WO2017109876A1 - 減速機 - Google Patents

減速機 Download PDF

Info

Publication number
WO2017109876A1
WO2017109876A1 PCT/JP2015/085933 JP2015085933W WO2017109876A1 WO 2017109876 A1 WO2017109876 A1 WO 2017109876A1 JP 2015085933 W JP2015085933 W JP 2015085933W WO 2017109876 A1 WO2017109876 A1 WO 2017109876A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
rolling element
swing plate
bevel gear
center axis
Prior art date
Application number
PCT/JP2015/085933
Other languages
English (en)
French (fr)
Inventor
美千広 亀田
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to JP2017557570A priority Critical patent/JP6352558B2/ja
Priority to PCT/JP2015/085933 priority patent/WO2017109876A1/ja
Publication of WO2017109876A1 publication Critical patent/WO2017109876A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention provides a reduction gear that is formed small in the radial direction of the input shaft and the output shaft.
  • Patent Document 1 discloses a variable valve timing device having a speed reduction mechanism 10 constituted by a first speed reduction mechanism 20 and a second speed reduction mechanism 30.
  • the speed reduction mechanism 10 decelerates the rotation of the output shaft 4 of the electric motor 3 (input shaft of the speed reduction mechanism 10) and transmits it to the camshaft 1 (output shaft of the speed reduction mechanism 10) connected by spline, and is fixed to the housing 5.
  • the camshaft 1 is rotated relative to the sprocket 2.
  • the eccentric shaft portion 22 becomes the output shaft 4. It rotates eccentrically around the rotation center axis.
  • the plurality of rollers 24 receive torque from the ball bearings 11 of the eccentric shaft portion 22, respectively, and thereby the teeth of the first internal gear 23. It rolls along 23a (assuming the number of teeth of the first internal gear 23 is na).
  • the plurality of rollers 24 pushes the cage part 26 through the pockets 25 while rolling by one tooth of the teeth 23 a, and the first intermediate shaft 27 integrated with the cage part 26 (the output of the first reduction mechanism 20).
  • the shaft is rotated about 1 / na around the rotation center axis of the output shaft 4.
  • the first reduction mechanism 20 includes a second reduction mechanism 30 having the same configuration as the first reduction mechanism 20 having the first intermediate shaft 27 as the second input shaft 31 and the second intermediate shaft 37 as the output shaft. Connected.
  • the second speed reduction mechanism 30 when the eccentric shaft portion 32 of the second input shaft 31 (first intermediate shaft 27) rotates eccentrically once, the plurality of rollers 34 become the teeth 33 a (tentatively the second second gear 33) of the second internal gear 33.
  • the speed reduction mechanism 10 of Patent Document 1 connects the first speed reduction mechanism 20 and the second speed reduction mechanism 30 in series, thereby making one rotation of the output shaft 4 of the electric motor 3 with respect to the housing 5 and the sprocket 2 the camshaft 1. 1 / na ⁇ 1 / nb rotation is transmitted after being decelerated.
  • Reducers that are formed large in the radial direction of the input shaft and output shaft have a problem in that they cannot be placed in a device that does not have a sufficient space in the radial direction of the reducer.
  • the present invention provides a speed reducer that achieves a desired speed reduction ratio while being formed small in the radial direction of an input shaft and an output shaft.
  • a case an input shaft that is rotatably supported by the case, and an output shaft that is rotatably supported by the case and coaxial with the input shaft and disposed so as to be relatively rotatable.
  • a reduction mechanism that decelerates the rotation of the input shaft and transmits it to the output shaft, wherein the reduction mechanism is provided in the circumferential direction of the swing plate and the outer periphery of the input shaft, A tilt bearing for rotatably supporting the swing plate about a second rotation center axis inclined with respect to the first rotation center axis of the shaft; and the input shaft in a state of facing the surface of the swing plate
  • a base plate which is rotatably supported by the input shaft and integrated with the output shaft, and the surface of the swing plate or the base plate so as to be convex in the axial direction of the first rotation center axis 3 or more provided on one of them And a common divisor other than 1 with respect to n provided on the surface of the swing plate or on the
  • a plurality of support members having a plurality of support grooves of at most n ⁇ 1, and a plurality of the support members inserted into the plurality of support grooves and sandwiched between the bevel gear and the rolling element support portions, respectively.
  • a rolling element group composed of a plurality of rolling elements of a maximum of n ⁇ 1, which is equal to or less than the number of grooves and does not have a common divisor other than 1 for n.
  • the plurality of rolling elements push the base plate while rolling by one tooth of the bevel gear, and the output shaft integrated with the base plate rotates 1 / n relative to the input shaft around the first rotation center axis.
  • the reduction gear of the present application realizes the reduction ratio n.
  • the rolling element that reciprocally swings in the axial direction instead of the radial direction of the input shaft and the radial direction realizes a reduction gear having a reduction ratio n.
  • the speed reduction mechanism has a second speed reduction mechanism, and the second speed reduction mechanism is fixed to the case and faces the back surface of the swing plate and the input shaft.
  • a second base plate disposed coaxially and rotatably holding the input shaft; and a rear surface of the swing plate or the second base plate so as to be convex in the axial direction of the first rotation center axis.
  • a second rolling element support portion having a plurality of second support grooves of a maximum of n that do not have a common divisor other than 1, and inserted into the plurality of second support grooves, respectively.
  • a second rolling element group consisting of a plurality of rolling elements of at most n + 1, which is equal to or less than the plurality of support grooves and does not have a common divisor other than 1 for n. .
  • the swinging plate rotatably supported by the tilt bearing in an inclined state has an intersection between the first rotation center axis and the second rotation center axis. It swings back and forth in the axial direction of the first rotation center axis about the center.
  • the swing plate reciprocally swings once in the axial direction of the first rotation center axis by rotating the input shaft once, the second rolling elements respectively held in the second support grooves are rotated in the first direction. While rolling along the teeth of the bevel gear having an uneven shape along the central axis, it reciprocates in the axial direction instead of in the radial direction of the input shaft.
  • each of the plurality of second rolling elements rolls by one tooth of the second bevel gear and moves the swing plate to the second rotation center via the support groove. Push around the axis to rotate the rocking plate 1 / (n + 1) relative to the case.
  • the speed reducer of the present application is provided with a pair of speed reduction mechanisms in series on the back and front of the rocking plate, and transmits one rotation of the input shaft to the case by decelerating to 1 / na ⁇ 1 / nb rotation of the output shaft.
  • n ⁇ (n + 1) is realized.
  • the rolling element that reciprocates in the axial direction instead of the radial direction of the input shaft and the radial direction realizes a reduction gear having a large reduction ratio n ⁇ (n + 1).
  • the plurality of rolling elements are each formed into a tapered roller shape or a tapered roller shape.
  • the inclined bearing is a rolling bearing.
  • the swing plate and the rolling element support portion are integrated.
  • the speed reducer of the present application since a plurality of rolling elements swing in the axial direction of the input shaft and the output shaft, in addition to being formed small in the radial direction, a desired reduction ratio according to the number of teeth n is realized. In addition, it can be placed in a device that does not have a space in the radial direction of the speed reducer.
  • a desired large speed reduction ratio according to the number of teeth n and the number of teeth n + 1 is realized while forming the speed reducer small in the radial direction.
  • the life of each rolling element, the teeth of the bevel tooth portion, the swing plate, and the base plate is improved by reducing wear.
  • the rigidity and life of the speed reducer are improved by reducing the surface pressure.
  • the cost can be reduced by reducing the number of mechanical parts.
  • A Axial direction sectional view about the 1st example of a reduction gear.
  • B A sectional view in the axial direction of the speed reducer when the input shaft is rotated 180 degrees. Explanatory drawing regarding arrangement
  • A Arrangement explanatory drawing of each tooth of a rolling element group and a bevel gear in an initial position.
  • B Arrangement explanatory drawing of each tooth of a rolling element group and bevel gears when an input shaft is rotated 180 degrees.
  • A Axial direction sectional view about the 2nd example of a reduction gear.
  • B A sectional view in the axial direction of the speed reducer when the input shaft is rotated 180 degrees.
  • the speed reducer 40 of the first embodiment includes a case 41, an input shaft 42, an output shaft 43, and a speed reduction mechanism 44.
  • the case 41 includes a case main body 41a, an input shaft support portion 41b, a back cover 41c, and a plurality of male screws 41d.
  • the case body 41a is integrally provided with a front plate 41f at the front end of the cylindrical portion 41e, and has a flange portion 41g on the outer periphery of the rear end.
  • a circular hole 41h is provided in the center of the front plate 41f.
  • the input shaft support portion 41b is a plate-like member having a circular hole 41i in the center, and is fixed inside the front plate 41f by a plurality of male screws 41d.
  • the back cover 41c is formed in a disk shape and has a circular hole 41j in the center.
  • the back cover 41c is fixed to the flange portion 41g with a plurality of male screws 41k in a state where an input shaft 42, an output shaft 43 and a speed reduction mechanism 44, which will be described later, are housed inside the case body 41a.
  • the cylindrical portion 41e, the circular hole 41i, the circular hole 41h, and the circular hole 41j are arranged coaxially with a first rotation center axis L1 of the input shaft 42 described later.
  • the input shaft 42 has a shape in which the first shaft portion 42a, the second shaft portion 42b, the inclined bearing 46, and the third shaft portion 42c are integrated in order from the front along the first rotation center axis L1.
