WO2017107460A1 - 混频模块 - Google Patents

混频模块 Download PDF

Info

Publication number
WO2017107460A1
WO2017107460A1 PCT/CN2016/089359 CN2016089359W WO2017107460A1 WO 2017107460 A1 WO2017107460 A1 WO 2017107460A1 CN 2016089359 W CN2016089359 W CN 2016089359W WO 2017107460 A1 WO2017107460 A1 WO 2017107460A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switching
unit
mixing module
input
Prior art date
Application number
PCT/CN2016/089359
Other languages
English (en)
French (fr)
Inventor
杨富强
梁颖思
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP16877272.1A priority Critical patent/EP3236582A4/en
Priority to KR1020177021664A priority patent/KR101980720B1/ko
Publication of WO2017107460A1 publication Critical patent/WO2017107460A1/zh
Priority to US15/657,069 priority patent/US10097179B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0066Mixing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0086Reduction or prevention of harmonic frequencies

Definitions

  • the invention belongs to the field of electronic technology, and in particular relates to a mixing module for improving signal to noise ratio.
  • the Mixer is widely used in communication systems and capacitive touch systems.
  • the mixer is used to convert the high frequency received signal into a baseband signal to facilitate further signal processing by the backend signal processing module.
  • the mixer is implemented as a multiplier that produces a multiplication result of the received signal and the local signal.
  • the mixer can be realized by a switching mixer (Switching Mixer), which has the advantages of high linearity and low noise, and the switching mixer is controlled by a switching signal, wherein the switching signal has a switching. frequency.
  • the switching frequency of the switching signal is generally the same as the frequency of the received signal.
  • the switched mixer can be equivalent to multiplying the received signal by a square wave of the same frequency as the received signal, which is the local signal.
  • square waves have higher sidebands in the spectrum, and square waves have harmonics at the base multiples. Harmonic square waves and harmonics introduce additional noise, which reduces communication.
  • Signal to Noise Ratio (SNR) of a system or capacitive touch system Therefore, there is a need for improvement in the prior art.
  • An object of the embodiments of the present invention is to provide a mixing module that improves a signal to noise ratio.
  • a mixing module comprising:
  • a switching mixer controlled by a switching signal for receiving an input signal and generating an output signal
  • a modulation unit coupled to the switching mixer for generating the switching signal
  • the switching frequency of the switching signal is higher than the input frequency of the input signal, which is specific The rate relationship.
  • a second technical problem to be solved by the present invention is to provide a capacitive touch panel including the above-described mixing module.
  • a third technical problem to be solved by the present invention is to provide a communication system including the above-described mixing module.
  • the mixing module of the embodiment of the invention controls the switching mixer by using a switching signal far higher than the input frequency of the input signal, and oversampling the input signal to make the spectral energy of the output signal more concentrated, thereby avoiding the sideband Or harmonics introduce additional noise.
  • FIG. 1 is a schematic diagram of a mixer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a switching type hybridizer according to an embodiment of the present invention.
  • FIG. 3 is a waveform diagram of an input signal and a square wave signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a mixing module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a triangular integral modulator according to an embodiment of the present invention.
  • FIG. 6 is a waveform diagram of a switch signal according to an embodiment of the present invention.
  • FIG. 7 is a waveform diagram of another switch signal according to an embodiment of the present invention.
