the viewpoint of preventing surface oxidation, the second metal layer 6 is preferably thinner. When the heating conditions during reflow become more severe due to the use of lead-free solder, the thickness of the second metal layer 6 is 1.5 μm. The following is more preferable.
 また、本実施形態においては、第1金属層5の厚みTが5nm以上30nm以下であることが好ましく、7nm以上15nm以下であることがより好ましい。これは、5nm未満の場合は、第1金属層5と保護層4との密着性が低下するという不都合が生じる場合があるからである。半田実装等で使用されるリフローにおいて、鉛フリー半田使用により加熱条件がさらに厳しくなる場合には、さらに密着力を安定させる必要があり、7nm以上であることが、より好ましい。また、30nmよりも大きい場合は、第1金属層5上に形成される第2金属層6の平均結晶粒径がさらに大きくなり、第2金属層6の表面酸化を防止する効果が得られないという不都合が生じる場合があるためである。表面酸化を防止するためには、第1金属層5の厚みTは薄いことが好ましく、半田実装等で使用されるリフローにおいて、鉛フリー半田使用により加熱条件がさらに厳しくなる場合には、15nm以下であることが好ましい。 In the present embodiment, the thickness T 1 of the first metal layer 5 is preferably 5 nm or more and 30 nm or less, and more preferably 7 nm or more and 15 nm or less. This is because if the thickness is less than 5 nm, there may be a disadvantage that the adhesion between the first metal layer 5 and the protective layer 4 is lowered. In reflow used for solder mounting or the like, when the heating conditions become more severe due to the use of lead-free solder, it is necessary to further stabilize the adhesion, and it is more preferable that the thickness is 7 nm or more. On the other hand, when it is larger than 30 nm, the average crystal grain size of the second metal layer 6 formed on the first metal layer 5 is further increased, and the effect of preventing the surface oxidation of the second metal layer 6 cannot be obtained. This is because inconvenience may occur. To prevent surface oxidation, it is preferable thickness T 1 of the first metal layer 5 is thin, in the reflow used in soldering or the like, when the heating condition is more severe the lead-free solder used is 15 nm The following is preferable.
 <接着剤層>
 接着剤層3は、電磁波シールドフィルム1をプリント配線板に固定できるものであれば特に限定されないが、接着性樹脂組成物と導電性フィラーとを有する導電性接着剤層とすることが好ましい。
<Adhesive layer>
The adhesive layer 3 is not particularly limited as long as the electromagnetic wave shielding film 1 can be fixed to the printed wiring board, but is preferably a conductive adhesive layer having an adhesive resin composition and a conductive filler.
 接着性樹脂組成物としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、若しくはアクリル系樹脂組成物等の熱可塑性樹脂組成物、又はフェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、若しくはアルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 The adhesive resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Thermoplastic resin compositions such as amide resin compositions or acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, or alkyd resin compositions A thermosetting resin composition such as a product can be used. These may be used alone or in combination of two or more.
 接着剤層3には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、及び粘度調節剤等の少なくとも1つが含まれていてもよい。 In the adhesive layer 3, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and At least one of a viscosity modifier and the like may be included.
 接着剤層3の厚さは、特に限定されず、必要に応じて適宜設定することができるが、3μm以上、好ましくは4μm以上、10μm以下、好ましくは7μm以下とすることができる。 The thickness of the adhesive layer 3 is not particularly limited and can be appropriately set as necessary. However, the thickness can be 3 μm or more, preferably 4 μm or more, 10 μm or less, preferably 7 μm or less.
 導電性フィラーとしては、特に限定されないが、例えば、金属フィラー、金属被覆樹脂フィラー、カーボンフィラー及びそれらの混合物を使用することができる。上記金属フィラーとしては、銅粉、銀粉、ニッケル粉、銀コ-ト銅粉、金コート銅粉、銀コートニッケル粉、金コートニッケル粉があり、これら金属粉は、電解法、アトマイズ法、還元法により作製することができる。 The conductive filler is not particularly limited, and for example, a metal filler, a metal-coated resin filler, a carbon filler, and a mixture thereof can be used. Examples of the metal filler include copper powder, silver powder, nickel powder, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and gold-coated nickel powder. These metal powders can be electrolyzed, atomized, or reduced. It can be produced by the method.
 また、特に、フィラー同士の接触を得やすくするために、導電性フィラーの平均粒子径を3~50μmとすることが好ましい。また、導電性フィラーの形状としては、球状、フレーク状、樹枝状、繊維状などが挙げられる。これらの中でも、接続抵抗、コストの観点から、銀粉、銀コート銅粉、銅粉からなる群より選択される少なくとも1であることが好ましい。 In particular, in order to make it easy to obtain contact between fillers, it is preferable that the average particle diameter of the conductive filler is 3 to 50 μm. In addition, examples of the shape of the conductive filler include a spherical shape, a flake shape, a dendritic shape, and a fibrous shape. Among these, it is preferable that it is at least 1 selected from the group which consists of silver powder, silver coat copper powder, and copper powder from a viewpoint of connection resistance and cost.
 接着剤層3が導電性フィラーを含有することで、異方導電性接着剤層または等方導電性接着剤層とすることができる。 It can be set as an anisotropic conductive adhesive layer or an isotropic conductive adhesive layer because the adhesive layer 3 contains a conductive filler.
 導電性フィラーの配合量は、等方導電性接着剤層である場合には、接着剤層3の全体量に対して、39wt%を超えて400wt%以下の範囲内で添加することができる。また、異方導電性接着剤層である場合には、接着剤層3の全体量に対して、3wt%~39wt%の範囲で添加することができる。 In the case of an isotropic conductive adhesive layer, the blending amount of the conductive filler can be added in the range of more than 39 wt% and 400 wt% or less with respect to the total amount of the adhesive layer 3. In the case of an anisotropic conductive adhesive layer, it can be added in the range of 3 wt% to 39 wt% with respect to the total amount of the adhesive layer 3.
