WO2017106999A1 - Rru通道频率响应差异的获取方法及系统、基站设备 - Google Patents

Rru通道频率响应差异的获取方法及系统、基站设备 Download PDF

Info

Publication number
WO2017106999A1
WO2017106999A1 PCT/CN2015/098040 CN2015098040W WO2017106999A1 WO 2017106999 A1 WO2017106999 A1 WO 2017106999A1 CN 2015098040 W CN2015098040 W CN 2015098040W WO 2017106999 A1 WO2017106999 A1 WO 2017106999A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency response
signal
rru channel
rru
channel
Prior art date
Application number
PCT/CN2015/098040
Other languages
English (en)
French (fr)
Inventor
闵剑
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580085345.4A priority Critical patent/CN108432150A/zh
Priority to PCT/CN2015/098040 priority patent/WO2017106999A1/zh
Priority to EP15910999.0A priority patent/EP3382902A4/en
Publication of WO2017106999A1 publication Critical patent/WO2017106999A1/zh
Priority to US16/013,964 priority patent/US10420172B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and system for acquiring a frequency response difference of a RRU channel, and a base station device.
  • one BBU can support multiple RRUs, and the BBU can communicate with each RRU.
  • the channels also known as RRU channels
  • the channels are connected in communication.
  • the frequency response difference between the RRU channels is often obtained.
  • RRU channels may be bridged by bridges (also known as joint processing networks) due to some technical requirements, which makes the output signal of the RRU channel of the intersection is a mixed signal, which is difficult to be accurate. Find out the difference in frequency response between the RRU channels that meet.
  • the embodiment of the invention discloses a method and a system for acquiring a frequency response difference of an RRU channel, and a base station device, which can accurately acquire the frequency response difference between the RRU channels that meet.
  • a first aspect of the embodiments of the present invention discloses a method for obtaining a frequency response difference of an RRU channel, where multiple RRU channel groups are divided between the BBU and the RRU, and all RRU channels in each RRU channel group are intersected by the same bridge.
  • the method includes:
  • the first RRU channel and the second RRU channel that are in the RRU channel group are respectively obtained, and the first RRU channel is obtained,
  • the difference in frequency response between the second RRU channel and the independent RRU channel including:
  • Obtaining a difference between the first frequency response and the third frequency response (eg, a ratio of the first frequency response to the third frequency response as a difference between the first frequency response and the third frequency response) As a difference in frequency response between the first RRU channel and the independent RRU channel; and acquiring a difference between the second frequency response and the third frequency response as the second RRU channel and the The difference in frequency response between independent RRU channels.
  • implementing the first possible implementation manner of the first aspect described above can reduce the design requirements for the RRU channel itself.
  • the reason is that the implementation can eliminate the requirement of the consistency of the transmission frequency response of each coupled signal, because the longer the transmission path of the coupled signal, the more difficult it is to ensure the stability of the frequency response difference of each path, so the implementation is realized.
  • the approach greatly reduces the design requirements for the RRU channel itself.
  • the combining the first coupling signal and the second coupling signal to obtain a combined signal includes:
  • the processed first coupled signal and the processed second coupled signal are combined to obtain a combined signal.
  • the collecting the composite signal, obtaining the first a first component signal of the first calibration signal input by the RRU channel, a second component signal outputted at the end of the second calibration signal input by the second RRU channel, and a third calibration signal of the independent RRU channel input includes:
  • the processed composite signal Acquiring the processed composite signal to obtain a first component signal input by the first RRU channel and a first component signal corresponding to the second RRU channel, and a second calibration signal of the second RRU channel corresponding to the end a second component signal and a third component signal corresponding to the third calibration signal input by the independent RRU channel;
  • the first component signal is a frequency response of the first verification signal and the first RRU channel a product of the first transmission frequency response and the third transmission frequency response
  • the second component signal is the second verification signal, a frequency response of the second RRU channel, and the first transmission frequency And a product of the third transmission frequency response
  • the third component signal is the third verification signal, a frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency The product of the ringing.
  • the first component signal and the first calibration are performed in the fourth possible implementation manner of the first aspect of the embodiment
  • the signals are compared to obtain the first frequency response, including:
  • Comparing the second component signal with the second calibration signal to obtain a second frequency response including:
  • Comparing the third component signal with the third calibration signal to obtain a third frequency response comprising:
  • the difference in frequency response between the second RRU channels includes:
  • a second aspect of the embodiments of the present invention discloses a system for acquiring a frequency response difference of an RRU channel, where multiple RRU channel groups are divided between the BBU and the RRU, and all RRU channels in each RRU channel group are intersected by the same bridge.
  • the system includes:
  • a first obtaining unit configured to acquire a frequency response between the first RRU channel, the second RRU channel, and the independent RRU channel, respectively, for the first RRU channel and the second RRU channel that meet in any RRU channel group Difference; the independent RRU channel is not within any of the RRU channel groups;
  • a second acquiring unit configured to acquire, according to a difference in frequency response between the first RRU channel and the independent RRU channel, and a frequency response difference between the second RRU channel and the independent RRU channel A difference in frequency response between the first RRU channel and the second RRU channel.
  • the first acquiring unit includes:
  • a first coupling subunit for the first RRU channel and the first to intersect within any RRU channel group a second RRU channel, performing signal coupling on the ends of the first RRU channel and the second RRU channel to obtain a first coupling signal;
  • a second coupling subunit configured to perform signal coupling on an end of the independent RRU channel to obtain a second coupling signal
  • a combining subunit configured to combine the first coupling signal and the second coupling signal to obtain a combining signal
  • a collecting subunit configured to acquire the composite signal, obtain a first component signal outputted by the first calibration signal of the first RRU channel, and a second calibration signal of the second RRU channel input at the end a second component signal of the output and a third component signal of the third calibration signal input by the independent RRU channel at the end; wherein the first calibration signal, the second calibration signal, and the third calibration signal are Known, and two or two orthogonal or uncorrelated calibration signals;
  • Obtaining a subunit configured to obtain a difference between the first frequency response and the third frequency response as a frequency response difference between the first RRU channel and the independent RRU channel; and acquiring the second A difference between the frequency response and the third frequency response is a difference in frequency response between the second RRU channel and the independent RRU channel.
  • implementing the first possible implementation manner of the second aspect described above can reduce the design requirements for the RRU channel itself.
  • the reason is that the implementation can eliminate the requirement of the consistency of the transmission frequency response of each coupled signal, because the longer the transmission path of the coupled signal, the more difficult it is to ensure the stability of the frequency response difference of each path, so the implementation is realized.
  • the approach greatly reduces the design requirements for the RRU channel itself.
  • the combining sub-unit is specifically configured to utilize the first coupled signal
  • the first transmission frequency response processes the first coupled signal and utilizes the second coupling Processing, by the second transmission frequency of the signal, the second coupled signal; and combining the processed first coupled signal and the processed second coupled signal to obtain a combined signal.
  • the collecting subunit is specifically configured to use the composite signal And processing, by the third transmission frequency response, the composite signal is processed, and the processed signal is collected, and the first component signal corresponding to the first calibration signal input by the first RRU channel is obtained at the end, and the second a second component signal corresponding to the second calibration signal input by the RRU channel and a third component signal corresponding to the third calibration signal input by the independent RRU channel at the end;
  • the first component signal is the first component a product of a check signal, a frequency response of the first RRU channel, the first transmission frequency response, and the third transmission frequency response
  • the second component signal is the second verification signal, the first a frequency response of the second RRU channel, a product of the first transmission frequency response and the third transmission frequency response
  • the third component signal is a frequency response of the third verification signal and the independent RRU channel Transmitting said second frequency response and the third frequency response of
  • the comparing sub-unit is specifically configured to: Dividing the first check signal to obtain a product of a frequency response of the first RRU channel, the first transmission frequency response, and the third transmission frequency response as a first frequency response; and, the Dividing a two-component signal by the second check signal, obtaining a frequency response of the second RRU channel, a product of the first transmission frequency response, and the third transmission frequency response as a second frequency response; and, Dividing the third component signal by the third verification signal to obtain a product of the frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency response as a third frequency response;
  • the second acquiring unit is specifically configured to divide a frequency response difference between the first RRU channel and the independent RRU channel by a frequency response difference between the second RRU channel and the independent RRU channel, Obtaining a frequency response difference between the first RRU channel and the second RRU channel.
  • a third aspect of the embodiments of the present invention discloses a base station device, where multiple RRU channel groups are divided between a BBU and an RRU, and all RRU channels in each RRU channel group are intersected by the same bridge, and the base station device includes a circuit board. a processor and a memory, the processor and the memory being carried On the circuit board, and the processor is configured to call program code stored in the memory to perform the following operations:
  • the independent RRU channel a bridge that does not pass through the first RRU channel and the second RRU channel;
  • the base station device further includes a first coupler, a second coupler, and a combiner carried on the circuit board, where The first coupler and the second coupler are electrically connected to the combiner, respectively, and the combiner is electrically connected to the processor; wherein the processor is for the intersection of any RRU channel group
  • the manner in which the frequency response difference between the first RRU channel, the second RRU channel, and the independent RRU channel is obtained by an RRU channel and a second RRU channel is specifically as follows:
  • the processor triggers the first coupler to perform signal coupling on an end of the first RRU channel and the second RRU channel for a first RRU channel and a second RRU channel that meet in any RRU channel group, Obtaining a first coupled signal and transmitting to the combiner; and triggering the second coupler to signal-couple the end of the independent RRU channel to obtain a second coupled signal and transmit the same to the combiner; Combining the first coupling signal and the second coupling signal by the combiner to obtain a combined signal and transmitting the signal to the processor;
  • the processor collects the synthesized signal, and obtains a first component signal that is output at the end of the first calibration signal input by the first RRU channel, and a second calibration signal that is input by the second RRU channel is output at the end. a second component signal and a third component signal of the third calibration signal input by the independent RRU channel at the end; wherein the first calibration signal, the second calibration signal, and the third calibration signal are known And two or two orthogonal or uncorrelated calibration signals;
  • the processor compares the first component signal with the first calibration signal to obtain a first a frequency response; and comparing the second component signal with the second calibration signal to obtain a second frequency response; and comparing the third component signal with the third calibration signal to obtain a third Frequency response
  • a difference between the first frequency response and the third frequency response eg, a ratio of the first frequency response to the third frequency response may be used as the first frequency response and the third frequency response a difference in frequency response between the first RRU channel and the independent RRU channel; and obtaining a difference between the second frequency response and the third frequency response as the second RRU channel and The frequency response difference between the independent RRU channels.
  • implementing the first possible implementation manner of the foregoing third aspect can reduce the design requirements for the RRU channel itself.
  • the reason is that the implementation can eliminate the requirement of the consistency of the transmission frequency response of each coupled signal, because the longer the transmission path of the coupled signal, the more difficult it is to ensure the stability of the frequency response difference of each path, so the implementation is realized.
  • the approach greatly reduces the design requirements for the RRU channel itself.
  • the combiner combines the first coupling signal with the The second coupled signal is combined to obtain a combined signal, which is specifically as follows:
  • the combiner Processing, by the combiner, the first coupled signal using a first transmission frequency response of the first coupled signal, and utilizing a second transmission frequency response of the second coupled signal by the combiner
  • the second coupled signal is processed; and the processed first coupled signal and the processed second coupled signal are combined by the combiner to obtain a combined signal.
  • the processor collects the composite signal to obtain the a first component signal of the first RRU channel input, a first component signal output at the end, a second component signal of the second calibration signal input by the second RRU channel, and a third calibration of the independent RRU channel input
  • the manner of the third component signal output by the signal at the end is specifically as follows:
  • the processor processes the synthesized signal by using a third transmission frequency response of the composite signal
  • the processor collects the processed composite signal, and obtains a first component signal corresponding to the first calibration signal input by the first RRU channel and a second component of the second RRU channel input a second component signal corresponding to the second component signal corresponding to the calibration signal at the end and the third calibration signal input by the independent RRU channel; wherein the first component signal is the first verification signal, the a frequency response of the first RRU channel, a product of the first transmission frequency response and the third transmission frequency response; the second component signal is a frequency response of the second verification signal and the second RRU channel a product of the first transmission frequency response and the third transmission frequency response; the third component signal is the third verification signal, a frequency response of the independent RRU channel, and the second transmission frequency response And a product of the third transmission frequency response.