  • the mixing module of the embodiment of the invention controls the switching mixer by using a switching signal far higher than the input frequency of the input signal, and oversampling the input signal to make the spectral energy of the output signal more concentrated, thereby avoiding the sideband Or harmonics introduce additional noise.
  • FIG. 1 is a schematic diagram of a mixer 10
  • FIG. 2 is a schematic diagram of a switching mixer 20.
  • the mixer 10 includes a multiplier MP for multiplying the input signal V IN by the local signal LO to generate an output signal V OUT , that is, the output signal V OUT is the input signal V IN and the local signal LO. Multiply the result.
  • the mixer 10 can be implemented by the switching mixer 20.
  • the switching mixer 20 includes a forward buffer (labeled as "+1") and a negative buffer ( Marked as "-1”) and switch unit SW.
  • the forward input of the forward buffer and the negative input of the negative buffer are used to receive the input signal V IN , and the switch unit SW is coupled to the positive output of the forward buffer and the negative direction of the negative buffer
  • the output terminal is controlled between the forward output terminal and the negative output terminal by the switch signal SC2, and the switch unit SW outputs the output signal V OUT .
  • the switching signal SC2 has two different signal values.
  • the switching signal SC2 can be a logic 1 or a logic 0, or a signal having a signal value of A or -A.
  • the switching mixer 20 is equivalent to multiplying the input signal V IN by a square wave.
  • FIG. 3 is a waveform diagram of the input signal V IN and the square wave signal RCT.
  • the output signal V OUT of the switching mixer 20 can be regarded as the result of multiplication of the input signal V IN and the square wave signal RCT.
  • the switching mixer 20 can be used.
  • the mixer 10 is implemented to produce a multiplication result of the input signal V IN and the local signal LO (square wave signal RCT).
  • the input signal V IN has an input frequency f IN .
  • the frequency of the square wave signal RCT needs to be controlled to be the same as the input frequency f IN , that is, the switching frequency and the input frequency of the switching signal SC2.
  • f IN is the same.
  • such a square wave has higher problems such as Sidelobe and Harmonic in the spectrum, resulting in a lower Signal to Noise Ratio (SNR).
  • FIG. 4 is a schematic diagram of a mixing module 40 according to an embodiment of the present invention.
  • the mixing module 40 can be used in a capacitive touch panel or a communication system.
  • the mixing module 40 includes a switching mixer 400 and a modulation unit 402.
  • the switching mixer 400 receives the input signal V IN and generates an output signal V OUT4 .
  • the modulation unit 402 is coupled to the switching mixer 400.
  • the switching type mixer 400 has the same circuit structure as the switching type mixer 20, and the same components are denoted by the same reference numerals and will not be described again.
  • the switching unit SW of the switching mixer 400 is controlled by the switching signal SC4, and the switching signal SC4 is generated by the modulation unit 402. It is noted that the switching frequency of the switching signal SC4 is much higher than the input signal V IN input frequency f IN. Preferably, the switching frequency of the switching signal SC4 is much higher than 10 times the input frequency f IN . In this way, the output signal V OUT4 of the switching mixer 400 is the result of the oversampling of the input signal V IN , and the energy of the spectrum is more concentrated, thereby avoiding introducing additional noise due to the sideband or harmonics. , thereby improving the signal to noise ratio.
  • the modulation unit of the mixing module 40 can be realized by a Delta-Sigma Modulator, which has the effect of noise shaping (Noise Shaping). Pushing the energy of the noise to the high frequency, thereby reducing the noise energy at the fundamental frequency, further improving the signal-to-noise ratio.
  • FIG. 5 is a schematic diagram of a triangular integral modulator 502.
  • the delta-sigma modulator 502 receives the modulated input signal u and generates a switching signal SC5 that can be used to control the switching unit SW of the switching mixer 400.