 <保護層>
 保護層4は、シールド層2を保護できる所定の機械的強度、耐薬品性及び耐熱性等を満たしていればよい。保護層4は、充分な絶縁性を有し、接着剤層3及びシールド層2を保護できれば特に限定されないが、例えば、熱可塑性樹脂組成物、熱硬化性樹脂組成物、又は活性エネルギー線硬化性組成物等を用いることができる。
<Protective layer>
The protective layer 4 only needs to satisfy predetermined mechanical strength, chemical resistance, heat resistance, and the like that can protect the shield layer 2. The protective layer 4 is not particularly limited as long as it has sufficient insulating properties and can protect the adhesive layer 3 and the shield layer 2. For example, the protective layer 4 is a thermoplastic resin composition, a thermosetting resin composition, or active energy ray curable. A composition or the like can be used.
 熱可塑性樹脂組成物としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、又はアクリル系樹脂組成物等を用いることができる。熱硬化性樹脂組成物としては、特に限定されないが、フェノール系樹脂組成物、エポキシ系樹脂組成物、末端にイソシアネート基を有するウレタン系樹脂組成物、末端にイソシアネート基を有するウレア系樹脂、末端にイソシアネート基を有するウレタンウレア系樹脂、メラミン系樹脂組成物、又はアルキッド系樹脂組成物等を用いることができる。また、活性エネルギー線硬化性組成物としては、特に限定されないが、例えば、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する重合性化合物等を用いることができる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。 The thermoplastic resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, Alternatively, an acrylic resin composition or the like can be used. The thermosetting resin composition is not particularly limited, but is a phenolic resin composition, an epoxy resin composition, a urethane resin composition having an isocyanate group at the terminal, a urea resin having an isocyanate group at the terminal, and a terminal. Urethane urea resins having an isocyanate group, melamine resin compositions, alkyd resin compositions, and the like can be used. The active energy ray-curable composition is not particularly limited, and for example, a polymerizable compound having at least two (meth) acryloyloxy groups in the molecule can be used. These resins may be used alone or in combination of two or more.
 また、これらの中でも、耐リフロー性を向上させて、電磁波シールドフィルム1とプリント配線板との電気的な接続の低下を防止するとの観点から、末端にイソシアネート基を有するウレタンウレア系樹脂又は末端にイソシアネート基を有するウレタンウレア系樹脂とエポキシ系樹脂を併用した樹脂であることが好ましい。また、末端にイソシアネート基を有するウレタン系樹脂又は末端にイソシアネート基を有するウレタンウレア系樹脂は、1~30mgKOH/gの酸価を有することが好ましく、3~20mgKOH/gの酸価を有することがより好ましい。また、酸価が1~30mgKOH/gの範囲内で、かつ酸価が異なる2以上のウレタン系樹脂またはウレタンウレア系樹脂を併用してもよい。酸価が1mgKOH/g以上であると電磁波シールドフィルムの耐リフロー性が良好となり、30mgKOH/g以下であると電磁波シールドフィルムの耐屈曲性が良好となる。なお、酸価はJIS K 0070-1992に準拠して測定される。また、保護層4は、単独の材料により形成されていても、2種以上の材料から形成されていてもよい。 Among these, from the viewpoint of improving the reflow resistance and preventing a decrease in electrical connection between the electromagnetic wave shielding film 1 and the printed wiring board, the urethane urea resin having an isocyanate group at the terminal or the terminal is used. A resin obtained by using a urethane urea resin having an isocyanate group and an epoxy resin in combination is preferable. The urethane resin having an isocyanate group at the terminal or the urethane urea resin having an isocyanate group at the terminal preferably has an acid value of 1 to 30 mgKOH / g, and preferably has an acid value of 3 to 20 mgKOH / g. More preferred. Two or more urethane resins or urethane urea resins having an acid value in the range of 1 to 30 mgKOH / g and different acid values may be used in combination. When the acid value is 1 mgKOH / g or more, the reflow resistance of the electromagnetic wave shielding film is good, and when it is 30 mgKOH / g or less, the bending resistance of the electromagnetic wave shielding film is good. The acid value is measured according to JIS K 0070-1992. Further, the protective layer 4 may be formed of a single material or may be formed of two or more kinds of materials.
 保護層4には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤、及びブロッキング防止剤等の少なくとも1つが含まれていてもよい。 For the protective layer 4, a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant, viscosity adjustment, as necessary At least one of an agent, an anti-blocking agent and the like may be included.
 保護層4は、材質又は硬度若しくは弾性率等の物性が異なる2層以上の積層体であってもよい。例えば、硬度が低い外層と、硬度が高い内層との積層体とすれば、外層がクッション効果を有するため、電磁波シールドフィルム1をプリント配線板に加熱加圧する工程においてシールド層2に加わる圧力を緩和できる。このため、プリント配線板に設けられた段差によってシールド層2が破壊されることを抑制することができる。 The protective layer 4 may be a laminate of two or more layers having different materials, physical properties such as hardness or elastic modulus. For example, if a laminate of an outer layer having a low hardness and an inner layer having a high hardness is used, the outer layer has a cushioning effect, so that the pressure applied to the shield layer 2 is reduced in the process of heating and pressurizing the electromagnetic wave shielding film 1 to the printed wiring board. it can. For this reason, it can suppress that the shield layer 2 is destroyed by the level | step difference provided in the printed wiring board.
