WO2017104575A1 - Testing system and testing method - Google Patents

Testing system and testing method Download PDF

Info

Publication number
WO2017104575A1
WO2017104575A1 PCT/JP2016/086778 JP2016086778W WO2017104575A1 WO 2017104575 A1 WO2017104575 A1 WO 2017104575A1 JP 2016086778 W JP2016086778 W JP 2016086778W WO 2017104575 A1 WO2017104575 A1 WO 2017104575A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
imaging device
inspection object
prepreg
light
Prior art date
Application number
PCT/JP2016/086778
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 岸
日野 真
直樹 坂井
Original Assignee
株式会社リコー
由美子 岸
日野 真
直樹 坂井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー, 由美子 岸, 日野 真, 直樹 坂井 filed Critical 株式会社リコー
Priority to JP2017556028A priority Critical patent/JP6677260B2/en
Priority to KR1020187016347A priority patent/KR102141216B1/en
Priority to CN201680071390.9A priority patent/CN108369194A/en
Publication of WO2017104575A1 publication Critical patent/WO2017104575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to an inspection system and an inspection method.
  • the camera and the light source are placed facing each other with the prepreg in between so that the light emitted from the light source passes through the prepreg and enters the camera, and voids inside the prepreg are detected based on the camera image
  • a method has been proposed (see, for example, Patent Document 1).
  • the present invention has been made in view of the above, and an object thereof is to provide an inspection system capable of discriminating the type of detected defect.
  • a first light source that irradiates the imaging region of the imaging device with light and an inspection device that inspects for the presence or absence of a defect in the inspection object.
  • the inspection device is based on an image captured by the imaging device.
  • a detector for detecting a defect of the inspection object.
  • an inspection system capable of discriminating the type of detected defect.
  • FIG. 1 It is a figure which illustrates the inspection system in a 1st embodiment. It is a figure (the 1) which illustrates the defect of a prepreg. It is a figure which illustrates the flowchart of the defect inspection process in 1st Embodiment. It is a figure which illustrates typically image data in a 1st embodiment. It is a figure which illustrates the inspection system in a 2nd embodiment. It is a figure which illustrates the flowchart of the defect inspection process in 2nd Embodiment. It is a figure which illustrates typically image data (B channel) in a 2nd embodiment. It is a figure which illustrates typically image data (R channel) in a 2nd embodiment. It is a figure which illustrates the inspection system in a 3rd embodiment.
  • FIG. 1 illustratest embodiment. It is a figure (the 1) which illustrates the defect of a prepreg. It is a figure which illustrates the flowchart of the defect inspection process in 1st Embodiment. It is a figure
  • FIG. 3 is a diagram (part 2) illustrating a defect of a prepreg. It is a figure which illustrates the flowchart of the defect detection process in 3rd Embodiment. It is a figure which illustrates typically the 1st image data in a 3rd embodiment. It is a figure which illustrates typically the 2nd image data in a 3rd embodiment. It is FIG. (1) explaining the required processing time of a defect detection. It is FIG. (2) explaining the required processing time of a defect detection. It is a figure which illustrates the inspection system in a 4th embodiment. It is a figure which illustrates the flowchart of the defect detection process in 4th Embodiment. It is a figure which illustrates the inspection system in a 5th embodiment.
  • FIG. 1 is a diagram illustrating an inspection system 100 according to the first embodiment.
  • the inspection system 100 includes a transport device 110, an imaging device 120, light sources 130a and 130b, and an inspection device 150, and inspects the presence or absence of defects in the prepreg 10 as an inspection object.
  • the prepreg 10 is obtained by impregnating a fiber base material with a thermosetting resin and then heating and hardening the thermosetting resin in the fiber base material.
  • the fiber base material is made by weaving a thread formed of, for example, glass fiber or polyester fiber.
  • the thermosetting resin is, for example, an epoxy resin or a phenol resin.
  • the prepreg 10 in the present embodiment is formed in a sheet shape with a smooth surface, and transmits light through a transparent thermosetting resin from a gap between fiber base materials.
  • the transport device 110 has a first transport belt 111 as a first transport unit and a second transport belt 112 as a second transport unit, and transports the prepreg 10 in the direction of the arrow in FIG.
  • first conveyor belt 111 an endless belt is stretched around a plurality of rollers including a driving roller. As the endless belt rotates following the rotation of the driving roller, the first transport belt 111 transports the prepreg 10 placed on the belt.
  • the second conveyor belt 112 has the same configuration as the first conveyor belt 111 and conveys the prepreg 10 delivered from the first conveyor belt 111.
  • the structure of the conveying apparatus 110 is not restricted to the structure illustrated in this embodiment, For example, the structure which conveys the prepreg 10 with a some conveying roller may be sufficient.
