WO2017107899A1 - 无刷直流电机及其控制方法和装置 - Google Patents

无刷直流电机及其控制方法和装置 Download PDF

Info

Publication number
WO2017107899A1
WO2017107899A1 PCT/CN2016/111060 CN2016111060W WO2017107899A1 WO 2017107899 A1 WO2017107899 A1 WO 2017107899A1 CN 2016111060 W CN2016111060 W CN 2016111060W WO 2017107899 A1 WO2017107899 A1 WO 2017107899A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
brushless
control
power
Prior art date
Application number
PCT/CN2016/111060
Other languages
English (en)
French (fr)
Inventor
骆建立
Original Assignee
广东美的环境电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的环境电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的环境电器制造有限公司
Publication of WO2017107899A1 publication Critical patent/WO2017107899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the invention relates to the technical field of motor control, in particular to a brushless DC motor and a control method and device thereof.
  • the rotor positioning is performed by controlling any two-phase conduction of the inverter to pull the rotor to a predetermined position, thereby completing the positioning of the rotor, but the positioning method causes the motor to start 50%.
  • the probability of reversal occurs. For example, when the fan is turned on, it may reverse and then forward, affecting the user experience. Therefore, it is necessary to improve the starting control of the motor.
  • an object of the present invention is to provide a control method of a brushless DC motor, which can control the rotor positioning after the motor is turned off, and directly control the motor to perform acceleration and mode switching when the motor is restarted, thereby effectively solving the motor starting time. A reversal occurred.
  • Another object of the present invention is to provide a control device for a brushless DC motor. Still another object of the present invention is to provide a brushless DC motor.
  • an embodiment of the present invention provides a control method of a brushless DC motor, including the steps of: receiving a motor shutdown signal; controlling the motor to shut down, and controlling the rotor after the motor is turned off. Positioning; receiving a power-on signal of the motor; and controlling the motor to accelerate and perform mode switching according to the power-on signal.
  • the control method of the brushless DC motor controls the rotor positioning after the motor is turned off, and directly controls the motor to perform acceleration and mode switching when the motor is restarted, thereby effectively solving the reversal phenomenon when the motor starts, and is simple. Easy and reliable.
  • the motor after the receiving the power-on signal of the motor, further comprising: determining whether it is the first start; if it is determined to be the first start, controlling the rotor positioning, and controlling after the rotor positioning
  • the motor accelerates and performs mode switching.
  • control method of the brushless DC motor further includes: initializing the motor.
  • the method further comprises: determining whether the rotor position changes; if the rotor position changes, receiving the The rotor positioning is controlled after the power-on signal and the motor is controlled for acceleration and mode switching after the rotor is positioned.
  • another embodiment of the present invention provides a control device for a brushless DC motor, comprising: a shutdown signal receiving module for receiving a motor shutdown signal; and a shutdown control module for controlling the motor to shut down a positioning module for controlling the positioning of the rotor after the motor is turned off; a power-on signal receiving module for receiving a power-on signal of the motor; and a power-on control module for controlling the motor according to the power-on signal Accelerate and switch modes.
  • the control device of the brushless DC motor controls the rotor positioning after the motor is turned off, and directly controls the motor to perform acceleration and mode switching when the motor is restarted, thereby effectively solving the reversal phenomenon when the motor starts, and is reliable. High sex.
  • the power-on control module is further configured to control the rotor positioning when it is determined to be started for the first time, and control the motor to accelerate and perform mode switching after the rotor is positioned.
  • control device for the brushless DC motor further includes: an initialization module, configured to initialize the motor.
  • control device of the brushless DC motor further includes: a determining module, configured to determine whether the rotor position changes, wherein the boot control module determines that the rotor position changes The rotor is positioned for positioning and the motor is controlled for acceleration and mode switching after the rotor is positioned.