 また、保護層4の厚さは、特に限定されず、必要に応じて適宜設定することができるが、1μm以上、好ましくは4μm以上、そして20μm以下、好ましくは10μm以下、より好ましくは5μm以下とすることができる。保護層4の厚さを1μm以上とすることにより接着剤層3及びシールド層2を充分に保護することができる。保護層4の厚さを20μm以下とすることにより、電磁波シールドフィルム1の屈曲性を確保することができ、屈曲性が要求される部材へ、1枚の電磁波シールドフィルム1を適用することが容易となる。 Further, the thickness of the protective layer 4 is not particularly limited and can be appropriately set as necessary, but is 1 μm or more, preferably 4 μm or more, and 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less. can do. By setting the thickness of the protective layer 4 to 1 μm or more, the adhesive layer 3 and the shield layer 2 can be sufficiently protected. By setting the thickness of the protective layer 4 to 20 μm or less, the flexibility of the electromagnetic wave shielding film 1 can be ensured, and it is easy to apply the single electromagnetic wave shielding film 1 to a member that requires flexibility. It becomes.
 (電磁波シールドフィルムの製造方法)
 次に、本発明の電磁波シールドフィルム2の製造方法の一例を説明する。本発明の電磁波シールドフィルム2の製造方法は特に限定されないが、例えば、保護層4を形成する工程と、保護層4の表面に第1金属層5を形成する工程と、第1金属層5の保護層4とは反対側の表面に第2金属層6を形成する工程と、第2金属層6の第1金属層5とは反対側の表面に接着剤層用組成物を塗布した後、接着剤組成用組成物を硬化して接着剤層3を形成する工程とを有する製造方法が例示できる。
(Method for producing electromagnetic shielding film)
Next, an example of the manufacturing method of the electromagnetic wave shielding film 2 of this invention is demonstrated. Although the manufacturing method of the electromagnetic wave shielding film 2 of this invention is not specifically limited, For example, the process of forming the protective layer 4, the process of forming the 1st metal layer 5 on the surface of the protective layer 4, and the 1st metal layer 5 After forming the second metal layer 6 on the surface opposite to the protective layer 4 and applying the adhesive layer composition on the surface of the second metal layer 6 opposite to the first metal layer 5, The manufacturing method which has the process of hardening | curing the composition for adhesive composition and forming the adhesive bond layer 3 can be illustrated.
 <保護層形成工程>
 まず、保護層用組成物を調製する。この保護層用組成物は、樹脂組成物に、溶剤及びその他の配合剤を適量加えて調製することができる。溶剤は、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール及びジメチルホルムアミド等とすることができる。その他の配合剤としては、架橋剤や重合用触媒、硬化促進剤、及び着色剤等を加えることができる。その他の配合剤は必要に応じて加えればよい。
<Protective layer forming step>
First, a protective layer composition is prepared. This protective layer composition can be prepared by adding an appropriate amount of a solvent and other compounding agents to the resin composition. The solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like. As other compounding agents, a crosslinking agent, a polymerization catalyst, a curing accelerator, a colorant, and the like can be added. Other compounding agents may be added as necessary.
 次に、支持基材の片面に、調製した保護層用組成物を塗布する。支持基材の片面に保護層用組成物を塗布する方法としては、特に限定されず、リップコーティング、コンマコーティング、グラビアコーティング、スロットダイコーティング等、公知の技術を採用することができる。 Next, the prepared protective layer composition is applied to one side of the support substrate. The method for applying the protective layer composition to one side of the support substrate is not particularly limited, and known techniques such as lip coating, comma coating, gravure coating, slot die coating, and the like can be employed.
 支持基材は、例えば、フィルム状とすることができる。支持基材は、特に限定されず、例えば、ポリオレフィン系、ポリエステル系、ポリイミド系、ポリフェニレンサルファイド系等の材料により形成することができる。なお、支持基材と保護層用組成物との間に、離型剤層を設けてもよい。 The support substrate can be formed into a film, for example. The supporting substrate is not particularly limited, and can be formed of, for example, a polyolefin-based material, a polyester-based material, a polyimide-based material, a polyphenylene sulfide-based material, or the like. In addition, you may provide a mold release agent layer between a support base material and the composition for protective layers.
 そして、支持基材に保護層用組成物を塗布した後、加熱乾燥して溶剤を除去することにより、保護層4が形成される。なお、支持基材は、保護層4から剥離することができるが、支持基材の剥離は、電磁波シールドフィルム1をプリント配線板に貼り付けた後に行うことができる。このようにすれば、支持基材により電磁波シールドフィルム1を保護することができる。 And after apply | coating the composition for protective layers to a support base material, the protective layer 4 is formed by heat-drying and removing a solvent. In addition, although a support base material can be peeled from the protective layer 4, peeling of a support base material can be performed after affixing the electromagnetic wave shielding film 1 on a printed wiring board. In this way, the electromagnetic wave shielding film 1 can be protected by the support base material.
 <第1金属層形成工程>
 次に、保護層4の表面に第1金属層5を形成する。より具体的には、バッチ式真空蒸着装置(アルバック製 EBH-800)内にフィルムを設置し、50mm×550mmサイズのニッケルターゲットを用い、アルゴンガス雰囲気中で真空到達度5×10-1Pa以下に調整して、DC電源を所定の金属膜厚になる時間、連続して印加することにより、第1金属層5を形成することができる。なお、スパッタリング後に実施する第2金属層6を形成する真空蒸着については、連続して処理を行い、スパッタリングと蒸着の間で大気と触れさせないようにした。
<First metal layer forming step>
Next, the first metal layer 5 is formed on the surface of the protective layer 4. More specifically, a film is placed in a batch-type vacuum evaporation apparatus (EBH-800 manufactured by ULVAC), a nickel target having a size of 50 mm × 550 mm is used, and the degree of vacuum is 5 × 10 −1 Pa or less in an argon gas atmosphere. Thus, the first metal layer 5 can be formed by continuously applying the DC power source for a predetermined metal film thickness. In addition, about the vacuum evaporation which forms the 2nd metal layer 6 implemented after sputtering, it processed continuously and it was made not to contact air | atmosphere between sputtering and vapor deposition.