  • a through-hole 42d is provided at the center of the input shaft 42, and a drive source (such as an electromagnetic clutch mechanism or a motor) (not shown) is driven on the outer periphery of the cylindrical first shaft portion 42a or inside the through-hole 42d.
  • the shaft is fixed from the front.
  • the second shaft portion 42b is formed in a cylindrical shape having a larger outer diameter than the first shaft portion, and the third shaft portion 42c is set in a cylindrical shape having a smaller outer diameter than the first shaft portion.
  • the input shaft 42 is rotatably held around the first rotation center axis L1 in a circular hole 41i of the input shaft support portion 41b of the case 41 by a rolling bearing 42e (such as a ball bearing or a roller bearing).
  • the inclined bearing 46 includes a bearing body 46a and a support portion 46b.
  • the support portion 46b has a cylindrical shape centered on a second rotation center axis L2 inclined at an angle ⁇ with respect to the first rotation center axis L1, and a bearing body 46a that is a rolling bearing is fixed to the outer periphery.
  • the speed reduction mechanism 44 includes a swing plate 45, an inclined bearing 46, a base plate 47, a bevel gear 48, a rolling element support portion 49, and a rolling element group 50.
  • the base plate 47 shown in FIG. 1A is formed in a disc shape and has a circular hole 47a in the center.
  • the output shaft 43 is fixed to the base plate 47.
  • the output shaft 43 has a shape in which the cylindrical portion 43b is coaxially integrated with the rear surface of the disc portion 43a, and a circular hole 43c is provided at the center of each.
  • the circular hole 43c and the circular hole 47a have inner diameters larger than the outer diameter of the third shaft portion 42c of the input shaft 42, respectively.
  • the output shaft 43 is screwed to the rear surface 47 c of the base plate 47 by a plurality of male screws 43 d (partially omitted in FIG. 1) so as to be coaxial with the base plate 47.
  • the base plate 47 and the output shaft 43 are both arranged coaxially with the first rotation center axis L1 of the input shaft 42 and are rotatably supported by the third shaft portion 42c of the input shaft 42 via the rolling bearing 47b. . Further, the disc portion 43a of the output shaft 43 is rotatably held inside the flange portion 41g of the case 41 via the rolling bearing 43e.
  • FIG. 2 shows a virtual view of only the base plate 47 and the rolling element group 50 viewed from the front to the rear (see the direction of the arrow S1 in FIG. 1A).
  • a bevel gear 48 having the number of teeth n of 3 or more (in the first embodiment, the number of teeth is 6 as an example, but the number of teeth is not limited to 6) is provided.
  • Reference numerals 48a to 48f denote six teeth of the bevel gear 48 having a convex shape toward the front.
  • the swing plate 45 shown in FIG. 1 (a) is formed in a disk shape with metal, resin, or the like, provided with a disk-shaped rolling element support portion 49 on the front surface (rear surface) 45a, and on the back surface (front surface) 45b.
  • a disc-shaped bearing holding portion 45c is provided.
  • the rocking plate 45 is provided with a circular hole 45d having the same inner diameter as the outer diameter of the bearing body 46a of the inclined bearing 46 at the center.
  • the rocking plate 45 is fitted in the circular hole 45d with the bearing body 46a, and is supported by the inclined bearing 46 of the input shaft 42 so as to be rotatable around the second rotation central axis L2.
  • the rolling element support portion 49 and the bearing holding portion 45c each have a circular hole 49f and a circular hole 45e that are smaller in inner diameter than the circular hole 45d and are coaxial with the circular hole 45d.
  • the swing plate 45 is moved in the direction of the second rotation center axis L2 with respect to the bearing body 46a. Prevent it from coming off.
  • the rolling element support portion 49 and the bearing holding portion 45c may be formed as separate members as in this embodiment and integrated with the swing plate 45 by bonding or the like, or may be integrally formed with the swing plate 45. good.
  • the support portion 46b is a sliding bearing without providing the bearing body 46a formed of a rolling bearing, and the swing plate 45 and the rolling element support portion 49 are directly rotated to the support portion 46b. It may be supported as possible.
  • the rolling element support portion 49 includes a plurality of support grooves (49a to 49e) that form recesses and projections on the rear side along the second rotation center axis L2, and prevents the rolling element from coming out radially outward of the rolling element support portion 49. It has a projection 49g for preventing it.
  • the plurality of support grooves extend in the radial direction from the center of the circular hole 49f and are formed at equal intervals in the circumferential direction, and have a maximum n ⁇ 1 that does not have a common divisor other than 1 with respect to the number of teeth n of the bevel gear 48. Individually formed. In the first embodiment, as an example, five support grooves (49a to 49e) are provided in the rolling element support portion 49.
  • a plurality of rolling elements (50a to 50e) indicated by two-dot chain lines in FIG. 2 are inserted and held.
  • the plurality of rolling elements (50a to 50e) are each formed in a tapered roller shape or a tapered roller shape as in this embodiment, and constitute a rolling element group 50.
  • the plurality of rolling elements (50a to 50e) are provided in a maximum number of n-1 which is equal to or less than the number of the support grooves (49a to 49e) and does not have a common divisor other than 1 for n. It is done.
  • n-1 which is equal to or less than the number of the support grooves (49a to 49e) and does not have a common divisor other than 1 for n. It is done.
  • the same number of five rolling elements (50a to 50e) as the support grooves (49a to 49e) are provided. As shown in FIGS. 1 (a) and 2, respectively, the rolling elements (50a to 50e) are sandwiched between the bevel gear 48 and the rolling element support portion 49, and are in contact with the six teeth (48a to 48f). Roll.
  • FIG. 3A and 3B are virtual views for explaining the operation of the swing plate 45, the bevel gear 48, and the rolling element group 50.
  • the bevel gear 48 in FIG. Assuming that the teeth (48a to 48f) and the rolling elements (50a to 50e) are linearly arranged on the basis of the position of the rolling element 50a, viewed from above (FIG. 1 (a) and see arrow view S2 of FIG. 2)
  • FIG. Reference numeral 49h indicates a curve indicating the positional relationship of the bottom of the rolling element support 49 with respect to the teeth (48a to 48f) and the rolling elements (50a to 50e).
  • the bottom of the rolling element support 49 presses the rolling elements (50a to 50e) held in the support grooves (49a to 49e) at equal intervals against the teeth (48a to 48f).
  • the swing plate 45 and the rolling element support 49 do not rotate relative to the case 41 even when the support 46b rotates around the first rotation center axis L1, and the first rotation center axis and It swings back and forth along the first rotation center axis L1 about the intersection O1 of the second rotation center axis.
  • the swing plate 45 and the rolling element support 49 disposed at the rearmost end of the swing at the initial position are centered on the intersection O1. It swings in the direction of D1, that is, from the rear to the front and moves to the foremost end of the swing in FIG. Further, when the input shaft 42 shown in FIG. 1B is rotated 180 degrees, the swing plate 45 and the rolling element support 49 swing around the intersection O1 in the direction D2, that is, from the foremost end to the end of the swing.
  • the rolling elements (50a to 50e) of FIG. 3 (a) are moved by the bottom 49h of the rolling element support part 49 that moves to the right while maintaining the sinusoidal curve shape of FIG. 3 (a). It is pressed against the teeth (48a to 48f).
  • the rolling element 50a is positioned at the rearmost end of the swing at the initial position
  • the rolling element 50c is positioned at the foremost end of the swing at the initial position.
  • the rolling elements (50a to 50e) reciprocate back and forth respectively while rotating in the same direction as the input shaft 42 along the teeth (48a to 48f).
  • the rolling elements (50a to 50e) rotate the output shaft 43 relative to the input shaft 42 by one pitch of each tooth (48a to 48f) in the rotation direction of the input shaft 42.
  • the speed reducer 40 of the first embodiment realizes a reduction ratio n by decelerating and transmitting one rotation of the input shaft 42 to 1 / n rotation of the output shaft, where n is the number of teeth of the bevel gear. To do. Since the bevel gear 48 of the present embodiment has 6 teeth, the speed reducer 40 achieves a reduction ratio of 6.
  • the bevel gear 48 is formed on the base plate 47 and the support grooves (49a to 49e) are provided on the swing plate 45. Conversely, the bevel gear 48 is mounted on the swing plate 45. A rolling element support 49 having support grooves (49a to 49e) facing the bevel gears may be provided on the base plate.
  • the speed reduction mechanism 44 is provided with the second speed reduction mechanism 52, and the input shaft support portion 41 b of the case 41 is used as the second base plate 57.
  • the speed reducer 56 of the second embodiment shown in FIGS. 4A and 4B the speed reduction mechanism 44 is provided with the second speed reduction mechanism 52, and the input shaft support portion 41 b of the case 41 is used as the second base plate 57.
  • the bearing holding portion 45c of the swing plate 45 to the second rolling element support portion 59 it has the same configuration as the speed reducer 40 of the first embodiment.
  • the speed reducer 56 of the second embodiment includes the swing plate 45, the inclined bearing 46, the base plate 47, the bevel gear 48, the rolling element support portion 49, and the rolling element group 50 of the first embodiment.
  • a second speed reduction mechanism 52 shown in FIG. The speed reduction mechanism 44 'in which the speed reduction mechanisms (51, 52) are arranged in series is configured.
  • the second speed reduction mechanism 52 shown in FIG. 4A includes a swing plate 45, an inclined bearing 46, a second base plate 57, a second bevel gear 58, a second rolling element support portion 59, and a second rolling element. It has a moving body group 60.
  • the second base plate 57 is fixed inside the front plate 41f of the case 41 of the second embodiment.
  • the second base plate 57 is formed in a disc shape, has a circular hole 57a in the center, and is fixed to the front plate 41f by a plurality of male screws 41d.
  • the circular hole 57 a is arranged coaxially with the circular hole 41 h of the case 41.
  • the input shaft 42 is rotatably held around the first rotation center axis L1 in a circular hole 57a of the second base plate 57 fixed to the case 41 by a rolling bearing 42e (such as a ball bearing or a roller bearing).