  • the delta-sigma modulator 502 includes a subtraction unit 520, a summation unit 522, and The output unit 524 is judged.
  • the subtraction unit 520 receives the modulated input signal u and is coupled to the determination output unit 524 to receive the switch signal SC5 for generating a subtraction signal, which is a subtraction result of the modulated input signal u and the switch signal SC5.
  • the summing unit 522 includes an adding unit (labeled " ⁇ ") and a buffer unit REG, the buffer unit REG is controlled by the clock signal CLK, and the clock signal CLK is related to the switching frequency of the switching signal SC5. so that the switching frequency of the switching signal SC5 is much greater than the input signal V iN input frequency f iN.
  • the determination output unit 524 is a quantizer (2-level quantizer) having two quantization levels, and can output two different signal values of the switching signal SC5, that is, the signal value of the switching signal SC5 is A or -A.
  • the waveform of the switching signal SC5 can be referred to FIG. 6.
  • the switching signal SC5 can control the switching unit SW of the switching mixer 400 to switch between the forward output terminal and the negative output terminal.
  • the determination output unit 524 is a quantizer (three level quantizer) having three quantization levels, and can output three different signal values of the switching signal SC5, that is, the signal value of the switching signal SC5 can be For A, -A or 0, the waveform of the switching signal SC5 can be referred to FIG.
  • the switching signal SC5 can control the switching unit SW of the switching mixer 400 to switch between the forward output terminal and the negative output terminal; and when the switching signal SC5 When the signal value is 0, the switch signal SC5 can control the switching unit SW of the switching mixer 400 to be floating, that is, neither connected to the forward output nor to the negative output.
  • the modulated input signal u received by the triangular integral modulator 502 can be proportional to a periodic signal (such as a sine wave, a cosine wave, a square wave or a triangular wave, etc.) and a window function.
  • a periodic signal such as a sine wave, a cosine wave, a square wave or a triangular wave, etc.
  • the window function can select a square window, a triangular window, a Hann Window, a Hamming Window, a Blackman Window, a cosine window or a Gaussian window, etc., depending on actual needs. Not limited to this.
  • the mixing module of the embodiment of the present invention uses the modulation unit to generate a switching signal whose switching frequency is much higher than the input frequency of the input signal, so as to control the switching unit of the switching mixer, so that the spectrum energy of the output signal is more concentrated.
  • the triangular-integrated modulator is used to generate a high-frequency switching signal that is shaped by noise, and further improved. Signal to noise ratio.
  • the triangular integral modulator 502 is a first-order triangular integral modulator, and can also be a second-order, third-order or higher-order triangular integral modulator, all of which fall within the scope of the present invention.
  • the delta-sigma modulator can receive analog or digital modulated input signals, and the delta-sigma modulator can also generate analog or digital switching signals.
  • the summation unit of the delta-sigma modulator can be realized by an integrator as appropriate.
  • the delta-sigma modulator may optionally include an analog to digital converter (ADC) or a digital to analog converter (DAC), which is also within the scope of the present invention.
  • ADC analog to digital converter
  • DAC digital to analog converter
  • the mixing module of the embodiment of the present invention uses a switching signal that is much higher than the input frequency of the input signal to control the switching mixer, and oversamples the input signal to make the spectral energy of the output signal more concentrated. Avoid introducing additional noise due to sidebands or harmonics. Further, a triangular-integrated modulator is used to generate a noise-shaped high-frequency switching signal to further improve the signal-to-noise ratio.