 ここで、本実施形態においては、第1金属層5をスパッタリング法で成膜すると、保護層4との十分な密着力を得ることができる。また、第1金属層5としてニッケルを用いることで、第2金属層6の平均結晶粒径を抑制して、第2金属層6の表面酸化を抑制することができる。 Here, in this embodiment, when the first metal layer 5 is formed by sputtering, sufficient adhesion with the protective layer 4 can be obtained. Further, by using nickel as the first metal layer 5, the average crystal grain size of the second metal layer 6 can be suppressed, and the surface oxidation of the second metal layer 6 can be suppressed.
 <第2金属層形成工程>
 次に、第1金属層5の保護層4とは反対側の表面に第2金属層6を形成する。より具体的には、バッチ式真空蒸着装置(アルバック製 EBH-800)内にフィルムを設置し、蒸着ボート上に目的の厚さになる量の銅を載置した後に、真空到達度9.0×10-3Pa以下になるまで真空引きをしてから、蒸発ボートを加熱して真空蒸着を実施した。なお、第1金属層5の形成と、第2金属層6の形成については連続して処理を行い、スパッタリングと蒸着の間で大気と触れさせないようにした。
<Second metal layer forming step>
Next, the second metal layer 6 is formed on the surface of the first metal layer 5 opposite to the protective layer 4. More specifically, a film is placed in a batch-type vacuum vapor deposition apparatus (EBH-800 manufactured by ULVAC), and after an amount of copper of a desired thickness is placed on the vapor deposition boat, a vacuum degree of 9.0 is reached. After evacuation until x10 −3 Pa or less, vacuum evaporation was carried out by heating the evaporation boat. In addition, about formation of the 1st metal layer 5 and formation of the 2nd metal layer 6, it processed so that it might not be exposed to air | atmosphere between sputtering and vapor deposition.
 ここで、本実施形態においては、平均結晶粒径が小さい第2金属層6を成膜する方法としては真空蒸着法が好ましい。スパッタリング法などでは金属結晶の成長速度が速く、平均結晶粒径を200nm以下に制御することは困難であるため、第2金属層6を真空蒸着法により形成することが好ましい。 Here, in the present embodiment, a vacuum deposition method is preferable as a method of forming the second metal layer 6 having a small average crystal grain size. In the sputtering method or the like, the growth rate of the metal crystal is high, and it is difficult to control the average crystal grain size to 200 nm or less. Therefore, it is preferable to form the second metal layer 6 by a vacuum evaporation method.
 <接着剤層形成工程>
 次に、第2金属層6の第1金属層5とは反対側の表面に接着剤層用組成物を塗布して、接着剤層3を形成する。ここで、接着剤層用組成物は、樹脂組成物と溶剤とを含む。樹脂組成物は、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、若しくはアクリル系樹脂組成物等の熱可塑性樹脂組成物、又はフェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、若しくはアルキッド系樹脂組成物等の熱硬化性樹脂組成物等とすることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
<Adhesive layer forming step>
Next, the adhesive layer composition is applied to the surface of the second metal layer 6 opposite to the first metal layer 5 to form the adhesive layer 3. Here, the composition for adhesive layers contains a resin composition and a solvent. The resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, an imide resin composition, an amide resin. Compositions, or thermoplastic resin compositions such as acrylic resin compositions, or phenolic resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions, etc. It can be set as a thermosetting resin composition or the like. These may be used alone or in combination of two or more.
 溶剤は、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール及びジメチルホルムアミド等とすることができる。 The solvent can be, for example, toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide, and the like.
 また、必要に応じて、接着剤層用組成物に硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、及び粘度調節剤等の少なくとも1つが含まれていてもよい。接着剤層用組成物中における樹脂組成物の比率は、接着剤層3の厚さ等に応じて適宜設定すればよい。 In addition, if necessary, the adhesive layer composition may include a curing accelerator, tackifier, antioxidant, pigment, dye, plasticizer, ultraviolet absorber, antifoaming agent, leveling agent, filler, flame retardant. , And at least one of a viscosity modifier and the like may be included. What is necessary is just to set the ratio of the resin composition in the composition for adhesive layers suitably according to the thickness etc. of the adhesive layer 3. FIG.
 第2金属層6上に接着剤層用組成物を塗布する方法としては、特に限定されず、リップコーティング、コンマコーティング、グラビアコーティング、又はスロットダイコーティング等を用いることができる。 The method for applying the composition for the adhesive layer on the second metal layer 6 is not particularly limited, and lip coating, comma coating, gravure coating, slot die coating, or the like can be used.
 そして、第2金属層6の上に接着剤層用組成物を塗布した後、加熱乾燥して溶剤を除去することにより、接着剤層3を形成する。なお、必要に応じて、接着剤層3の表面に離型フィルムを貼り合わせてもよい。 And after apply | coating the composition for adhesive bond layers on the 2nd metal layer 6, it heat-drys and the adhesive layer 3 is formed by removing a solvent. In addition, you may stick a release film on the surface of the adhesive bond layer 3 as needed.