  • the imaging device 120 is a digital camera including an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the imaging device 120 is provided so that at least a part of the imaging area is a gap between the first conveyor belt 111 and the second conveyor belt 112 and overlaps with an area through which the prepreg 10 passes.
  • the imaging device 120 is provided so that the entire width of the prepreg 10 can be imaged between the first conveyor belt 111 and the second conveyor belt 112.
  • Each of the light sources 130a and 130b is an LED (Light Emitting Diode) array, for example, and irradiates the imaging region of the imaging device 120 with white light.
  • the light sources 130a and 130b may each be, for example, an organic EL (ElectroLuminescence) array, a fluorescent lamp such as a cold cathode tube, or the like.
  • the light sources 130a and 130b are disposed so that the imaging device 120 mainly receives diffusely reflected light from the surface of the prepreg 10 that is transported between the first transport belt 111 and the second transport belt 112, respectively.
  • the light sources 130a and 130b are provided so that the incident angle of the irradiated light to the surface of the prepreg 10 is 45 degrees.
  • the imaging device 120 is provided so that the optical axis of the optical system is perpendicular to the surface of the prepreg 10.
  • the positional relationship between the light sources 130 a and 130 b and the imaging device 120 is not limited to the above-described positional relationship as long as the imaging device 120 can mainly receive diffusely reflected light from the surface of the prepreg 10.
  • two light sources 130a and 130b are provided, but the number of light sources is not limited to this, and one or three or more light sources may be provided.
  • dome illumination may be provided so as to illuminate the imaging region of the imaging device 120.
  • “light sources 130a and 130b” may be simply referred to as “light source 130”.
  • the support member 140 is provided between the first conveyor belt 111 and the second conveyor belt 112.
  • the support member 140 supports the prepreg 10 that is transported between the first transport belt 111 and the second transport belt 112.
  • the support member 140 has a support surface 141 that contacts the prepreg 10.
  • the support surface 141 has a width that is greater than or equal to the width of the prepreg 10, and supports the entire width direction of the prepreg 10 between the first conveyance belt 111 and the second conveyance belt 112. Since the prepreg 10 is supported by the support surface 141 of the support member 140, the prepreg 10 is transported between the first transport belt 111 and the second transport belt 112 without bending.
  • the support surface 141 of the support member 140 is formed using a chromatic color material and has a chromatic color.
  • the support surface 141 is formed of a cyan material.
  • a chromatic paint may be applied to the support surface 141, and a portion including the support surface 141 may be formed of a material having a chromatic color.
  • the color of the support surface 141 should just be a chromatic color, and is not restricted to a cyan color.
  • the inspection apparatus 150 includes an image acquisition unit 151 and a detection unit 152.
  • the inspection device 150 is, for example, a computer including a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), and the like.
  • Each function of the inspection device 150, that is, the image acquisition unit 151 and the detection unit 152, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
  • the image acquisition unit 151 acquires image data of the prepreg 10 from the imaging device 120.
  • the detection unit 152 detects a defect present in the prepreg 10 based on the image data acquired by the image acquisition unit 151 from the imaging device 120.
  • FIG. 2 is a diagram illustrating a defect of the prepreg 10.
  • the defect A shown in FIG. 2 is a crack in the surface layer. Further, the defect B is a foreign matter mixed inside.
  • the detection unit 152 of the inspection device 150 detects a defect of the prepreg 10 from the image data of the prepreg 10 acquired by the image acquisition unit 151 from the imaging device 120, and further determines the type of the detected defect (defect A or defect B). .
  • FIG. 3 is a diagram illustrating a flowchart of the defect detection process in the first embodiment.
  • step S ⁇ b> 101 the transport device 110 transports the prepreg 10 so as to be transferred from the first transport belt 111 to the second transport belt 112.
  • step S102 the light source 130 irradiates the imaging region of the imaging device 120 with light.
  • step S ⁇ b> 103 the imaging device 120 captures an image of the prepreg 10 that is transported in the imaging region between the first transport belt 111 and the second transport belt 112.
  • the imaging device 120 has the imaging region provided in the gap between the first conveyor belt 111 and the second conveyor belt 112, and is supported by the support surface 141 of the support member 140 of the prepreg 10. The part that is present is imaged.
  • the imaging device 120 captures images of the entire prepreg 10 by continuously capturing images of the prepreg 10 transported by the transport device 110.
  • step S104 the image acquisition unit 151 of the inspection apparatus 150 acquires the image data of the prepreg 10 from the imaging apparatus 120. Subsequently, in step S ⁇ b> 105, the detection unit 152 detects a defect in the prepreg 10 based on the image data acquired by the image acquisition unit 151.
  • FIG. 4 is a diagram schematically illustrating image data of the prepreg 10 imaged by the imaging device 120.