  • FIG. 5 shows a virtual view of only the second base plate 57 and the second rolling element group 60 as viewed from the rear to the front (see the direction of arrow S3 in FIG. 4A).
  • a second bevel gear 58 having the number of teeth n + 1 (n is the number of teeth of the bevel gear 48 of the first reduction mechanism 51) having three or more teeth is provided.
  • the number of teeth of the second bevel gear 58 is set to 7 based on the number of teeth of the bevel gear 48 set to 6 as an example, but the number of teeth is not limited to 7.
  • Reference numerals 58a to 58g denote seven teeth of the second bevel gear 58 having a convex shape toward the rear.
  • the back surface (front surface) 45b of the rocking plate 45 of the second embodiment is not the bearing holding portion 45c of the first embodiment but the disk shape shown in FIG. 4 (a).
  • a second rolling element support 59 is provided.
  • the second rolling element support portion 59 is formed of metal, resin, or the like, similar to the swing plate 45.
  • the second rolling element support portion 59 may be formed as a separate member as in this embodiment and integrated with the swing plate 45 by adhesion or the like, or may be integrally formed with the swing plate 45.
  • a circular hole 59g having an inner diameter smaller than the circular hole 45d of the swing plate 45 and coaxial with the circular hole 45d is provided at the center of the second rolling element support portion 59.
  • the rolling element support 49 and the second rolling element support 59 are integrated with the front and back of the swing plate 45 with the outer periphery thereof being flush with the outer periphery of the swing plate 45, thereby sandwiching the bearing body 46 a. By doing so, the rocking plate 45 is prevented from coming off in the direction of the second rotation center axis L2 with respect to the bearing body 46a.
  • the second rolling element support portion 59 has a plurality of support grooves (59a to 59f) that form irregularities on the rear side along the second rotation center axis L2 of the inclined bearing 46 inclined with respect to the first rotation center axis L1. ) And a protrusion 59h for preventing the rolling element from coming out radially outward of the rolling element support 49.
  • the plurality of support grooves extend radially from the center of the circular hole 59g, are formed at equal intervals in the circumferential direction, and have no common divisor other than 1 with respect to the number of teeth n + 1 of the second bevel gear 58. At most n pieces are formed.
  • six support grooves (59a to 59f) are provided in the second rolling element support portion 59.
  • a plurality of rolling elements (60a to 60f) indicated by two-dot chain lines in FIG. 5 are respectively inserted and held.
  • the plurality of rolling elements (60a to 60f) are each formed in a tapered roller shape or a tapered roller shape as in this embodiment, and constitute a second rolling element group 60.
  • the plurality of rolling elements (60a to 60f) are provided in the maximum number n that is not more than the same number as the plurality of support grooves (59a to 59f) and does not have a common divisor other than 1 for n.
  • n the maximum number
  • rolling elements having the same number as the support grooves (59a to 59f) are provided as an example.
  • the rolling elements (60a to 60f) are sandwiched between the second bevel gear 58 and the second rolling element support portion 59 as shown in FIGS. 4 (a) and 5, respectively, and have seven teeth (58a). Rolling for ⁇ 58g).
  • FIG. 6A and 6B are virtual views for explaining the operation of the swing plate 45, the second bevel gear 58, and the second rolling element group 60.
  • FIG. The second bevel gear 58 is cut at the position of the cutting line II-II, and the teeth (58a to 58g) and the rolling elements (60a to 60f) are arranged in a straight line with reference to the position of the rolling element 60a.
  • FIG. 6 is a virtual diagram viewed from above (see FIG. 4A and the arrow S4 in FIG. 5).
  • Reference numeral 59i indicates a curve indicating the positional relationship of the bottom of the second rolling element support portion 59 with respect to the teeth (58a to 58g) and the rolling elements (60a to 60f).
  • the bottom of the second rolling element support portion 59 presses the rolling elements (60a to 60f) held in the support grooves (59a to 59f) at equal intervals against the teeth (58a to 58g).
  • the swing plate 45, the rolling element support part 49, and the second rolling element support part 59 are moved to the first time when the support part 46b rotates halfway (180 ° rotation) around the first rotation center axis L1 together with the input shaft 42.
  • the support portion 46b is rotated halfway by swinging from the rear end position, which is the initial position, to the front end position in FIG. 4 (b) around the intersection O1 of the moving center axis and the second rotation center axis, FIG. It swings to the rear end position which is the initial position of (a). That is, the rolling element support 49 and the second rolling element support 59 swing back and forth once along the first rotation center axis L1 when the input shaft 42 rotates once.
  • the second rolling element support portion 59 When the input shaft 42 shown in FIG. 4A is rotated halfway (180 °), the second rolling element support portion 59 is moved from the rear end position, which is the initial position, to the front end position shown in FIG. 4B.
  • the rolling elements (60b to 60d) in the second rolling element group 60 receive a force directed forward (Fr direction) from the bottom 59i of the second rolling element support part 59. Since the second bevel gear 58 is fixed to the case 41, the rolling elements (60b to 60d) in FIG. 4 (a) pass through the second support grooves (59b to 59d) in FIG. 4 (a).
  • the second rolling element support portion 59 is pushed leftward (Le direction) by a half pitch of each tooth (58a to 58g).
  • the second rolling element support portion 59 moves from the rear end position to the front end position (initial stage) in FIG. 4A.
  • the rolling elements (60a, 60e, 60f) in the second rolling element group 60 receive a force toward the front (Fr direction) from the bottom 59i of the second rolling element support part 59.
  • the rolling elements (60a, 60e, 60f) in FIG. 4 (b) connect the second rolling element support part 59 in FIG. 4 (b) to the teeth (second teeth) via the second support grooves (60a, 60e, 60f). 58a-58g) is pushed further to the left (Le direction) by a half pitch.
  • the second rolling element support 59, the swing plate 45, and the rolling element support 49 are in the rotational direction of the input shaft 42 by a half pitch of each tooth (58a to 58g) with respect to the input shaft 42. On the other hand, it rotates relative to the opposite direction.
  • the rolling elements (60a to 60f) reciprocate back and forth once, whereby the second rolling element support 59, the swing plate 45, and the rolling element support 49 are connected to the input shaft 42.
  • the second bevel gear is rotated relative to the rotation direction of the input shaft 42 by one pitch of each tooth (58a to 58g).
  • the speed reducer 56 of the second embodiment sets the number of teeth of the bevel gear 48 of the first speed reduction mechanism 51 to n and the number of teeth of the second bevel gear 58 of the second speed reduction mechanism 52 to n + 1, Assuming that the moving plate 45 and the rolling element support 49 are output shafts, one rotation of the input shaft 42 is decelerated and transmitted as 1 / (n + 1) rotation of the output shaft (swing plate 45 and rolling element support 49).
  • the reduction gear has a reduction ratio n + 1. Since the second bevel gear 58 of the second embodiment has seven teeth, the second reduction mechanism 52 realizes a reduction mechanism with a reduction ratio of 7.
  • the first reduction mechanism 51 includes a rocking plate 45, an inclined bearing 46, a base plate 47, a bevel gear 48 having n teeth, a rolling element support portion 49, and a rolling element group 50.
  • 6 speed reduction mechanism is realized. Therefore, the rolling elements (50a to 50e) of the first speed reduction mechanism 51 have a force in the front-rear direction from the swinging plate 45 that has made one rotation of the input shaft and swung back and forth without rotating relative to the case 41. In response, the output shaft 43 is rotated 1 / n with respect to the input shaft 42 in the rotational direction of the input shaft.
  • the second speed reduction mechanism 52 moves the swing plate 45 and the rolling element support 49 to the case 41 and the input shaft 42 in the direction opposite to the rotation direction of the input shaft 1 / (n + 1).
  • the speed reducer 56 of the second embodiment has a configuration in which the first speed reduction mechanism 51 having the speed reduction ratio n and the second speed reduction mechanism 52 having the speed reduction ratio n + 1 are arranged in series. , N (n + 1), and a reduction gear having a large reduction ratio proportional to the number of teeth n of the bevel gear 48 and the number of teeth n + 1 of the second bevel gear 58 is obtained.
  • the second bevel gear 58 is formed in the second base plate 57 and the second support grooves (59a to 59f) are provided in the swing plate 45.
  • a second bevel gear 58 is provided on the surface of the swing plate 45, and a second rolling element support portion 59 having second support grooves (59a to 59f) facing the second bevel gear 58 is provided in the second It may be provided on the base plate 57.
  • the support portion 46b is a sliding bearing without providing the bearing body 46a composed of a rolling bearing, and the swing plate 45, the rolling element support portion 49, and the second rolling element support portion. 59 may be directly supported by the support portion 46b so as to be rotatable.
  • the swing plate 45 and the plurality of rolling elements are in the axial direction of the input shaft 42 and the output shaft 43, that is, the direction along the first rotation center axis L1. Since the size of the speed reducer 40 including the case 41 can be reduced in the radial direction while realizing a desired reduction ratio based on the number of teeth n, there is a margin in the radial direction of the speed reducer.
  • the speed reducer 40 can be installed in a device that does not have an arrangement space inside.
  • the second speed reduction mechanism 56 in addition to the first speed reducing mechanism 51, includes the rolling elements (60a to 60f) that swing in the direction along the first rotation center axis L1.
  • the speed reduction mechanism 52 in series on the front and back of the rocking plate 45, the number of teeth n of the bevel gear 48 and the number of teeth n + 1 of the second bevel gear 58 are not increased in the radial direction. A reduction gear with a large reduction ratio in proportion to is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