 (シールドプリント配線板)
 本実施形態の電磁波シールドフィルム1は、例えば、図2に示すシールドプリント配線板30に用いることができる。このシールドプリント配線板30は、プリント配線板20と、電磁波シールドフィルム1と備えている。
(Shield printed wiring board)
The electromagnetic wave shielding film 1 of this embodiment can be used for the shield printed wiring board 30 shown in FIG. 2, for example. The shield printed wiring board 30 includes the printed wiring board 20 and the electromagnetic wave shielding film 1.
 プリント配線板20は、ベース層11と、ベース層11上に形成されたプリント回路(グランド回路)12と、ベース層11上において、プリント回路12に隣接して設けられた絶縁性接着剤層13と、プリント回路12の一部を露出するための開口部15が形成され、絶縁性接着剤層13を覆うように設けられた絶縁性のカバーレイ14とを有している。なお、絶縁性接着剤層13とカバーレイ14により、プリント配線板20の絶縁層が構成される。 The printed wiring board 20 includes a base layer 11, a printed circuit (ground circuit) 12 formed on the base layer 11, and an insulating adhesive layer 13 provided on the base layer 11 adjacent to the printed circuit 12. And an opening 15 for exposing a part of the printed circuit 12, and an insulating coverlay 14 provided so as to cover the insulating adhesive layer 13. The insulating adhesive layer 13 and the coverlay 14 constitute an insulating layer of the printed wiring board 20.
 ベース層11、絶縁性接着剤層13及びカバーレイ14は、特に限定されず、例えば、樹脂フィルム等とすることができる。この場合、ポリプロピレン、架橋ポリエチレン、ポリエステル、ポリベンゾイミダゾール、ポリイミド、ポリイミドアミド、ポリエーテルイミド、又はポリフェニレンサルファイド等の樹脂により形成することができる。プリント回路12は、例えば、ベース層11上に形成された銅配線パターン等とすることができる。 The base layer 11, the insulating adhesive layer 13, and the coverlay 14 are not particularly limited, and may be, for example, a resin film. In this case, it can be formed of a resin such as polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, or polyphenylene sulfide. The printed circuit 12 can be, for example, a copper wiring pattern formed on the base layer 11.
 なお、電磁波シールドフィルム1は、接着剤層3をカバーレイ14側にしてプリント配線板20と接着されている。 The electromagnetic wave shielding film 1 is bonded to the printed wiring board 20 with the adhesive layer 3 facing the cover lay 14 side.
 次に、シールドプリント配線板30の製造方法について説明する。プリント配線板20上に、電磁波シールドフィルム1を載置し、プレス機で加熱しつつ加圧する。加熱により柔らかくなった接着剤層3の一部は、加圧によりカバーレイ14に形成された開口部15に流れ込む。これにより、シールド層2とプリント配線板20のグランド回路12とが、導電性接着剤を介して接続され、シールド層2とグランド回路12とが接続される。 Next, a method for manufacturing the shield printed wiring board 30 will be described. The electromagnetic wave shielding film 1 is placed on the printed wiring board 20 and pressurized while being heated by a press. A part of the adhesive layer 3 softened by heating flows into the opening 15 formed in the cover lay 14 by pressurization. As a result, the shield layer 2 and the ground circuit 12 of the printed wiring board 20 are connected via the conductive adhesive, and the shield layer 2 and the ground circuit 12 are connected.
 以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを発明の範囲から除外するものではない。 Hereinafter, the present invention will be described based on examples. In addition, this invention is not limited to these Examples, These Examples can be changed and changed based on the meaning of this invention, and they are not excluded from the scope of the invention. Absent.
 (実施例1)
 <電磁波シールドフィルムの製造>
 支持基材として、厚さが60μmで、表面に離型処理を施したPETフィルムを用いた。次に、支持基材の上に、ビスフェノールA型エポキシ系樹脂(三菱化学(株)製、jER1256)及びメチルエチルケトンからなる保護層用組成物(固形分量30質量%)を塗布し、加熱乾燥することにより、5μmの厚みを有する保護層付き支持基材を作製した。
Example 1
<Manufacture of electromagnetic shielding film>
As a supporting substrate, a PET film having a thickness of 60 μm and a surface subjected to a release treatment was used. Next, a protective layer composition (solid content 30% by mass) consisting of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., jER1256) and methyl ethyl ketone is applied onto the support substrate and dried by heating. Thus, a supporting substrate with a protective layer having a thickness of 5 μm was produced.
 次に、保護層の表面にシールド層を形成した。より具体的には、バッチ式真空蒸着装置(アルバック製 EBH-800)内に保護層付き支持基材を設置し、アルゴンガス雰囲気中で、真空到達度5×10-1Pa以下に調整して、マグネトロンスパッタリング法(DC電源出力:3.0kW)により、ニッケルを5nmの厚さに蒸着し、第1金属層を形成した。 Next, a shield layer was formed on the surface of the protective layer. More specifically, a support base material with a protective layer is installed in a batch type vacuum deposition apparatus (ULHB EBH-800) and adjusted to a vacuum level of 5 × 10 −1 Pa or less in an argon gas atmosphere. Nickel was deposited to a thickness of 5 nm by magnetron sputtering (DC power output: 3.0 kW) to form a first metal layer.
 次に、蒸着ボート上に銅を載置した後に、真空到達度9.0×10-3Pa以下になるまで真空引きを行い、その後、蒸発ボートを加熱して真空蒸着を実施し、0.5μmの第2金属層を形成した。なお、第1金属層の形成と、第2金属層の形成については連続して処理を行い、スパッタリングと蒸着の間で大気と触れさせないようにした。 Next, after placing copper on the evaporation boat, evacuation was performed until the degree of vacuum reached 9.0 × 10 −3 Pa or less, and then the evaporation boat was heated to perform vacuum evaporation. A 5 μm second metal layer was formed. In addition, about formation of the 1st metal layer and formation of the 2nd metal layer, it processed continuously and it was made not to contact air | atmosphere between sputtering and vapor deposition.