  • the diffuse reflectance of the irradiation light emitted from the light source 130 is higher than the diffuse reflectance of the portion having no defect. For this reason, the amount of light received by the imaging device 120 that is reflected by the defect A of the prepreg 10 is larger than the amount of light that is received by the imaging device 120 after being reflected by a portion having no defect. Therefore, as shown in FIG. 4, in the image data of the prepreg 10, the portion where the defect A exists is brighter than the portion where there is no defect.
  • High diffuse reflectance means that the degree of diffuse reflection, that is, the reflection in a mode in which light is diffused in each direction regardless of the law of reflection when viewed macroscopically, is high.
  • the positional relationship between the light source 130 (130a and 130b) and the imaging device 120 is such that the higher the degree of diffuse reflection, that is, the reflection of the aspect in which light is diffused in each direction regardless of the reflection law when viewed macroscopically.
  • the imaging device 120 generates diffuse reflected light from the surface of the prepreg 10 and diffuse reflected light reflected by a foreign substance via the translucent prepreg 10 from a portion where the defect B of the prepreg 10 exists. Receive light. Therefore, in the image data of the imaging device 120, the color of the foreign matter appears so that the foreign matter can be seen through the prepreg 10 in the portion where the defect B of the prepreg 10 exists. For example, when a black foreign substance is mixed in the prepreg 10 to generate a defect B, the defect B looks like a dark shadow in the captured image (see FIG. 4).
  • the portion where the defect A exists is brighter than the portion where there is no defect. Therefore, the luminance of the pixel in the portion where the defect A exists in the image data is higher than the luminance of the pixel in the portion where there is no defect.
  • the luminance of the pixel where the defect B exists in the image data is lower than the luminance of the pixel where there is no defect.
  • the detection unit 152 of the inspection apparatus 150 calculates in advance the average brightness of pixels in a portion having no defect in the image data of the prepreg 10, and calculates the brightness of each pixel of the image data and the previously calculated average brightness. Detect defects based on the difference. For example, the detection unit 152 detects, as a defect A, a pixel whose luminance is higher than the average luminance in the image data. For example, the detection unit 152 detects a pixel having a luminance lower than the average luminance in the image data as the defect B.
  • the detection unit 152 calculates the difference between the luminance of each pixel in the image data and the average luminance, and defectives pixels whose luminance is higher than the average luminance and whose difference from the average luminance is preset to a first threshold value or more. You may detect as A. Further, the detection unit 152 may detect, as the defect B, a pixel whose luminance is lower than the average luminance and whose difference from the average luminance is equal to or higher than a second threshold value set in advance. By detecting a defect by comparing the difference between the luminance of each pixel and the average luminance with a threshold value, it is possible to reduce erroneous detection of the defect.
  • the detection unit 152 of the inspection device 150 detects defects such as the defect A (surface crack) and the defect B (mixed foreign matter) existing in the prepreg 10 based on the image data of the image captured by the imaging device 120. It can be detected by distinguishing.
  • the defect B that is a black foreign substance is detected has been described.
  • the luminance of the pixel in the portion where the defect B exists the defect B can be detected based on the difference from the luminance of the pixel in the part having no defect.
  • the inspection system 100 in the first embodiment it is possible to detect the defect of the prepreg 10 as the inspection object and determine the type of the defect.
  • the light source 130 and the imaging device 120 are provided so as to inspect the prepreg 10 in the gap between the first conveyance belt 111 and the second conveyance belt 112. With such a configuration, it is possible to inspect defects of the prepreg 10 with high accuracy without being affected by irregularities on the surfaces of the first conveyance belt 111 and the second conveyance belt 112.
  • the support member 140 supports the prepreg 10 between the first conveyance belt 111 and the second conveyance belt 112, the prepreg 10 is bent between the first conveyance belt 111 and the second conveyance belt 112. It is possible to carry out the inspection with high accuracy without causing it to occur.
  • the support surface 141 of the support member 140 is an achromatic color such as black, white, or gray, for example, in the image data picked up by the image pickup device 120, there is no portion where there is a defect A or a defect B.
  • the difference from the part may be unclear. Therefore, in the present embodiment, the support surface 141 of the support member 140 is made chromatic, so that the difference due to the presence or absence of a defect is clarified as described above so that the defect can be detected with high accuracy.
  • the image data of the captured image captured by the imaging device 120 is, for example, an RGB value in which each color of R (red), G (green), and B (blue) is represented by a numerical value of 0 to 255 for each pixel.
  • the detection unit 152 uses the color value having the largest luminance difference between the defective portion and the non-defective portion among the color values included in the RGB values according to the color of the support surface 141 of the support member 140. A defect may be detected.