入力軸(42)及び出力軸(43)の径方向に小さく形成しつつ所望の減速比を実現した減速機の提供。入力軸(42)の回転を出力軸(43)に伝達する減速機構(44)をケース(41)に備えた減速機(40)において、入力軸(42)に設けられ、入力軸(42)の第1回動中心軸線(L1)に対して傾斜した第2回動中心軸線(L2)回りに揺動板(45)を回動可能に支持する傾斜軸受(46)と、入力軸(42に回動可能に配置された出力軸(43)と一体のベースプレート(47)と、揺動板(45)またはベースプレート(47)の一方に設けられた歯数n≧3の傘歯車(48)と、もう一方に設けられた、nに対して1以外の公約数を有さない最大n-1個の複数の支持溝を有する転動体支持部(49)と、各支持溝に挿入され、複数の支持溝と同数以下でありnに対して1以外の公約数を有さない最大n-1個の複数の転動体からなる転動体群(50)と、を備えた。

Description

減速機
 本発明は、入力軸及び出力軸の径方向に小さく形成された減速機を提供するものである。
 特許文献1には、第1減速機構20と第2減速機構30によって構成された減速機構10を有する可変バルブタイミング装置が開示されている。減速機構10は、電動モーター3の出力軸4(減速機構10の入力軸)の回転を減速してスプライン接続されたカムシャフト1(減速機構10の出力軸)に伝達し、ハウジング5に固定されたスプロケット2に対してカムシャフト1を相対回転させる。
 具体的には、電動モーター3の出力軸4に一体化された第1入力軸21(第1減速機構20の入力軸)がハウジング5に対して相対回転すると、偏心軸部22が出力軸4の回動中心軸周りに偏心回動する。偏心軸部22が出力軸4の回動中心軸周りに1回偏心回転すると、複数のローラ24が、それぞれ偏心軸部22の球軸受11からトルクを受けることにより、第1内歯車23の歯23a(仮に第1内歯車23の歯数をnaとする)に沿って転がる。複数のローラ24は、歯23aの1歯分だけ転がりつつ、ポケット25を介して保持器部26を押し、保持器部26に一体化された第1中間軸27(第1減速機構20の出力軸)を出力軸4の回動中心軸線周りに1/na回転させる。
 また、第1減速機構20には、第1中間軸27を第2入力軸31とし、第2中間軸37を出力軸とした第1減速機構20と同様の構成を有する第2減速機構30が連結される。第2減速機構30においては、第2入力軸31(第1中間軸27)の偏心軸部32が1回偏心回転すると、複数のローラ34が、第2内歯車33の歯33a(仮に第2内歯車33の歯数をnbとする)に沿って1歯分転がることにより、ポケット35を介して保持器部36の第2中間軸37及び第2中間軸にスプライン結合されたカムシャフト1を1/nb回転させる。その結果、特許文献1の減速機構10は、第1減速機構20と第2減速機構30を直列に連結することによってハウジング5及びスプロケット2に対する電動モーター3の出力軸4の一回転をカムシャフト1の1/na×1/nb回転に減速して伝達している。
特開2010-242595号
 特許文献1の第1内歯車23の歯23a及び第2内歯車33の歯33aの凹凸は、共に第1及び第2内歯車(23,33)の半径方向に形成されているため、第1減速機構20のローラ24と、第2減速機構30のローラ34は、それぞれ歯23a及び歯33aに沿って回転する際に前記半径方向の内向きまたは外向きに往復揺動する。そのため、特許文献1の減速機構10においては、ローラ24及び34を半径方向に揺動させる空間を確保するためにハウジング5の径を大きく形成する必要があった。
 入力軸及び出力軸の径方向に大きく形成された減速機は、減速機の径方向に余裕のある配置空間を内側に持たない装置に当該減速機を配置出来ない点で問題がある。
 上記課題に鑑み、本願発明は、入力軸及び出力軸の径方向に小さく形成しつつ所望の減速比を実現した減速機を提供するものである。
 本願の減速機において、ケースと、前記ケースによって回動可能に支持された入力軸と、前記ケースによって回動可能に支持され、かつ前記入力軸と同軸かつ相対回動可能に配置された出力軸と、前記入力軸の回転を減速して前記出力軸に伝達する減速機構と、有する減速機において、前記減速機構は、揺動板と、前記入力軸の外周の周方向に設けられ、前記入力軸の第1回動中心軸線に対して傾斜した第2回動中心軸線回りに前記揺動板を回動可能に支持する傾斜軸受と、前記揺動板の表面に対向した状態で前記入力軸と同軸に配置され、入力軸によって回動可能に支持され、かつ出力軸に一体化されたベースプレートと、第1回動中心軸線の軸方向に凸となるように前記揺動板の表面またはベースプレートのうち一方に設けられた3以上の歯数からなる歯数nの傘歯車と、前記揺動板の表面またはベースプレートのうち前記傘歯車を設けられていないもう一方に設けられた、nに対して1以外の公約数を有さない最大n-1個の複数の支持溝を有する転動体支持部と、前記複数の支持溝にそれぞれ挿入され、前記傘歯車と前記転動体支持部との間に挟持される、複数の前記支持溝と同数以下の個数でありnに対して1以外の公約数を有さない最大n-1個の複数の転動体からなる転動体群と、を備えるように構成した。
 (作用)入力軸がケースに対して相対回転すると、傾斜した状態で傾斜軸受に回動可能に支持された揺動板は、ケースに対して相対回動せず、第1回動中心軸線と第2回動中心軸線との交点を中心に第1回動中心軸線の軸方向に往復揺動する。入力軸が1回転することで揺動板が第1回動中心軸線の軸方向に1回往復揺動すると、転動体支持部の複数の支持溝にそれぞれ保持された転動体は、第1回動中心軸線に沿って凹凸形状を有する傘歯車の歯に沿って転がりつつ、入力軸の径方向では無く軸方向に往復揺動する。複数の転動体は、それぞれ傘歯車の1歯分だけ転がりつつ、ベースプレートを押し、ベースプレートに一体化された出力軸を第1回動中心軸線周りに入力軸に対して相対的に1/n回転させ、本願の減速機は、減速比nを実現する。
 つまり、入力軸及び径方向の径方向では無く軸方向に往復揺動する転動体が、減速比nの減速機を実現する。
 更に本願の減速機において、 前記減速機構は、第2の減速機構を有し、前記第2の減速機構は、前記ケースに固定され、前記揺動板の裏面に対向した状態で前記入力軸と同軸に配置され、かつ前記入力軸を回動可能に保持する第2のベースプレートと、第1回動中心軸線の軸方向に凸となるように前記揺動板の裏面または前記第2のベースプレートのうち一方に設けられた歯数n+1の第2の傘歯車と、前記揺動板の裏面または前記第2のベースプレートのうち前記第2の傘歯車を設けられていないもう一方に設けられた、n+1に対して1以外の公約数を有さない最大n個の複数の第2の支持溝を有する第2の転動体支持部と、複数の前記第2の支持溝にそれぞれ挿入され、前記第2の傘歯車と前記第2の転動体支持部との間に挟持される、複数の前記支持溝と同数以下の個数でありnに対して1以外の公約数を有さない最大n+1個の複数の転動体からなる第2の転動体群と、を備えるようにした。
 (作用)入力軸がケースに対して相対回転すると、傾斜した状態で傾斜軸受に回動可能に支持された揺動板は、第1回動中心軸線と第2回動中心軸線との交点を中心に第1回動中心軸線の軸方向に往復揺動する。入力軸が1回転することで揺動板が第1回動中心軸線の軸方向に1回往復揺動すると、第2の支持溝にそれぞれ保持された第2の転動体は、第1回動中心軸線に沿って凹凸形状を有する傘歯車の歯に沿って転がりつつ、入力軸の径方向では無く軸方向に往復揺動する。第2のベースプレートがケースに固定されているため、複数の第2の転動体は、それぞれ第2の傘歯車の1歯分だけ転がりつつ、支持溝を介して揺動板を第2回動中心軸線回りに押し、揺動板をケースに対して相対的に1/(n+1)回転させる。その結果、本願の減速機は、揺動板の裏と表に一対の減速機構を直列に設け、ケースに対する入力軸の一回転を出力軸の1/na×1/nb回転に減速して伝達することにより、大減速比n×(n+1)を実現する。
 つまり、入力軸及び径方向の径方向では無く軸方向に往復揺動する転動体が、大減速比n×(n+1)となる減速機を実現する。
 更に本願の減速機において、前記複数の転動体をそれぞれ円錐台ころ形状または円錐ころ形状に形成した。