 次いで、シールド層の表面に、エポキシ系樹脂と平均粒子径が3μmの粒子径球状の銀コート銅粉(配合量50wt%)からなる接着剤を塗布して、5μmの厚みを有する接着剤層を形成した。 Next, an adhesive layer made of an epoxy resin and silver-coated copper powder having an average particle size of 3 μm and a spherical particle size (blending amount of 50 wt%) is applied to the surface of the shield layer to form an adhesive layer having a thickness of 5 μm. Formed.
 <シールドプリント配線板の作製>
 次に、作製した電磁波シールドフィルムとプリント配線板とを、電磁波シールドフィルムの接着剤層とプリント配線板とが対向するように重ね合わせ、プレス機を用いて170℃、3.0MPaの条件で1分間加熱加圧した後、同じ温度および圧力で3分間加熱加圧し、支持基材を保護層から剥離して、シールドプリント配線板を作製した。
<Preparation of shield printed wiring board>
Next, the produced electromagnetic wave shielding film and the printed wiring board are overlapped so that the adhesive layer of the electromagnetic wave shielding film and the printed wiring board are opposed to each other, and 1 is used at 170 ° C. and 3.0 MPa using a press machine. After heat-pressing for 5 minutes, heat-pressing was performed for 3 minutes at the same temperature and pressure, and the supporting base material was peeled from the protective layer to produce a shield printed wiring board.
 なお、プリント配線板は、互いに間隔をおいて平行に延びる2本の銅箔パターンと、銅箔パターンを覆うとともに、ポリイミドからなる絶縁層(厚み:25μm)を有しており、絶縁層には、各銅箔パターンを露出する開口部(直径:1mm)を設けた。また、この開口部が電磁波シールドフィルムにより完全に覆われるように、電磁波シールドフィルムの接着剤層とプリント配線板とを重ね合わせた。 The printed wiring board has two copper foil patterns extending parallel to each other at an interval, and has an insulating layer (thickness: 25 μm) made of polyimide while covering the copper foil pattern. An opening (diameter: 1 mm) for exposing each copper foil pattern was provided. Moreover, the adhesive layer of the electromagnetic wave shielding film and the printed wiring board were overlapped so that the opening was completely covered with the electromagnetic wave shielding film.
 <耐リフロー性評価>
 次に、作製したシールドプリント配線板の耐リフロー性の評価を行った。リフローの条件としては、鉛フリーハンダを想定し、シールドプリント配線板におけるシールドフィルムが265℃に1秒間曝されるような温度プロファイルを設定した。
<Reflow resistance evaluation>
Next, the reflow resistance of the produced shielded printed wiring board was evaluated. As a reflow condition, lead-free solder was assumed, and a temperature profile was set such that the shield film on the shield printed wiring board was exposed to 265 ° C. for 1 second.
 そして、シールドプリント配線板を、上記プロファイルの温度条件下で、1~5回曝した後、図3に示すように、プリント配線板40に形成された2本の銅箔パターン41間の電気抵抗値を抵抗計42で測定し、銅箔パターン41と電磁波シールドフィルム43との接続性を評価した。 Then, after the shield printed wiring board is exposed 1 to 5 times under the temperature condition of the above profile, the electrical resistance between the two copper foil patterns 41 formed on the printed wiring board 40 as shown in FIG. The value was measured with an ohmmeter 42 and the connectivity between the copper foil pattern 41 and the electromagnetic wave shielding film 43 was evaluated.
 そして、上記リフロー工程を5回行い、各リフロー後の抵抗値の変化を評価した。以上の結果を表1に示す。 Then, the above reflow process was performed 5 times, and the change in resistance value after each reflow was evaluated. The results are shown in Table 1.
 (実施例2)
 第1金属層のニッケル膜厚を10nmに変更したこと以外は、実施例1と同様にして、電磁波シールドフィルム及びシールドプリント配線板を作製し、耐リフロー性評価を行った。以上の結果を表1に示す。
(Example 2)
Except that the nickel film thickness of the first metal layer was changed to 10 nm, an electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
 (実施例3)
 第1金属層のニッケル膜厚を7nmに変更したこと以外は、実施例1と同様にして、電磁波シールドフィルム及びシールドプリント配線板を作製し、耐リフロー性評価を行った。以上の結果を表1に示す。
(Example 3)
Except that the nickel film thickness of the first metal layer was changed to 7 nm, an electromagnetic wave shield film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
 (実施例4)
 第1金属層のニッケル膜厚を3nmに変更したこと以外は、実施例1と同様にして、電磁波シールドフィルム及びシールドプリント配線板を作製し、耐リフロー性評価を行った。以上の結果を表1に示す。
Example 4
Except that the nickel film thickness of the first metal layer was changed to 3 nm, an electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1, and reflow resistance evaluation was performed. The results are shown in Table 1.
 (比較例1)
 第1金属層を形成する金属を銅に変更し、銅膜厚を10nmに変更したこと以外は、実施例1と同様にして、電磁波シールドフィルム及びシールドプリント配線板を作製し、耐リフロー性評価を行った。以上の結果を表1に示す。
(Comparative Example 1)
An electromagnetic wave shielding film and a shield printed wiring board were produced in the same manner as in Example 1 except that the metal forming the first metal layer was changed to copper and the copper film thickness was changed to 10 nm, and reflow resistance evaluation was performed. Went. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第2金属層の平均結晶粒径が50nm以上200nm以下である実施例1~4においては、複数回のリフロー工程に曝された場合であっても、抵抗値の上昇が抑制されており、電磁波シールドフィルムとプリント配線板との間の電気的な接続が安定して維持されていることが判る。 As shown in Table 1, in Examples 1 to 4 in which the average crystal grain size of the second metal layer is 50 nm or more and 200 nm or less, the resistance value increases even when exposed to a plurality of reflow processes. It can be seen that the electrical connection between the electromagnetic wave shielding film and the printed wiring board is stably maintained.