  • the detection of the defect A that appears to be whitened due to cracks in the surface layer may be performed using G channel data having the G value of each pixel or the R value of each pixel.
  • R channel data having By using the G channel data and the R channel data it is possible to clarify the difference between the defect A and the portion without the defect and increase the detection sensitivity.
  • the defect B which is a black foreign substance, is detected by using B channel data having the B value of each pixel, thereby clarifying the difference between the defect B and the portion having no defect, thereby increasing the detection sensitivity. It becomes possible to raise.
  • the light source 130 emits white light
  • the light emitted from the light source is not limited to white light, and the wavelength of the color of the support surface 141 of the support member 140. Should be included.
  • the light source may be light of other colors including blue light, or may be cyan light or magenta light.
  • FIG. 5 is a diagram illustrating an inspection system 200 according to the second embodiment.
  • the inspection system 200 includes a transport device 210, an imaging device 220, a first light source 230, a second light source 240, and an inspection device 250, and checks whether there is a defect in the prepreg 10 as an inspection object. inspect.
  • the transport device 210 includes a first transport belt 211 as a first transport unit and a second transport belt 212 as a second transport unit, and transports the prepreg 10 in the direction of the arrow in FIG.
  • a first transport belt 211 as a first transport unit and a second transport belt 212 as a second transport unit, and transports the prepreg 10 in the direction of the arrow in FIG.
  • an endless belt is stretched around a plurality of rollers including a driving roller.
  • the first transport belt 211 transports the prepreg 10 placed on the belt.
  • the second transport belt 212 has the same configuration as the first transport belt 211 and transports the prepreg 10 delivered from the first transport belt 211.
  • the configuration of the transport device 210 is not limited to the configuration illustrated in the present embodiment, and may be a configuration in which the prepreg 10 is delivered and transported by a plurality of transport rollers, for example.
  • the imaging device 220 is a digital camera including an imaging element such as a CCD or CMOS.
  • the imaging device 220 is provided so that at least a part of the imaging area is a gap between the first conveyor belt 211 and the second conveyor belt 212 and overlaps the area through which the prepreg 10 passes.
  • the imaging device 220 is provided so that the entire width of the prepreg 10 can be imaged between the first conveyor belt 211 and the second conveyor belt 212.
  • the first light source 230 is, for example, a blue LED array, and irradiates blue light between the first conveyance belt 211 and the second conveyance belt 212.
  • the first light source 230 is arranged such that the imaging device 220 receives mainly diffuse reflected light from the surface of the prepreg 10 being conveyed.
  • the second light source 240 is, for example, a white LED array, and irradiates white light between the first conveyance belt 211 and the second conveyance belt 212.
  • the second light source 240 is disposed so as to face the imaging device 220 so that the imaging device 220 receives the transmitted light transmitted through the prepreg 10 being conveyed.
  • the first light source 230 emits blue light in a first wavelength range (blue wavelength range), and the second light source 240 has a second wavelength range different from the first wavelength range and the first wavelength range (for example, Irradiate white light including red and green wavelength regions.
  • the 1st light source 230 and the 2nd light source 240 may each irradiate the light from which a wavelength range differs, and may be comprised so that the light of a color different from this embodiment may be irradiated.
  • the first light source 230 and the second light source 240 may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, or the like.
  • the inspection apparatus 250 includes an image acquisition unit 251, a color information acquisition unit 252, and a detection unit 253.
  • the inspection device 250 is a computer including a CPU, a ROM, a RAM, and the like, for example.
  • Each function of the inspection apparatus 250, that is, the image acquisition unit 251, the color information acquisition unit 252, and the detection unit 253, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
  • the image acquisition unit 251 acquires the image data of the prepreg 10 from the imaging device 220.
  • the color information acquisition unit 252 acquires color information from the image data acquired by the image acquisition unit 251.
  • the detection unit 253 detects defects present in the prepreg 10 based on the color information acquired by the color information acquisition unit 252.
  • FIG. 6 is a diagram illustrating a flowchart of defect detection processing in the second embodiment.
  • step S ⁇ b> 201 the transport device 210 transports the prepreg 10 so as to be transferred from the first transport belt 211 to the second transport belt 212. .
  • step S202 the first light source 230 and the second light source 240 irradiate the imaging region of the imaging device 120 with light.
  • step S ⁇ b> 203 the imaging device 120 images the prepreg 10 that is transferred from the first conveyance belt 211 to the second conveyance belt 212.
  • the imaging device 220 captures images of the entire prepreg 10 by continuously capturing images of the prepreg 10 transported by the transport device 110.
  • step S204 the image acquisition unit 251 of the inspection device 250 acquires the image data of the prepreg 10 from the imaging device 220. Subsequently, in step S205, the color information acquisition unit 252 acquires first color information described later from the image data of the prepreg 10 acquired by the image acquisition unit 151.