Abstract

一种混频模块(40),包含有切换式混波器(400),受控于开关信号,用来接收输入信号并产生输出信号;调制单元(402),耦接至所述切换式混波器(400),用来产生所述开关信号;其中,所述开关信号的切换频率高于所述输入信号的输入频率,为特定的倍率关系。该混频模块(40)利用远高于输入信号的输入频率的开关信号来控制切换式混波器(400),对输入信号进行过采样,使输出信号频谱能量更为集中,可避免因旁波带或谐波引入额外噪声。

Description

混频模块
本申请要求于2015年12月21日提交中国专利局、申请号为201510967581.0、发明名称为“混频模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于电子技术领域,尤其涉及一种提升信噪比的混频模块。
背景技术
混频器(Mixer)广泛地应用于通信系统和电容式触控系统中,混频器用来将高频的接收信号转换成为基频信号,以利于后端信号处理模块进行进一步的信号处理。一般来说,混频器以乘法器实现,混频器可产生接收信号与本地信号的相乘结果。另外,混频器可利用切换式混波器(Switching Mixer)来实现,切换式混波器具有线性度高、低噪声等优点,切换式混波器受控于开关信号,其中开关信号具有切换频率。
现有技术中,为了将高频的接收信号转换至基频信号,开关信号的切换频率通常与接收信号的频率相同。如此一来,切换式混波器可等效于将接收信号乘以与接收信号同频率的方波,该方波即为本地信号。然而,方波在频谱上具有较高的旁波带(Sidelobe),且方波在基数倍频点具有谐波(Harmonic),方波的旁波带及谐波会引入额外噪声,从而降低通信系统或电容式触控系统的信噪比(Signal to Noise Ratio,SNR)。因此,现有技术有改善的必要。
发明内容
本发明实施例的目的在于提供一种提升信噪比的混频模块。
为了解决上述技术问题,本发明是这样实现的:一种混频模块,包含有:
切换式混波器,受控于开关信号,用来接收输入信号并产生输出信号;以及
调制单元,耦接至所述切换式混波器,用来产生所述开关信号;
其中,所述开关信号的切换频率高于所述输入信号的输入频率,为特定 的倍率关系。
本发明所要解决的第二个技术问题在于提供一种电容式触控面板,包括上述的混频模块。
本发明所要解决的第三个技术问题在于提供一种通信系统,包括上述的混频模块。
本发明实施例的混频模块利用远高于输入信号的输入频率的开关信号来控制切换式混波器,对输入信号进行过采样,使输出信号频谱能量更为集中,可避免因旁波带或谐波引入额外噪声。
附图说明
图1为本发明实施例提供的混频器的示意图;
图2为本发明实施例提供的切换式混波器的示意图;
图3为本发明实施例提供的输入信号和方波信号的波形图;
图4为本发明实施例提供的混频模块的示意图;
图5为本发明实施例提供的三角积分调制器的示意图;
图6为本发明实施例提供的开关信号的波形图;
图7为本发明实施例提供的另一开关信号的波形图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的混频模块利用远高于输入信号的输入频率的开关信号来控制切换式混波器,对输入信号进行过采样,使输出信号频谱能量更为集中,可避免因旁波带或谐波引入额外噪声。
如图1和图2所示,图1为混频器10的示意图,图2为切换式混波器20的示意图。如图1所示,混频器10包含乘法器MP,用来将输入信号VIN乘以本地信号LO,以产生输出信号VOUT,即输出信号VOUT为输入信号VIN与本地信号LO的相乘结果。具体来说,混频器10可通过切换式混波器20来实现,如图2所示,切换式混波器20包含正向缓冲器(标示为「+1」)、负向缓冲器(标示为「-1」)和开关单元SW。正向缓冲器的正向输入端和 负向缓冲器的负向输入端用来接收输入信号VIN,开关单元SW耦接于正向缓冲器的正向输出端和负向缓冲器的负向输出端,受控于开关信号SC2而切换于正向输出端与负向输出端之间,开关单元SW输出输出信号VOUT。作为一个优选的实施例,开关信号SC2具有二种不同信号值,举例来说,开关信号SC2可为逻辑1或逻辑0,或是其信号值为A或-A的信号。
如此一来,切换式混波器20等效于将输入信号VIN乘以一个方波,请参考图3,图3为输入信号VIN和方波信号RCT的波形图。切换式混波器20的输出信号VOUT可视为输入信号VIN与方波信号RCT的相乘结果,换句话说,当本地信号LO为方波信号RCT时,切换式混波器20可用来实现混频器10以产生输入信号VIN与本地信号LO(方波讯号RCT)的相乘结果。另一方面,输入信号VIN具有输入频率fIN,为了将输入信号VIN转换至基频,需控制方波信号RCT的频率与输入频率fIN相同,即开关信号SC2的切换频率与输入频率fIN相同。然而,这样的方波在频谱上具有较高旁波带(Sidelobe)与谐波(Harmonic)等问题,使得信噪比(Signal to Noise Ratio,SNR)较低。