  • the processor, the first component signal and the first A calibration signal is compared, and the manner of obtaining the first frequency response is specifically as follows:
  • the processor compares the second component signal with the second calibration signal, and the manner of obtaining the second frequency response is specifically:
  • the processor compares the third component signal with the third calibration signal, and the manner of obtaining the third frequency response is specifically:
  • the processor divides the third component signal by the third check signal, and obtains a product of a frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency response as a first Three-frequency response
  • the processor obtains, by the processor, the first RRU according to a difference in frequency response between the first RRU channel and the independent RRU channel, and a frequency response difference between the second RRU channel and the independent RRU channel
  • the difference in frequency response between the channel and the second RRU channel including:
  • any RRU channel group is determined.
  • a separate RRU channel that is not in the RRU channel group may be introduced, and the first RRU channel, the second RRU channel, and the independent RRU channel are respectively acquired.
  • the frequency response difference between the first RRU channel and the second RRU channel according to the difference in frequency response between the first RRU channel and the independent RRU channel and the frequency response difference between the second RRU channel and the independent RRU channel The difference in frequency response between.
  • the frequency between the first RRU channel and the independent RRU channel can be obtained based on the difference in frequency response between the first RRU channel and the independent RRU channel and the difference in frequency response between the second RRU channel and the independent RRU channel.
  • the response difference and the difference in frequency response between the second RRU channel and the independent RRU channel are calculated to offset the influence of the difference between the first RRU channel and the second RRU channel on the frequency response difference, so that the intersection can be accurately obtained
  • the difference in frequency response between RRU channels can be obtained based on the difference in frequency response between the first RRU channel and the independent RRU channel and the difference in frequency response between the second RRU channel and the independent RRU channel.
  • FIG. 1 is a schematic diagram of a network architecture of an RRU channel disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for acquiring a frequency response difference of an RRU channel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an acquisition system for a frequency response difference of an RRU channel according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another system for acquiring a frequency response difference of an RRU channel according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an RRU channel network architecture according to an embodiment of the present invention. As shown in FIG.
  • an RRU channel network architecture disclosed in the embodiment of the present invention may include multiple RRU channels, where some RRU channels intersect through a joint processing network (also referred to as a bridge), for example, RRU channel 1_1/
  • the RRU channel 3_1 and the RRU channel 1_2/RRU channel 3_1 meet through the bridge 1, and the RRU channel 1_1/RRU channel 3_2 and the RRU channel 1_2/RRU channel 3_2 also intersect through the bridge 1, and the RRU channel 1_1/RRU channel 3_1 and
  • the output signal of the end (the same end) of the RRU channel 1_2/RRU channel 3_1 and the output signals of the end of the RRU channel 1_1/RRU channel 3_2 and the RRU channel 1_2/RRU channel 3_2 are mixed signals, and it is difficult to accurately extract the intersection.
  • the embodiment of the invention discloses a method and a system for acquiring a frequency response difference of an RRU channel, and a base station device, which can accurately acquire the frequency response difference between the RRU channels that meet. The details are described below separately.
  • FIG. 2 is a schematic flowchart diagram of a method for acquiring a frequency response difference of an RRU channel according to an embodiment of the present invention.
  • multiple RRU channel groups may be divided between the BBU and the RRU, and all RRU channels in each RRU channel group are intersected by the same bridge.
  • the RRU channel 1_1/RRU channel 3_1 and the RRU channel 1_2/RRU channel 3_1 meet through the bridge 1, the RRU channel 1_1/RRU channel 3_1 and the RRU channel 1_2/RRU channel 3_1 can be connected. Divided into a RRU channel group. In the method described in FIG.
  • the RRU channel 1_1/RRU channel 3_1 is used as the first RRU channel
  • the RRU channel 1_2/RRU channel 3_1 is used as the second RRU.
  • the channel is described as an example.
  • the method may include the following steps:
  • the RRU channel 1_3/RRU channel 3_3 can be selected as the independent RRU.
  • the independent RRU channel is not in the RRU channel group where the first RRU channel and the second RRU channel are located.
  • the first RRU channel and the second RRU channel that meet in any RRU channel group are respectively obtained between the first RRU channel, the second RRU channel, and the independent RRU channel.
  • the way the frequency response differs can be:
  • the ends of the first RRU channel and the second RRU channel to obtain a first coupling signal for the first RRU channel and the second RRU channel that meet in any RRU channel group; and, performing the end of the independent RRU channel Signal coupling, obtaining a second coupled signal; combining the first coupled signal and the second coupled signal to obtain a combined signal; collecting the synthesized signal to obtain a first calibration signal input at the end of the first RRU channel a component signal, a second component signal input by the second RRU channel, and a third component signal outputted at the end of the second calibration signal input by the independent RRU channel; wherein, the first calibration signal, the second The calibration signal and the third calibration signal are known, and two or two orthogonal or mutually uncorrelated calibration signals; comparing the first component signal with the first calibration signal to obtain a first frequency response; and, Comparing the two component signals with the second calibration signal to obtain a second frequency response; and comparing the third component signal with the third calibration signal to obtain a third frequency ; Obtaining a first difference between
  • implementing the above method can reduce the design requirements for the RRU channel itself.
  • the reason is that the implementation can eliminate the requirement of the consistency of the transmission frequency response of each coupled signal, because the longer the transmission path of the coupled signal, the more difficult it is to ensure the stability of the frequency response difference of each path, so the implementation is realized.
  • the approach greatly reduces the design requirements for the RRU channel itself.
  • the first coupled signal and the second coupled signal are combined to obtain a combined signal, which may be:
  • the composite signal is collected, and the first component signal input by the first RRU channel is obtained, and the first component signal outputted at the end and the second calibration signal input by the second RRU channel are output at the end.
  • the second component signal outputted by the two component signals and the third calibration signal of the independent RRU channel input at the end may be:
  • the composite signal is processed by using the third transmission frequency response of the composite signal, and the processed composite signal is collected, and the first component signal and the second RRU channel input corresponding to the first calibration signal input by the first RRU channel are obtained at the end.
  • the third component signal is a product of a third check signal, a frequency response of the independent RRU channel, a second transmission frequency response, and a third transmission frequency response.
  • the first calibration signal input to the first RRU channel is A1
  • the second calibration signal input to the second RRU channel is A2
  • the third calibration signal input by the independent RRU channel is A3
  • A1, A2, and A3 are known calibration signals that are orthogonal or uncorrelated, or, when time-sharing is input, A1, A2, and A3 may also be the same calibration signal.
  • the frequency response of the first RRU channel is H1*F1*Q1
  • the frequency response of the second RRU channel is H2*F3*Q1
  • the frequency response of the independent RRU channel is H3*F5*Q3.
  • H1, H2, H3, F1, F3, F5, Q1, and Q3 are all unknown; then, correspondingly, signal coupling is performed on the ends of the first RRU channel and the second RRU channel to obtain the first coupled signal A1 *H1*F1*Q1+A2*H2*F3*Q1; and, by coupling the end of the independent RRU channel, a second coupled signal A3*H3*F5*Q3 can be obtained; further, at the first coupled signal A1 *H1*F1*Q1+A2*H2*F3*Q1 and the second coupling signal A3*H3*F5*Q3 can be combined to use the first coupling signal A1*H1*F1*Q1+A2*H2*F3 *
  • the first transmission frequency response G1 of Q1 is processed by the first coupled signal A1*H1*F1*Q1+A2*H2*F3*Q1, ie (A1*H1*F1*Q1+A2*H2*F
  • the composite signal A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2 is acquired, and the first calibration signal input by the first RRU channel is obtained.
  • the third transmission frequency response J1 can be used to synthesize the signal A1*H1*F1 *Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2 for processing (ie (A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3 *H3*F5*Q3*G2)*J1), and collecting the processed composite signal to obtain the first component signal A1*H1*F1*Q1 corresponding to the first calibration signal A1 input at
  • the third component signal A3*H3*F5*Q3*G2*J1; visible, the first component signal A1* H1*F1*Q1*G1*J1 is the product of the first verification signal A1, the frequency response H1*F1*Q1 of the first RRU channel, the first transmission frequency response G1, and the third transmission frequency response J1;
  • the second component signal A2*H2*F3*Q1*G1*J1 is the product of the second check signal A2, the frequency response H2*F3*Q1 of the second RRU channel, the first transmission frequency response G1, and the third transmission frequency response J1;
  • the component signal A3*H3*F5*Q3*G2*J1 is the product of the third check signal A3, the frequency response H3*F5*Q3 of the independent RRU channel, the second transmission frequency response G2, and the third transmission frequency response J1;
  • the first component signal A1*H1*F1*Q1*G1*J1 may be operated with the first verification signal A1 (for example, A component signal A1*H1*F1*Q1*G1*J1 is divided by the first verification signal A1), and the frequency response H1*F1*Q1 of the first RRU channel, the first transmission frequency response G1, and the third transmission frequency response are obtained.
  • the third component signal A3*H3*F5*Q3*G2*J1 and the third parity signal A3 may be operated (for example, the third component signal A3*H3) *F5*Q3*G2*J1 divided
  • the difference between the first frequency response H1*F1*Q1*G1*J1 and the third frequency response H3*F5*Q3*G2*J1 (H1*F1*Q1*G1)/(H3*F5*Q3) can be obtained.
  • *G2) as the difference in frequency response between the first RRU channel and the independent RRU channel
  • the second frequency response H2*F3*Q1*G1*J1 and the third frequency response H3*F5*Q3*G2* can be obtained J1 difference (H2*F3*Q1*G1)/(H3*F5*Q3*G2) as the frequency response difference between the second RRU channel and the independent RRU channel;
  • a frequency response difference between the second RRU channel and the independent RRU channel, and the frequency between the first RRU channel and the independent RRU channel may be obtained during the process of obtaining a difference in frequency response between the first RRU channel and the second RRU channel Response difference (H1*F1*Q1*G1)/(H3*F5*Q3*G2) divided by the frequency response difference between the second RRU channel and the independent RRU channel (H2*F3*Q1*G1)/(H3* F5*Q3*G2), thereby obtaining the frequency response difference between the first RRU channel and the second RRU channel, that is, (H1*F1*Q1)/(H2*F3*Q1).
  • the frequency response difference between any two intersecting RRU channels in the RRU channel network architecture shown in FIG. 1 can be accurately obtained.
  • any RRU channel group is determined.
  • the frequency response between the RRU channel and the second RRU channel is different, independent RRU channels not in any of the RRU channel groups may be introduced, and the first RRU channel, the second RRU channel, and the independent RRU channel are respectively acquired.
  • Frequency response difference, and between the first RRU channel and the second RRU channel based on a difference in frequency response between the first RRU channel and the independent RRU channel, and a frequency response difference between the second RRU channel and the independent RRU channel Frequency response difference.
  • the frequency between the first RRU channel and the independent RRU channel can be obtained based on the difference in frequency response between the first RRU channel and the independent RRU channel and the difference in frequency response between the second RRU channel and the independent RRU channel.
  • the response difference and the difference in frequency response between the second RRU channel and the independent RRU channel are calculated to offset the influence of the difference between the first RRU channel and the second RRU channel on the frequency response difference, so that the intersection can be accurately obtained
  • the difference in frequency response between RRU channels can be obtained based on the difference in frequency response between the first RRU channel and the independent RRU channel and the difference in frequency response between the second RRU channel and the independent RRU channel.
  • FIG. 3 is a schematic structural diagram of an acquisition system for a frequency response difference of an RRU channel according to an embodiment of the present invention.
  • the RRU channel frequency response difference acquisition system shown in FIG. 3 can be applied to the RRU channel network architecture shown in FIG. 1 , that is, multiple RRU channel groups can be divided between the BBU and the RRU, and each RRU channel group is All RRU channels are converged by the same bridge module.
  • the system can include:
  • the first obtaining unit 301 is configured to obtain a frequency response difference between the first RRU channel, the second RRU channel, and the independent RRU channel, respectively, for the first RRU channel and the second RRU channel that meet in any RRU channel group; , the independent RRU channel is not in any RRU channel group;
  • the second obtaining unit 302 is configured to acquire the first RRU channel and the second RRU channel according to a difference in frequency response between the first RRU channel and the independent RRU channel, and a frequency response difference between the second RRU channel and the independent RRU channel The difference in frequency response between.
  • FIG. 4 is a schematic structural diagram of another system for acquiring a frequency response difference of an RRU channel according to an embodiment of the present invention.
  • the acquisition system of the frequency difference of the RRU channel described in FIG. 4 is optimized by the acquisition system of the frequency response difference of the RRU channel shown in FIG. 3.
  • the first obtaining unit 301 includes:
  • the first coupling subunit 3011 is configured to perform signal coupling on the ends of the first RRU channel and the second RRU channel for the first RRU channel and the second RRU channel that meet in any RRU channel group to obtain a first coupling signal;
  • a second coupling subunit 3012 configured to perform signal coupling on an end of the independent RRU channel to obtain a second coupling signal
  • the combining subunit 3013 is configured to combine the first coupling signal and the second coupling signal to obtain a combining signal
  • the collecting subunit 3014 is configured to collect the synthesized signal, obtain a first component signal of the first calibration signal input by the first RRU channel, and a second component of the second calibration signal of the second RRU channel input at the end a signal and a third component signal of the third calibration signal input by the independent RRU channel at the end; wherein the first calibration signal, the second calibration signal, and the third calibration signal are known, and the two are orthogonal or uncorrelated Calibration signal
  • a comparison subunit 3015 configured to compare the first component signal with the first calibration signal to obtain a first frequency response; and compare the second component signal with the second calibration signal to obtain a second frequency response; and, Comparing the third component signal with the third calibration signal to obtain a third frequency response;
  • the obtaining subunit 3016 is configured to obtain a difference between the first frequency response and the third frequency response as a frequency response difference between the first RRU channel and the independent RRU channel; and obtain a difference between the second frequency response and the third frequency response As the difference in frequency response between the second RRU channel and the independent RRU channel.
  • implementing the first obtaining unit 301 described in FIG. 4 can reduce the design requirements for the RRU channel itself.
  • the reason is that the implementation can eliminate the requirement of the consistency of the transmission frequency response of each coupled signal, because the transmission frequency response of each coupled signal varies with environmental factors and is unstable, so the implementation greatly reduces the RRU.
  • the design requirements of the channel itself can reduce the design requirements for the RRU channel itself.
  • the combining subunit 3012 is specifically configured to process the first coupled signal by using a first transmission frequency response of the first coupled signal, and to use the second transmission frequency response of the second coupled signal to the second The coupled signal is processed; and the processed first coupled signal and the processed second coupled signal are combined to obtain a combined signal.
  • the collecting subunit 3014 is specifically configured to process the synthesized signal by using the third transmission frequency response of the synthesized signal, and collect the processed composite signal to obtain the first input of the first RRU channel.
  • a first component signal corresponding to the calibration signal at the end a second component signal corresponding to the second calibration signal input by the second RRU channel, and a third component signal corresponding to the third calibration signal input by the independent RRU channel at the end;
  • the first component signal is a product of a first check signal, a frequency response of the first RRU channel, a first transmission frequency response, and a third transmission frequency response;
  • the second component signal is a second verification signal, a frequency of the second RRU channel The product of the response, the first transmission frequency response, and the third transmission frequency response;
  • the third component signal is a product of the third verification signal, the frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency response.
  • the comparing subunit 3015 is specifically configured to divide the first component signal by the first verifying signal, obtain a frequency response of the first RRU channel, a first transmission frequency response, and a third transmission frequency response. Generating as the first frequency response; and dividing the second component signal by the second verification signal to obtain a product of the frequency response of the second RRU channel, the first transmission frequency response, and the third transmission frequency response as the second frequency response; And dividing the third component signal by the third check signal to obtain a product of the frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency response as the third frequency response;
  • the second obtaining unit 301 is specifically configured to: divide a frequency response difference between the first RRU channel and the independent RRU channel by a frequency response difference between the second RRU channel and the independent RRU channel, and obtain The difference in frequency response between the first RRU channel and the second RRU channel.
  • the first calibration signal input to the first RRU channel is A1
  • the second calibration signal input to the second RRU channel is A2
  • the third calibration signal input by the independent RRU channel is A3; wherein A1, A2, and A3 are known, and two or two orthogonal or mutually uncorrelated calibration signals, or, in time-sharing input, A1, A2, and A3 may also be the same calibration signal, the present invention
  • the embodiment is not limited; and further assumes that the frequency response of the first RRU channel is H1*F1*Q1, the frequency response of the second RRU channel is H2*F3*Q1, and the frequency response of the independent RRU channel is H3*F5*Q3, wherein , H1, H2, H3, F1, F3, F5, Q1, and Q3 are all unknown; then, correspondingly, the first coupling subunit 3011 performs signal coupling on the ends of the first RRU channel and the second RRU channel to obtain the first A coupled signal A1*H1*F1
  • the collecting subunit 3014 collects the synthesized signal A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2 to obtain the input of the first RRU channel.
  • the first component signal outputted by the first calibration signal A1 at the end, the second component signal of the second calibration signal A2 input by the second RRU channel at the end, and the third calibration signal A3 of the independent RRU channel input are at the end
  • the third transmission frequency response J1 of the composite signal A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2 can be utilized.
  • the composite signal A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2 is processed (ie (A1*H1*F1*Q1*G1+A2*H2) *F3*Q1*G1+A3*H3*F5*Q3*G2)*J1), and collecting the processed composite signal to obtain the first component of the first calibration signal A1 input at the end of the first RRU channel
  • the third component signal A3 corresponds to the third component signal A3*H3*F5*Q3*G2*J1 at the end; it can be seen that the first component signal A1*H1*F1*Q
  • the frequency response of an RRU channel is H1*F1*Q1, the product of the first transmission frequency response G1 and the third transmission frequency response J1;
  • the second component signal A2*H2*F3*Q1*G1*J1 is the second verification signal A2
  • the frequency response of the second RRU channel is H2*F3*Q1, the product of the first transmission frequency response G1 and the third transmission frequency response J1;
  • the third component signal A3*H3*F5*Q3*G2*J1 is the third verification letter No. A3, the frequency response of the independent RRU channel, H3*F5*Q3, the second transmission frequency response G2, and the product of the third transmission frequency response J1;
  • the comparison subunit 3015 may perform the first process in comparing the first component signal with the first calibration signal.
  • the second component signal A2*H2*F3*Q1*G1*J1 and the second parity signal A2 may be operated (for example, the second component is used)
  • the signal A2*H2*F3*Q1*G1*J1 is divided by the second check signal A
  • the obtaining subunit 3016 can obtain the difference between the first frequency response H1*F1*Q1*G1*J1 and the third frequency response H3*F5*Q3*G2*J1 (H1*F1*Q1*G1)/(H3 *F5*Q3*G2), as the difference in frequency response between the first RRU channel and the independent RRU channel; and, the second frequency response H2*F3*Q1*G1*J1 and the third frequency response H3*F5* can be obtained
  • the difference between Q3*G2*J1 (H2*F3*Q1*G1)/(H3*F5*Q3*G2) is the difference in frequency response between the second RRU channel and the independent RRU channel;
  • the second obtaining unit 302 acquires the first RRU channel and the second RRU according to the frequency response difference between the first RRU channel and the independent RRU channel and the frequency response difference between the second RRU channel and the independent RRU channel.
  • the frequency response difference between the first RRU channel and the independent RRU channel (H1*F1*Q1*G1)/(H3*F5*Q3*G2) can be divided by the second during the difference in frequency response between the channels.
  • the system described in FIG. 4 may further include a selection switch unit for selecting any one of the multiplexed signals to be provided to the collection sub-unit 3014, which is not limited in the embodiment of the present invention.
  • the frequency response difference between any two intersecting RRU channels in the RRU channel network architecture shown in FIG. 1 can be accurately obtained.
  • the foregoing unit or subunit may be combined, divided, and deleted according to actual needs.
  • FIG. 5 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • the base station device described in FIG. 5 may be a single device or a single board, or may be a new part of the RRU, which is not limited in the embodiment of the present invention.
  • the base station device shown in FIG. 5 can be applied to the BBU.
  • the base station device may include a circuit board 1, a processor 2, and a memory 3.
  • the processor 2 and the memory 3 are carried on the circuit board 1, and the processor 2 is configured to call a program code stored in the memory 3. To do the following:
  • the frequency difference between the first RRU channel, the second RRU channel, and the independent RRU channel is obtained for the first RRU channel and the second RRU channel that are in the RRU channel group; wherein the independent RRU channel does not pass through the first a bridge through which the RRU channel and the second RRU channel pass together;
  • the base station device shown in FIG. 5 further includes a first coupler 4, a second coupler 5, and a combiner 6 carried on the circuit board 1, wherein the first coupler 4 and The second coupler 5 is electrically connected to the combiner 6, respectively, and the combiner 6 is electrically connected to the processor 2; wherein the processor 2 respectively acquires the first RRU channel and the second RRU channel that meet in any RRU channel group
  • the difference in frequency response between the first RRU channel, the second RRU channel, and the independent RRU channel may be:
  • the processor 2 triggers the first coupler 4 to signal-couple the ends of the first RRU channel and the second RRU channel for the first RRU channel and the second RRU channel that meet in any RRU channel group, to obtain the first coupled signal and Transmitting to the combiner 6; and triggering the second coupler 5 to signal-couple the end of the independent RRU channel to obtain a second coupled signal and transmit it to the combiner 6; wherein the first coupled signal is coupled by the combiner 6. Combining with the second coupled signal, obtaining a combined signal and transmitting to the processor 2;
  • the processor 2 acquires the synthesized signal, obtains a first component signal of the first calibration signal input by the first RRU channel, a second component signal outputted at the end of the second calibration signal input by the second RRU channel, and an independent RRU. a third component signal output by the third calibration signal of the channel at the end; wherein the first calibration signal, the second calibration signal, and the third calibration signal are known and two orthogonal calibration signals;
  • the processor 2 compares the first component signal with the first calibration signal to obtain a first frequency response; and, Comparing the second component signal with the second calibration signal to obtain a second frequency response; and comparing the third component signal with the third calibration signal to obtain a third frequency response;
  • the processor 2 obtains a difference between the first frequency response and the third frequency response as a frequency response difference between the first RRU channel and the independent RRU channel; and acquires a difference between the second frequency response and the third frequency response as a second The difference in frequency response between the RRU channel and the independent RRU channel.
  • the combiner 6 combines the first coupled signal and the second coupled signal to obtain a combined signal.
  • the first coupled signal is processed by the combiner 6 using a first transmission frequency response of the first coupled signal
  • the second coupled signal is processed by the combiner 6 using a second transmitted frequency response of the second coupled signal
  • the combined first coupled signal and the processed second coupled signal are combined by the combiner 6 to obtain a combined signal.
  • the processor 2 acquires the synthesized signal, and obtains a first component signal of the first calibration signal input by the first RRU channel and a second component of the second RRU channel input.
  • the manner of outputting the second component signal and the third component signal of the third calibration signal input by the independent RRU channel at the end is specifically as follows:
  • the processor 2 processes the synthesized signal by using a third transmission frequency response of the synthesized signal
  • the processor 2 collects the processed composite signal, and obtains a first component signal corresponding to the first calibration signal input by the first RRU channel, and a second component signal corresponding to the second calibration signal input by the second RRU channel at the end. And a third component signal corresponding to the third calibration signal input by the independent RRU channel at the end; wherein the first component signal is the first check signal, the frequency response of the first RRU channel, the first transmission frequency response, and the third transmission frequency a product of a ring; the second component signal is a product of a second check signal, a frequency response of the second RRU channel, a first transmission frequency response, and a third transmission frequency response; the third component signal is a third check signal, an independent RRU The frequency response of the channel, the second transmission frequency response, and the product of the third transmission frequency response.
  • the processor 2 compares the first component signal with the first calibration signal, and the manner of obtaining the first frequency response is specifically:
  • the processor 2 compares the second component signal with the second calibration signal, and the manner of obtaining the second frequency response is specifically as follows:
  • the processor 2 compares the third component signal with the third calibration signal, and the manner of obtaining the third frequency response is specifically:
  • the processor 2 divides the third component signal by the third check signal, and obtains a product of the frequency response of the independent RRU channel, the second transmission frequency response, and the third transmission frequency response as the third frequency response;
  • the processor 2 obtains a frequency response between the first RRU channel and the second RRU channel according to a difference in frequency response between the first RRU channel and the independent RRU channel, and a frequency response difference between the second RRU channel and the independent RRU channel. Differences, including:
  • the processor 2 divides the frequency response difference between the first RRU channel and the independent RRU channel by the frequency response difference between the second RRU channel and the independent RRU channel, and acquires the frequency response between the first RRU channel and the second RRU channel. difference.
  • the foregoing first and second are only used to represent two different RRU channels, and the RRU channels are not sorted.
  • the first transmission frequency response described above can intuitively evaluate the ability of the system to reproduce the first coupled signal and the characteristics of filtering noise
  • the second transmission frequency response can intuitively evaluate the ability of the system to reproduce the second coupled signal and the characteristics of filtering noise.
  • the third transmission frequency response can intuitively evaluate the ability of the system to reproduce the composite signal and the characteristics of the filtered noise.
  • the frequency response difference between any two intersecting RRU channels in the RRU channel network architecture shown in FIG. 1 can be accurately obtained.
  • ROM read only Memory
  • RAM random Memory
  • PROM Programmable Read Only Memory
  • EPROM Era Able Progr AmmAble ReAd Only Memory
  • OTPROM One Time Programmable Read Only Memory
  • EEPROM Electronic Ally-ErAsAble Progr AmmAble ReAd-Only Memory
  • CD-ROM Read-Only Disc
  • CD-ROM Compact Disc ReAd-Only Memory

Abstract

一种RRU通道频率响应差异的获取方法及设备、系统,在该方法中,BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇,该方法包括:针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异;独立RRU通道不在上述任一RRU通道组内;根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。实施本发明实施例能够准确地获取交汇的RRU通道之间的频率响应差异。

Description

RRU通道频率响应差异的获取方法及系统、基站设备 技术领域
本发明涉及通信技术领域,尤其涉及一种RRU通道频率响应差异的获取方法及系统、基站设备。
背景技术
当前,在基带处理单元(Building Baseband Unit,BBU)与射频拉远模块(Radio Remote Unit,RRU)的组网方式中,一个BBU可以支持多个RRU,并且BBU与每一个RRU之间可以通过多个通道(也称为RRU通道)进行通信连接。在实际应用中,为了更好提升BBU与RRU之间的通信质量,时常会求取RRU通道之间的频率响应差异。然而在实践中发现,RRU通道之间可能会因为一些技术要求而通过电桥(也称为联合处理网络)进行交汇,这就使得交汇的RRU通道的输出信号是一种混合信号,从而难以准确地求取出交汇的RRU通道之间的频率响应差异。
发明内容
本发明实施例公开了一种RRU通道频率响应差异的获取方法及系统、基站设备,能够准确地获取交汇的RRU通道之间的频率响应差异。
本发明实施例第一方面公开一种RRU通道频率响应差异的获取方法,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇,所述方法包括:
针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不在所述任一RRU通道组内;
根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一 RRU通道与所述第二RRU通道之间的频率响应差异。
在本发明实施例第一方面的第一种可能的实现方式中,所述针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异,包括:
针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合,获得第一耦合信号;以及,对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号;
将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号;
对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
将所述第一分量信号与所述第一校准信号进行比较,获得第一频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
获取所述第一频响与所述第三频响的差异(例如所述第一频响与所述第三频响的比例作为所述第一频响与所述第三频响的差异),作为所述第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
其中,实施上述的第一方面的第一种可能的实现方式,可以降低对RRU通道本身的设计要求。原因是该实现方式可以省去对每一耦合信号的传输频响的一致性的要求,因为耦合信号的传输路径越长,则设计上越难保证各条路径频响差异的稳定性,所以该实现方式大大地降低对RRU通道本身的设计要求。
结合本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第 一方面的第二种可能的实现方式中,所述将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号,包括:
利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及利用所述第二耦合信号的第二传输频响对所述第二耦合信号进行处理;
将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
结合本发明实施例第一方面的第二种可能的实现方式,在本发明实施例第一方面的第三种可能的实现方式中,所述对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号,包括:
利用所述合成信号的第三传输频响对所述合成信号进行处理;
对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应的第一分量信号、所述第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
结合本发明实施例第一方面的第三种可能的实现方式,在本发明实施例第一方面的第四种可能的实现方式中,所述将所述第一分量信号与所述第一校准信号进行比较,获得第一频响,包括:
将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;
所述将所述第二分量信号与所述第二校准信号进行比较,获得第二频响,包括:
将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;
所述将所述第三分量信号与所述第三校准信号进行比较,获得第三频响,包括:
将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
所述根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异,包括:
将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
本发明实施例第二方面公开一种RRU通道频率响应差异的获取系统,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇,所述系统包括:
第一获取单元,用于针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不在所述任一RRU通道组内;
第二获取单元,用于根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
在本发明实施例第二方面的第一种可能的实现方式中,所述第一获取单元包括:
第一耦合子单元,用于针对任一RRU通道组内交汇的第一RRU通道和第 二RRU通道,对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合,获得第一耦合信号;
第二耦合子单元,用于对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号;
合路子单元,用于将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号;
采集子单元,用于对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
比较子单元,用于将所述第一分量信号与所述第一校准信号进行比较,获得第一频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
获取子单元,用于获取所述第一频响与所述第三频响的差异,作为所述第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
其中,实施上述的第二方面的第一种可能的实现方式,可以降低对RRU通道本身的设计要求。原因是该实现方式可以省去对每一耦合信号的传输频响的一致性的要求,因为耦合信号的传输路径越长,则设计上越难保证各条路径频响差异的稳定性,所以该实现方式大大地降低对RRU通道本身的设计要求。
结合本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第二种可能的实现方式中,所述合路子单元具体用于利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及利用所述第二耦合 信号的第二传输频响对所述第二耦合信号进行处理;以及,将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
结合本发明实施例第二方面的第二种可能的实现方式,在本发明实施例第二方面的第三种可能的实现方式中,所述采集子单元具体用于利用所述合成信号的第三传输频响对所述合成信号进行处理,以及对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应的第一分量信号、所述第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
结合本发明实施例第二方面的第三种可能的实现方式,在本发明实施例第二方面的第四种可能的实现方式中,所述比较子单元具体用于将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;以及,将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;以及,将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
所述第二获取单元,具体用于将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
本发明实施例第三方面公开一种基站设备,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道经过同一电桥进行交汇,所述基站设备包括电路板、处理器和存储器,所述处理器和所述存储器承载在 所述电路板上,并且所述处理器用于调用所述存储器中存储的程序代码,以执行以下操作:
针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不经过所述第一RRU通道和所述第二RRU通道共同经过的电桥;
根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
在本发明实施例第一方面的第一种可能的实现方式中,所述的基站设备还包括承载在所述电路板上的第一耦合器、第二耦合器以及合路器,其中,所述第一耦合器和所述第二耦合器分别电连接所述合路器,并且所述合路器电连接所述处理器;其中,所述处理器针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异的方式具体为:
所述处理器针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,触发所述第一耦合器对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合,获得第一耦合信号并传输给所述合路器;以及,触发所述第二耦合器对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号并传输给所述合路器;其中,由所述合路器将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号并传输给所述处理器;
所述处理器对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
所述处理器将所述第一分量信号与所述第一校准信号进行比较,获得第一 频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
所述处理器获取所述第一频响与所述第三频响的差异(例如,第一频响与所述第三频响的比例可以作为第一频响与所述第三频响的差异),作为所述第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
其中,实施上述的第三方面的第一种可能的实现方式,可以降低对RRU通道本身的设计要求。原因是该实现方式可以省去对每一耦合信号的传输频响的一致性的要求,因为耦合信号的传输路径越长,则设计上越难保证各条路径频响差异的稳定性,所以该实现方式大大地降低对RRU通道本身的设计要求。
结合本发明实施例第三方面的第一种可能的实现方式,在本发明实施例第三方面的第二种可能的实现方式中,所述合路器将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号的方式具体为:
由所述合路器利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及由所述合路器利用所述第二耦合信号的第二传输频响对所述第二耦合信号进行处理;以及,由所述合路器将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
结合本发明实施例第三方面的第二种可能的实现方式,在本发明实施例第三方面的第三种可能的实现方式中,所述处理器对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号的方式具体为:
所述处理器利用所述合成信号的第三传输频响对所述合成信号进行处理;
所述处理器对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应的第一分量信号、所述第二RRU通道输入的第二 校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
结合本发明实施例第三方面的第三种可能的实现方式,在本发明实施例第三方面的第四种可能的实现方式中,所述处理器将所述第一分量信号与所述第一校准信号进行比较,获得第一频响的方式具体为:
将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;
所述处理器将所述第二分量信号与所述第二校准信号进行比较,获得第二频响的方式具体为:
将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;
所述处理器将所述第三分量信号与所述第三校准信号进行比较,获得第三频响的方式具体为:
所述处理器将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
所述处理器根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异,包括:
所述处理器将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述 第一RRU通道与所述第二RRU通道之间的频率响应差异。
本发明实施例中,由于BBU和RRU之间的每一RRU通道组内的所有RRU通道由经同一电桥(又称为联合处理网络)进行交汇,因此,在求取任一RRU通道组内交汇的第一RRU通道和第二RRU通道之间的频率响应差异时,可以引入不在该任一RRU通道组内的独立RRU通道,并且分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异,并且根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异来获取第一RRU通道与第二RRU通道之间的频率响应差异。在获得第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异的基础上,可以将第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异进行运算,以抵消第一RRU通道与第二RRU通道交汇所带来对频率响应差异的影响,从而可以准确地获取交汇的RRU通道之间的频率响应差异。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种RRU通道网络架构示意图。
图2是本发明实施例公开的一种RRU通道频率响应差异的获取方法的流程示意图;
图3是本发明实施例公开的一种RRU通道频率响应差异的获取系统的结构示意图;
图4是本发明实施例公开的另一种RRU通道频率响应差异的获取系统的结构示意图;
图5是本发明实施例公开的一种基站设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好的理解本发明实施例,下面先对本发明实施例公开的一种RRU通道网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种RRU通道网络架构。如图1所示,本发明实施例公开的一种RRU通道网络架构可以包括多个RRU通道,其中,部分RRU通道通过联合处理网络(也称为电桥)进行交汇,例如,RRU通道1_1/RRU通道3_1与RRU通道1_2/RRU通道3_1通过电桥1交汇,而RRU通道1_1/RRU通道3_2与RRU通道1_2/RRU通道3_2也通过电桥1交汇,此时RRU通道1_1/RRU通道3_1与RRU通道1_2/RRU通道3_1的末端(同一末端)的输出信号、以及RRU通道1_1/RRU通道3_2与RRU通道1_2/RRU通道3_2的末端的输出信号均是混合信号,难以准确地求取出交汇的RRU通道1_1/RRU通道3_1与RRU通道1_2/RRU通道3_1之间的频率响应差异、以及交互的RRU通道1_1/RRU通道3_2与RRU通道1_2/RRU通道3_2之间的频率响应差异。针对此缺陷,本发明实施例公开了一种RRU通道频率响应差异的获取方法及系统、基站设备,能够准确地获取交汇的RRU通道之间的频率响应差异。以下分别进行详细说明。
请参阅图2,图2是本发明实施例公开的一种RRU通道频率响应差异的获取方法的流程示意图。在图2所示的方法中,BBU和RRU之间可以划分多个RRU通道组,其中,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇。举例来说,以图1为例,由于RRU通道1_1/RRU通道3_1与RRU通道1_2/RRU通道3_1通过电桥1交汇,因此可以将RRU通道1_1/RRU通道3_1与RRU通道1_2/RRU通道3_1划为一个RRU通道组。在图2所描述的方法中,以RRU通道1_1/RRU通道3_1作为第一RRU通道、RRU通道1_2/RRU通道3_1作为为第二RRU 通道为例进行描述。如图2所示的,该方法可以包括以下步骤:
201、针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异;其中,独立RRU通道不在该任一RRU通道组内。
以图1所示的RRU通道网络架构为例,本发明实施例中,针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,可以选取RRU通道1_3/RRU通道3_3作为独立RRU通道,该独立RRU通道不在第一RRU通道和第二RRU通道所在的RRU通道组内。
202、根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。
作为一种可选的实施方式,上述步骤201中,针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异的方式可以为:
针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,对第一RRU通道和第二RRU通道的末端进行信号耦合,获得第一耦合信号;以及,对独立RRU通道的末端进行信号耦合,获得第二耦合信号;将第一耦合信号与第二耦合信号进行合路,获得合路信号;对合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端输出的第一分量信号、第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,第一校准信号、第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;将第一分量信号与第一校准信号进行比较,获得第一频响;以及,将第二分量信号与第二校准信号进行比较,获得第二频响;以及,将第三分量信号与第三校准信号进行比较,获得第三频响;获取第一频响与第三频响的差异,作为第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取第二频响与第三频响的差 异,作为第二RRU通道与所述独立RRU通道之间的频率响应差异。其中,实施上述方式可以降低对RRU通道本身的设计要求。原因是该实现方式可以省去对每一耦合信号的传输频响的一致性的要求,因为耦合信号的传输路径越长,则设计上越难保证各条路径频响差异的稳定性,所以该实现方式大大地降低对RRU通道本身的设计要求。
作为一种可选的实施方式,将第一耦合信号与第二耦合信号进行合路,获得合路信号可以为:
利用第一耦合信号的第一传输频响对第一耦合信号进行处理,以及利用第二耦合信号的第二传输频响对所述第二耦合信号进行处理;将处理后的第一耦合信号和处理后的第二耦合信号进行合路,获得合路信号。
作为一种可选的实施方式,对合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端输出的第一分量信号、第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号在末端输出的第三分量信号可以为:
利用合成信号的第三传输频响对合成信号进行处理,以及对处理后的合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端对应的第一分量信号、第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,第一分量信号是第一校验信号、第一RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第二分量信号是第二校验信号、第二RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第三分量信号是第三校验信号、独立RRU通道的频率响应、第二传输频响以及第三传输频响的乘积。
以图1所示的RRU通道网络架构为例,假设第一RRU通道输入的第一校准信号为A1,第二RRU通道输入的第二校准信号为A2,独立RRU通道输入的第三校准信号为A3;其中,A1、A2以及A3是已知的、且两两正交或者互不相关的校准信号,或者,在分时输入时,A1、A2以及A3也可以是相同的校准信号, 本发明实施例不作限定;而且进一步假设第一RRU通道的频率响应为H1*F1*Q1、第二RRU通道的频率响应为H2*F3*Q1、独立RRU通道的频率响应为H3*F5*Q3,其中,H1、H2、H3、F1、F3、F5、Q1以及Q3均为未知量;那么相应地,对第一RRU通道和第二RRU通道的末端进行信号耦合,可以获得第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1;以及,对独立RRU通道的末端进行信号耦合,可以获得第二耦合信号A3*H3*F5*Q3;进一步地,在第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1与第二耦合信号A3*H3*F5*Q3进行合路时,可以利用第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1的第一传输频响G1对第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1与进行处理,即(A1*H1*F1*Q1+A2*H2*F3*Q1)*G1;以及利用第二耦合信号A3*H3*F5*Q3的第二传输频响G2对第二耦合信号A3*H3*F5*Q3进行处理,即(A3*H3*F5*Q3)*G2;并且将处理后的第一耦合信号(A1*H1*F1*Q1+A2*H2*F3*Q1)*G1和处理后的第二耦合信号(A3*H3*F5*Q3)*G2进行合路,获得合路信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2;
进一步地,在对合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2进行采集,获得第一RRU通道输入的第一校准信号A1在末端输出的第一分量信号、第二RRU通道输入的第二校准信号A2在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号A3在末端输出的第三分量信号的过程中,可以利用合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2的第三传输频响J1对合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2进行处理(即(A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2)*J1),以及对处理后的合成信号进行采集,获得第一RRU通道输入的第一校准信号A1在末端对应的第一分量信号A1*H1*F1*Q1*G1*J1、第二RRU通道输入的第二校准信号A2在末端对应的第二分量信号A2*H2*F3*Q1*G1*J1以及独立RRU通道输入的第三校准信号A3在末端对应的第三分量信号A3*H3*F5*Q3*G2*J1;可见,第一分量信号A1* H1*F1*Q1*G1*J1是第一校验信号A1、第一RRU通道的频率响应H1*F1*Q1、第一传输频响G1以及第三传输频响J1的乘积;第二分量信号A2*H2*F3*Q1*G1*J1是第二校验信号A2、第二RRU通道的频率响应H2*F3*Q1、第一传输频响G1以及第三传输频响J1的乘积;第三分量信号A3*H3*F5*Q3*G2*J1是第三校验信号A3、独立RRU通道的频率响应H3*F5*Q3、第二传输频响G2以及第三传输频响J1的乘积;
进一步地,在将第一分量信号与第一校准信号进行比较的过程中,可以将第一分量信号A1*H1*F1*Q1*G1*J1与第一校验信号A1进行运算(例如将第一分量信号A1*H1*F1*Q1*G1*J1除以第一校验信号A1),获得第一RRU通道的频率响应H1*F1*Q1、第一传输频响G1以及第三传输频响J1的乘积作为第一频响,即第一频响=H1*F1*Q1*G1*J1;在将第二分量信号与第二校准信号进行比较的过程中,可以将第二分量信号A2*H2*F3*Q1*G1*J1与第二校验信号A2进行运算(例如将第二分量信号A2*H2*F3*Q1*G1*J1除以第二校验信号A2),获得第二RRU通道的频率响应H2*F3*Q1、第一传输频响G1以及第三传输频响J1的乘积作为第二频响,即第二频响=H2*F3*Q1*G1*J1;在将第三分量信号与第三校准信号进行比较的过程中,可以将第三分量信号A3*H3*F5*Q3*G2*J1与第三校验信号A3进行运算(例如将第三分量信号A3*H3*F5*Q3*G2*J1除以第三校验信号A3),获得独立RRU通道的频率响应H3*F5*Q3、第二传输频响G2以及第三传输频响J1的乘积作为第三频响,即第三频响=H3*F5*Q3*G2*J1;
进一步地,可以获取第一频响H1*F1*Q1*G1*J1与第三频响H3*F5*Q3*G2*J1的差异(H1*F1*Q1*G1)/(H3*F5*Q3*G2),作为第一RRU通道与独立RRU通道之间的频率响应差异;以及,可以获取第二频响H2*F3*Q1*G1*J1与第三频响H3*F5*Q3*G2*J1的差异(H2*F3*Q1*G1)/(H3*F5*Q3*G2),作为第二RRU通道与独立RRU通道之间的频率响应差异;
进一步地,在根据第一RRU通道与独立RRU通道之间的频率响应差异、 以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异的过程中,可以将第一RRU通道与独立RRU通道之间的频率响应差异(H1*F1*Q1*G1)/(H3*F5*Q3*G2)除以第二RRU通道与独立RRU通道之间的频率响应差异(H2*F3*Q1*G1)/(H3*F5*Q3*G2),从而获取第一RRU通道与第二RRU通道之间的频率响应差异,即(H1*F1*Q1)/(H2*F3*Q1)。
本发明实施例中,通过实施上述图2所描述的方法,可以准确地获取图1所示的RRU通道网络架构中的任意两条交汇的RRU通道之间的频率响应差异。
在图2所描述的方法中,由于每一RRU通道组内的所有RRU通道由经同一电桥(又称为联合处理网络)进行交汇,因此,在求取任一RRU通道组内交汇的第一RRU通道和第二RRU通道之间的频率响应差异时,可以引入不在该任一RRU通道组内的独立RRU通道,并且分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异,并且根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异来获取第一RRU通道与第二RRU通道之间的频率响应差异。在获得第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异的基础上,可以将第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异进行运算,以抵消第一RRU通道与第二RRU通道交汇所带来对频率响应差异的影响,从而可以准确地获取交汇的RRU通道之间的频率响应差异。
请参阅图3,图3是本发明实施例公开的一种RRU通道频率响应差异的获取系统的结构示意图。其中,图3所示的RRU通道频率响应差异的获取系统可以适用于图1所示的RRU通道网络架构中,即在BBU和RRU之间可以划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥模块进行交汇。如图3所示,该系统可以包括:
第一获取单元301,用于针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异;其中,独立RRU通道不在任一RRU通道组内;
第二获取单元302,用于根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。
请一并参阅图4,图4是本发明实施例公开的另一种RRU通道频率响应差异的获取系统的结构示意图。其中,图4所描述的另一种RRU通道频率响应差异的获取系统是由图3所示的一种RRU通道频率响应差异的获取系统进行优化得到的。在图4所描述的另一种RRU通道频率响应差异的获取系统中,第一获取单元301包括:
第一耦合子单元3011,用于针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,对第一RRU通道和第二RRU通道的末端进行信号耦合,获得第一耦合信号;
第二耦合子单元3012,用于对独立RRU通道的末端进行信号耦合,获得第二耦合信号;
合路子单元3013,用于将第一耦合信号与第二耦合信号进行合路,获得合路信号;
采集子单元3014,用于对合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端输出的第一分量信号、第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,第一校准信号、第二校准信号以及第三校准信号是已知的、且两两正交或者互不相关的校准信号;
比较子单元3015,用于将第一分量信号与第一校准信号进行比较,获得第一频响;以及,将第二分量信号与第二校准信号进行比较,获得第二频响;以及,将第三分量信号与第三校准信号进行比较,获得第三频响;
获取子单元3016,用于获取第一频响与第三频响的差异,作为第一RRU通道与独立RRU通道之间的频率响应差异;以及,获取第二频响与第三频响的差异,作为第二RRU通道与独立RRU通道之间的频率响应差异。
其中,实施图4所描述的第一获取单元301,可以降低对RRU通道本身的设计要求。原因是该实现方式可以省去对每一耦合信号的传输频响的一致性的要求,因为每一耦合信号的传输频响会随环境因素变化,不稳定,所以该实现方式大大地降低对RRU通道本身的设计要求。
作为一种可选的实施方式,合路子单元3012具体用于利用第一耦合信号的第一传输频响对第一耦合信号进行处理,以及利用第二耦合信号的第二传输频响对第二耦合信号进行处理;以及,将处理后的第一耦合信号和处理后的第二耦合信号进行合路,获得合路信号。
作为一种可选的实施方式,采集子单元3014具体用于利用合成信号的第三传输频响对合成信号进行处理,以及对处理后的合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端对应的第一分量信号、第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,第一分量信号是第一校验信号、第一RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第二分量信号是第二校验信号、第二RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第三分量信号是第三校验信号、独立RRU通道的频率响应、第二传输频响以及第三传输频响的乘积。
作为一种可选的实施方式,比较子单元3015具体用于将第一分量信号除以第一校验信号,获得第一RRU通道的频率响应、第一传输频响以及第三传输频响的乘积作为第一频响;以及,将第二分量信号除以第二校验信号,获得第二RRU通道的频率响应、第一传输频响以及第三传输频响的乘积作为第二频响;以及,将第三分量信号除以第三校验信号,获得独立RRU通道的频率响应、第二传输频响以及第三传输频响的乘积作为第三频响;
作为一种可选的实施方式,第二获取单元301具体用于将第一RRU通道与独立RRU通道之间的频率响应差异除以第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。
以图1所示的RRU通道网络架构为例,假设第一RRU通道输入的第一校准信号为A1,第二RRU通道输入的第二校准信号为A2,独立RRU通道输入的第三校准信号为A3;其中,A1、A2以及A3是已知的、且两两正交或者互不相关的校准信号,或者,在分时输入时,A1、A2以及A3也可以是相同的校准信号,本发明实施例不作限定;而且进一步假设第一RRU通道的频率响应为H1*F1*Q1、第二RRU通道的频率响应为H2*F3*Q1、独立RRU通道的频率响应为H3*F5*Q3,其中,H1、H2、H3、F1、F3、F5、Q1以及Q3均为未知量;那么相应地,第一耦合子单元3011对第一RRU通道和第二RRU通道的末端进行信号耦合,可以获得第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1;以及,第二耦合子单元3012对对独立RRU通道的末端进行信号耦合,可以获得第二耦合信号A3*H3*F5*Q3;进一步地,合路子单元3013在第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1与第二耦合信号A3*H3*F5*Q3进行合路时,可以利用第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1的第一传输频响G1对第一耦合信号A1*H1*F1*Q1+A2*H2*F3*Q1与进行处理,即(A1*H1*F1*Q1+A2*H2*F3*Q1)*G1;以及利用第二耦合信号A3*H3*F5*Q3的第二传输频响G2对第二耦合信号A3*H3*F5*Q3进行处理,即(A3*H3*F5*Q3)*G2;并且将处理后的第一耦合信号(A1*H1*F1*Q1+A2*H2*F3*Q1)*G1和处理后的第二耦合信号(A3*H3*F5*Q3)*G2进行合路,获得合路信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2;
进一步地,采集子单元3014在对合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2进行采集,获得第一RRU通道输入的第一校准信号A1在末端输出的第一分量信号、第二RRU通道输入的第二校准信号A2在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号A3在末端 输出的第三分量信号的过程中,可以利用合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2的第三传输频响J1对合成信号A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2进行处理(即(A1*H1*F1*Q1*G1+A2*H2*F3*Q1*G1+A3*H3*F5*Q3*G2)*J1),以及对处理后的合成信号进行采集,获得第一RRU通道输入的第一校准信号A1在末端对应的第一分量信号A1*H1*F1*Q1*G1*J1、第二RRU通道输入的第二校准信号A2在末端对应的第二分量信号A2*H2*F3*Q1*G1*J1以及独立RRU通道输入的第三校准信号A3在末端对应的第三分量信号A3*H3*F5*Q3*G2*J1;可见,第一分量信号A1*H1*F1*Q1*G1*J1是第一校验信号A1、第一RRU通道的频率响应H1*F1*Q1、第一传输频响G1以及第三传输频响J1的乘积;第二分量信号A2*H2*F3*Q1*G1*J1是第二校验信号A2、第二RRU通道的频率响应H2*F3*Q1、第一传输频响G1以及第三传输频响J1的乘积;第三分量信号A3*H3*F5*Q3*G2*J1是第三校验信号A3、独立RRU通道的频率响应H3*F5*Q3、第二传输频响G2以及第三传输频响J1的乘积;
进一步地,比较子单元3015在将第一分量信号与第一校准信号进行比较的过程中,比较子单元3015可以在将第一分量信号与第一校准信号进行比较的过程中,可以将第一分量信号A1*H1*F1*Q1*G1*J1与第一校验信号A1进行运算(例如将第一分量信号A1*H1*F1*Q1*G1*J1除以第一校验信号A1),获得第一RRU通道的频率响应H1*F1*Q1、第一传输频响G1以及第三传输频响J1的乘积作为第一频响,即第一频响=H1*F1*Q1*G1*J1;在将第二分量信号与第二校准信号进行比较的过程中,可以将第二分量信号A2*H2*F3*Q1*G1*J1与第二校验信号A2进行运算(例如将第二分量信号A2*H2*F3*Q1*G1*J1除以第二校验信号A2),获得第二RRU通道的频率响应H2*F3*Q1、第一传输频响G1以及第三传输频响J1的乘积作为第二频响,即第二频响=H2*F3*Q1*G1*J1;在将第三分量信号与第三校准信号进行比较的过程中,可以将第三分量信号A3*H3*F5*Q3*G2*J1与第三校验信号A3进行运算(例如将第三分量信号 A3*H3*F5*Q3*G2*J1除以第三校验信号A3),获得独立RRU通道的频率响应H3*F5*Q3、第二传输频响G2以及第三传输频响J1的乘积作为第三频响,即第三频响=H3*F5*Q3*G2*J1;
进一步地,获取子单元3016可以获取第一频响H1*F1*Q1*G1*J1与第三频响H3*F5*Q3*G2*J1的差异(H1*F1*Q1*G1)/(H3*F5*Q3*G2),作为第一RRU通道与独立RRU通道之间的频率响应差异;以及,可以获取第二频响H2*F3*Q1*G1*J1与第三频响H3*F5*Q3*G2*J1的差异(H2*F3*Q1*G1)/(H3*F5*Q3*G2),作为第二RRU通道与独立RRU通道之间的频率响应差异;
进一步地,第二获取单元302在根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异的过程中,可以将第一RRU通道与独立RRU通道之间的频率响应差异(H1*F1*Q1*G1)/(H3*F5*Q3*G2)除以第二RRU通道与独立RRU通道之间的频率响应差异(H2*F3*Q1*G1)/(H3*F5*Q3*G2),从而获取第一RRU通道与第二RRU通道之间的频率响应差异,即(H1*F1*Q1)/(H2*F3*Q1)。
本发明实施例中,通过实施上述图4所描述的系统还可以包括一个选择开关单元,用于从多路合成信号中选择任一路合成信号提供给采集子单元3014,本发明实施例不作限定。
本发明实施例中,通过实施上述图3~图4所描述的系统,可以准确地获取图1所示的RRU通道网络架构中的任意两条交汇的RRU通道之间的频率响应差异。
本发明实施例中,上述的单元或子单元可以根据实际需要进行合并、划分和删减。
请参阅图5,图5是本发明实施例公开的一种基站设备的结构示意图。其中,图5所描述的基站设备可以是一个独立设备或者单板,也可以是对RRU新增的一部分,本发明实施例不作限定。其中,图5所示的基站设备可以应用于在BBU 和RRU之间划分多个RRU通道组,并且每一RRU通道组内的所有RRU通道经过同一电桥进行交汇的场景下。如图5所示,该基站设备可以包括电路板1、处理器2和存储器3,处理器2和存储器3承载在电路板1上,并且处理器2用于调用存储器3中存储的程序代码,以执行以下操作:
针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异;其中,独立RRU通道不经过第一RRU通道和第二RRU通道共同经过的电桥;
根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。
作为一种可选的实施方式,图5所示的基站设备还包括承载在电路板1上的第一耦合器4、第二耦合器5以及合路器6,其中,第一耦合器4和第二耦合器5分别电连接合路器6,并且合路器6电连接处理器2;其中,处理器2针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取第一RRU通道、第二RRU通道与独立RRU通道之间的频率响应差异的方式可以为:
处理器2针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,触发第一耦合器4对第一RRU通道和第二RRU通道的末端进行信号耦合,获得第一耦合信号并传输给合路器6;以及,触发第二耦合器5对独立RRU通道的末端进行信号耦合,获得第二耦合信号并传输给合路器6;其中,由合路器6将第一耦合信号与第二耦合信号进行合路,获得合路信号并传输给处理器2;
处理器2对合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端输出的第一分量信号、第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,第一校准信号、第二校准信号以及第三校准信号是已知的、且两两正交的校准信号;
处理器2将第一分量信号与第一校准信号进行比较,获得第一频响;以及, 将第二分量信号与第二校准信号进行比较,获得第二频响;以及,将第三分量信号与第三校准信号进行比较,获得第三频响;
处理器2获取第一频响与第三频响的差异,作为第一RRU通道与独立RRU通道之间的频率响应差异;以及,获取第二频响与第三频响的差异,作为第二RRU通道与独立RRU通道之间的频率响应差异。
作为一种可选的实施方式,合路器6将第一耦合信号与第二耦合信号进行合路,获得合路信号的方式具体为:
由合路器6利用第一耦合信号的第一传输频响对第一耦合信号进行处理,以及由合路器6利用第二耦合信号的第二传输频响对第二耦合信号进行处理;以及,由合路器6将处理后的第一耦合信号和处理后的第二耦合信号进行合路,获得合路信号。
作为一种可选的实施方式,处理器2对合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端输出的第一分量信号、第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及独立RRU通道输入的第三校准信号在末端输出的第三分量信号的方式具体为:
处理器2利用合成信号的第三传输频响对合成信号进行处理;
处理器2对处理后的合成信号进行采集,获得第一RRU通道输入的第一校准信号在末端对应的第一分量信号、第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,第一分量信号是第一校验信号、第一RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第二分量信号是第二校验信号、第二RRU通道的频率响应、第一传输频响以及第三传输频响的乘积;第三分量信号是第三校验信号、独立RRU通道的频率响应、第二传输频响以及第三传输频响的乘积。
作为一种可选的实施方式,处理器2将第一分量信号与第一校准信号进行比较,获得第一频响的方式具体为:
将第一分量信号除以第一校验信号,获得第一RRU通道的频率响应、第一传输频响以及第三传输频响的乘积作为第一频响;
处理器2将第二分量信号与第二校准信号进行比较,获得第二频响的方式具体为:
将第二分量信号除以第二校验信号,获得第二RRU通道的频率响应、第一传输频响以及第三传输频响的乘积作为第二频响;
处理器2将第三分量信号与第三校准信号进行比较,获得第三频响的方式具体为:
处理器2将第三分量信号除以第三校验信号,获得独立RRU通道的频率响应、第二传输频响以及第三传输频响的乘积作为第三频响;
处理器2根据第一RRU通道与独立RRU通道之间的频率响应差异、以及第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异,包括:
处理器2将第一RRU通道与独立RRU通道之间的频率响应差异除以第二RRU通道与独立RRU通道之间的频率响应差异,获取第一RRU通道与第二RRU通道之间的频率响应差异。
本发明实施例中,上述的第一、第二仅仅是用于表示两个不同的RRU通道,并不是对RRU通道进行排序。上述的第一传输频响可以直观地评价系统复现第一耦合信号的能力和过滤噪声的特性,而第二传输频响可以直观地评价系统复现第二耦合信号的能力和过滤噪声的特性,而第三传输频响可以直观地评价系统复现合成信号的能力和过滤噪声的特性。
本发明实施例中,通过实施上述图5所描述的系统,可以准确地获取图1所示的RRU通道网络架构中的任意两条交汇的RRU通道之间的频率响应差异。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(ReAd-Only Memory,ROM)、随机 存储器(RAndom Access Memory,RAM)、可编程只读存储器(ProgrAmmAble ReAd-only Memory,PROM)、可擦除可编程只读存储器(ErAsAble ProgrAmmAble ReAd Only Memory,EPROM)、一次可编程只读存储器(One-time ProgrAmmAble ReAd-Only Memory,OTPROM)、电子抹除式可复写只读存储器(ElectricAlly-ErAsAble ProgrAmmAble ReAd-Only Memory,EEPROM)、只读光盘(CompAct Disc ReAd-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种RRU通道频率响应差异的获取方法及系统、基站设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种RRU通道频率响应差异的获取方法,其特征在于,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇,所述方法包括:
    针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不在所述任一RRU通道组内;
    根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
  2. 根据权利要求1所述的方法,其特征在于,所述针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异,包括:
    针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合,获得第一耦合信号;以及,对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号;
    将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号;
    对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
    将所述第一分量信号与所述第一校准信号进行比较,获得第一频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
    获取所述第一频响与所述第三频响的差异,作为所述第一RRU通道与所述 独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号,包括:
    利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及利用所述第二耦合信号的第二传输频响对所述第二耦合信号进行处理;
    将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
  4. 根据权利要求3所述的方法,其特征在于,所述对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号,包括:
    利用所述合成信号的第三传输频响对所述合成信号进行处理;
    对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应的第一分量信号、所述第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
  5. 根据权利要求4所述的方法,其特征在于,所述将所述第一分量信号与所述第一校准信号进行比较,获得第一频响,包括:
    将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;
    所述将所述第二分量信号与所述第二校准信号进行比较,获得第二频响,包括:
    将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;
    所述将所述第三分量信号与所述第三校准信号进行比较,获得第三频响,包括:
    将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
    所述根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异,包括:
    将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
  6. 一种RRU通道频率响应差异的获取系统,其特征在于,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道由经同一电桥进行交汇,所述系统包括:
    第一获取单元,用于针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不在所述任一RRU通道组内;
    第二获取单元,用于根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
  7. 根据权利要求6所述的系统,其特征在于,所述第一获取单元包括:
    第一耦合子单元,用于针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合, 获得第一耦合信号;
    第二耦合子单元,用于对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号;
    合路子单元,用于将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号;
    采集子单元,用于对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
    比较子单元,用于将所述第一分量信号与所述第一校准信号进行比较,获得第一频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
    获取子单元,用于获取所述第一频响与所述第三频响的差异,作为所述第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
  8. 根据权利要求7所述的系统,其特征在于,所述合路子单元具体用于利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及利用所述第二耦合信号的第二传输频响对所述第二耦合信号进行处理;以及,将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
  9. 根据权利要求8所述的系统,其特征在于,所述采集子单元具体用于利用所述合成信号的第三传输频响对所述合成信号进行处理,以及对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应 的第一分量信号、所述第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
  10. 根据权利要求9所述的系统,其特征在于,所述比较子单元具体用于将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;以及,将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;以及,将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
    所述第二获取单元,具体用于将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
  11. 一种基站设备,其特征在于,在BBU和RRU之间划分多个RRU通道组,每一RRU通道组内的所有RRU通道经过同一电桥进行交汇,所述基站设备包括电路板、处理器和存储器,所述处理器和所述存储器承载在所述电路板上,并且所述处理器用于调用所述存储器中存储的程序代码,以执行以下操作:
    针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异;所述独立RRU通道不经过所述第一RRU通道和所述第二RRU通道共同经过的电桥;
    根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及 所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
  12. 根据权利要求11所述的基站设备,其特征在于,还包括承载在所述电路板上的第一耦合器、第二耦合器以及合路器,其中,所述第一耦合器和所述第二耦合器分别电连接所述合路器,并且所述合路器电连接所述处理器;其中,所述处理器针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,分别获取所述第一RRU通道、所述第二RRU通道与独立RRU通道之间的频率响应差异的方式具体为:
    所述处理器针对任一RRU通道组内交汇的第一RRU通道和第二RRU通道,触发所述第一耦合器对所述第一RRU通道和所述第二RRU通道的末端进行信号耦合,获得第一耦合信号并传输给所述合路器;以及,触发所述第二耦合器对所述独立RRU通道的末端进行信号耦合,获得第二耦合信号并传输给所述合路器;其中,由所述合路器将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号并传输给所述处理器;
    所述处理器对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号;其中,所述第一校准信号、所述第二校准信号以及所述第三校准信号是已知的、且两两正交或者互不相关的校准信号;
    所述处理器将所述第一分量信号与所述第一校准信号进行比较,获得第一频响;以及,将所述第二分量信号与所述第二校准信号进行比较,获得第二频响;以及,将所述第三分量信号与所述第三校准信号进行比较,获得第三频响;
    所述处理器获取所述第一频响与所述第三频响的差异,作为所述第一RRU通道与所述独立RRU通道之间的频率响应差异;以及,获取所述第二频响与所述第三频响的差异,作为所述第二RRU通道与所述独立RRU通道之间的频率响应差异。
  13. 根据权利要求12所述的基站设备,其特征在于,所述合路器将所述第一耦合信号与所述第二耦合信号进行合路,获得合路信号的方式具体为:
    由所述合路器利用所述第一耦合信号的第一传输频响对所述第一耦合信号进行处理,以及由所述合路器利用所述第二耦合信号的第二传输频响对所述第二耦合信号进行处理;以及,由所述合路器将处理后的所述第一耦合信号和处理后的所述第二耦合信号进行合路,获得合路信号。
  14. 根据权利要求13所述的基站设备,其特征在于,所述处理器对所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端输出的第一分量信号、所述第二RRU通道输入的第二校准信号在末端输出的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端输出的第三分量信号的方式具体为:
    所述处理器利用所述合成信号的第三传输频响对所述合成信号进行处理;
    所述处理器对处理后的所述合成信号进行采集,获得所述第一RRU通道输入的第一校准信号在末端对应的第一分量信号、所述第二RRU通道输入的第二校准信号在末端对应的第二分量信号以及所述独立RRU通道输入的第三校准信号在末端对应的第三分量信号;其中,所述第一分量信号是所述第一校验信号、所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第二分量信号是所述第二校验信号、所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积;所述第三分量信号是所述第三校验信号、所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积。
  15. 根据权利要求14所述的基站设备,其特征在于,所述处理器将所述第一分量信号与所述第一校准信号进行比较,获得第一频响的方式具体为:
    将所述第一分量信号除以所述第一校验信号,获得所述第一RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第一频响;
    所述处理器将所述第二分量信号与所述第二校准信号进行比较,获得第二 频响的方式具体为:
    将所述第二分量信号除以所述第二校验信号,获得所述第二RRU通道的频率响应、所述第一传输频响以及所述第三传输频响的乘积作为第二频响;
    所述处理器将所述第三分量信号与所述第三校准信号进行比较,获得第三频响的方式具体为:
    所述处理器将所述第三分量信号除以所述第三校验信号,获得所述独立RRU通道的频率响应、所述第二传输频响以及所述第三传输频响的乘积作为第三频响;
    所述处理器根据所述第一RRU通道与所述独立RRU通道之间的频率响应差异、以及所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异,包括:
    所述处理器将所述第一RRU通道与所述独立RRU通道之间的频率响应差异除以所述第二RRU通道与所述独立RRU通道之间的频率响应差异,获取所述第一RRU通道与所述第二RRU通道之间的频率响应差异。
PCT/CN2015/098040 2015-12-21 2015-12-21 Rru通道频率响应差异的获取方法及系统、基站设备 WO2017106999A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580085345.4A CN108432150A (zh) 2015-12-21 2015-12-21 Rru通道频率响应差异的获取方法及系统、基站设备
PCT/CN2015/098040 WO2017106999A1 (zh) 2015-12-21 2015-12-21 Rru通道频率响应差异的获取方法及系统、基站设备
EP15910999.0A EP3382902A4 (en) 2015-12-21 2015-12-21 Method and system for acquiring frequency response difference of radio remote unit (rru) channel, and base station equipment
US16/013,964 US10420172B2 (en) 2015-12-21 2018-06-21 RRU channel frequency response difference obtaining method and system, and base station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098040 WO2017106999A1 (zh) 2015-12-21 2015-12-21 Rru通道频率响应差异的获取方法及系统、基站设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/013,964 Continuation US10420172B2 (en) 2015-12-21 2018-06-21 RRU channel frequency response difference obtaining method and system, and base station device

Publications (1)

Publication Number Publication Date
WO2017106999A1 true WO2017106999A1 (zh) 2017-06-29

Family

ID=59088781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098040 WO2017106999A1 (zh) 2015-12-21 2015-12-21 Rru通道频率响应差异的获取方法及系统、基站设备

Country Status (4)

Country Link
US (1) US10420172B2 (zh)
EP (1) EP3382902A4 (zh)
CN (1) CN108432150A (zh)
WO (1) WO2017106999A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004943A1 (en) * 2002-07-02 2004-01-08 Kim Ki-Chul Base station system for mobile communication
CN102891708A (zh) * 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、系统及bbu
CN103001686A (zh) * 2011-09-16 2013-03-27 普天信息技术研究院有限公司 一种分布式天线系统的上行接收方法
CN103428825A (zh) * 2012-05-15 2013-12-04 中国普天信息产业股份有限公司 一种射频拉远单元的选择方法
CN103595665A (zh) * 2012-08-14 2014-02-19 华为技术有限公司 通道校正方法、装置及无线接入系统
CN104378775A (zh) * 2013-08-16 2015-02-25 普天信息技术研究院有限公司 Rru间通道校准的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056184B (zh) * 2009-10-30 2014-04-23 中兴通讯股份有限公司 射频拉远单元链路自适应方法及装置
CN102065531B (zh) * 2009-11-13 2014-06-11 中兴通讯股份有限公司 一种功率校准的方法及装置
CN102340852B (zh) * 2010-07-20 2015-02-18 电信科学技术研究院 移动通信系统基站节能方法及装置
EP2789107B1 (en) * 2012-08-09 2017-02-15 Axell Wireless Ltd. A digital capacity centric distributed antenna system
CN103905345B (zh) * 2012-12-27 2016-12-28 华为技术有限公司 通道校正装置、方法及系统
US9432063B2 (en) * 2013-01-16 2016-08-30 Huawei Technologies Co., Ltd. Radio frequency signal transceiving and processing method, device, and base station system
CN105849500A (zh) * 2013-06-21 2016-08-10 Gi运动直接有限公司 具有内置的内部射弹供给机构的压缩气体枪
CN103475609B (zh) * 2013-09-02 2016-11-09 华为技术有限公司 通信设备、基带单元和通信方法
US10194311B2 (en) * 2013-09-13 2019-01-29 Lg Electronics Inc. Method for setting and updating tracking area in C-RAN and apparatus therefor
US9716573B2 (en) * 2014-06-13 2017-07-25 Futurewei Technologies, Inc. Aggregated touchless wireless fronthaul
US9806816B2 (en) * 2014-10-10 2017-10-31 Futurewei Technologies, Inc. Re-modulation crosstalk and intensity noise cancellation in wavelength-division multiplexing (WDM) passive optical networks (PONs)
EP3272018B1 (en) * 2015-03-16 2020-06-24 Telefonaktiebolaget LM Ericsson (publ) Multipoint transmission and reception in a radio communication network
US10771120B2 (en) * 2015-04-27 2020-09-08 Apple Inc. Base station front end preprocessing
US9793996B2 (en) * 2015-09-14 2017-10-17 Futurewei Technologies, Inc. Sub-nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul with MIMO processing
US20170188314A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Uplink interference management in shared spectrum networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004943A1 (en) * 2002-07-02 2004-01-08 Kim Ki-Chul Base station system for mobile communication
CN103001686A (zh) * 2011-09-16 2013-03-27 普天信息技术研究院有限公司 一种分布式天线系统的上行接收方法
CN103428825A (zh) * 2012-05-15 2013-12-04 中国普天信息产业股份有限公司 一种射频拉远单元的选择方法
CN103595665A (zh) * 2012-08-14 2014-02-19 华为技术有限公司 通道校正方法、装置及无线接入系统
CN102891708A (zh) * 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、系统及bbu
CN104378775A (zh) * 2013-08-16 2015-02-25 普天信息技术研究院有限公司 Rru间通道校准的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382902A4 *

Also Published As

Publication number Publication date
EP3382902A1 (en) 2018-10-03
CN108432150A (zh) 2018-08-21
US20180302950A1 (en) 2018-10-18
US10420172B2 (en) 2019-09-17
EP3382902A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
CN104640013A (zh) 音箱控制方法及系统
CN104753612A (zh) 一种射频测试方法及系统
JP6224237B2 (ja) 通信方法及びデバイス
KR101961008B1 (ko) 광 버스트 전송망 노드의 타임슬롯 동기 트레이닝 방법, 노드 기기 및 네트워크
US10847968B2 (en) Differential protection method and system
CN103888970A (zh) 一种测试设备
CN102439965B (zh) 相机系统、信号延迟量调整方法和程序
CN106199231A (zh) 测试电子设备的测试前端模块、测试方法和模块化测试系统
CN103905345A (zh) 通道校正装置、方法及系统
KR20230116903A (ko) 클럭 동기화를 위한 방법 및 이종 컴퓨팅 시스템
JP2015226117A (ja) 同期制御装置および同期制御方法
WO2017106999A1 (zh) Rru通道频率响应差异的获取方法及系统、基站设备
CN110233799B (zh) 一种端口配置的方法和通信设备
CN106685588B (zh) 一种适配器、数据传输系统及方法
WO2022062308A1 (zh) 参考时钟的确定方法和装置、系统、存储介质及电子装置
KR20200138738A (ko) 정보 결정 및 구성 방법, 장치, 컴퓨터 저장 매체
KR20230029894A (ko) 구성 방법, 바인딩 방법, 장치, 설비, 송신 노드, 수신 노드 및 매체
US10673492B2 (en) Point-to-multipoint communication system in which automatic ID allocation is possible
KR101967694B1 (ko) 탈부착 가능하게 결합하는 구조의 무선통신 장치
US5136583A (en) Data-communication method for loop-type network having portable slave stations connectable to addressable junction boxes permanently connected in the network
CN105187137A (zh) 一种宽带阵列通道自动化标校系统
JP2010527173A (ja) シリアルデジタルインタフェースを有する測定装置
CN210123464U (zh) 一种fct测试装置及系统
CN117555839A (zh) 信号传输方法、装置、可编程逻辑器件及信号处理系统
JP2022049203A (ja) 無線通信装置、無線通信システム、および無線通信装置の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910999

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015910999

Country of ref document: EP

Effective date: 20180628