  • the image data of the prepreg 10 imaged by the imaging device 220 is, for example, an RGB value in which each color of R (red), G (green), and B (blue) is represented by a numerical value of 0 to 255 for each pixel.
  • the color information acquisition unit 252 acquires blue B channel data (B value of each pixel) corresponding to blue light emitted from each of the first light source 230 and the second light source 240 as first color information. In this way, the color information acquisition unit 252 acquires the color data included in the wavelength range of the blue light emitted from the first light source 230 from the image data as the first color information.
  • FIG. 7 is a diagram schematically illustrating image data (B channel data) of the prepreg 10.
  • the diffuse reflectance of the blue light emitted from the first light source 230 is higher than the diffuse reflectance of the portion without the defect. For this reason, the amount of light received by the imaging device 220 when the blue light emitted from the first light source 230 is reflected by the defect A is larger than the amount of light received by the imaging device 220 after being reflected by a portion having no defect. Therefore, as shown in FIG. 7, in the B channel data, the portion where the defect A exists in the prepreg 10 is brighter than the portion where there is no defect.
  • the reason why the amount of light received by the imaging apparatus 220 is larger as the diffuse reflectance of the irradiation light from the first light source 230 is higher is the same as the reason described in the description of the first embodiment.
  • the irradiation light from the second light source 240 is blocked by the foreign matter. For this reason, among the blue light included in the irradiation light from the second light source 240, the amount of light received by the imaging device 220 is smaller in the portion where the defect B exists than in the portion where there is no defect. Therefore, as shown in FIG. 7, in the B channel image data, the portion where the defect B exists in the prepreg 10 is darker than the portion where there is no defect.
  • the color information acquisition unit 252 acquires second color information described later from the image data of the prepreg 10 acquired by the image acquisition unit 151.
  • the color information acquisition unit 252 acquires red R channel data (R value of each pixel) corresponding to red light included in white light emitted from the second light source 240 as second color information.
  • the color information acquisition unit 252 stores the data of the color included in the wavelength range of the red light, which is different from the blue light irradiated from the first light source 230 among the irradiation light from the second light source 240. Obtained from the image data as second color information.
  • the color information acquisition unit 252 may acquire green G channel data (G value of each pixel) corresponding to green light included in the white light emitted from the second light source 240 as the second color information. . Even in this case, the defect of the prepreg 10 can be detected as in the case of using the R channel data described below.
  • FIG. 8 is a diagram schematically illustrating image data (R channel data) of the prepreg 10.
  • the light emitted from the second light source 240 toward the imaging device 220 is blocked at a portion where the defect A or the defect B exists in the prepreg 10. For this reason, in the red light included in the irradiation light from the second light source 240, the amount of light received by the imaging device 220 is smaller in the portion where the defect A or the defect B exists than in the portion where there is no defect. Therefore, as shown in FIG. 8, in the R channel data, the portion where the defect A and the defect B exist in the prepreg 10 is darker than the portion where there is no defect.
  • the R value of each pixel in the image data is not affected by the blue light emitted from the first light source 230, and the red light included in the white light emitted from the second light source 240 is received by the imaging device 220. It depends on the amount. For this reason, even if the amount of light received by the imaging device 220 of the blue light from the first light source 230 increases in the portion where the defect A exists, the R value included in the image data does not increase. Therefore, as shown in FIG. 8, the portion where the defect A exists in the R channel data is not affected by the blue light.
  • step S207 the detection unit 253 calculates the difference between the B channel data as the first color information acquired by the color information acquisition unit 252 and the R channel data as the second color information. Subsequently, in step S ⁇ b> 208, the detection unit 253 detects a defect in the prepreg 10.
  • the detection unit 253 includes a difference value ((B value ⁇ R value) in the same pixel) between the B channel data as the first color information and the R channel data as the second color information in the image data.
  • the calculation is performed for all pixels to be processed.
  • the difference data between the B channel data and the R channel data obtained in this way is referred to as BR channel data.
  • the value of the defect A portion is larger than the value of the portion having no defect (see FIG. 7).
  • the value of the defect A portion is smaller than the value of the portion having no defect (see FIG. 8). Therefore, in the BR channel data, the difference between the value of the defective A portion and the value of the non-defective portion is the difference between the value of the defective A portion and the value of the non-defective portion in each of the B channel data and the R channel data. Greater than the difference.
  • the value of each part of (defect A, defect B, no defect) is (250, 50, 120).
  • the value of each part (defect A, defect B, no defect) is (50, 50, 120).
  • the BR channel data has a value of (200, 0, 0) for each part of (defect A, defect B, no defect).