为了提升信噪比,本发明利用相较于输入信号VIN更高频的开关信号来控制切换式混波器的开关单元。请参考图4,图4为本发明实施例混频模块40的示意图。混频模块40可用于电容式触控面板或通信系统,混频模块40包含有切换式混波器400和调制单元402,切换式混波器400接收输入信号VIN并产生输出信号VOUT4,调制单元402耦接于切换式混波器400。切换式混波器400与切换式混波器20电路结构相同,故相同组件沿用相同符号,且不在此赘述。需注意的是,切换式混波器400的开关单元SW受控于开关信号SC4,开关信号SC4由调制单元402来产生。需注意的是,开关信号SC4的切换频率远高于输入信号VIN的输入频率fIN。较佳地,开关信号SC4的切换频率远高于输入频率fIN的10倍以上。如此一来,切换式混波器400的输出信号VOUT4即为输入信号VIN经过过采样(Oversampling)后的结果,频谱的能量更为集中,避免了因旁波带或谐波引入额外噪声,进而提升信噪比。
除此之外,为了更进一步提升信噪比,混频模块40的调制单元可通过三角积分调制器(Delta-Sigma Modulator)来实现,三角积分调制器具有噪声整形(Noise Shaping)的功效,可将噪声的能量推向高频,进而减低在基 频的噪声能量,进一步提升信噪比。请参考图5,图5为三角积分调制器502的示意图。三角积分调制器502接收调变输入信号u并产生开关信号SC5,开关信号SC5可用来控制切换式混波器400的开关单元SW,三角积分调制器502包含有相减单元520、总和单元522和判断输出单元524。相减单元520接收调变输入信号u并耦接于判断输出单元524以接收开关信号SC5,用来产生相减信号,相减信号为调变输入信号u与开关信号SC5的相减结果。作为本发明的一个优选实施例,总和单元522包含相加单元(标示为「Σ」)和缓存单元REG,缓存单元REG受控于时钟信号CLK,时钟信号CLK相关于开关信号SC5的切换频率,使得开关信号SC5的切换频率远大于输入信号VIN的输入频率fIN
于一实施例中,判断输出单元524为具有两个量化级别的量化器(2-level quantizer),可输出二种不同信号值的开关信号SC5,即开关信号SC5的信号值为A或-A,开关信号SC5的波形图可参考图6,开关信号SC5即可控制切换式混波器400的开关单元SW而切换于正向输出端与负向输出端之间。
另一方面,于一实施例中,判断输出单元524为具有三个量化级别的量化器(3-level quantizer),可输出三种不同信号值的开关信号SC5,即开关信号SC5的信号值可为A、-A或0,开关信号SC5的波形图可参考图7。当开关信号SC5的信号值为A或-A时,开关信号SC5可控制切换式混波器400的开关单元SW而切换于正向输出端和负向输出端之间;而当开关信号SC5的信号值为0时,开关信号SC5可控制切换式混波器400的开关单元SW为浮接,即既不连接于正向输出端也不连接于负向输出端。
另外,为了更进一步抑制旁波带或谐波,三角积分调制器502所接收的调变输入信号u可正比于周期性信号(如正弦波、余弦波、方波或三角波等)与窗函数的相乘结果,其中窗函数可视实际需求选用方形窗、三角窗、汉宁窗(Hann Window)、汉明窗(Hamming Window)、布莱克曼窗(Blackman Window)、余弦窗或高斯窗等,而不限于此。
由上述可知,本发明实施例的混频模块利用调制单元来产生切换频率远高于输入信号的输入频率的开关信号,以控制切换式混波器的开关单元,使输出信号频谱能量更为集中,避免因旁波带或谐波引入额外噪声。更进一步地,利用三角积分调制器产生经过噪声整形的高频的开关信号,进一步提升 信噪比。
需注意的是,前述实施例只是用以说明本发明的概念,本领域技术人员可据以做不同的修饰,而不限于此。举例来说,三角积分调制器502为一阶的三角积分调制器,也可为二阶、三阶或更高阶的三角积分调制器,皆属于本发明的范畴。另外,三角积分调制器可接收模拟或数字的调变输入信号,三角积分调制器亦可产生模拟或数字的开关信号,三角积分调制器的总和单元可视情况以积分器来实现,亦属于本发明的范畴。除此之外,三角积分调制器可视情况包含有模拟数字转换器(Analog to Digital Convertor,ADC)或数字模拟转换器(Digital to Analog Convertor,DAC),亦属于本发明的范畴。