 1  電磁波シールドフィルム
 2  シールド層
 3  接着剤層
 4  保護層
 5  第1金属層
 6  第2金属層
 11  ベース層
 12  プリント回路(グランド回路)
 13  絶縁性接着剤層
 14  カバーレイ
 15  開口部
 20  プリント配線板
 30  プリント配線板
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave shield film 2 Shield layer 3 Adhesive layer 4 Protective layer 5 1st metal layer 6 2nd metal layer 11 Base layer 12 Printed circuit (ground circuit)
13 Insulating Adhesive Layer 14 Coverlay 15 Opening 20 Printed Wiring Board 30 Printed Wiring Board

Claims (5)

  1.  ニッケルを主成分とする第1金属層と、銅を主成分とする第2金属層とにより構成されたシールド層と、
     前記シールド層の前記第2金属層側の面に設けられた接着剤層と、
     前記シールド層の前記第1金属層側の面に設けられた保護層と
    を備えた電磁波シールドフィルムであって、
     前記第2金属層の平均結晶粒径が50nm以上200nm以下であることを特徴とする電磁波シールドフィルム。
    A shield layer composed of a first metal layer mainly composed of nickel and a second metal layer mainly composed of copper;
    An adhesive layer provided on the surface of the shield layer on the second metal layer side;
    An electromagnetic wave shielding film comprising a protective layer provided on a surface of the shield layer on the first metal layer side,
    The electromagnetic wave shielding film, wherein an average crystal grain size of the second metal layer is 50 nm or more and 200 nm or less.
  2.  前記第1金属層の厚みと、前記第2金属層の厚みとの合計が、0.105μm以上3.03μm以下であることを特徴とする請求項1に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1, wherein the total thickness of the first metal layer and the thickness of the second metal layer is 0.105 µm or more and 3.03 µm or less.
  3.  前記第2金属層の厚みが、0.1μm以上3μm以下であることを特徴とする請求項1または請求項2に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to claim 1 or 2, wherein the thickness of the second metal layer is 0.1 µm or more and 3 µm or less.
  4.  前記第1金属層の厚みが、5nm以上30nm以下であることを特徴とする請求項1~請求項3のいずれか1項に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 3, wherein the thickness of the first metal layer is 5 nm or more and 30 nm or less.
  5.  ニッケルを主成分とする第1金属層と銅を主成分とする第2金属層とにより構成されたシールド層と、シールド層の前記第2金属層側に設けられた接着剤層と、シールド層の前記第1金属層側に設けられた保護層とを備えた電磁波シールドフィルムの製造方法であって、
     前記第1金属層がスパッタリング法により形成され、前記第2金属層が真空蒸着法により形成されることを特徴とする電磁波シールドフィルムの製造方法。
    A shield layer composed of a first metal layer mainly composed of nickel and a second metal layer mainly composed of copper; an adhesive layer provided on the second metal layer side of the shield layer; and a shield layer A method for producing an electromagnetic wave shielding film comprising a protective layer provided on the first metal layer side of
    The method for producing an electromagnetic wave shielding film, wherein the first metal layer is formed by a sputtering method, and the second metal layer is formed by a vacuum deposition method.
PCT/JP2016/088678 2015-12-25 2016-12-26 Electromagnetic wave shielding film and method for manufacturing same WO2017111158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187014245A KR102608700B1 (en) 2015-12-25 2016-12-26 Electromagnetic wave shielding film and its manufacturing method
CN201680076117.5A CN108476607B (en) 2015-12-25 2016-12-26 Electromagnetic wave shielding film and method for producing same
JP2017558325A JP6949724B2 (en) 2015-12-25 2016-12-26 Electromagnetic wave shield film and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015253514 2015-12-25
JP2015-253514 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111158A1 true WO2017111158A1 (en) 2017-06-29

Family

ID=59090573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088678 WO2017111158A1 (en) 2015-12-25 2016-12-26 Electromagnetic wave shielding film and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP6949724B2 (en)
KR (1) KR102608700B1 (en)
CN (1) CN108476607B (en)
TW (1) TWI748975B (en)
WO (1) WO2017111158A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012590A1 (en) * 2017-07-10 2019-01-17 タツタ電線株式会社 Electromagnetic wave shield film, and shielded printed wiring board equipped with same
JP2020009922A (en) * 2018-07-09 2020-01-16 信越ポリマー株式会社 Electromagnetic wave shielding film, method of manufacturing the same, and printed wiring board with electromagnetic wave shielding film
JP2020077867A (en) * 2018-10-22 2020-05-21 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. Electromagnetic wave shield film, preparation method thereof, and use thereof
CN111231338A (en) * 2019-12-16 2020-06-05 安徽墙煌彩铝科技有限公司 Composite process for refrigerating metal plate
KR20210149689A (en) 2019-03-29 2021-12-09 도레이 케이피 필름 가부시키가이샤 Metallized film and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128158A (en) * 2002-10-01 2004-04-22 Fcm Kk Electromagnetic shielding material
JP2006245452A (en) * 2005-03-07 2006-09-14 Toyo Kohan Co Ltd Electromagnetic wave shield material
WO2009019963A1 (en) * 2007-08-03 2009-02-12 Tatsuta System Electronics Co., Ltd. Shield film for printed wiring board, and printed wiring board
JP2012512543A (en) * 2008-12-17 2012-05-31 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic shielding article
JP2013110335A (en) * 2011-11-24 2013-06-06 Toray Ind Inc Electromagnetic wave shield film for game board and game board using the same