 (作用)揺動板、ベースプレート及び傘歯車の歯に対する転動体の接触面積が、大きくなるため、揺動板、ベースプレート、傘歯車の歯及び転動体に発生する面圧が低減され、減速機の剛性、寿命向上に寄与する。
 更に本願の減速機において、前記傾斜軸受を転がり軸受とした。
 (作用)傾斜軸受と揺動板との間に発生する摩擦力が低減される。
 更に本願の減速機において、前記揺動板と転動体支持部を一体とした。
 (作用)減速機に必要な機構部品の点数が削減される。
 本願の減速機によれば、複数の転動体が入力軸及び出力軸の軸方向に揺動するため、径方向に小さく形成されることに加え、歯数nに応じた所望の減速比が実現され、減速機の径方向に余裕のある配置空間を内側に持たない装置にも配置出来る。
 本願の減速機によれば、減速機を径方向に小さく形成しつつ、歯数nと歯数n+1に応じた所望の大減速比が実現される。
 本願の減速機によれば、摩耗の低減により、各転動体、傘歯部の歯、揺動板及びベースプレートの寿命が向上する。
 本願の減速機によれば、面圧の低減により、減速機の剛性と寿命が向上する。
 本願の減速機によれば、機構部品点数の削減により、原価低減が図れる。
(a)減速機の第1実施例に関する軸方向断面図。(b)入力軸を180度回動させた際の減速機の軸方向断面図。 ベースプレート上の転動体群の配置に関する説明図。 (a)初期位置における転動体群及び傘歯車の各歯の配置説明図。(b)入力軸を180度回動させた際の転動体群及び傘歯車の各歯の配置説明図。 (a)減速機の第2実施例に関する軸方向断面図。(b)入力軸を180度回動させた際の減速機の軸方向断面図。 第2ベースプレート上の第2の転動体群の配置に関する説明図。 (a)初期位置における第2の転動体群及び傘歯車の各歯の配置説明図。(b)入力軸を180度回動させた際の第2の転動体群及び傘歯車の各歯の配置説明図。
 図1から図3により第1実施例の減速機の構成と動作を説明する。図1から図6においては、それぞれ減速機の前方をFr、後方をRe、上方をUp、下方をLwとして説明する。
 図1(a)及び図1(b)に示す通り、第1実施例の減速機40は、ケース41、入力軸42、出力軸43及び減速機構44を有する。
 図1(a)に示す通り、ケース41は、ケース本体41a、入力軸支持部41b、裏蓋41c及び複数の雄ねじ41dを有する。ケース本体41aは、円筒部41eの前端に前板41fを一体に備え、後端の外周にフランジ部41gを有する。前板41fの中央には円孔41hが設けられる。また、入力軸支持部41bは、中央に円孔41iを備えた板状部材であり、複数の雄ねじ41dによって前板41fの内側に固定される。裏蓋41cは、円板状に形成され、中央に円孔41jを有する。また裏蓋41cは、後述する入力軸42、出力軸43及び減速機構44をケース本体41aの内側に収納した状態でフランジ部41gに複数の雄ねじ41kで固定される。また、円筒部41e、円孔41i、円孔41h及び円孔41jは、それぞれ後述する入力軸42の第1回動中心軸線L1と同軸に配置される。
 入力軸42は、第1回動中心軸線L1に沿って前方から順番に第1軸部42a、第2軸部42b、傾斜軸受46及び第3軸部42cを一体化した形状を有する。入力軸42の中央には、貫通円孔42dが設けられ、円筒形の第1軸部42aの外周または貫通円孔42dの内側には、図示しない駆動源(電磁クラッチ機構やモーター等)の駆動軸が前方から固定される。第2軸部42bは、第1軸部より外径の大きな円筒形状に形成され、第3軸部42cは、第1軸部より外径の小さな円筒形状に径瀬される。入力軸42は、転がり軸受42e(球軸受やころ軸受け等)によってケース41の入力軸支持部41bの円孔41i内に第1回動中心軸線L1を中心として回動可能に保持される。
 図1(a)に示す通り、傾斜軸受46は、軸受本体46aと、支持部46bによって構成される。支持部46bは、第1回動中心軸線L1に対して角度θ傾斜した第2回動中心軸線L2を中心とする円筒形状を有し、外周に転がり軸受である軸受本体46aを固定される。
 また、減速機構44は、揺動板45、傾斜軸受46、ベースプレート47、傘歯車48、転動体支持部49及び転動体群50を有する。
 図1(a)に示すベースプレート47は、円板形状に形成され、中央に円孔47aを有する。また、ベースプレート47には、出力軸43が固定される。出力軸43は、円板部43aの後面に円筒部43bを同軸に一体化した形状を有し、それぞれの中央には、円孔43cが設けられる。円孔43c及び円孔47aは、それぞれ入力軸42の第3軸部42cの外径よりも大きな内径を有する。また、出力軸43は、ベースプレート47と同軸になるように複数の雄ねじ43d(図1においては、一部を省略している)によって円板部43aをベースプレート47の後面47cにネジ止めされる。ベースプレート47と出力軸43は、共に入力軸42の第1回動中心軸線L1と同軸に配置され、かつ転がり軸受47bを介して入力軸42の第3軸部42cに回動可能に支持される。更に出力軸43の円板部43aは、転がり軸受43eを介してケース41のフランジ部41gの内側に回動可能に保持される。
 尚、図2は、ベースプレート47と転動体群50のみを前方から後方に向けて見た(図1(a)の矢視S1方向を参照)仮想図を示す。ベースプレート47の前面には、3以上の歯数からなる歯数n(第1実施例では、一例として歯数を6としているが、歯数は6に限られない)の傘歯車48が設けられる。符号48a~48fは、前方に向けて凸形状を有する傘歯車48の6つの歯を示す。
 図1(a)に示す揺動板45は、金属や樹脂等で円板形状に形成され、表面(後面)45aに円板形状の転動体支持部49を設けられ、裏面(前面)45bに円板形状の軸受保持部45cを設けられる。揺動板45は、傾斜軸受46の軸受本体46aの外径と同じ内径の円孔45dを中央に備える。揺動板45は、軸受本体46aを円孔45dに嵌め合わされ、入力軸42の傾斜軸受46によって第2回動中心軸線L2周りに回動可能に支持される。
 また、転動体支持部49及び軸受保持部45cは、それぞれ円孔45dよりも内径が小さく、円孔45dと同軸となる円孔49f及び円孔45eを有し、各外周を揺動板45の外周と面一にした状態で揺動板45の表裏に一体化されることによって軸受本体46aを挟持することにより、揺動板45を軸受本体46aに対して第2回動中心軸線L2方向に抜け止めする。尚、転動体支持部49及び軸受保持部45cは、本実施例のように別部材として形成されて揺動板45に接着等で一体化される他、揺動板45とともに一体成形されても良い。尚、第1実施例の減速機40においては、転がり軸受からなる軸受本体46aを設けずに支持部46bを滑り軸受とし、揺動板45及び転動体支持部49を直接支持部46bに回動可能に支持させても良い。
 転動体支持部49は、第2回動中心軸線L2に沿って後方に凹凸を形成する複数の支持溝(49a~49e)と、転動体が転動体支持部49の半径方向外側に抜けないようにする抜止用の突起49gを有する。複数の支持溝は、円孔49fの中心から放射方向に伸びかつ周方向に等間隔で形成され、かつ傘歯車48の歯数nに対して1以外の公約数を有さない最大n-1個形成される。第1実施例では、一例として5本の支持溝(49a~49e)を転動体支持部49に設けている。
 5つの転動体支持溝(49a~49e)には、それぞれ図2の二点鎖線部分に示す複数の転動体(50a~50e)が挿入され、かつ保持されている。複数の転動体(50a~50e)は、それぞれ本実施例のような円錐台ころ形状または円錐ころ形状に形成され、転動体群50を構成する。また、複数の転動体(50a~50e)は、複数の支持溝(49a~49e)と同数以下の個数であり、かつnに対して1以外の公約数を有さない最大n-1個設けられる。第1実施例においては、図2に示すように一例として支持溝(49a~49e)と同数の5つの転動体(50a~50e)を設けている。転動体(50a~50e)は、それぞれ図1(a)及び図2に示す通り、傘歯車48と、転動体支持部49との間に挟持され、6つの歯(48a~48f)に対して転動する。