综上所述,本发明实施例的混频模块利用远高于输入信号的输入频率的开关信号来控制切换式混波器,对输入信号进行过采样,使输出信号频谱能量更为集中,可避免因旁波带或谐波引入额外噪声。更进一步地,利用三角积分调制器产生经过噪声整形的高频的开关信号,进一步提升信噪比。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种混频模块,其特征在于,包含:
    切换式混波器,受控于开关信号,用来接收输入信号并产生输出信号;以及
    调制单元,耦接至所述切换式混波器,用来产生所述开关信号;
    其中,所述开关信号的切换频率高于所述输入信号的输入频率,为特定的倍率关系。
  2. 如权利要求1所述的混频模块,其特征在于,所述切换式混波器包含:
    正向缓冲器,包含有:
    正向输入端,用来接收所述输入信号;以及
    正向输出端;
    负向缓冲器,包含有:
    负向输入端,用来接收所述输入信号;以及
    负向输出端;以及
    开关单元,耦接于所述正向输出端和所述负向输出端,受控于所述开关信号,输出所述输出信号。
  3. 如权利要求1所述的混频模块,其特征在于,所述调制单元为三角积分调制器,所述三角积分调制器包含有:
    相减单元,用来根据调变输入信号和所述开关信号,产生相减信号;
    总和单元,耦接于所述相减单元,用来接收所述相减信号,并产生总和信号;以及
    判断输出单元,耦接于所述总和单元和所述相减单元,用来输出所述开关信号。
  4. 如权利要求3所述的混频模块,其特征在于,所述总和单元包含有相加单元和缓存单元,其中:
    相加单元,耦接于所述相减单元和所述缓存单元的输出端;
    缓存单元的输入端耦接于所述相加单元和所述判断输出单元,受控于时钟信号,所述时钟信号的频率相关于所述开关信号的切换频率。
  5. 如权利要求3所述的混频模块,其特征在于,所述调变输入信号相关于窗函数。
  6. 如权利要求5所述的混频模块,其特征在于,所述窗函数为方形窗、 三角窗、汉宁窗(Hann Window)、汉明窗(Hamming Window)、布莱克曼窗(Blackman Window)、余弦窗或高斯窗其中之一。
  7. 如权利要求5所述的混频模块,其特征在于,所述调变输入信号相关于周期性信号与所述窗函数的相乘结果。
  8. 如权利要求7所述的混频模块,其特征在于,所述周期性信号为正弦波、余弦波、方波或三角波其中之一。
  9. 如权利要求1所述的混频模块,其特征在于,所述开关信号为具有二种不同信号值的信号。
  10. 如权利要求1所述的混频模块,其特征在于,所述开关信号为具有三种不同信号值的信号。
  11. 如权利要求1所述的混频模块,其特征在于,所述切换频率大于等于所述输入频率的10倍。
  12. 一种电容式触控面板,其特征在于,包括如权利要求1~11任一项所述的混频模块。
  13. 一种通信系统,其特征在于,包括如权利要求1~11任一项所述的混频模块。
PCT/CN2016/089359 2015-12-21 2016-07-08 混频模块 WO2017107460A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16877272.1A EP3236582A4 (en) 2015-12-21 2016-07-08 Mixer module
KR1020177021664A KR101980720B1 (ko) 2015-12-21 2016-07-08 믹싱 모듈
US15/657,069 US10097179B2 (en) 2015-12-21 2017-07-21 Mixing module and capacitive touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510967581.0A CN106788268B (zh) 2015-12-21 2015-12-21 混频模块
CN201510967581.0 2015-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/657,069 Continuation US10097179B2 (en) 2015-12-21 2017-07-21 Mixing module and capacitive touch panel