JP2013185163A (en) * 2012-03-06 2013-09-19 Toray Kp Films Inc Metalized film and metal foil
JP2015523709A (en) * 2012-06-21 2015-08-13 広州方邦電子有限公司 Ultra-thin shield film with high shielding function and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201548B2 (en) 2002-07-08 2008-12-24 タツタ電線株式会社 SHIELD FILM, SHIELD FLEXIBLE PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
TWI360386B (en) 2005-02-18 2012-03-11 Toyo Ink Mfg Co Electro-magnetic wave shielding adhesive sheet, pr
JPWO2007069495A1 (en) * 2005-12-16 2009-05-21 コニカミノルタエムジー株式会社 Electromagnetic wave shielding material, method for producing electromagnetic wave shielding material, and electromagnetic wave shielding material for plasma display panel
JP5139156B2 (en) * 2008-05-30 2013-02-06 タツタ電線株式会社 Electromagnetic shielding material and printed wiring board
JP5983141B2 (en) * 2012-07-24 2016-08-31 東レ株式会社 Laminated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128158A (en) * 2002-10-01 2004-04-22 Fcm Kk Electromagnetic shielding material
JP2006245452A (en) * 2005-03-07 2006-09-14 Toyo Kohan Co Ltd Electromagnetic wave shield material
WO2009019963A1 (en) * 2007-08-03 2009-02-12 Tatsuta System Electronics Co., Ltd. Shield film for printed wiring board, and printed wiring board
JP2012512543A (en) * 2008-12-17 2012-05-31 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic shielding article
JP2013110335A (en) * 2011-11-24 2013-06-06 Toray Ind Inc Electromagnetic wave shield film for game board and game board using the same
JP2013185163A (en) * 2012-03-06 2013-09-19 Toray Kp Films Inc Metalized film and metal foil
JP2015523709A (en) * 2012-06-21 2015-08-13 広州方邦電子有限公司 Ultra-thin shield film with high shielding function and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012590A1 (en) * 2017-07-10 2019-01-17 タツタ電線株式会社 Electromagnetic wave shield film, and shielded printed wiring board equipped with same
CN110268812A (en) * 2017-07-10 2019-09-20 拓自达电线株式会社 Electromagnetic shielding film and the shielding printed wiring board for having the electromagnetic shielding film
JP2020009922A (en) * 2018-07-09 2020-01-16 信越ポリマー株式会社 Electromagnetic wave shielding film, method of manufacturing the same, and printed wiring board with electromagnetic wave shielding film
JP7153489B2 (en) 2018-07-09 2022-10-14 信越ポリマー株式会社 Electromagnetic wave shielding film, manufacturing method thereof, and printed wiring board with electromagnetic wave shielding film
JP2020077867A (en) * 2018-10-22 2020-05-21 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. Electromagnetic wave shield film, preparation method thereof, and use thereof
US11129313B2 (en) 2018-10-22 2021-09-21 Eternal Materials Co., Ltd. Electromagnetic-wave shielding film, preparation method, and use thereof
JP7008678B2 (en) 2018-10-22 2022-01-25 長興材料工業股▲ふん▼有限公司 Electromagnetic wave shielding film, its preparation method, and use
KR20210149689A (en) 2019-03-29 2021-12-09 도레이 케이피 필름 가부시키가이샤 Metallized film and method for manufacturing the same
CN111231338A (en) * 2019-12-16 2020-06-05 安徽墙煌彩铝科技有限公司 Composite process for refrigerating metal plate

Also Published As

Publication number Publication date
JPWO2017111158A1 (en) 2018-10-18
KR102608700B1 (en) 2023-11-30
TWI748975B (en) 2021-12-11
TW201801602A (en) 2018-01-01
JP6949724B2 (en) 2021-10-13
CN108476607A (en) 2018-08-31
KR20180097520A (en) 2018-08-31
CN108476607B (en) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2017111158A1 (en) Electromagnetic wave shielding film and method for manufacturing same
KR101956091B1 (en) Electromagnetic wave shielding film
CN110022640B (en) Electromagnetic wave shielding film
JP7023836B2 (en) Electromagnetic wave shield film
TWI699787B (en) Conductive adhesive composition
JP6329314B1 (en) Conductive adhesive sheet
JP2017195278A (en) Electromagnetic wave shielding film and printed wiring board with the same
US20210059042A1 (en) Electromagnetic Shielding Film and Shielded Printed Wiring Board Including the Same
TWI731271B (en) Electromagnetic wave shielding film and shielding printed wiring board
JP2017212274A (en) Electromagnetic wave shielding film and shielded printed wiring board including the same
JP6978994B2 (en) Transfer film
TWI720337B (en) Electromagnetic wave shielding film
TWI743368B (en) Electromagnetic wave shielding film and shielding printed wiring board
WO2024117244A1 (en) Electromagnetic wave-shielding film and manufacturing method for electromagnetic wave-shielding film
JP2018070694A (en) Conductive adhesive composition, electromagnetic wave-shielding sheet and wiring device using the same
JP2021052083A (en) Electromagnetic wave-shield film and circuit board
TW202233744A (en) Electromagnetic wave shielding film and printed circuit board with electromagnetic wave shielding film
TW201904375A (en) Electromagnetic wave shielding film and shielding printed wiring board provided therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187014245

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879042

Country of ref document: EP

Kind code of ref document: A1