 尚、図3(a)及び図3(b)は、揺動板45、傘歯車48及び転動体群50の動作を説明するための仮想図であり、図2の傘歯車48を切断線I-Iの位置で切断し、転動体50aの位置を基準として直線状に歯(48a~48f)と転動体(50a~50e)を直線状に並べたものと仮定して上方から見た(図1(a)及び図2の矢視S2を参照)仮想図である。符号49hは、歯(48a~48f)及び転動体(50a~50e)に対する転動体支持部49の底部の位置関係を示す曲線を示す。転動体支持部49の底部は、等間隔で支持溝(49a~49e)に保持された転動体(50a~50e)を歯(48a~48f)に押し付ける。
 次に図1から図3により、第1実施例の減速機40の動作を説明する。図1(a)に示す入力軸42が回動すると、傾斜軸受46の第2回動中心軸線L2及びこの軸線L2に平行な支持部46bは、第1回動中心軸線L1に対して角度θを保ったまま第1回動中心軸線L1の周りを回動する。揺動板45及び転動体支持部49は、転がり軸受である軸受本体46aを介して支持部46bに対して相対回動可能に取り付けられている。従って、揺動板45及び転動体支持部49は、支持部46bが第1回動中心軸線L1周りに回動してもケース41に対して相対回動せず、第1回動中心軸線及び第2回動中心軸線の交点O1を中心として第1回動中心軸線L1に沿って往復揺動する。
 具体的には、図1(a)に示す入力軸42が180度回転すると、初期位置において揺動の最後端に配置された揺動板45及び転動体支持部49は、交点O1を中心としてD1の方向、つまり後方から前方に揺動して図1(b)の揺動の最前端まで移動する。更に図1(b)に示す入力軸42が180度回転すると、揺動板45及び転動体支持部49は、交点O1を中心としてD2の方向、つまり揺動の最前端から最後端に揺動して図1(a)の初期位置に戻る。即ち、第1実施例の揺動板45及び転動体支持部49は、入力軸1回転につき前後に一往復揺動する。
 その際、図3(a)の転動体(50a~50e)は、図3(a)の正弦波曲線形状を保ちつつ右方向に移動するような動作をする転動体支持部49の底部49hによって歯(48a~48f)に押圧される。図3(a)において、転動体50aは、初期位置において揺動の最後端に位置し、転動体50cは、初期位置において揺動の最前端に位置する。入力軸42が180度、つまり半回転すると、底部49hは、正弦波曲線形状の半位相分だけ右方向に移動し、転動体(50b、50c)を後方(Re方向)に押圧し、転動体50cは、図3(a)に示す揺動の最前端の位置から図3(b)に示す最後端位置まで移動する。その際、図3(a)の転動体(50b、50c)は、それぞれ歯(48b、48c)を左側から右方向(Re方向)に押圧することにより、図3(b)に示すように各歯(48a~48f)を各歯の半ピッチ分だけ右側に移動させる。その結果、入力軸42を半回転させると、傘歯車48に一体化された出力軸43は、各歯(48a~48f)の半ピッチ分だけ入力軸42に対して相対回転する。
 また図3(b)の状態において入力軸42が更に180度、つまり半回転すると、底部49hは、更に正弦波曲線形状の半位相分だけ右方向に移動し、転動体(50d、50e、50a)を後方(Re方向)に押圧し、転動体50aは、図3(b)に示す揺動の最前端の位置から図3(a)に示す最後端位置(初期位置)まで戻る。その際、転動体(50d、50e、50a)は、それぞれ歯(48d、48e、48f)を左側から右方向(Re方向)に押圧することにより、傘歯車48を更に各歯(48a~48f)の半ピッチ分だけ入力軸42に対して相対回転させる。
 入力軸42が一回転すると、転動体(50a~50e)が歯(48a~48f)に沿って入力軸42と同方向に回転しつつ、それぞれ前後に一往復する。その結果、転動体(50a~50e)は、出力軸43を入力軸42に対し、入力軸42の回転方向に各歯(48a~48f)の1ピッチ分だけ相対回動させる。つまり、第1実施例の減速機40は、傘歯車の歯数をnとすると、入力軸42の1回転を出力軸の1/n回転に減速して伝達することにより、減速比nを実現する。本実施例の傘歯車48は、歯数6であるため、減速機40は、減速比6を実現する。
 尚、第1実施例の減速機40においては、傘歯車48をベースプレート47に形成するとともに支持溝(49a~49e)を揺動板45に設けたが、逆に傘歯車48を揺動板45の表面に設け、傘歯車に対向する支持溝(49a~49e)を有する転動体支持部49をベースプレートに設けても良い。
 次に図4から図6により第2実施例の減速機の構成と動作を説明する。図4(a)及び図4(b)に示す第2実施例の減速機56は、減速機構44に第2の減速機構52を設け、ケース41の入力軸支持部41bを第2のベースプレート57に変更し、揺動板45の軸受保持部45cを第2の転動体支持部59に変更した他、第1実施例の減速機40と共通の構成を有する。
 具体的には、第2実施例の減速機56は、第1実施例の揺動板45、傾斜軸受46、ベースプレート47、傘歯車48、転動体支持部49及び転動体群50によって揺動板45の表面45a側に構成される第1の減速機構51に加え、更に揺動板45の裏面45b側に図4(a)に示す第2の減速機構52を追加し、第1及び第2の減速機構(51,52)を直列に並べた減速機構44’を構成したものである。
 図4(a)に示す第2の減速機構52は、揺動板45、傾斜軸受46、第2のベースプレート57、第2の傘歯車58、第2の転動体支持部59及び第2の転動体群60を有する。
 図4(a)に示すように第2実施例のケース41の前板41fの内側には、第1実施例の入力軸支持部41bではなく、第2のベースプレート57が固定される。第2のベースプレート57は、円板形状に形成され、中央に円孔57aを有し、複数の雄ねじ41dによって前板41fに固定される。その際、円孔57aは、ケース41の円孔41hと同軸に配置される。入力軸42は、転がり軸受42e(球軸受やころ軸受け等)によってケース41に固定された第2のベースプレート57の円孔57a内に第1回動中心軸線L1を中心として回動可能に保持される。
 尚、図5は、第2のベースプレート57と第2の転動体群60のみを後方から前方に向けて見た(図4(a)の矢視S3方向を参照)仮想図を示す。第2のベースプレート57の後面には、3以上の歯数からなる歯数n+1(nは、第1の減速機構51の傘歯車48の歯数)の第2の傘歯車58が設けられる。尚、第2実施例では、一例として傘歯車48の歯数を6としたことに基づいて第2の傘歯車58の歯数を7としているが、歯数は7に限られない。符号58a~58gは、後方に向けて凸形状を有する第2の傘歯車58の7つの歯を示す。
 図4(a)に示すように第2実施例の揺動板45の裏面(前面)45bには、第1実施例の軸受保持部45cではなく、図4(a)に示す円板形状の第2の転動体支持部59が設けられる。第2の転動体支持部59は、揺動板45と同様に金属や樹脂等で形成される。第2の転動体支持部59は、本実施例のように別部材として形成されて揺動板45に接着等で一体化される他、揺動板45とともに一体成形されても良い。また、第2の転動体支持部59の中央には、揺動板45の円孔45dよりも内径が小さく、円孔45dと同軸となる円孔59gが設けられる。転動体支持部49及び第2の転動体支持部59は、各外周を揺動板45の外周と面一にした状態で揺動板45の表裏に一体化されることによって軸受本体46aを挟持することにより、揺動板45を軸受本体46aに対して第2回動中心軸線L2方向に抜け止めする。
 第2の転動体支持部59は、第1回動中心軸線L1に対して傾斜する傾斜軸受46の第2回動中心軸線L2に沿って後方に凹凸を形成する複数の支持溝(59a~59f)と、転動体が転動体支持部49の半径方向外側に抜けないようにする抜止用の突起59hを有する。複数の支持溝は、円孔59gの中心から放射方向に伸び、かつ周方向に等間隔で形成され、かつ第2の傘歯車58の歯数n+1に対して1以外の公約数を有さない最大n個形成される。第1実施例では、一例として6本の支持溝(59a~59f)を第2の転動体支持部59に設けている。
 6つの転動体支持溝(59a~59f)には、それぞれ図5の二点鎖線部分に示す複数の転動体(60a~60f)が挿入され、かつ保持されている。複数の転動体(60a~60f)は、それぞれ本実施例のような円錐台ころ形状または円錐ころ形状に形成され、第2の転動体群60を構成する。また、複数の転動体(60a~60f)は、複数の支持溝(59a~59f)と同数以下の個数であり、かつnに対して1以外の公約数を有さない最大n個設けられる。第2実施例においては、図4に示すように一例として支持溝(59a~59f)と同数の6つの転動体(60a~60f)を設けている。転動体(60a~60f)は、それぞれ図4(a)及び図5に示す通り、第2の傘歯車58と、第2の転動体支持部59との間に挟持され、7つの歯(58a~58g)に対して転動する。
 尚、図6(a)及び図6(b)は、揺動板45、第2の傘歯車58及び第2の転動体群60の動作を説明するための仮想図であり、図4の第2の傘歯車58を切断線II-IIの位置で切断し、転動体60aの位置を基準として直線状に歯(58a~58g)と転動体(60a~60f)を直線状に並べたものと仮定して上方から見た(図4(a)及び図5の矢視S4を参照)仮想図である。符号59iは、歯(58a~58g)及び転動体(60a~60f)に対する第2の転動体支持部59の底部の位置関係を示す曲線を示す。第2の転動体支持部59の底部は、等間隔で支持溝(59a~59f)に保持された転動体(60a~60f)を歯(58a~58g)に押し付ける。
 次に図4から図6により、第4実施例の減速機56の動作を説明する。図4(a)に示す入力軸42が回動すると、傾斜軸受46の第2回動中心軸線L2及びこの軸線L2に平行な支持部46bは、第1回動中心軸線L1に対して角度θを保ったまま第1回動中心軸線L1の周りを回動する。揺動板45、転動体支持部49及び第2の転動体支持部59は、転がり軸受である軸受本体46aを介して支持部46bに対して相対回動可能に取り付けられる。揺動板45、転動体支持部49及び第2の転動体支持部59は、支持部46bが入力軸42と共に第1回動中心軸線L1周りに半回転(180°回転)すると、第1回動中心軸線及び第2回動中心軸線の交点O1を中心として初期位置である後端部位置から図4(b)の前端部位置まで揺動し、更に支持部46bが半回転すると、図4(a)の初期位置である後端部位置まで揺動する。即ち、転動体支持部49及び第2の転動体支持部59は、入力軸42が1回転すると、第1回動中心軸線L1に沿って1回往復揺動する。
 図4(a)に示す入力軸42が半回転(180°回転)することにより、第2の転動体支持部59が初期位置である後端部位置から図4(b)の前端部位置まで揺動すると、第2の転動体群60のうち転動体(60b~60d)は、第2の転動体支持部59の底部59iから前方(Fr方向)に向けた力を受ける。第2の傘歯車58は、ケース41に固定されているため、図4(a)の転動体(60b~60d)は、第2の支持溝(59b~59d)を介して図4(a)の第2の転動体支持部59を各歯(58a~58g)の半ピッチ分だけ左方向(Le方向)に押す。その結果、入力軸42を半回転させると、一体化された第2のベースプレート57、揺動板45及び転動体支持部49は、入力軸42に対し、各歯(58a~58g)の半ピッチ分だけ入力軸42の回転方向に対して逆向きに相対回転する。
 また、図4(b)に示す入力軸42が更に半回転(180°回転)することにより、第2の転動体支持部59が後端部位置から図4(a)の前端部位置(初期位置)まで戻ると、第2の転動体群60のうち転動体(60a、60e、60f)は、第2の転動体支持部59の底部59iから前方(Fr方向)に向けた力を受ける。図4(b)の転動体(60a、60e、60f)は、第2の支持溝(60a、60e、60f)を介して図4(b)の第2の転動体支持部59を各歯(58a~58g)の半ピッチ分だけ更に左方向(Le方向)に押す。その結果、第2の転動体支持部59、揺動板45及び転動体支持部49は、入力軸42に対して、各歯(58a~58g)の半ピッチ分だけ入力軸42の回転方向に対して更に逆向きに相対回転する。
 つまり、入力軸42が一回転すると、転動体(60a~60f)がそれぞれ前後に一往復することにより、第2の転動体支持部59、揺動板45及び転動体支持部49を入力軸42に対して第2の傘歯車の各歯(58a~58g)の1ピッチ分だけ、入力軸42の回転方向に対して逆向きに相対回動させる。つまり、第2実施例の減速機56は、第1の減速機構51の傘歯車48の歯数をnとし、第2の減速機構52の第2の傘歯車58の歯数をn+1とし、揺動板45及び転動体支持部49を出力軸と仮定すると、入力軸42の1回転を出力軸(揺動板45及び転動体支持部49)の1/(n+1)回転として減速して伝達する減速比n+1の減速機となる。第2実施例の第2の傘歯車58は、歯数7であるため、第2の減速機構52は、減速比7の減速機構を実現する。
 尚、第1の減速機構51は、第1実施例と同様に揺動板45、傾斜軸受46、ベースプレート47、歯数nの傘歯車48、転動体支持部49及び転動体群50によって減速比6の減速機構を実現する。従って、第1の減速機構51の転動体(50a~50e)は、入力軸が1回転し、ケース41に対して相対回動することなく一往復揺動した揺動板45から前後方向の力を受けた場合、出力軸43を入力軸42に対し、入力軸の回転方向に1/n回転させる。しかし、第2実施例においては、第2の減速機構52が揺動板45及び転動体支持部49をケース41及び入力軸42に対し、入力軸の回転方向と逆向きに1/(n+1)回転させるため、第1の減速機構51の歯(48a~48f)に対する転動体(50a~50e)の転動距離を減じさせる。その結果、第2実施例の減速機56は、減速比nの第1の減速機構51と減速比n+1の第2の減速機構52を直列して配置した構成となり、減速機56の減速比は、n(n+1)となり、傘歯車48の歯数nと第2の傘歯車58の歯数n+1に比例した大減速比を有する減速機となる。
 尚、第2実施例の減速機56においては、第2の傘歯車58を第2のベースプレート57に形成するとともに第2の支持溝(59a~59f)を揺動板45に設けたが、逆に第2の傘歯車58を揺動板45の表面に設け、第2の傘歯車58に対向する第2の支持溝(59a~59f)を有する第2の転動体支持部59を第2のベースプレート57に設けても良い。また、第2実施例の減速機56においては、転がり軸受からなる軸受本体46aを設けずに支持部46bを滑り軸受とし、揺動板45、転動体支持部49及び第2の転動体支持部59を直接支持部46bに回動可能に支持させても良い。
 第1実施例の減速機40によれば、揺動板45及び複数の転動体(50a~50e)が入力軸42及び出力軸43の軸方向、つまり第1回動中心軸線L1に沿った方向に揺動するため、歯数nに基づいた所望の減速比を実現しつつ、ケース41を含めた減速機40の大きさを径方向に小さく形成出来るため、減速機の径方向に余裕のある配置空間を内側に持たない装置に減速機40を設置出来る。
 また、第2実施例の減速機56によれば、第1の減速機構51に加え、第1回動中心軸線L1に沿った方向に揺動する転動体(60a~60f)を有する第2の減速機構52を揺動板45の表裏に直列的に設けたことにより、減速機の大きさを径方向に拡大することなく傘歯車48の歯数nと第2の傘歯車58の歯数n+1に比例した大減速比の減速機が実現される。
40        減速機
41        ケース
42        入力軸
43        出力軸
44、44’    減速機構
45        揺動板
45a       揺動板の表面
45b       揺動板の裏面
46        傾斜軸受
47        ベースプレート
48        傘歯車
49        転動体支持部
49a~49e   支持溝
50        転動体群
50a~50e   転動体
51        第1の減速機構
52        第2の減速機構
56        減速機
57        第2のベースプレート
58        第2の傘歯車
59        第2の転動体支持部
59a~59f   第2の支持溝
60        第2の転動体群
60a~60f   転動体
L1        第1回動中心軸線
L2        第2回動中心軸線
 
 

Claims (5)

  1.  ケースと、
     前記ケースによって回動可能に支持された入力軸と、
     前記ケースによって回動可能に支持され、かつ前記入力軸と同軸かつ相対回動可能に配置された出力軸と、
     前記入力軸の回転を減速して前記出力軸に伝達する減速機構と、
    を有する減速機において、
     前記減速機構は、
     揺動板と、
     前記入力軸の外周の周方向に設けられ、前記入力軸の第1回動中心軸線に対して傾斜した第2回動中心軸線回りに前記揺動板を回動可能に支持する傾斜軸受と、
     前記揺動板の表面に対向した状態で前記入力軸と同軸に配置され、入力軸によって回動可能に支持され、かつ出力軸に一体化されたベースプレートと、
     第1回動中心軸線の軸方向に凸となるように前記揺動板の表面またはベースプレートのうち一方に設けられた3以上の歯数からなる歯数nの傘歯車と、
     前記揺動板の表面またはベースプレートのうち前記傘歯車を設けられていないもう一方に設けられた、nに対して1以外の公約数を有さない最大n-1個の複数の支持溝を有する転動体支持部と、
     前記複数の支持溝にそれぞれ挿入され、前記傘歯車と前記転動体支持部との間に挟持される、複数の前記支持溝と同数以下の個数でありnに対して1以外の公約数を有さない最大n-1個の複数の転動体からなる転動体群と、
     を備えたことを特徴とする、減速機。
  2.  前記減速機構は、第2の減速機構を有し、
     前記第2の減速機構は、
     前記ケースに固定され、前記揺動板の裏面に対向した状態で前記入力軸と同軸に配置され、かつ前記入力軸を回動可能に保持する第2のベースプレートと、
     第1回動中心軸線の軸方向に凸となるように前記揺動板の裏面または前記第2のベースプレートのうち一方に設けられた歯数n+1の第2の傘歯車と、
     前記揺動板の裏面または前記第2のベースプレートのうち前記第2の傘歯車を設けられていないもう一方に設けられた、n+1に対して1以外の公約数を有さない最大n個の複数の第2の支持溝を有する第2の転動体支持部と、
     複数の前記第2の支持溝にそれぞれ挿入され、前記第2の傘歯車と前記第2の転動体支持部との間に挟持される、複数の前記支持溝と同数以下の個数でありnに対して1以外の公約数を有さない最大n+1個の複数の転動体からなる第2の転動体群と、
     を備えたことを特徴とする、請求項1に記載の減速機。
  3.  前記複数の転動体は、それぞれ円錐台ころ形状または円錐ころ形状を有することを特徴とする、請求項1または2に記載の減速機
  4.  前記傾斜軸受が転がり軸受であることを特徴とする、請求項1または2に記載の減速機。
  5.  前記揺動板と転動体支持部が一体である、請求項1または2に記載の減速機。
     
PCT/JP2015/085933 2015-12-24 2015-12-24 減速機 WO2017109876A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017557570A JP6352558B2 (ja) 2015-12-24 2015-12-24 減速機
PCT/JP2015/085933 WO2017109876A1 (ja) 2015-12-24 2015-12-24 減速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085933 WO2017109876A1 (ja) 2015-12-24 2015-12-24 減速機

Publications (1)

Publication Number Publication Date
WO2017109876A1 true WO2017109876A1 (ja) 2017-06-29

Family

ID=59089731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085933 WO2017109876A1 (ja) 2015-12-24 2015-12-24 減速機

Country Status (2)

Country Link
JP (1) JP6352558B2 (ja)
WO (1) WO2017109876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220290739A1 (en) * 2019-08-26 2022-09-15 Sri International Pure Rolling Cycloid Transmissions with Variable Effective Diameter Rollers and Roller Constraints

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112854A (ja) * 1984-11-05 1986-05-30 Shinko Seisakusho:Kk 端面カムを用いた減速装置
JPH01229165A (ja) * 1988-03-10 1989-09-12 Shinko Seisakusho:Kk フェースギャの歯形、該歯形の創成加工方法及び該歯形を利用した差動減速装置
JPH02304236A (ja) * 1989-05-19 1990-12-18 Teijin Seiki Co Ltd 減速機
JP2001349387A (ja) * 2000-06-07 2001-12-21 Hidetsugu Terada 揺動回転形減速機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112854A (ja) * 1984-11-05 1986-05-30 Shinko Seisakusho:Kk 端面カムを用いた減速装置
JPH01229165A (ja) * 1988-03-10 1989-09-12 Shinko Seisakusho:Kk フェースギャの歯形、該歯形の創成加工方法及び該歯形を利用した差動減速装置
JPH02304236A (ja) * 1989-05-19 1990-12-18 Teijin Seiki Co Ltd 減速機
JP2001349387A (ja) * 2000-06-07 2001-12-21 Hidetsugu Terada 揺動回転形減速機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220290739A1 (en) * 2019-08-26 2022-09-15 Sri International Pure Rolling Cycloid Transmissions with Variable Effective Diameter Rollers and Roller Constraints
US11674564B2 (en) * 2019-08-26 2023-06-13 Sri International Pure rolling cycloid transmissions with variable effective diameter rollers and roller constraints

Also Published As

Publication number Publication date
JPWO2017109876A1 (ja) 2018-05-24
JP6352558B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
US8162790B2 (en) Rolling ball type two-stage low speed changer device
EP2400184B1 (en) A roller type transmission device
US20110319217A1 (en) Roller type transmission device
US8998763B2 (en) Rotary speed-change transmission
US20180187752A1 (en) Eccentric oscillating speed reducer
WO2010004880A1 (ja) 減速装置およびこれを適用した可変バルブタイミング装置
WO2018147200A1 (ja) 遊星歯車装置
JP2011241974A (ja) 減速装置
CN109578540B (zh) 一种直齿行星轮滚珠组合式减速器
WO2012063555A1 (ja) 遊星歯車減速機
JP6352558B2 (ja) 減速機
CN109538706B (zh) 一种斜齿行星轮滚珠组合式减速器
US20080234095A1 (en) Planetary Gear
TW201305465A (zh) 偏心凸輪式變速機構
TWI738015B (zh) 具動平衡之擺線型減速機
RU2402709C1 (ru) Планетарная передача
CN211951390U (zh) 一种具摆线轮轴向支撑功能的摆线针轮减速器
CN211009751U (zh) 差动摆线齿轮变速装置
CN211009753U (zh) 差动摆线齿轮变速装置
JP2011052765A (ja) 減速装置
JP2013019443A (ja) 減速装置
US20200325973A1 (en) Gearless differential
JP2017040312A (ja) 減速装置
JP2014059038A (ja) 差動回転伝達装置
CN211009752U (zh) 差动摆线齿轮变速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911314

Country of ref document: EP

Kind code of ref document: A1