Publications (1)

Publication Number Publication Date
WO2017107460A1 true WO2017107460A1 (zh) 2017-06-29

Family

ID=58964951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089359 WO2017107460A1 (zh) 2015-12-21 2016-07-08 混频模块

Country Status (5)

Country Link
US (1) US10097179B2 (zh)
EP (1) EP3236582A4 (zh)
KR (1) KR101980720B1 (zh)
CN (1) CN106788268B (zh)
WO (1) WO2017107460A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072928A (ja) * 2016-10-25 2018-05-10 シナプティクス インコーポレイテッド センシングシステム、タッチ検出回路および半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538648A (zh) * 2003-04-15 2004-10-20 ��ͳ�Ƽ��ɷ����޹�˾ 正交分频多任务系统的频率同步装置及方法
CN101312350A (zh) * 2007-05-23 2008-11-26 联发科技股份有限公司 检测突发噪声并降低其影响的通信系统及解调方法
US20150016497A1 (en) * 2013-07-12 2015-01-15 Lsi Corporation Clock and data recovery architecture with adaptive digital phase skew

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691733A2 (en) * 1994-07-08 1996-01-10 Victor Company Of Japan, Ltd. Frequency converting circuit
DE19901751B4 (de) * 1999-01-18 2005-11-24 Rohde & Schwarz Gmbh & Co. Kg Mehrfachüberlagerungsstufe für einen Empfänger oder Spektrumanalysator
US6850745B2 (en) 2002-01-23 2005-02-01 Broadcom Corp Method and apparatus for generating a self-correcting local oscillation
US7233774B2 (en) 2003-01-30 2007-06-19 Broadcom Corporation RF transceiver with compact stacked mixer design for multiple frequency conversion
US7447493B2 (en) 2003-02-28 2008-11-04 Silicon Laboratories, Inc. Tuner suitable for integration and method for tuning a radio frequency signal
JP4708076B2 (ja) * 2005-04-14 2011-06-22 三星電子株式会社 ダウンコンバータ及びアップコンバータ
US7398073B2 (en) * 2005-09-06 2008-07-08 Skyworks Solutions, Inc. Low noise mixer
US7912429B2 (en) * 2005-09-06 2011-03-22 Mediatek, Inc. LO 2LO upconverter for an in-phase/quadrature-phase (I/Q) modulator
ATE515104T1 (de) 2008-07-25 2011-07-15 St Ericsson Belgium Nv Mischerzelle mit einem dynamischen stromablasskreis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538648A (zh) * 2003-04-15 2004-10-20 ��ͳ�Ƽ��ɷ����޹�˾ 正交分频多任务系统的频率同步装置及方法
CN101312350A (zh) * 2007-05-23 2008-11-26 联发科技股份有限公司 检测突发噪声并降低其影响的通信系统及解调方法
US20150016497A1 (en) * 2013-07-12 2015-01-15 Lsi Corporation Clock and data recovery architecture with adaptive digital phase skew

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236582A4 *
SMITH, J.R: "MODERN COMMUNICATION CIRCUITS (2ND EDITION), 21 ST CENTURY INFORMATION & COMMUNICATION TECHNOLOGY COURSEBOOK", 21 ST CENTURY INFORMATION & COMMUNICATION TECHNOLOGY COURSEBOOK, article SMITH, J.R. ET AL.: "Modulator & demodulator", pages: 305 - 308, XP009501642 *

Also Published As

Publication number Publication date
CN106788268A (zh) 2017-05-31
US20170324408A1 (en) 2017-11-09
KR101980720B1 (ko) 2019-05-21
US10097179B2 (en) 2018-10-09
EP3236582A4 (en) 2018-06-06
EP3236582A1 (en) 2017-10-25
KR20170102519A (ko) 2017-09-11
CN106788268B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
US9337821B2 (en) System and method for generating a pulse-width modulated signal
Li et al. A 21-GS/s single-bit second-order delta–sigma modulator for FPGAs
JP4048208B2 (ja) バンドパスδσad変調器及びデジタル無線受信機
US9525429B2 (en) Multi-stage digital-to-analog converter
CN110957983B (zh) 一种三频率伪随机可变的扩频调制方法及用该方法构建的免滤波脉冲宽度调制器
US8681029B1 (en) Chopper-stabilization method and apparatus for sigma delta modulators
US9800272B2 (en) Circuits and methods for transmitting signals
CN105187068B (zh) 一种调制电路和调制方法
WO2017107460A1 (zh) 混频模块
US9025700B2 (en) Digital polar modulator for a switch mode RF power amplifier
US9300315B2 (en) Systems and methods for implementing error-shaping alias-free asynchronous flipping analog to digital conversion
US10250205B2 (en) Power amplifying device
TW201807956A (zh) Δ-σ調製器
US20150071338A1 (en) Switched-mode high-linearity transmitter using pulse width modulation
US10790790B2 (en) Amplifiers with delta-sigma modulators using pulse-density modulations and related processes
CN109964410B (zh) Δ-σ模/数转换中的过载检测和校正
Tavangaran et al. Continuous time digital systems with asynchronous sigma delta modulation
US8599056B2 (en) Digital-to-analog converter
US20140112493A1 (en) Apparatus for differential interpolation pulse width modulation digital-to-analog conversion and output signal coding method thereof
Sharifi et al. Multi-bit quantizer delta-sigma modulator with the feedback DAC mismatch error shaping
Memon et al. The impact of alternative encoding techniques on field programmable gate array implementation of sigma-delta modulated ternary finite impulse response filters
US11870453B2 (en) Circuits and methods for a noise shaping analog to digital converter
US10708113B2 (en) Digital power amplification circuit
Mahajan et al. Analysis of delta sigma modulator
Antunes et al. Digital multilevel audio power amplifier with a MASH sigma-delta modulator to reduce harmonic distortion

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016877272

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177021664

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE