WO2017109615A1 - ウイリー制御装置及びその制御方法 - Google Patents

ウイリー制御装置及びその制御方法 Download PDF

Info

Publication number
WO2017109615A1
WO2017109615A1 PCT/IB2016/057343 IB2016057343W WO2017109615A1 WO 2017109615 A1 WO2017109615 A1 WO 2017109615A1 IB 2016057343 W IB2016057343 W IB 2016057343W WO 2017109615 A1 WO2017109615 A1 WO 2017109615A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheelie
vehicle body
target
wheel
control
Prior art date
Application number
PCT/IB2016/057343
Other languages
English (en)
French (fr)
Inventor
佳秀 井苅
Original Assignee
ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority to US16/065,859 priority Critical patent/US11230272B2/en
Priority to DE112016004749.5T priority patent/DE112016004749T5/de
Priority to JP2017557514A priority patent/JP6538200B2/ja
Publication of WO2017109615A1 publication Critical patent/WO2017109615A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/03Overturn, rollover
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2240/00Monitoring, detecting wheel/tire behaviour; counteracting thereof
    • B60T2240/06Wheel load; Wheel lift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • B60W2710/0672Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque

Definitions

  • the present invention relates to a wheelie control device for a motorcycle and a control method therefor.
  • Two-wheeled vehicles are lighter in weight than four-wheeled vehicles.
  • a typical four-wheeled vehicle weighs about 100 000 kg, whereas a two-wheeled vehicle weighs only about 200 KG and about 1-5.
  • the two-wheeled vehicle is driven by the rear wheels, it has a feature that the front wheels are lifted and become in a wheely state when sudden acceleration is performed.
  • the wheelie is unstable in the behavior of the car body and may cause the car body to fall. Excessive wheelies will also reduce the acceleration performance of the car body. Therefore, a control device that suppresses wheelie by electronic control has been proposed, and is actually sold in the market as a product.
  • a wheelie is detected by detecting a wheelie and making the engine output torque smaller than the output desired by the rider (see, for example, cited references 1 and 2).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2 0 1 1— 1 3 7 4 1 6
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 1 0-2 2 9 9 1 2
  • the control device after detecting the wheelie, the control is performed to reduce the engine output torque according to the pitch angle of the vehicle body, and the purpose thereof is to quickly end the wheelie state.
  • skilled riders control not only the pitch angle of the vehicle body but also the pitch angular velocity. For example, even if the pitch angle of the vehicle body is still small, if the pitch angular velocity is large, there is a possibility that the wheel will have a large pitch angle at the next moment. On the other hand, even if the pitch angle is large, if the pitch angular velocity changes in a decreasing direction, an operation to increase the engine output torque is performed.
  • the maximum acceleration is obtained, and the impact when the front wheel touches the road surface from the wheely state is eased by slowly lowering the front wheel, but the engine output torque is reduced.
  • the output torque of the engine is excessively lowered, and the acceleration may be reduced more than necessary or the impact at the time of grounding the front wheel may be increased. .
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to control the wheelie control device that can reduce the acceleration drop more than necessary and the impact at the time of grounding the front wheel when the wheelie state is terminated and the control thereof. It is to provide a method.
  • the present invention relates to a wheelie control device for controlling a wheelie of a vehicle body, and a target targeted by the parameter for controlling a state of wheeling of the vehicle body according to a parameter related to pitching of the vehicle body.
  • a trajectory is calculated, and an increase / decrease in pitching of the vehicle body is controlled so that the parameter approaches the target trajectory.
  • the parameter may include a pitch angle.
  • the parameter may include a pitch angular velocity.
  • the parameter may include pitch angular acceleration.
  • the parameters include a pitch angle and a pitch angular velocity, and the target trajectory is a target. It may include a target pitch angle and a target pitch angular velocity obtained by differentiating the target pitch angle.
  • the parameter includes a pitch angular velocity and a pitch angular acceleration, and the target trajectory may include a target pitch angular velocity and a target pitch angular acceleration obtained by differentiating the target pitch angular velocity.
  • the wheel control apparatus is characterized in that the parameter includes a pitch angle and a pitch angular acceleration, and the target trajectory includes a target pitch angle and a target pitch angular acceleration obtained by differentiating the target pitch angle. .
  • the pitching may be increased or decreased by increasing or decreasing the output of the prime mover.
  • the pitching may be increased or decreased by increasing or decreasing the braking force of the brake.
  • a first control is performed to control the output of the prime mover so that the vehicle body starts a wheelie.
  • a second control for increasing / decreasing the pitching of the vehicle body may be performed so that the vehicle body maintains a wheel.
  • the first control may calculate a torque increase rate of the prime mover for causing the vehicle body to start a wheel and calculate the output target value that satisfies the torque increase rate.
  • the parameter is a target to control the wheelie state of the vehicle body according to the parameter related to the pitching of the vehicle body.
  • the target trajectory is calculated, and the increase / decrease in pitching of the vehicle body is controlled so that the parameter approaches the target trajectory.
  • the parameter may include a pitch angle.
  • the parameter may include a pitch angular velocity.
  • the parameter may include pitch angular acceleration.
  • the parameters include a pitch angle and a pitch angular velocity
  • the target trajectory may include a target pitch angle and a target pitch angular velocity obtained by differentiating the target pitch angle.
  • the parameter includes a pitch angular velocity and a pitch angular acceleration
  • the target trajectory may include a target pitch angular velocity and a target pitch angular acceleration obtained by differentiating the target pitch angular velocity.
  • the wheel control apparatus is characterized in that the parameter includes a pitch angle and a pitch angular acceleration, and the target trajectory includes a target pitch angle and a target pitch angular acceleration obtained by differentiating the target pitch angle. .
  • the pitching may be increased or decreased by increasing or decreasing the output of the prime mover.
  • the pitching may be increased or decreased by increasing or decreasing the braking force of the brake.
  • a second control for increasing or decreasing the pitching of the vehicle body may be executed so that the vehicle body maintains a wheelie.
  • the first control may calculate a torque increase rate of the prime mover for causing the vehicle body to start a wheel and calculate the output target value that satisfies the torque increase rate.
  • FIG. 1 is a block diagram showing an engine control system including an ECU according to the present embodiment.
  • FIG. 2 is a graph showing how the ECU controls the pitching of the vehicle body based on the target trajectory.
  • FIG. 3 is a diagram showing a state of control when the vehicle body is rolled.
  • FIG. 4 is a flowchart showing wheelie control by the ECU.
  • FIG. 1 is a block diagram showing an engine control system including an ECU according to the present embodiment.
  • the engine control system 100 according to the present embodiment is mounted on the body of a motorcycle, and is an ECU (Willi Control System). 1 0, Engine (motor) 2 0, Sensor 3 0, Memory 4 0
  • the engine 20 is electrically connected to the E CU 10 and generates a driving force on the rear wheel of the motorcycle based on an instruction from the E C U 10.
  • the sensor 30 is a 5D sensor that functions as an acceleration sensor in three directions in the X direction, the Y direction, and the Z direction, and two angular acceleration sensors around the X axis and the Y axis.
  • the sensor 30 is electrically connected to the ECU 10 and is provided to output to the ECU 10 a signal A 1 corresponding to the detected acceleration and a signal A 2 corresponding to the detected angular acceleration. It has been.
  • the E CU 10 is electrically connected to the engine 20, the sensor 30, and the memory 40.
  • the ECU 10 calculates the pitch angular acceleration of the vehicle body based on the signals A 1 and A 2 input from the sensor 30, and the pitch angle information indicating the vehicle pitch angle based on the calculated pitch angular acceleration.
  • Information and pitch angular velocity information indicating the pitch angular velocity of the vehicle body are generated.
  • the pitch angle indicates the angle of the vehicle body with respect to the road surface, and the pitch angle when the front wheel and the rear wheel are in contact with the road surface and the vehicle body is stationary is 0 (zero) degrees.
  • E CU 10 performs feedback control (second control) of the engine output torque based on the pitch response of the vehicle body after the vehicle body has been wheeled.
  • E CU 10 is provided to control the pitching direction trajectory of the vehicle body, that is, the time transition of the vehicle body pitch angle, by integrating the parameters related to pitching including the vehicle body pitch angle information and pitch angular velocity information. Have been. More specifically, the ideal response of the pitch angle of the vehicle body is calculated as the target trajectory with reference to a map stored in the memory 40, and the actual pitch angle of the vehicle body approaches the calculated target trajectory. The pitching of the vehicle body is controlled to follow up and down.
  • the target track includes a target pitch angle corresponding to the pitch angle and a target pitch angular velocity corresponding to the pitch angular velocity, and the target pitch angle and the target pitch angular velocity are set so as to have a differential integral relationship with each other. ing.
  • the target pitch angular velocity is calculated by differentiating the target pitch angle.
  • E CU 10 can determine the change in pitch angle until the front wheels are brought into contact with the road surface when the vehicle body is in a wheeled state by controlling the increase / decrease of the vehicle body pitching so that it approaches the target track. .
  • the ECU 10 controls the increase / decrease in the pitching of the vehicle so as to approach the target track by increasing / decreasing the output torque of the engine.
  • the ECU 10 can maintain the wheelie state of the vehicle body by setting the target trajectory so as to maintain the pitch angle at a constant angle.
  • the ECU 10 is configured to generate a smooth wheelie based on the vehicle body pitch information including the calculated pitch angle and pitch angle acceleration, engine output torque information, engine speed information, and gear information.
  • a control (first control) is performed to output the engine output torque that can prompt the start to the engine 20. [0 0 1 8]
  • the memory 40 is a storage unit and stores a map for calculating a target trajectory using parameters related to pitching such as pitch angle information and pitch angular velocity information of the vehicle body.
  • the ECU 10 refers to the map corresponding to the target trajectory stored in the memory 40, and outputs a signal A 3 indicating information on the target pitch angle and a signal A 4 indicating information on the target pitch angular velocity. get.
  • Figure 2 is a graph showing how the ECU controls the pitching of the vehicle body based on the target trajectory.
  • the horizontal axis indicates the passage of time
  • range R 1 indicates the range for 1.0 second.
  • Line L 0 (zero) indicates whether E CU 10 0 is intervening in the body pitching control, and the vertical axis indicates that E CU 10 0 is in the pitching control when line L 0 rises. It indicates that they are intervening.
  • Line L 1 indicates the wheel speed of the front wheel, and the vertical axis indicates the speed of the wheel speed.
  • Line L 2 shows the wheel speed of the rear wheel, and the vertical axis shows the speed of the wheel speed.
  • Range R 2 shows the range where the wheel speed is l O O kmZh (km / h).
  • Line L 3 indicates the target pitch angle, and the vertical axis indicates the magnitude of the pitch angle.
  • Line L 4 indicates the actual pitch angle of the vehicle body, and the vertical axis indicates the magnitude of the pitch angle.
  • a range R 3 indicates a range where the pitch angle is 20 degrees.
  • Line L5 shows the target pitch angular velocity
  • the vertical axis shows the speed of the pitch angular velocity
  • Line L 6 indicates the actual pitch angular velocity of the vehicle body
  • the vertical axis indicates the speed of the pitch angular velocity.
  • Range R 4 shows a range where the pitch angular velocity is 1.0 radians per second. Differentiating the target pitch angle indicated by line L 3 results in the target pitch angular velocity indicated by line L 5, that is, integrating the target pitch angular velocity indicated by line L 5 results in the target pitch angle indicated by line L 3.
  • the target pitch angle and the target pitch angular speed are set.
  • Line L 7 shows the actual torque output by the engine, and the vertical axis shows the magnitude of the torque.
  • Line L 8 indicates the required torque requested by the rider through the accelerator operation, and the vertical axis indicates the magnitude of the torque.
  • the line L 9 shows the torque that the ECU 10 is requesting the engine by intervening in the pitching control, and the vertical axis shows the magnitude of the torque.
  • a range R 5 indicates a range in which the magnitude of torque is 100 N ⁇ m (Newton meter).
  • the E CU 1 0 stores the actual pitch angle P itch An gle—A stored in the memory 40.
  • the map that shows the correspondence between ctua 1 and the target pitch angular velocity P itch Rate — Targe calculate the target pitch angular velocity P itch Rate — Target indicated by line L 5.
  • ECU 1 0 applies the coefficient coefficient 1 specific to the vehicle body and the engine to the calculated pitch angular velocity difference e 1 to request the engine 20 to satisfy the target pitch angular velocity. Calculates the required torelect of the Request T orquel.
  • ECU 10 After calculating the first required torque Request T orque 1, ECU 10 integrates the target pitch angular velocity P itch Rate_T arget shown by line L 5 and the target pitch angle P itch A ng shown by line L 3. 1 Calculate e _T aret.
  • the ECU 10 multiplies the calculated pitch angle difference e 2 by a coefficient coefficient 2 specific to the vehicle body and engine, and requests the engine 20 to satisfy the target pitch angle. Calculates the required request Torelek 2.
  • the coefficients coefficientl and coefficient are set so that the required torque actually required for the engine 20 is obtained. 2 is set, but depending on the settings of the coefficients coefficientl and coefficient 2, only one of the first request torolec R equest T orque 1 or the second request tonolec R equest T orque 2 is requested to the engine 20 It can also be a required torque.
  • FIG. 3 is a diagram showing a state of control when the vehicle body is wheeled.
  • Fig. 3 (a) shows the relationship between wheel speed and time
  • Fig. 3 (b) shows the relationship between pitch angle and time
  • Fig. 3 (c) shows the torque. It is a figure which shows the relationship between time and time. Note that the time axis corresponds to FIGS. 3 (a) to 3 (c).
  • the solid line LA 1 indicates the wheel speed of the front wheel
  • the broken line LA 2 indicates the wheel speed of the rear wheel.
  • the wheel speed of the rear wheel increases at a constant slope, but the front wheel decreases rapidly at time t1, and then increases rapidly at time t2. That is, the front wheel lifts from the road surface at time t 1 due to the wheel, and the wheel speed decreases, and again at time t 2
  • the front wheel is installed on the road surface, and the wheel speed increases rapidly, so that the wheel speed is almost the same as the rear wheel.
  • Range R 1 shows the range where the front wheels are lifted.
  • the solid line L B 1 indicates the target pitch angle that is a target for causing the vehicle body to execute a smooth wheelie
  • the broken line L B 2 indicates the actual pitch angle of the vehicle body.
  • the solid line L C 1 indicates the output torque of the engine 20 requested by the rider operating the accelerator
  • the broken line L C 2 indicates the output torque of the actual engine 20.
  • E CU 10 is the first control that controls the range R 2 from the time when the rider who makes a wheelie suddenly operates in the direction to open the accelerator to the time t 1 when the front wheel leaves the road surface. Control the output torque and control the output torque of the engine 20 by the second control over the range R 3 from time t 1 until the time t 3 when the rider who suddenly operates the accelerator closes the accelerator. is doing.
  • FIG. 4 is a flowchart showing wheelie control by the ECU.
  • the ECU 10 determines whether or not the rider has opened the accelerator more than a predetermined opening, that is, whether or not the rider is trying to make the vehicle wheelie (step S 1).
  • the predetermined opening of the accelerator is an opening that is equal to or larger than the accelerator opening at which the vehicle body can be wheeled, and is stored in the memory of the ECU 10 in advance.
  • step S 1 If it is determined in step S 1 that the rider has not opened the accelerator more than the predetermined opening (step S 1: O), ECU 10 will not perform the wheelie control intervention or will Control is terminated (step S2), and the series of processing from step 1 is repeated.
  • step S 1 if it is determined in step S 1 that the rider has opened the accelerator more than the predetermined opening (step S 1: YES), ECU 10 is obtained from the wheel speed sensors 20 of the front and rear wheels. Based on the wheel speed signal, it is determined whether or not the vehicle body is in the wheel (step S 3).
  • step S 3 If it is determined in step S 3 that the vehicle body is not in a wheelie (step S 3: NO), the ECU 10 determines the pitch angular velocity that is the angular velocity in the vehicle body pitching direction based on the signal output from the 5D sensor. The pitch angle and pitch angular acceleration are calculated based on the calculated pitch angular velocity. Next, the ECU 10 is based on the vehicle body pitch information composed of the parameters of the pitch angle and the pitch angular acceleration, the output torque information of the engine 20, the rotational speed information of the engine 20 and the gear information. The inclination of the output torque of the engine 20 that prompts the smooth start of the wheel, that is, the rate of increase of the output torque is calculated (step S4).
  • the ECU 10 calculates an output target value that satisfies the calculated rate of increase of the output torque (step S5 )
  • step S5 When the output target value is calculated in step S5, the ECU 10 increases or decreases the output torque of the engine 20 so as to approach the calculated output target value (step S6), and repeats a series of processes from step S1. .
  • step S3 determines the actual pitch angle of the vehicle body calculated based on the signal output from the 5D sensor. Compare with the target trajectory of the hour (Step S7).
  • step S7 when the actual pitch angle of the vehicle body is compared with the target track that is the target of the wheelie temporarily, ECU 10 outputs to reduce the difference between the actual pitch angle of the vehicle body and the target track.
  • a target value is calculated (step S 8).
  • E C U 10 increases or decreases the output torque of the engine 20 so as to approach the calculated output target value (step S 6), and repeats a series of processes from step S 1.
  • the ECU 10 drives the engine 20 so as to make the vehicle wheelie when the vehicle is not tired (step S3: No) due to the accelerator operation by the rider.
  • the engine 20 can be driven so as to maintain the wheelie.
  • the ECU 10 calculates a target trajectory targeted by the parameters in order to control the wheel state of the vehicle body according to the parameters of the pitch angle and pitch angular velocity related to the pitching of the vehicle body,
  • the increase / decrease of the pitching of the vehicle body is controlled by increasing / decreasing the braking force of the brake so that the parameter approaches the target trajectory.
  • the pitch angle can be gradually reduced from the wheely state, so that the acceleration drop more than necessary and the impact when the front wheel touches down can be reduced when the wheely state ends.
  • the wheelie control device 10 calculates the output target value of the engine 20 for making the vehicle wheelie based on the information corresponding to the pitch angle of the vehicle body, and sets the engine 20 to approach the output target value.
  • the output torque can be increased or decreased. This eliminates the need for the rider to adjust the output torque of the engine 20 by operating the accelerator, and it can be electronically controlled to bring the vehicle to the wheelie state. If the pitch angle of the vehicle is too large, the engine While the output torque of 20 can be reduced, the output torque of the engine 20 can be increased when the pitch angle of the vehicle body is too small. For this reason, riders can easily recycle the vehicle without relying on driving skills.
  • the present invention has been described based on the embodiment, but the present invention is not limited to this.
  • the pitch angle and the pitch angular velocity are used as parameters for controlling the increase / decrease in the pitching of the vehicle body, but the present invention is not limited to this.
  • the pitch angular acceleration can be used as a parameter
  • the target pitch angular acceleration obtained by differentiating the target pitch angular velocity can be used as the target trajectory.
  • the pitching of the vehicle body may be controlled with high accuracy.
  • the target track is used as information related to the pitching of the vehicle body.
  • the pitching of the vehicle body may be controlled using the required torque required for the engine as the target track.
  • pitching is increased or decreased so as to approach the target track by increasing or decreasing the output torque of the engine, but the present invention is not limited to this.
  • the pitch of the vehicle body can be increased or decreased, for example, the engine speed, engine fuel injection amount, engine air amount, electric motor torque of motorcycles driven by electricity, brake torque, gyro mechanism that controls the balance of the vehicle body, etc.
  • Suspension damping force, clutch connection state, gear position A means such as control of the center of gravity of the vehicle body may be used.
  • the ECU may integrally control the output torque and the braking force of the rear wheel brake. In such a configuration, either the output torque of the engine or the braking force of the rear wheel brake may be controlled. Compared to the case where the rider has to adjust, there are fewer disturbance elements, and the balance between the engine output torque and the braking force of the rear wheel brake can be improved.
  • the output target value is calculated as it is from the pitch angle information of the vehicle body calculated from the signal input from the sensor 30.
  • the present invention is not limited to this.
  • the output target value may be corrected by, for example.
  • the output target value is calculated for each vehicle body in which ECU is actually mounted.
  • the present invention is not limited to this.
  • the output target value may be estimated using a uniform vehicle model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

本発明は、ウイリー状態を終了する際に必要以上の加速度低下や前輪接地時の衝撃を低減させることのできるウイリー制御装置及びその制御方法を提供することを目的 とする。 【解決手段】 車体のウイリーを制御するウイリー制御装置において、前記車体のピッチングに関連し たパラメータに応じて、前記車体のウイリー状態を制御するために前記パラメータが目標とするターゲット軌道を算出し、前記パラメータが前記ターゲット軌道に近づくように前記車体のピッチングの増減を制御するようにした。

Description

【書類名】 明細書
【発明の名称】 ウイリー制御装置及びその制御方法
【技術分野】
【 0 0 0 1】
本発明は、 自動二輪車のウイ リー制御装置及びその制御方法に関する。
【背景技術】
【 0 0 0 2】
二輪車は四輪車よりも車両重量が軽量である。 一般的な四輪車は約 1 0 0 0 k g程度の 重量なのに対し、 二輪車は約 2 0 0 k g と 1ノ 5程度の重量しかない。 また、 二輪車は、 後輪駆動のため、 急加速をしたときに前輪が浮き上がってウイリ一状態になってしまうと いう特徴を有している。 ウィリーは車体の挙動としては不安定なものであるため、 車体の 転倒を引き起こしてしまう恐れがある。 また、 過度なウィリーは車体の加速性能を低下さ せてしまう。 そこで、 電子制御によってウィリーを抑制する制御装置が提案されており、 実際に製品として市場で販売されている。 この種の制御装置では、 ウィリーを検出し、 ェ ンジンの出力トルクをライダーが望む出力よりも小さくすることによってウイリーの抑制 を実現していた(例えば、 引用文献 1及び 2参照)。
【先行技術文献】
【特許文献】
【 0 0 0 3】
【特許文献 1】 特開 2 0 1 1— 1 3 7 4 1 6
【特許文献 2】 特開 2 0 1 0— 2 2 9 9 1 2
【発明の概要】
【発明が解決しようとする課題】
【 0 0 0 4】
しかしながら、 上記従来の技術による制御装置では、 ウィリーを検知後に車体のピッチ 角に応じてエンジン出力トルクを低減する制御を行っており、 その目的はウイリ一状態を 速やかに終了させることであった。 これに対して、 熟練したライダーは車体のピッチ角だ けでなく ピッチ角速度も感じ取って車体を制御している。 例えば、 車体のピッチ角が未だ 小さくても、 ピッチ角速度が大きい場合は次の瞬間に大きなピッチ角のウイリ一になる可 能性があるためエンジンの出力を低減させる操作を行っている。 一方、 ピッチ角が大きく ても、 ピッチ角速度が減少する方向に変化していればエンジンの出力トルクを増加させる 操作を行っている。 これらの操作により、 最大限の加速度を得るとともに、 ゆっく り と前 輪を下ろすことによりゥイリ一状態から前輪が路面に接地するときの衝撃も緩和している が、 エンジンの出力トルクを低減させているだけである上記従来の技術による制御装置で は、 エンジンの出力トルクを下げ過ぎてしまい、 必要以上に加速度を低下させたり前輪接 地時の衝撃が大きくなってしまったりすることがあった。
【 0 0 0 5】
本発明の目的は、 上述した従来の技術が有する課題を解消し、 ウィリー状態を終了する 際に必要以上の加速度低下や前輪接地時の衝撃を低減させることのできるウイリ一制御装 置及びその制御方法を提供することにある。
【課題を解決するための手段】
【 0 0 0 6】
本発明は、 車体のウィ リーを制御するウィリー制御装置において、 前記車体のピッチン グに関連したパラメータに応じて、 前記車体のウイリ一状態を制御するために前記パラメ ータが目標とするターゲッ ト軌道を算出し、 前記パラメータが前記ターゲッ ト軌道に近づ く ように前記車体のピッチングの増減を制御することを特徴とする。
【 0 0 0 7】
この場合において、 前記パラメータは、 ピッチ角を含んでもよい。 前記パラメータは、 ピッチ角速度を含んでもよい。 前記パラメータは、 ピッチ角加速度を含んでもよい。 前記 パラメータはピッチ角とピッチ角速度とを含むとともに、 前記ターゲッ ト軌道はターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したターゲッ トピッチ角速度とを含んでもよ い。 前記パラメータはピッチ角速度とピッチ角加速度とを含むとともに、 前記ターゲッ ト 軌道はターゲッ トピッチ角速度と前記ターゲッ トピツチ角速度を微分したターゲッ トピッ チ角加速度とを含んでもよい。 前記パラメータはピッチ角とピッチ角加速度とを含むとと もに、 前記ターゲッ ト軌道はターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したタ ーゲッ トピッチ角加速度とを含むことを特徴とするウイリ一制御装置。 前記ピッチングの 増減は、 原動機の出力を増減させることによって実行してもよい。 前記ピッチングの増減 は、 ブレーキの制動力を増減させることによって実行してもよい。 前記車体がウィリーし ていない状態からウイリ一を開始するように操作された場合に、 前記車体をウイ リーさせ るための原動機の出力目標値を算出し、 前記出力目標値に近づく ように、 前記原動機の出 力を増減させてもよい。 前記車体がウィリーしているか否かを判断し、 前記車体がゥイリ 一していないと判断したときは前記車体がウィリーを開始するように前記原動機の出力を 制御する第 1の制御を実行し、 前記車体がウイリーしていると判断したときは前記車体が ゥイリ一を維持するように前記車体の前記ピッチングの増減を実行する第 2の制御を実行 してもよい。 前記第 1の制御は、 前記車体にウィ リーを開始させるための前記原動機のト ルク上昇率を算出し、 前記トルク上昇率を満たすような前記出力目標値を算出してもよい
【 0 0 0 8】
また、 本発明は、 車体のウィ リーを制御するウィリー制御装置の制御方法において、 前 記車体のピッチングに関連したパラメータに応じて、 前記車体のウイリ一状態を制御する ために前記パラメータが目標とするターゲッ ト軌道を算出し、 前記パラメータが前記ター ゲッ ト軌道に近づく ように前記車体のピッチングの増減を制御することを特徴とする。
【 0 0 0 9】
この場合において、 前記パラメータは、 ピッチ角を含んでもよい。 前記パラメータは、 ピッチ角速度を含んでもよい。 前記パラメータは、 ピッチ角加速度を含んでもよい。 前記 パラメータはピッチ角とピッチ角速度とを含むとともに、 前記ターゲッ ト軌道はターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したターゲッ トピッチ角速度とを含んでもよ い。 前記パラメータはピッチ角速度とピッチ角加速度とを含むとともに、 前記ターゲッ ト 軌道はターゲッ トピッチ角速度と前記ターゲッ トピッチ角速度を微分したターゲッ トピッ チ角加速度とを含んでもよい。 前記パラメータはピッチ角とピッチ角加速度とを含むとと もに、 前記ターゲッ ト軌道はターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したタ ーゲッ トピッチ角加速度とを含むことを特徴とするウイリ一制御装置。 前記ピッチングの 増減は、 原動機の出力を増減させることによって実行してもよい。 前記ピッチングの増減 は、 ブレーキの制動力を増減させることによって実行してもよい。 前記車体がウィリーし ていない状態からウイリ一を開始するように操作された場合に、 前記車体をウイリーさせ るための原動機の出力目標値を算出し、 前記出力目標値に近づく ように、 前記原動機の出 力を増減させてもよい。 前記車体がウィリーしているか否かを判断し、 前記車体がゥイリ 一していないと判断したときは前記車体がウィリーを開始するように前記原動機の出力を 制御する第 1の制御を実行し、 前記車体がウイリーしていると判断したときは前記車体が ウィリーを維持するように前記車体のピッチングの増減を実行する第 2の制御を実行して もよい。 前記第 1の制御は、 前記車体にウィ リーを開始させるための前記原動機のトルク 上昇率を算出し、 前記トルク上昇率を満たすような前記出力目標値を算出してもよい。
【発明の効果】
【 0 0 1 0】
本発明では、 ウイリー状態を終了する際に必要以上の加速度低下や前輪接地時の衝撃を 低減させることのできるウイリ一制御装置及びその制御方法を実現することができる。 【図面の簡単な説明】
【 0 0 1 1】
【図 1】 本実施形態に係る E C Uを含むエンジン制御システムを示すプロック図で ある。 【図 2】 E CUがターゲッ ト軌道に基づいて車体のピッチングを制御する様子を示 すグラフである。
【図 3】 車体をウイリ一させる際の制御の様子を示す図である。
【図 4】 E CUによるウイリーの制御を示すフローチヤ一トである。
【発明を実施するための形態】
【0 0 1 2】
以下、 図面を参照して、 本発明の好適な実施の形態について説明する。
図 1は、 本実施形態に係る E CUを含むエンジン制御システムを示すプロック図である 本実施形態に係るエンジン制御システム 1 0 0は、 自動二輪車の車体に搭載され、 E C U (ゥイリ一制御装置) 1 0、 エンジン (原動機) 2 0、 センサ 3 0、 メモリ 4 0を備え ている。
【0 0 1 3】
エンジン 2 0は、 E CU 1 0と電気的に接続されており、 E C U 1 0の指示に基づいて 自動二輪車の後輪に駆動力を生じさせる。
【0 0 1 4】
センサ 3 0は、 X方向、 Y方向、 及び Z方向の 3方向の加速度センサ、 及び、 X軸周り 及び Y軸周りの 2つの角加速度センサとして機能する 5 Dセンサである。 このセンサ 3 0 は、 E CU 1 0と電気的に接続されており、 検出した加速度に対応する信号 A 1及び検出 した角加速度に対応する信号 A 2を E CU 1 0に出力するように設けられている。
【0 0 1 5】
E CU 1 0は、 エンジン 2 0とセンサ 3 0とメモリ 4 0とに電気的に接続されている。 この E CU 1 0は、 センサ 3 0から入力された信号 A 1 , A 2に基づいて、 車体のピッチ 角加速度を算出し、 算出したピッチ角加速度に基づいて車体のピッチ角を示すピッチ角情 報と車体のピッチ角速度を示すピッチ角速度情報とを生成する。 ここで、 ピッチ角とは、 車体の路面に対する角度を示しており、 前輪及び後輪が路面に接して車体が静止した状態 のピッチ角を 0 (ゼロ) 度としている。
【0 0 1 6】
E CU 1 0は、 車体かウイリーした後は車体のピッチ応答に基づいてエンジンの出力ト ルクのフィードバック制御 (第 2の制御) を実行する。 E CU 1 0は、 車体のピッチ角情 報とピッチ角速度情報とを含むピッチングに関連したパラメータを統合し、 車体のピッチ ング方向の軌道、 すなわち車体のピッチ角度の時間遷移を制御するように設けられている 。 より具体的には、 メモリ 4 0に格納されたマップを参照して車体のピッチ角の理想応答 をターゲッ ト軌道として算出し、 算出したターゲッ ト軌道に実際の車体のピッチ角が近づ く ように追従させて車体のピッチングの増減を制御するようになっている。 ターゲッ ト軌 道は、 ピッチ角に対応するターゲッ トピッチ角とピッチ角速度に対応するターゲッ トピッ チ角速度とを含んでおり、 ターゲッ トピッチ角とターゲッ トピッチ角速度とは互いに微分 積分の関係になるように設定されている。 すなわちターゲッ トピッチ角を微分するとター ゲッ トピッチ角速度が算出される。 E CU 1 0は、 ターゲッ ト軌道に近づく ように車体の ピッチングの増減を制御することにより、 車体がウイリ一状態の場合は前輪を路面に接地 させるまでのピッチ角の変化を決定することができる。 なお、 本実施形態では、 E CU 1 0は、 エンジンの出力トルクを増減させることにより、 ターゲッ ト軌道に近づく ように車 体のピッチングの増減を制御している。
【0 0 1 7】
また、 E CU 1 0は、 ピッチ角を一定角に保持するようにターゲッ ト軌道を設定するこ とにより、 車体のウィリー状態を保持することができる。 具体的には、 E CU 1 0は、 算 出したピッチ角及びピッチ角加速度からなる車体ピッチ情報と、 エンジンの出力トルク情 報、 エンジン回転数情報、 及びギア情報とに基づき、 スムーズなウィリーの開始を促すこ とのできるエンジンの出力トルクを、 エンジン 2 0に出力する制御 (第 1の制御) を実行 する。 【0 0 1 8】
メモリ 4 0は、 記憶部であり、 車体のピッチ角情報やピッチ角速度情報等のピッチング に関連したパラメータを用いてターゲッ ト軌道を算出するためのマツプを格納している。
E CU 1 0は、 メモリ 4 0に格納されたターゲッ ト軌道に対応するマップを参照して、 タ ーゲッ トピッチ角に関する情報を示す信号 A 3、 及びターゲッ トピッチ角速度に関する情 報を示す信号 A 4を取得する。
【0 0 1 9】
図 2は、 E CUがターゲッ ト軌道に基づいて車体のピッチングを制御する様子を示すグ ラフである。 この図において、 横軸は時間の経過を示しており、 範囲 R 1は 1. 0秒間の 範囲を示している。
【 0 0 2 0】
線 L 0 (ゼロ) は、 E CU 1 0が車体のピッチングの制御に介入しているか否かを示し ており、 縦軸は線 L 0が立ち上がったときに E CU 1 0がピッチングの制御に介入してい ることを示している。
【 0 0 2 1】
線 L 1は、 前輪の車輪速度を示しており、 縦軸は車輪速度の速さを示している。 線 L 2 は、 後輪の車輪速度を示しており、 縦軸は車輪速度の速さを示している。 また、 範囲 R 2 は、 車輪速度が l O O kmZh (キロメートル毎時) である範囲を示している。
【 0 0 2 2】
線 L 3は、 ターゲッ トピッチ角を示しており、 縦軸はピッチ角の大きさを示している。 線 L 4は、 車体の実際のピッチ角を示しており、 縦軸はピッチ角の大きさを示している。 また、 範囲 R 3は、 ピッチ角が 2 0度である範囲を示している。
【 0 0 2 3】
線 L 5は、 ターゲッ トピッチ角速度を示しており、 縦軸はピッチ角速度の速さを示して いる。 線 L 6は、 車体の実際のピッチ角速度を示しており、 縦軸はピッチ角速度の速さを 示している。 また、 範囲 R 4は、 ピッチ角速度が 1. 0ラジアン毎秒である範囲を示して いる。 なお、 線 L 3で示すターゲッ トピッチ角を微分すると、 線 L 5で示すターゲッ トピ ツチ角速度になるよう、 すなわち線 L 5で示すターゲッ トピッチ角速度を積分すると線 L 3で示すターゲッ トピッチ角になるように、 ターゲッ トピッチ角とターゲッ トピッチ角速 度とは設定されている。
【 0 0 2 4】
線 L 7は、 エンジンが出力している実際のトルクを示しており、 縦軸はトルクの大きさ を示している。 線 L 8は、 ライダーがアクセル操作により要求している要求トルクを示し ており、 縦軸はトルクの大きさを示している。 線 L 9は、 E CU 1 0がピッチングの制御 に介入してエンジンに要求している トルクを示しており、 縦軸はトルクの大きさを示して いる。 また、 範囲 R 5は、 トルクの大きさが 1 0 0 N · m (ニュートンメートル) である 範囲を示している。
【 0 0 2 5】
以下、 E CU 1 0がエンジンの出力を増減させることによって車体のピッチングの増減 を制御する処理を説明する。
【 0 0 2 6】
まず、 線 L 4で示す車体の実際のピツチ角 P i t c h A n g 1 e—A c t u a 1 を取得 すると、 E CU 1 0は、 メモリ 4 0に格納された実際のピツチ角 P i t c h An g l e— A c t u a 1 とターゲッ トピッチ角速度 P i t c h R a t e— T a r g e t との対応関係 を示すマップを用いて、 線 L 5で示すターゲッ トピッチ角速度 P i t c h R a t e— T a r g e tを算出する。
【 0 0 2 7】
ターゲッ トピッチ角速度 P i t c h R a t e _T a r g e tを算出すると、 E CU 1 0 は、
e 1 = P l t c R a t e― T a r g e t — P i t c h R a t e― A c t u a l を計算し、 ターゲッ トピッチ角速度 P i t c h R a t e _T a r g e t と線 L 6で示す実 際のピッチ角速度 P i t c h R a t e— A c t u a 1 とのピッチ角速度差 e 1を算出する
【 0 0 2 8】
ピッチ角速度差 e 1を算出すると、 E C U 1 0は、 算出したピッチ角速度差 e 1に車体 やエンジンに固有の係数 c o e f f i c i e n t 1をかけて、 ターゲッ トピッチ角速度を 満たすためにエンジン 2 0に要求する第 1の要求トノレク R e q u e s t T o r q u e lを 算出する。
【 0 0 2 9】
第 1 の要求トノレク R e q u e s t T o r q u e 1を算出すると、 E C U 1 0は、 線 L 5 で示すターゲッ トピッチ角速度 P i t c h R a t e _T a r g e tを積分し、 線 L 3で示 すターゲッ トピッチ角 P i t c h A n g 1 e _T a r e tを算出する。
【 0 0 3 0】
ターゲッ トピッチ角 P i t c h A n g 1 e _T a r e tを算出すると、 E C U 1 0は e 2 = P i t c h A n 1 e― T a r g e t P i t c h A n g 1 e― A c t u a 1 を計算し、 ターゲッ トピッチ角 P i t c h A n g l e—丁 & 1 8 6 と線し 4で示す実際 のピッチ角 P i t c h A n g l e—A c t u a 1 とのピッチ角差 e 2を算出する。
【 0 0 3 1】
ピッチ角差 e 2を算出すると、 E C U 1 0は、 算出したピッチ角差 e 2に車体やェンジ ンに固有の係数 c o e f f i c i e n t 2をかけて、 ターゲッ トピッチ角を満たすために エンジン 2 0に要求する第 2の要求トノレク R e q u e s t T o r q u e 2を算出する。
【 0 0 3 2】
第 1の要求トルク R e q u e s t T o r q u e l及び第 2の要求トルク R e q u e s t T o r q u e 2を算出すると、 E C U 1 0は、
R e q u e s t ο r q u e = R e q u e s t T o r q u e 丄 + R e q u e s t f o r q u e 2
を計算し、 実際にエンジン 2 0に要求するための線 L 9で示す要求トルク R e q u e s t T o r q u eを算出する。 これにより、 E C U 1 0がエンジン 2 0に要求トルク R e q u e s t T o r q u eを出力するように制御すると、 車体のピッチングが増減されてターゲ ッ ト軌道に近づく、 すなわち、 線 L 4で示す実際のピッチ角が線 L 3で示すターゲッ トピ ツチ角に近づく とともに、 線 L 6で示す実際のピッチ角速度が線 L 5で示すターゲッ トピ ツチ角速度に近づく。
【 0 0 3 3】
本実施形態では、 第 1の要求トルク R e q u e s t T o r q u e l及び第 2の要求トル ク R e q u e s t T o r q u e 2を足したときに実際にエンジン 2 0に要求する要求トル クとなるように係数 c o e f f i c i e n t l , c o e f f i c i e n t 2を設定してい るが、 係数 c o e f f i c i e n t l , c o e f f i c i e n t 2の設定次第では第 1の 要求トノレク R e q u e s t T o r q u e 1または第 2の要求トノレク R e q u e s t T o r q u e 2のいずれか一方のみをエンジン 2 0に要求する要求トルクとしてもよレ、。
【 0 0 3 4】
図 3は、 車体をウィリーさせる際の制御の様子を示す図である。 図 3 ( a ) は、 車輪速 度と時間との関係を示す図であり、 図 3 ( b ) は、 ピッチ角と時間との関係を示す図であ り、 図 3 ( c ) は、 トルクと時間との関係を示す図である。 なお、 図 3 ( a ) 乃至図 3 ( c ) は時間軸が対応している。
【 0 0 3 5】
図 3 ( a ) において、 実線 L A 1は前輪の車輪速度を示しており、 破線 L A 2は後輪の 車輪速度を示している。 この図から分かるように、 後輪は一定の傾きで車輪速度が上昇し ているが、 前輪は時刻 t 1で下降した後、 時刻 t 2で急激に上昇している。 すなわち、 ゥ イリ一により前輪が時刻 t 1で路面から浮き上がって車輪速度が下降し、 時刻 t 2で再び 前輪が路面に設置して車輪速度が急上昇して後輪と略同じ車輪速度になっている。 なお、 範囲 R 1は、 前輪が浮き上がつている範囲を示している。
【 0 0 3 6】
図 3 (b ) において、 実線 L B 1は車体にスムーズなウィリーを実行させるための目標 とするターゲッ トピッチ角を示しており、 破線 L B 2は車体の実際のピッチ角を示してい る。
【 0 0 3 7】
図 3 ( c ) において、 実線 L C 1はライダーがアクセルを操作することにより要求する エンジン 2 0の出力トルクを示しており、 破線 L C 2は実際のエンジン 2 0による出力ト ルクを示している。 この図から分かるように、 ウィリー制御中はライダーの要求に係わら ずエンジン 2 0の出力トルクの増減が E CU 1 0によって制御されている。
【 0 0 3 8】
E CU 1 0は、 車体にウイリーをさせるベくライダーがアクセルを開く方向に急激に操 作してから前輪が路面から離れる時刻 t 1までの範囲 R 2を第 1の制御によりエンジン 2 0の出力トルクを制御し、 時刻 t 1からウイ リーを終了させるベくライダーがアクセルを 閉じる方向に急激に操作する時刻 t 3までの範囲 R 3を第 2の制御によりエンジン 2 0の 出力トルクを制御している。
【 0 0 3 9】
図 4は、 E CUによるウイリーの制御を示すフローチヤ一トである。
まず、 E CU 1 0は、 ライダーがアクセルを所定の開度以上開いたか否か、 すなわち、 ライダーが車体をウィリーさせよう としているか否かを判断する (ステップ S 1 ) 。 ここ で、 アクセルの所定の開度とは、 車体がウィリーし得るアクセル開度以上の開度であり、 予め E CU 1 0のメモリに記憶されている。
【 0 0 4 0】
ステップ S 1において、 ライダーがアクセルを所定の開度以上開いていないと判断す ると (ステップ S 1 : O) 、 E CU 1 0は、 ウィリー制御の介入を実行しない、 または 、 実行中のウィリー制御を終了し (ステップ S 2) 、 ステップ 1から一連の処理を繰り返 す。
【 0 0 4 1】
一方、 ステップ S 1において、 ライダーがアクセルを所定の開度以上開いていると判断 すると (ステップ S 1 : YE S) 、 E CU 1 0は、 前輪及び後輪の車輪速度センサ 2 0か ら取得した車輪速度信号に基づいて車体がウイリ一中であるか否かを判断する (ステップ S 3 ) 。
【 0 0 4 2】
ステップ S 3において、 車体がウィリー中でないと判断すると (ステップ S 3 : NO) 、 E CU 1 0は、 5 Dセンサから出力された信号に基づいて車体のピッチング方向の角速 度であるピッチ角速度を算出し、 算出したピッチ角速度に基づいてピッチ角およびピッチ 角加速度を算出する。 次に、 E CU 1 0は、 これらピッチ角及びピッチ角加速度のパラメ ータからなる車体ピッチ情報と、 エンジン 2 0の出力トルク情報、 エンジン 2 0の回転数 情報、 及びギア情報とに基づいてスムーズなウイリ一の開始を促すエンジン 2 0の出力ト ルクの傾き、 すなわち、 出力トルクの上昇率を算出する (ステップ S 4) 。
【 0 0 4 3】
ステップ S 4においてスムーズなウイリー開始を促すエンジン 2 0の出力トルクの上昇 率を算出すると、 E CU 1 0は、 算出した出力トルクの上昇率を満たすような出力目標値 を算出する (ステップ S 5 ) 。
【 0 0 4 4】
ステップ S 5において出力目標値を算出すると、 E CU 1 0は、 算出した出力目標値に 近づく ようにエンジン 2 0の出力トルクを増減させ (ステップ S 6 ) 、 ステップ S 1から 一連の処理を繰り返す。
【 0 0 4 5】 一方、 ステップ S 3において、 車体がウィリー中であると判断すると (ステップ S 3 : Y E S ) 、 E C U 1 0は、 5 Dセンサから出力された信号に基づいて算出した車体の実際 のピッチ角をウィリー時の目標とするターゲッ ト軌道と比較する (ステップ S 7 ) 。
【 0 0 4 6】
ステップ S 7において、 車体の実際のピッチ角をウイリ一時の目標とするターゲッ ト軌 道と比較すると、 E C U 1 0は、 車体の実際のピッチ角とターゲッ ト軌道との差を小さく するための出力目標値を算出する (ステップ S 8 ) 。
【 0 0 4 7】
ステップ S 8において出力目標値を算出すると、 E C U 1 0は、 算出した出力目標値に 近づく ようにエンジン 2 0の出力トルクを増減させ (ステップ S 6 ) 、 ステップ S 1から 一連の処理を繰り返す。
【 0 0 4 8】
以上の処理により、 E C U 1 0は、 ライダーによるアクセル操作により、 車体がゥイリ 一していないとき (ステップ S 3 : N o ) は車体をウイリーさせるようにエンジン 2 0を 駆動させ、 車体がウイリーしているとき (ステップ S 3 : Y e s ) はウイリーを維持させ るようにエンジン 2 0を駆動させることができる。
【 0 0 4 9】
本実施形態では、 E C U 1 0は、 車体のピッチングに関連したピッチ角やピッチ角速度 のパラメータに応じて、 車体のウイリ一状態を制御するためにパラメータが目標とするタ ーゲッ ト軌道を算出し、 パラメータがターゲッ ト軌道に近づく ように車体のピッチングの 増減をエンジン 2 0の出力ゃプレーキの制動力を増減させて制御している。 これにより、 ゥイリ一状態からピッチ角をゆつく り と減少させることができるため、 ゥイリ一状態を終 了する際に必要以上の加速度低下や前輪接地時の衝撃を低減させることができる。
【 0 0 5 0】
また、 ウィリー制御装置 1 0は、 車体のピッチ角に対応する情報に基づいて車体をウイ リーさせるためのエンジン 2 0の出力目標値を算出し、 出力目標値に近づく ようにェンジ ン 2 0の出力トルクを増減させることが出来る。 これにより、 ライダーがアクセル操作に よりエンジン 2 0の出力トルクを調節する必要がなく、 車体をウイリー状態へ持ってく操 作をすベて電子制御で行え、 車体のピッチ角が大き過ぎるときはエンジン 2 0の出力トル クを低減させる一方、 車体のピッチ角が小さ過ぎるときはエンジン 2 0の出力トルクを増 加させることができる。 このため、 ライダーは、 運転技術に頼ることなく容易に車体をゥ イリ一させることができる。
【 0 0 5 1】
以上、 実施形態に基づいて本発明を説明したが、 本発明はこれに限定されるものではな い。 例えば、 上記実施形態では、 車体のピッチングの増減を制御するためのパラメータと してピッチ角及びピッチ角速度のみを用いているが、 これに限定されない。 例えば、 ター ゲッ ト軌道に近づく ように車体のピッチングの増減を制御することができれば、 パラメ一 タとしてピッチ角加速度を用いるとともにターゲッ ト軌道としてターゲッ トピッチ角速度 を微分したターゲッ トピッチ角加速度を用いてより高精度に車体のピッチングを制御して もよい。
【 0 0 5 2】
また、 上記実施形態では、 ターゲッ ト軌道を車体のピッチングに関する情報としている が、 これに限定されない。 例えば、 エンジンに要求する要求トルクをターゲッ ト軌道とし て車体のピッチングを制御してもよい。
【 0 0 5 3】
さらに、 上記実施形態では、 エンジンの出力トルクを増減させることによりターゲッ ト 軌道に近づくようにピッチングの増減を実行しているが、 これに限定されない。 車体のピ ツチングを増減することができれば、 例えば、 エンジン回転数、 エンジン燃料噴射量、 ェ ンジン空気量、 電気で駆動する二輪車等の電気モータ トルク、 ブレーキトルク、 車体のバ ランスを制御するジャイロ機構、 サスペンションの減衰力、 クラッチの接続状態、 ギアポ ヨン、 車体の重心位置の制御等といった手段を用いてもよい。 また、 E C Uは、 ェン '出力トルク及び後輪ブレーキの制動力を統合的に制御してもよく、 このよ うな構成 の場合は、 エンジンの出力トルク及び後輪ブレーキの制動力のいずれか一方をライダーが 調整しなければならない場合に比べて外乱要素が少なく、 エンジンの出力トルク及び後輪 ブレーキの制動力のバランスを良くすることができる。
【 0 0 5 4】
さらにまた、 上記実施形態では、 センサ 3 0から入力された信号から算出された車体の ピッチ角情報からそのまま出力目標値を算出しているが、 これに限定されない。 例えば、 車輪速度、 車輪加速度、 車体速度、 車体加速度、 エンジン出力トルク、 エンジン回転数、 ギア情報、 前輪マスタシリ ンダ ' ホイールキヤリパプレーキ圧、 後輪マスタシリ ンダ ' ホ ィールキヤリパプレーキ圧、 プレーキパッ ド温度等により出力目標値に補正を加えてもよ い。
【 0 0 5 5】
また、 上記実施形態では、 実際に E C Uが搭載された車体毎に出力目標値を算出してい るが、 これに限定されない。 例えば、 車体のウィリーを制御できれば、 画一化された車体 モデルを用いて出力目標値を推定してもよい。
【符号の説明】
【 0 0 5 6】
1 0 ゥイリ一制御装置
2 0 エンジン (原動機)
3 0 センサ
4 0 メモリ
1 0 0 エンジン制御システム

Claims

【書類名】 特許請求の範囲
【請求項 1】
車体のウイ リ一を制御するウイリ一制御装置において、
前記車体のピッチングに関連したパラメータに応じて、 前記車体のウイリ一状態を制御 するために前記パラメータが目標とするターゲッ ト軌道を算出し、
前記パラメータが前記ターゲッ ト軌道に近づく ように前記車体のピッチングの増減を制 御することを特徴とするウイリ一制御装置。
【請求項 2】
請求項 1に記載のウイリ一制御装置において、
前記パラメータは、 ピッチ角を含むことを特徴とするゥイリ一制御装置。
【請求項 3】
請求項 1または 2に記載のウイリ一制御装置において、
前記パラメータは、 ピッチ角速度を含むことを特徴とするウイリ一制御装置。
【請求項 4】
請求項 1乃至 3のいずれか 1項に記載のウイリ一制御装置において、
前記パラメータは、 ピッチ角加速度を含むことを特徴とするウイリ一制御装置。
【請求項 5】
請求項 1乃至 4のいずれか 1項に記載のウイリ一制御装置において、
前記パラメータはピッチ角とピッチ角速度とを含むとともに、 前記ターゲッ ト軌道はタ 一ゲッ トピッチ角と前記ターゲッ トピツチ角を微分したターゲッ トピッチ角速度とを含む ことを特徴とするウイリ一制御装置。
【請求項 6】
請求項 1乃至 5のいずれか 1項に記載のウイリ一制御装置において、
前記パラメータはピッチ角速度とピッチ角加速度とを含むとともに、 前記ターゲッ ト軌 道はターゲッ トピッチ角速度と前記ターゲッ トピッチ角速度を微分したターゲッ トピッチ 角加速度とを含むことを特徴とするウイリ一制御装置。
【請求項 7】
請求項 1乃至 6のいずれか 1項に記載のウイリ一制御装置において、
前記パラメータはピッチ角とピッチ角加速度とを含むとともに、 前記ターゲッ ト軌道は ターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したターゲッ トピッチ角加速度とを 含むことを特徴とするウイ リ一制御装置。
【請求項 8】
請求項 1乃至 7のいずれか 1項に記載のウイリ一制御装置において、
前記ピッチングの増減は、 原動機の出力を増減させることによって実行することを特徴 とするゥイリ一制御装置。
【請求項 9】
請求項 1乃至 8のいずれか 1項に記載のウイリ一制御装置において、
前記ピッチングの増減は、 ブレーキの制動力を増減させることによって実行することを 特徴とするウイリ一制御装置。
【請求項 1 0】
請求項 1乃至 9のいずれか 1項に記載のウイリ一制御装置において、
前記車体がウイリーしていない状態からウイリーを開始するように操作された場合に、 前記車体をウィリーさせるための原動機の出力目標値を算出し、
前記出力目標値に近づく ように、 前記原動機の出力を増減させることを特徴とするウイ リ一制御装置。
【請求項 1 1】
請求項 1 0に記載のウイリ一制御装置において、
前記車体がウイリーしているか否かを判断し、 前記車体がウイリーしていないと判断し たときは前記車体がウイリーを開始するように前記原動機の出力を制御する第 1の制御を 実行し、 前記車体がウイリーしていると判断したときは前記車体がウイリーを維持するよ うに前記車体の前記ピッチングの増減を実行する第 2の制御を実行することを特徴とする ウイリ一制御装置。
【請求項 1 2】
請求項 1 1に記載のウイリ一制御装置において、
前記第 1の制御は、 前記車体にウイリーを開始させるための前記原動機のトルク上昇率 を算出し、 前記トルク上昇率を満たすような前記出力目標値を算出することを特徴とする ウイリ一制御装置。
【請求項 1 3】
車体のウイリ一を制御するウイリ一制御装置の制御方法において、
前記車体のピッチングに関連したパラメータに応じて、 前記車体のウイリ一状態を制御 するために前記パラメータが目標とするターゲッ ト軌道を算出し、
前記パラメータが前記ターゲッ ト軌道に近づく ように前記車体のピッチングの増減を制 御することを特徴とするウイリ一制御装置の制御方法。
【請求項 1 4】
請求項 1 3に記載のウイリー制御装置の制御方法において、
前記パラメータは、 ピッチ角を含むことを特徴とするウイリー制御装置の制御方法。 【請求項 1 5】
請求項 1 3または 1 4に記載のウイリ一制御装置の制御方法において、
前記パラメータは、 ピッチ角速度を含むことを特徴とするウイリ一制御装置の制御方法
【請求項 1 6】
請求項 1 3乃至 1 5のいずれか 1項に記載のウィリー制御装置の制御方法において、 前記パラメータは、 ピッチ角加速度を含むことを特徴とするウイリ一制御装置の制御方 法。
【請求項 1 7】
請求項 1 3乃至 1 6のいずれか 1項に記載のウイリー制御装置において、
前記パラメータはピッチ角とピッチ角速度とを含むとともに、 前記ターゲッ ト軌道はタ ーゲッ トピッチ角と前記ターゲッ トピッチ角を微分したターゲッ トピッチ角速度とを含む ことを特徴とするウイリ一制御装置。
【請求項 1 8】
請求項 1 3乃至 1 7のいずれか 1項に記載のウイリ一制御装置において、
前記パラメータはピッチ角速度とピッチ角加速度とを含むとともに、 前記ターゲッ ト軌 道はターゲッ トピッチ角速度と前記ターゲッ トピッチ角速度を微分したターゲッ トピッチ 角加速度とを含むことを特徴とするウイリ一制御装置。
【請求項 1 9】
請求項 1 3乃至 1 8のいずれか 1項に記載のウイリー制御装置において、
前記パラメータはピッチ角とピッチ角加速度とを含むとともに、 前記ターゲッ ト軌道は ターゲッ トピッチ角と前記ターゲッ トピッチ角を微分したターゲッ トピッチ角加速度とを 含むことを特徴とするウイ リ一制御装置。
【請求項 2 0】
請求項 1 3乃至 1 9のいずれか 1項に記載のウィリー制御装置の制御方法において、 前記ピッチングの増減は、 原動機の出力を増減させることによって実行することを特徴 とするウイリー制御装置の制御方法。
【請求項 2 1】
請求項 1 3乃至 2 0のいずれか 1項に記載のウイリ一制御装置の制御方法において、 前記ピッチングの増減は、 ブレーキの制動力を増減させることによって実行することを 特徴とするウイリー制御装置の制御方法。
【請求項 2 2】
請求項 1 3乃至 2 1のいずれか 1項に記載のウイリ一制御装置の制御方法において、 前記車体がウイリーしていない状態からウイリーを開始するように操作された場合に、 前記車体をウィリーさせるための原動機の出力目標値を算出し、
前記出力目標値に近づく ように、 前記原動機の出力を増減させることを特徴とするウイ リ一制御装置の制御方法。
【請求項 2 3】
請求項 2 2に記載のウイリー制御装置の制御方法において、
前記車体がウイリーしているか否かを判断し、 前記車体がウイリーしていないと判断し たときは前記車体がウイリーを開始するように前記原動機の出力を制御する第 1の制御を 実行し、 前記車体がウイリーしていると判断したときは前記車体がウイリーを維持するよ うに前記車体のピッチングの増減を実行する第 2の制御を実行することを特徴とするウイ リ一制御装置の制御方法。
【請求項 2 4】
請求項 2 3に記載のウイリー制御装置の制御方法において、
前記第 1の制御は、 前記車体にウイリーを開始させるための前記原動機のトルク上昇率 を算出し、 前記トルク上昇率を満たすような前記出力目標値を算出することを特徴とする ゥイリ一制御装置の制御方法。
PCT/IB2016/057343 2015-12-24 2016-12-05 ウイリー制御装置及びその制御方法 WO2017109615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/065,859 US11230272B2 (en) 2015-12-24 2016-12-05 Wheelie controller and control method thereof
DE112016004749.5T DE112016004749T5 (de) 2015-12-24 2016-12-05 Wheelie-Steuervorrichtung und deren Steuerverfahren
JP2017557514A JP6538200B2 (ja) 2015-12-24 2016-12-05 ウイリー制御装置及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-252601 2015-12-24
JP2015252601A JP2017114342A (ja) 2015-12-24 2015-12-24 ウイリー制御装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2017109615A1 true WO2017109615A1 (ja) 2017-06-29

Family

ID=57589081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/057343 WO2017109615A1 (ja) 2015-12-24 2016-12-05 ウイリー制御装置及びその制御方法

Country Status (4)

Country Link
US (1) US11230272B2 (ja)
JP (2) JP2017114342A (ja)
DE (1) DE112016004749T5 (ja)
WO (1) WO2017109615A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114342A (ja) * 2015-12-24 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウイリー制御装置及びその制御方法
JP6730890B2 (ja) * 2016-09-14 2020-07-29 川崎重工業株式会社 ウィリー判定装置およびウィリー判定方法
DE102017209165A1 (de) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Beeinflussung der Motorsteuerung eines einspurigen Kraftfahrzeugs
US20190135286A1 (en) * 2017-09-20 2019-05-09 Sebastian Domingo Apparatus and method for an acceleration control system
JP7143066B2 (ja) * 2017-09-29 2022-09-28 日立Astemo株式会社 自動二輪車のピッチ角制御装置
JP6420447B1 (ja) * 2017-11-10 2018-11-07 株式会社ケーヒン 自動二輪車の駆動力制御装置
GB2568912B (en) * 2017-11-30 2022-09-21 Moss Nicholas Remote control vehicle
JP6901650B2 (ja) * 2018-05-16 2021-07-14 相原 雅彦 電動車両
CN113968297B (zh) * 2020-07-21 2023-05-05 北京零极创新科技有限公司 一种车辆的辅助翘头方法及装置、车辆、计算机存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028995A1 (de) * 2005-06-21 2007-01-04 Continental Teves Ag & Co. Ohg Verfahren zur Fahrdynamikregelung und Fahrdynamikregler für motorisierte Einspurfahrzeuge
JP2010229912A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd エンジン出力制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989922A (en) * 1988-11-23 1991-02-05 Lucas Industries Public Limited Company Method of anti-lock brake control for motorcycle vehicle
WO2000054719A1 (en) * 1999-03-15 2000-09-21 Deka Products Limited Partnership Control system and method for wheelchair
US7124852B2 (en) * 2000-09-01 2006-10-24 Yamaha Hatsudoki Kabushiki Kaisha Acceleration sensor and engine control for motorcycle
US6904350B2 (en) * 2000-09-25 2005-06-07 Ford Global Technologies, Llc System for dynamically determining the wheel grounding and wheel lifting conditions and their applications in roll stability control
JP4534944B2 (ja) * 2005-10-07 2010-09-01 トヨタ自動車株式会社 乗り物
JP2007245993A (ja) 2006-03-17 2007-09-27 Sanko Sangyo:Kk ウィリー制御装置及び自動二輪車
JP4116651B2 (ja) * 2006-06-23 2008-07-09 株式会社タイヨー 無線操縦二輪車玩具
US8083013B2 (en) * 2006-12-06 2011-12-27 The Regents Of The University Of California Multimodal agile robots
US8408911B2 (en) * 2008-10-18 2013-04-02 Steven Gray Motorcycle wheelie training device
JP5422376B2 (ja) 2009-12-28 2014-02-19 川崎重工業株式会社 車両の制御システム、ウィリー判定方法及び出力抑制方法
JP5571519B2 (ja) * 2010-09-27 2014-08-13 日立オートモティブシステムズ株式会社 車体姿勢制御装置
US9043106B2 (en) * 2010-10-04 2015-05-26 W. Morrison Consulting Group, Inc. Vehicle control system and methods
JP5926095B2 (ja) 2012-03-30 2016-05-25 本田技研工業株式会社 自動二輪車用トラクション制御装置
JP5652578B2 (ja) * 2012-09-18 2015-01-14 株式会社村田製作所 手押し車
US20140277993A1 (en) * 2013-03-18 2014-09-18 Donald William HOOKWAY Motor Vehicle Lift Control System
JP6108573B2 (ja) * 2013-04-10 2017-04-05 ボッシュ株式会社 トルク制御装置
JP6654846B2 (ja) * 2015-10-07 2020-02-26 川崎重工業株式会社 出力制御装置
JP6806506B2 (ja) * 2015-10-07 2021-01-06 川崎重工業株式会社 ウィリー抑制装置
JP6622543B2 (ja) * 2015-10-07 2019-12-18 川崎重工業株式会社 ウィリー判定装置、乗物、および車輪浮上り量判定方法
JP2017114342A (ja) * 2015-12-24 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウイリー制御装置及びその制御方法
US10245952B1 (en) * 2018-01-07 2019-04-02 Spin Master Ltd. Self-balancing two-wheeled vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028995A1 (de) * 2005-06-21 2007-01-04 Continental Teves Ag & Co. Ohg Verfahren zur Fahrdynamikregelung und Fahrdynamikregler für motorisierte Einspurfahrzeuge
JP2010229912A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd エンジン出力制御装置

Also Published As

Publication number Publication date
JPWO2017109615A1 (ja) 2018-09-20
DE112016004749T5 (de) 2018-07-05
JP2017114342A (ja) 2017-06-29
JP6538200B2 (ja) 2019-07-03
US20180370506A1 (en) 2018-12-27
US11230272B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2017109615A1 (ja) ウイリー制御装置及びその制御方法
EP2993333B1 (en) Driving force control system and saddled vehicle
JP4829289B2 (ja) 車両の姿勢安定制御方法及びその装置
US8688342B2 (en) Vibration-restraining control apparatus for vehicle
EP2615006B1 (en) Vehicle body vibration damping control device
JP4810962B2 (ja) 車両用サスペンションの制御方法および装置
JP2013523532A (ja) 後輪が側方に滑った場合に二輪車を安定化するための方法
CN106553711A (zh) 用于控制主动空气动力学元件的车辆、系统和方法
US20130080013A1 (en) Vehicle damping control apparatus
JP2017500842A (ja) 電気自動車両又はハイブリッド自動車両の回生制動を制御するための方法及びシステム
JP2012046147A (ja) 車両制御装置
JP4747722B2 (ja) 車両の横転防止装置
CN106114287B (zh) 一种电动汽车防滑控制系统及控制方法
JP2014144681A (ja) 車両用駆動力制御装置
JP2013071524A (ja) 車両の制御装置
JP4990384B2 (ja) 加加速度情報を用いた車両の運動制御方法
GB2435102A (en) Friction estimation for vehicle control systems
JP6627829B2 (ja) 車両の制振制御装置
JP5978501B2 (ja) 車両姿勢補正制御装置
JP4901701B2 (ja) 4輪駆動車の動力伝達装置
KR101152013B1 (ko) 인 휠 모터 차량의 회생 제동 방법
JP2020111189A (ja) リーン車両の制御装置及び転倒予測方法
JP2005253175A (ja) 車両駆動装置
KR102643491B1 (ko) 차량의 댐퍼 제어 시스템 및 방법
JP2013086733A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16815944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016004749

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16815944

Country of ref document: EP

Kind code of ref document: A1