  • an embodiment of the present invention also proposes a brushless DC motor including the above-described control device for a brushless DC motor.
  • the brushless DC motor of the embodiment of the invention can control the rotor positioning after the motor is turned off by the above control device of the brushless DC motor, and directly control the motor for acceleration and mode switching when the motor starts again, thereby effectively solving the motor starting.
  • the reversal occurs.
  • the brushless DC motor is not provided with a position sensor.
  • FIG. 1 is a flow chart of a method of controlling a brushless DC motor in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of controlling a brushless DC motor in accordance with an embodiment of the present invention.
  • FIG. 3 is a block schematic diagram of a control device for a brushless DC motor in accordance with one embodiment of the present invention.
  • FIG. 4 is a block schematic diagram of a control device for a brushless DC motor in accordance with an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method of controlling a brushless DC motor in accordance with one embodiment of the present invention. As shown in FIG. 1, the control method of the brushless DC motor includes the following steps:
  • the control motor is stopped, and when the motor is about to stop running, the motor is controlled to position the rotor to position the rotor to a predetermined position.
  • the motor enters a standby state to initialize the motor.
  • the motor is controlled to accelerate and perform mode switching.
  • the motor when the motor is started again, since the rotor of the motor has been positioned to a predetermined position after the motor is turned off, the motor can be directly controlled to accelerate in the forward rotation direction and perform mode switching, thereby effectively preventing the reverse phenomenon when the motor starts.
  • the partition when controlling the acceleration operation of the motor, the partition may be determined by giving a preset angular velocity value, and after the partition determination is completed, the switching sequence of the switch tube such as an IGBT (Insulated Gate Bipolar Transistor) is obtained.
  • IGBT Insulated Gate Bipolar Transistor
  • the method after receiving the power-on signal of the motor, the method further includes: determining whether it is the first start; if it is determined to be the first start, controlling the rotor positioning, and controlling the motor to accelerate and perform mode switching after the rotor is positioned .
  • the motor when the motor is started for the first time, since the rotor of the motor is not previously positioned, the rotor positioning needs to be controlled first, and the motor is accelerated and the mode is switched after the rotor is successfully positioned. That is to say, when the motor is first started, it can be positioned according to the rotor positioning method in the related art, and after the positioning is successful, the motor is controlled to perform acceleration and mode switching, that is, according to the three sections of the brushless DC motor in the related art.
  • the start method is used to control the motor to start running.
  • the method further includes: determining whether the rotor position changes; if the rotor position changes, controlling the rotor positioning after receiving the power-on signal, and After the rotor is positioned, the motor is controlled to accelerate and mode switch.
  • the rotor when the rotor is positioned in the standby state after successful positioning, if the position of the motor rotor changes due to artificial or external factors, when the motor is started again, it is necessary to determine whether the rotor position changes and control when the rotor position changes.
  • the rotor is positioned to control the motor for acceleration and mode switching when the rotor is positioned to a predetermined position.
  • control method of the brushless DC motor may include the following steps:
  • the motor is in a standby state, and the motor operating parameters are initialized.
  • step S102 Determine whether the motor is started for the first time. If yes, go to step S103; if no, go to step S104.
  • step S104 determining whether the rotor position is correct. If yes, go to step S105; if no, go back to step S103.
  • the motor is in an open loop state, that is, the motor is controlled to accelerate.
  • step S107 determining whether the motor is turned off. If yes, go to step S108; if no, go back to step S106.
  • step S108 controlling the rotor positioning, and returning to step S101 after the rotor is successfully positioned.
  • control method of the brushless DC motor controls the rotor positioning after the motor is turned off, and directly controls the motor to perform acceleration and mode switching when the motor is restarted, thereby effectively solving the reverse reaction when the motor starts. Turning phenomenon, and simple and easy, high reliability, and thus improve the performance of related products and improve user experience.
  • control device 100 for a brushless DC motor includes a shutdown signal receiving module 10, a shutdown control module 20, a positioning module 30, a power-on signal receiving module 40, and a power-on control module 50.
  • the shutdown signal receiving module 10 is configured to receive a motor shutdown signal, and the shutdown control module 20 is configured to control the motor to shut down.
  • the positioning module 30 is used to control the rotor positioning after the motor is turned off.
  • the power-on signal receiving module 40 is configured to receive a power-on signal of the motor, and the power-on control module 50 is configured to control the motor to perform acceleration and perform mode switching according to the power-on signal.
  • the shutdown control module 20 controls the motor to stop running.
  • the positioning module 30 controls the motor to perform rotor positioning to position the rotor to a predetermined position.
  • the motor is also initialized by an initialization module (not specifically shown).
  • the power-on control module 50 can directly control the motor to accelerate in the forward direction and perform the acceleration. Mode switching, which effectively avoids reversal when the motor starts.
  • the partition can be determined by giving a preset angular velocity value, and after the partition determination is completed, a switch tube such as an IGBT (Insulated Gate Bipolar Transistor, The switching sequence of the insulated gate bipolar transistor) generates a certain rotating magnetic field by controlling the IGBT to be turned on and off. Under the action of the rotating magnetic field, the rotor starts to rotate, and then the motor is driven to run. When the motor runs to a certain speed, Switching from open loop control to closed loop control, the motor enters normal operation.
  • IGBT Insulated Gate Bipolar Transistor
  • the power-on control module 50 is further configured to control the rotor positioning when it is determined to be started for the first time, and control the motor to accelerate and perform mode switching after the rotor is positioned.
  • the start control module 50 is required to first control the rotor positioning, and after the rotor is successfully positioned, the motor is accelerated and the mode is switched. That is to say, when the motor is first started, it can be positioned according to the rotor positioning method in the related art, and after the positioning is successful, the motor is controlled to perform acceleration and mode switching, that is, according to the three sections of the brushless DC motor in the related art.
  • the start method is used to control the motor to start running.
  • control device 100 of the brushless DC motor further includes a determination module 60.
  • the judging module 60 is configured to determine whether the rotor position changes, wherein the startup control module 50 controls the rotor positioning when determining that the rotor position changes, and controls the motor to accelerate and perform mode switching after the rotor is positioned.
  • the determination module 60 needs to determine whether the rotor position changes and occurs at the rotor position.
  • the rotor positioning is controlled by the power-on control module 50 when changing, and when the rotor is positioned to a predetermined position, the motor is controlled to accelerate and perform mode switching.
  • the control device of the brushless DC motor controls the rotor positioning after the motor is turned off, and directly controls the motor to perform acceleration and mode switching when the motor is restarted, thereby effectively solving the reversal phenomenon when the motor starts, and is reliable. High performance, which in turn improves the performance of related products and improves the user experience.
  • an embodiment of the present invention also proposes a brushless DC motor including the above-described control device for a brushless DC motor.
  • the brushless DC motor is not provided with a position sensor, wherein the position sensor refers to a Hall sensor or other possible sensor.
  • the brushless DC motor of the embodiment of the invention can control the rotor positioning after the motor is turned off by the above control device of the brushless DC motor, and directly control the motor for acceleration and mode switching when the motor starts again, thereby effectively solving the motor starting.
  • the reversal occurs.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种无刷直流电机及其控制方法和装置,其中,控制方法包括以下步骤:接收电机关机信号(S1);控制电机进行关机,并在电机关机之后控制转子定位(S2);接收电机的开机信号(S3);以及根据开机信号控制电机进行加速并进行模式切换(S4)。通过在关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,有效的解决了电机启动时发生反转现象。

Description

无刷直流电机及其控制方法和装置 技术领域
本发明涉及电机控制技术领域,特别涉及一种无刷直流电机及其控制方法和装置。
背景技术
通常,无位置传感器的无刷直流电机启动控制方式有两种,一种是高频信号输入法,该方法容易产生转矩脉动;另一种是三段式启动方法,包括转子定位、加速和运行状态切换三个阶段。
在三段式启动方法中,转子定位是通过控制逆变器的任意两相导通,以将转子拉至预定位置,从而完成转子的定位,但是该定位方式会导致电机启动时有50%的机率发生反转现象。例如,在风扇开机启动时可能会先反转再正转,影响用户体验。因此,需要对电机的启动控制进行改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种无刷直流电机的控制方法,通过在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象。
本发明的另一个目的在于提出一种无刷直流电机的控制装置。本发明的又一个目的在于提出一种无刷直流电机。
为实现上述目的,本发明一方面实施例提出了一种无刷直流电机的控制方法,包括以下步骤:接收电机关机信号;控制所述电机进行关机,并在所述电机关机之后控制所述转子定位;接收所述电机的开机信号;以及根据所述开机信号控制所述电机进行加速并进行模式切换。
本发明实施例的无刷直流电机的控制方法,通过在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象,而且简单易行,可靠性高。
根据本发明的一个实施例,在所述接收所述电机的开机信号之后,还包括:判断是否为首次启动;如果判断为首次启动,则控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
根据本发明的一个实施例,上述的无刷直流电机的控制方法,还包括:对所述电机进行初始化。
根据本发明的一个实施例,在所述当所述电机关机之后控制所述转子定位之后,还包括:判断所述转子位置是否发生变化;如果所述转子位置发生变化,则在收到所述开机信号之后控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
为实现上述目的,本发明另一方面实施例提出了一种无刷直流电机的控制装置,包括:关机信号接收模块,用于接收电机关机信号;关机控制模块,用于控制所述电机进行关机;定位模块,用于在所述电机关机之后控制所述转子定位;开机信号接收模块,用于接收所述电机的开机信号;以及开机控制模块,用于根据所述开机信号控制所述电机进行加速并进行模式切换。
本发明实施例的无刷直流电机的控制装置,通过在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象,而且可靠性高。
根据本发明的一个实施例,所述开机控制模块,还用于在判断为首次启动时,控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
根据本发明的一个实施例,上述的无刷直流电机的控制装置,还包括:初始化模块,用于对所述电机进行初始化。
根据本发明的一个实施例,上述的无刷直流电机的控制装置,还包括:判断模块,用于判断所述转子位置是否发生变化,其中,所述开机控制模块在判断所述转子位置发生变化时,控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
此外,本发明的实施例还提出了一种无刷直流电机,其包括上述的无刷直流电机的控制装置。
本发明实施例的无刷直流电机,通过上述的无刷直流电机的控制装置,能够在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象。
根据本发明的一个实施例,所述无刷直流电机未设置有位置传感器。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的无刷直流电机的控制方法的流程图。
图2是根据本发明一个具体实施例的无刷直流电机的控制方法的流程图。
图3是根据本发明一个实施例的无刷直流电机的控制装置的方框示意图。
图4是根据本发明一个具体实施例的无刷直流电机的控制装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的无刷直流电机及其控制方法和装置。
图1是根据本发明一个实施例的无刷直流电机的控制方法的流程图。如图1所示,该无刷直流电机的控制方法包括以下步骤:
S1,接收电机关机信号。
S2,控制电机进行关机,并在电机关机之后控制转子定位。
具体地,当接收到电机关机信号后,控制电机停止运转,当电机即将停止运转时,控制电机进行转子定位以使转子定位到预定位置。在本发明的一个实施例中,在转子定位成功后,电机进入待机状态以对电机进行初始化。
S3,接收电机的开机信号。
S4,根据开机信号控制电机进行加速并进行模式切换。
具体地,当电机再次启动时,由于电机关机之后电机的转子已经定位到预定位置,因此可以直接控制电机按照正转方向进行加速并进行模式切换,从而有效避免电机启动时发生反转现象。其中,在控制电机加速运行时,可以通过给定一个预设的角速度值来确定分区,在分区确定完成后得到开关管如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)的开关顺序,通过控制IGBT导通和关断产生一定的旋转磁场,在旋转磁场的作用下转子开始旋转,进而拖动电机运行,当电机运行到一定的转速时,由开环控制切换至闭环控制,电机进入正常运行状态。
在本发明的一个实施例中,在接收电机的开机信号之后,还包括:判断是否为首次启动;如果判断为首次启动,则控制转子定位,并在转子定位之后控制电机进行加速并进行模式切换。
可以理解的是,当电机首次启动时,由于此前并未对电机转子进行定位,因此需要先控制转子定位,并在转子定位成功之后控制电机加速并进行模式切换。也就是说,在电机首次启动时,可以按照相关技术中的转子定位方法进行定位,并在定位成功之后控制电机进行加速和模式切换,即言,可以按照相关技术中无刷直流电机的三段式启动方法来控制电机启动运行。
在本发明的一个实施例中,在当电机关机之后控制转子定位之后,还包括:判断转子位置是否发生变化;如果转子位置发生变化,则在收到开机信号之后控制转子定位,并在 转子定位之后控制电机进行加速并进行模式切换。
也就是说,当转子定位成功后处于待机状态时,如果人为或者外部因素使得电机转子的位置发生改变,则当电机再次启动时,需要判断转子位置是否发生变化,并在转子位置发生变化时控制转子定位,当转子定位到预定位置时,控制电机进行加速并进行模式切换。
根据本发明的一个具体实施例,如图2所示,无刷直流电机的控制方法可以包括以下步骤:
S101,电机处于待机状态,初始化电机运行参数。
S102,判断电机是否为首次启动。如果是,执行步骤S103;如果否,执行步骤S104。
S103,控制转子定位。
S104,判断转子位置是否正确。如果是,执行步骤S105;如果否,返回步骤S103。
S105,电机处于开环状态,即控制电机进行加速。
S106,当电机的当前运行状态满足模式切换条件时,控制电机进入闭环状态。
S107,判断电机是否关机。如果是,执行步骤S108;如果否,返回步骤S106。
S108,控制转子定位,并在转子定位成功后返回步骤S101。
综上所述,本发明实施例的无刷直流电机的控制方法,通过在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象,而且简单易行,可靠性高,进而提高相关产品的性能,提高用户体验。
图3是根据本发明一个实施例的无刷直流电机的控制装置100的方框示意图。如图3所示,该无刷直流电机的控制装置100包括关机信号接收模块10、关机控制模块20、定位模块30、开机信号接收模块40和开机控制模块50。
其中,关机信号接收模块10用于接收电机关机信号,关机控制模块20用于控制电机进行关机。定位模块30用于在电机关机之后控制转子定位。开机信号接收模块40用于接收电机的开机信号,开机控制模块50用于根据开机信号控制电机进行加速并进行模式切换。
具体地,当关机信号接收模块10接收到电机关机信号后,关机控制模块20控制电机停止运转,当电机即将停止运转时,定位模块30控制电机进行转子定位以使转子定位到预定位置。在本发明的一个实施例中,在转子定位成功后,还通过初始化模块(图中未具体示出)对电机进行初始化。当电机再次启动,即开机信号接收模块40接收到电机的开机信号时,由于电机关机之后电机的转子已经定位到预定位置,因此,开机控制模块50可以直接控制电机按照正转方向进行加速并进行模式切换,从而有效避免电机启动时发生反转现象。其中,在开机控制模块50控制电机加速运行时,可以通过给定一个预设的角速度值来确定分区,在分区确定完成后得到开关管如IGBT(Insulated Gate Bipolar Transistor, 绝缘栅双极型晶体管)的开关顺序,通过控制IGBT导通和关断产生一定的旋转磁场,在旋转磁场的作用下转子开始旋转,进而拖动电机运行,当电机运行到一定的转速时,由开环控制切换至闭环控制,电机进入正常运行状态。
在本发明的一个实施例中,开机控制模块50还用于在判断为首次启动时,控制转子定位,并在转子定位之后控制电机进行加速并进行模式切换。
可以理解的是,当电机首次启动时,由于此前并未对电机转子进行定位,因此需要开机控制模块50先控制转子定位,并在转子定位成功之后控制电机加速并进行模式切换。也就是说,在电机首次启动时,可以按照相关技术中的转子定位方法进行定位,并在定位成功之后控制电机进行加速和模式切换,即言,可以按照相关技术中无刷直流电机的三段式启动方法来控制电机启动运行。
在本发明的一个实施例中,如图4所示,上述的无刷直流电机的控制装置100还包括:判断模块60。判断模块60用于判断转子位置是否发生变化,其中,开机控制模块50在判断转子位置发生变化时,控制转子定位,并在转子定位之后控制电机进行加速并进行模式切换。
也就是说,当转子定位成功后处于待机状态时,如果人为或者外部因素使得电机转子的位置发生改变,则当电机再次启动时,需要判断模块60判断转子位置是否发生变化,并在转子位置发生变化时由开机控制模块50控制转子定位,当转子定位到预定位置时,控制电机进行加速并进行模式切换。
本发明实施例的无刷直流电机的控制装置,通过在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象,而且可靠性高,进而提高相关产品的性能,提高用户体验。
此外,本发明的实施例还提出了一种无刷直流电机,其包括上述的无刷直流电机的控制装置。该无刷直流电机未设置有位置传感器,其中,位置传感器是指霍尔传感器或其它可能的传感器。
本发明实施例的无刷直流电机,通过上述的无刷直流电机的控制装置,能够在电机关机之后控制转子定位,并在电机再次启动时直接控制电机进行加速和模式切换,从而有效解决电机启动时发生反转现象。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发 明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种无刷直流电机的控制方法,其特征在于,包括以下步骤:
    接收电机关机信号;
    控制所述电机进行关机,并在所述电机关机之后控制所述转子定位;
    接收所述电机的开机信号;以及
    根据所述开机信号控制所述电机进行加速并进行模式切换。
  2. 如权利要求1所述的无刷直流电机的控制方法,其特征在于,在所述接收所述电机的开机信号之后,还包括:
    判断是否为首次启动;
    如果判断为首次启动,则控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
  3. 如权利要求1所述的无刷直流电机的控制方法,其特征在于,还包括:
    对所述电机进行初始化。
  4. 如权利要求1所述的无刷直流电机的控制方法,其特征在于,在所述当所述电机关机之后控制所述转子定位之后,还包括:
    判断所述转子位置是否发生变化;
    如果所述转子位置发生变化,则在收到所述开机信号之后控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
  5. 一种无刷直流电机的控制装置,其特征在于,包括:
    关机信号接收模块,用于接收电机关机信号;
    关机控制模块,用于控制所述电机进行关机;
    定位模块,用于在所述电机关机之后控制所述转子定位;
    开机信号接收模块,用于接收所述电机的开机信号;以及
    开机控制模块,用于根据所述开机信号控制所述电机进行加速并进行模式切换。
  6. 如权利要求5所述的无刷直流电机的控制装置,其特征在于,所述开机控制模块,还用于在判断为首次启动时,控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
  7. 如权利要求5所述的无刷直流电机的控制装置,其特征在于,还包括:
    初始化模块,用于对所述电机进行初始化。
  8. 如权利要求5所述的无刷直流电机的控制装置,其特征在于,还包括:
    判断模块,用于判断所述转子位置是否发生变化,其中,所述开机控制模块在判断所 述转子位置发生变化时,控制所述转子定位,并在所述转子定位之后控制所述电机进行加速并进行模式切换。
  9. 一种无刷直流电机,其特征在于,包括如权利要求5-8任一项所述的无刷直流电机的控制装置。
  10. 如权利要求9所述的无刷直流电机,其特征在于,所述无刷直流电机未设置有位置传感器。
PCT/CN2016/111060 2015-12-25 2016-12-20 无刷直流电机及其控制方法和装置 WO2017107899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511009924.9 2015-12-25
CN201511009924.9A CN105515469A (zh) 2015-12-25 2015-12-25 无刷直流电机及其控制方法和装置

Publications (1)

Publication Number Publication Date
WO2017107899A1 true WO2017107899A1 (zh) 2017-06-29

Family

ID=55723197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111060 WO2017107899A1 (zh) 2015-12-25 2016-12-20 无刷直流电机及其控制方法和装置

Country Status (2)

Country Link
CN (1) CN105515469A (zh)
WO (1) WO2017107899A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515469A (zh) * 2015-12-25 2016-04-20 广东美的环境电器制造有限公司 无刷直流电机及其控制方法和装置
CN109936321A (zh) * 2018-05-02 2019-06-25 浙江达峰科技有限公司 一种永磁同步电机转子预定位方法
CN109356874B (zh) * 2018-10-30 2020-10-27 深圳和而泰智能控制股份有限公司 风扇启动方法、装置及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205579A (ja) * 1995-01-19 1996-08-09 Fujitsu General Ltd ブラシレスモータの制御方法
CN101141105A (zh) * 2006-09-08 2008-03-12 圆创科技股份有限公司 无刷直流马达的无感测启动方法
CN102868350A (zh) * 2012-09-21 2013-01-09 中南林业科技大学 无位置传感器无刷直流电机准闭环启动方法
CN103078573A (zh) * 2013-02-05 2013-05-01 安徽中家智锐科技有限公司 无刷直流电机无霍尔传感器的启动方法
CN105515469A (zh) * 2015-12-25 2016-04-20 广东美的环境电器制造有限公司 无刷直流电机及其控制方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223771A (en) * 1991-06-17 1993-06-29 Western Digital (Singapore) Pte., Ltd. Polyphase brushless DC Motor control
CN2831608Y (zh) * 2005-05-11 2006-10-25 徐享渊 直流单相无刷马达易于起动的电路结构
US8242725B2 (en) * 2008-04-15 2012-08-14 Ford Global Technologies, Llc Method for operating sensorless and brushless motors
CN103580563B (zh) * 2013-10-30 2016-12-07 航天科工海鹰集团有限公司 无刷直流电机的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205579A (ja) * 1995-01-19 1996-08-09 Fujitsu General Ltd ブラシレスモータの制御方法
CN101141105A (zh) * 2006-09-08 2008-03-12 圆创科技股份有限公司 无刷直流马达的无感测启动方法
CN102868350A (zh) * 2012-09-21 2013-01-09 中南林业科技大学 无位置传感器无刷直流电机准闭环启动方法
CN103078573A (zh) * 2013-02-05 2013-05-01 安徽中家智锐科技有限公司 无刷直流电机无霍尔传感器的启动方法
CN105515469A (zh) * 2015-12-25 2016-04-20 广东美的环境电器制造有限公司 无刷直流电机及其控制方法和装置

Also Published As

Publication number Publication date
CN105515469A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
TWI278176B (en) Motor driving device
WO2017107899A1 (zh) 无刷直流电机及其控制方法和装置
EP2863537B1 (en) Motor control device
WO2015154696A1 (zh) 排水泵用直流无刷电动机系统、及其控制方法和控制装置
JP5724977B2 (ja) ブラシレスモータの制御システム
JP5998434B2 (ja) ブラシレスdcモータのセンサレス制御装置
TW201925626A (zh) 空調機及馬達控制裝置
CN104218857A (zh) 一种空调器及其室外风机起动控制方法和系统
JP2015142389A (ja) 電動圧縮機
JP2016067081A (ja) ブラシレスdcモータの駆動装置およびそれを搭載した換気送風装置
JP6337211B2 (ja) エアコン及びその室外ファンの起動制御方法とシステム
JP2013013215A (ja) ブラシレスdcモータのセンサレス制御装置
JP2005168196A (ja) インバータ制御装置,コンプレッサの駆動制御装置,冷蔵庫及びインバータ制御方法,記憶媒体
JP2018132266A (ja) ヒートポンプ機器
JP2015105648A (ja) 電動コンプレッサ及びその制御方法
JP5445426B2 (ja) 電動圧縮機における電動機制御装置
CN105978416A (zh) 一种无霍尔吊扇马达控制器及其启动方法
JP2015091185A (ja) 電動コンプレッサ
KR20120096268A (ko) 차량용 전동식압축기의 구동방법
JP2015186318A (ja) 電動コンプレッサの制御装置
JP6093606B2 (ja) モータ駆動装置
JP2020022245A (ja) 電気モータの駆動装置および電動ポンプ装置
JP5900283B2 (ja) 同期モータ制御装置
US20230208331A1 (en) Motor control device and motor control method
JPWO2019003430A1 (ja) 冷凍サイクル装置および駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877709

Country of ref document: EP

Kind code of ref document: A1