  • the difference between the value of the defect A portion and the value of the portion without the defect is 200, and the difference between the value of the defect A portion and the value of the portion without the defect in the B channel data (130). Bigger than. Further, the difference (200) between the value of the defect A portion and the value of the non-defect portion in the BR channel data is the difference (70) between the value of the defect A portion and the value of the non-defect portion in the R channel data. Bigger than.
  • the detection unit 253 detects the defect A based on the difference between the value of the defect A portion and the value of the portion without the defect, the difference between the value of the defect A portion and the value of the portion without the defect is large.
  • the defect A can be detected with higher accuracy.
  • luminance unevenness in a portion where there is no defect in the prepreg 10 included in each of the B channel data and the R channel data is canceled.
  • the detection unit 253 can reduce erroneous detection of the defect A by using the BR channel data from which the luminance unevenness is canceled.
  • the detection unit 253 is a part of the B channel data in which the pixel value is smaller than the average value of the non-defective part and the difference from the average value of the non-defective part is equal to or greater than a preset threshold value. Is detected as a defect B.
  • the inspection system 200 in the second embodiment it is possible to detect the defect of the prepreg 10 as the inspection object and determine the type of the defect.
  • B channel data is acquired as the first color information
  • R channel data is acquired as the second color information from the image data captured by the imaging device 220, and a defect is detected based on these differences.
  • the detection accuracy of the defect A is improved and the erroneous detection is reduced.
  • the prepreg is obtained by impregnating a fiber base material such as carbon fiber with a thermosetting resin such as an epoxy resin, and heating and drying to cure the thermosetting resin in the fiber base material. It is used for multilayer substrates.
  • a fiber base material such as carbon fiber
  • a thermosetting resin such as an epoxy resin
  • Such prepregs may have defects such as surface irregularities, surface layer cracks, and contamination by foreign matters in the manufacturing process.
  • Embodiment described below is made in view of the above-described situation, and an object thereof is to provide an inspection system capable of detecting a plurality of defects having different types of inspection objects in a short time.
  • an inspection system capable of detecting a plurality of defects with different types of inspection objects in a short time.
  • FIG. 9 is a diagram illustrating an inspection system 1100 according to the third embodiment.
  • the inspection system 1100 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, first light sources 1131 a and 1131 b, a second light source 1132, a support member 1140, a sorting mechanism 1150, 1 tray 1151, second tray 1152, and inspection device 1160.
  • the inspection system 1100 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
  • the prepreg 1010 is obtained by impregnating a fiber base material with a thermosetting resin and then heating and curing the thermosetting resin in the fiber base material.
  • the fiber base material is made by weaving a thread formed of, for example, glass fiber or polyester fiber.
  • the thermosetting resin is, for example, an epoxy resin or a phenol resin.
  • the prepreg 1010 in this embodiment is formed in a sheet shape with a smooth surface, and transmits light through a transparent thermosetting resin from a gap between fiber base materials.
  • the conveyance device 1110 includes a first conveyance belt 1111 as a first conveyance unit, a second conveyance belt 1112 as a second conveyance unit, and a third conveyance belt 1113 as a third conveyance unit, and the prepreg 1010 is illustrated in FIG. Transport in the direction of the arrow.
  • the first conveying belt 1111 an endless belt is stretched around a plurality of rollers including a driving roller. As the endless belt rotates following the rotation of the driving roller, the first transport belt 1111 transports the prepreg 1010 placed on the belt.
  • the second conveyor belt 1112 has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the first conveyor belt 1111.
  • the third conveyor belt 1113 has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the second conveyor belt 1112.
  • the configuration of the transport device 1110 is not limited to the configuration illustrated in the present embodiment, and may be a configuration in which the prepreg 1010 is transported by a plurality of transport rollers, for example.
  • the first imaging device 1121 is a digital camera provided with an imaging element such as a CCD or CMOS.
  • the first imaging device 1121 is configured such that at least a part of an imaging area (first imaging area) is a gap between the first conveyance belt 1111 and the second conveyance belt 1112 and overlaps an area through which the prepreg 1010 passes. Is provided.
  • the first imaging device 1121 is provided so that the entire width of the prepreg 1010 can be imaged between the first conveyor belt 1111 and the second conveyor belt 1112.
  • the first light sources 1131a and 1131b are, for example, LED (Light Emitting Diode) arrays, and the first imaging device 1121 irradiates light to the first imaging region where the prepreg 1010 is imaged.
  • the first light sources 1131a and 1131b may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, a halogen lamp, or the like.
  • the light source is preferably an LED from the viewpoint of long life, little heat generation, and monochromatic light can be selected.
  • the first light sources 1131a and 1131b are arranged so that the first imaging device 1121 receives mainly diffuse reflected light from the surface of the prepreg 1010 conveyed between the first conveyance belt 1111 and the second conveyance belt 1112, respectively.
  • the first light sources 1131a and 1131b are provided so that the incident angle of the irradiated light on the surface of the prepreg 1010 is 45 degrees.
  • the first imaging device 1121 is provided so that the optical axis of the optical system is perpendicular to the surface of the prepreg 1010.
  • the positional relationship between the first light sources 1131a and 1131b and the first imaging device 1121 is limited to the above-described positional relationship. It is not something that can be done.
  • the two light sources 1131a and 1131b are provided symmetrically, but the number of light sources is not limited to this, and one or three or more light sources may be provided.
  • a dome illumination may be provided as a light source so as to illuminate the first imaging region of the first imaging device 1121.
  • first light sources 1131a and 1131b may be simply referred to as “first light source 1131”.
  • the support member 1140 is provided between the first transport belt 1111 and the second transport belt 1112.
  • the support member 1140 supports the prepreg 1010 that is transported between the first transport belt 1111 and the second transport belt 1112.
  • the support member 1140 has a support surface 1141 that contacts the prepreg 1010.
  • the support surface 1141 is formed to have a width equal to or greater than the width of the prepreg 1010, and supports the entire width direction of the prepreg 1010 between the first conveyance belt 1111 and the second conveyance belt 1112.
  • the prepreg 1010 is supported by the support surface 1141 of the support member 1140, so that the prepreg 1010 is transported between the first transport belt 111 and the second transport belt 1112 without being bent.
  • the support member 1140 supports the prepreg 1010 between the first conveyance belt 1111 and the second conveyance belt 1112, so that the prepreg 1010 is bent between the first conveyance belt 1111 and the second conveyance belt 1112. It is possible to accurately inspect the defect without causing the occurrence of the problem.
  • the support surface 1141 of the support member 1140 is formed using a chromatic color material and has a chromatic color.
  • the support surface 1141 is formed of a cyan material.
  • a chromatic paint may be applied to the support surface 1141, and a portion including the support surface 1141 may be formed of a material having a chromatic color.
  • the color of the support surface 1141 should just be a chromatic color, and is not restricted to a cyan color.
  • the support surface 1141 of the support member 1140 is an achromatic color such as black, white, or gray, for example, the difference due to the presence or absence of a defect may be unclear in the image data captured by the first imaging device 1121. is there. Therefore, in the present embodiment, the support surface 1141 of the support member 1140 is chromatic in order to clarify the difference due to the presence or absence of defects in the image data and increase the defect detection accuracy.
  • the second imaging device 1122 is a digital camera including an imaging element such as a CCD or a CMOS, for example.
  • the second imaging device 1122 is provided so that at least a part of the imaging region (second imaging region) is between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps the region through which the prepreg 1010 passes. ing.
  • the second imaging device 1122 is provided so that the entire width of the prepreg 1010 can be imaged between the second conveyance belt 1112 and the third conveyance belt 1113.
  • the second light source 1132 is, for example, an LED array, and the second imaging device 1122 irradiates the second imaging region where the prepreg 1010 is imaged with light.
  • the second light source 1132 may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, a halogen lamp, or the like.
  • the second light source 1132 is disposed so that the second imaging device 1122 mainly receives specularly reflected light from the surface of the prepreg 1010 that is transported between the second transport belt 1112 and the third transport belt 1113.
  • the second light source 1132 is provided so that the incident angle of the irradiated light to the surface of the prepreg 1010 is 45 degrees.
  • the second imaging device 1122 is provided such that the angle of the optical axis of the optical system with respect to the surface of the prepreg 1010 is 45 degrees.
  • the sorting mechanism 1150 guides the prepreg 1010 from the third transport belt 1113 to the first tray 1151 or the second tray 1152 according to the defect inspection result, as will be described later.
  • the sorting mechanism 1150 may have any configuration as long as the prepreg 1010 can be sorted according to the defect inspection result.
  • the prepreg 1010A in which no defect is detected is guided and stacked on the first tray 1151 by the sorting mechanism 1150.
  • the prepreg 1010B in which a defect is detected is guided and stacked by the sorting mechanism 1150.
  • the inspection apparatus 1160 includes an image acquisition unit 1161, a defect detection unit 1162, and a sorting unit 1163.
  • the inspection device 1160 is, for example, a computer that includes a CPU, a ROM, a RAM, and the like.
  • Each function of the inspection apparatus 1160, that is, the image acquisition unit 1161, the defect detection unit 1162, and the sorting unit 1163, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
  • the image acquisition unit 1161 acquires image data of the prepreg 1010 from the first imaging device 1121 and the second imaging device 1122.
  • the defect detection unit 1162 detects a defect present in the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 from the first imaging device 1121 and the second imaging device 1122.
  • the sorting unit 1163 controls the sorting mechanism 1150 based on the defect detection result of the prepreg 1010 by the defect detection unit 1162, and guides the prepreg 1010 from the third transport belt 1113 to the first tray 1151 or the second tray 1152.
  • the sorting unit 1163 controls the sorting mechanism 1150 so that the prepreg 1010A in which no defect is detected is guided to the first tray 1151, and the prepreg 1010B in which the defect is detected is guided to the second tray 1152.
  • FIG. 10 is a diagram illustrating a defect of the prepreg 1010.
  • the defect AA shown in FIG. 10 is unevenness formed on the surface of the prepreg 1010.
  • the defect BB is a crack in the surface layer of the prepreg 1010.
  • the defect CC is a foreign matter mixed in the prepreg 1010.
  • the defect detection unit 1162 of the inspection apparatus 1160 detects a defect of the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 from the first imaging device 1121 and the second imaging device 1122. In FIG. 10, the defect AA is exaggerated, and the defect AA is a minute unevenness that cannot actually be visually confirmed.
  • FIG. 11 is a diagram illustrating a flowchart of defect detection processing in the third embodiment.
  • step S ⁇ b> 1101 the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the third transport belt 1113.
  • the first imaging device 1121 images the prepreg 1010 conveyed in the first imaging area between the first conveyance belt 1111 and the second conveyance belt 1112.
  • the first imaging region of the first imaging device 1121 is provided between the first conveyor belt 1111 and the second conveyor belt 1112, and the first imaging device 1121 supports the support member 1140 of the prepreg 1010.
  • the part supported by the surface 1141 is imaged.
  • the first imaging device 1121 images the entire prepreg 1010 by continuously capturing images of the prepreg 1010 conveyed by the conveying device 1110.
  • step S1103 the defect detection unit 1162 of the inspection apparatus 1160 detects a defect of the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the first imaging device 1121 (hereinafter referred to as first image data). To do.
  • FIG. 12 is a diagram schematically illustrating the first image data of the prepreg 1010 imaged by the first imaging device 1121.
  • the first imaging device 1121 has diffuse reflection light from the prepreg 1010 and diffuse reflection light reflected on the support surface 1141 of the support member 1140 via the prepreg 1010 having translucency from a portion where the prepreg 1010 is not defective. And receive light. Therefore, in the first image data of the prepreg 1010, the color of the support surface 1141 of the support member 1140 appears so that the support surface 1141 of the support member 1140 can be seen through the prepreg 1010 in a portion having no defect. In this embodiment, since the support surface 1141 of the support member 1140 is cyan, the portion of the captured image of the first imaging device 1121 that has no defect in the prepreg 1010 is cyan.
  • the defect AA of the prepreg 1010 reflects the irradiation light from the first light source 1131 in the same manner as the part having no defect. For this reason, the amount of light received by the first imaging device 1121 from the defect AA of the prepreg 1010 is equal to the amount of light received by the first imaging device 1121 from a portion having no defect. Therefore, as shown in FIG. 12, the portion where the defect AA exists in the first image data of the prepreg 1010 has the same brightness as the portion without the defect.
  • the defect BB of the prepreg 1010 has a state of whitening due to internal cracks.
  • the first imaging device 1121 has a diffuse reflection light from the surface of the prepreg 1010 and a diffuse reflection light reflected by the defect BB through the prepreg 1010 having translucency from a portion where the defect BB of the prepreg 1010 exists. Is received. Accordingly, the portion where the defect BB exists in the first image data of the prepreg 1010 has a higher luminance than the portion where there is no defect.
  • the first imaging device 1121 has diffuse reflection light from the surface of the prepreg 1010 and diffuse reflection light reflected by foreign matter through the prepreg 1010 having translucency from a portion where the defect CC of the prepreg 1010 exists. And receive light. Accordingly, in the first image data of the first imaging device 1121, the color of the foreign matter appears so that the foreign matter can be seen through the prepreg 1010 in the portion where the defect CC of the prepreg 1010 exists. For example, when a black foreign substance is mixed into the prepreg 1010 and a defect CC occurs, the defect CC appears as a dark shadow in the first image data.
  • the portion where the defect BB and the defect CC are present is different in brightness and color from the portion having no defect.
  • the defect detection unit 1162 of the inspection apparatus 1160 calculates in advance the average luminance of the pixels in the first image data of the prepreg 1010 where there is no defect, and the luminance of each pixel of the first image data is calculated in advance. A defect is detected based on the comparison with the calculated average luminance. For example, the defect detection unit 1162 detects, as the defect BB, a pixel whose luminance is higher than the average luminance in the first image data. In addition, the defect detection unit 1162 detects, for example, a pixel whose luminance is lower than the average luminance in the first image data as a defect CC.
  • the defect detection unit 1162 calculates, for example, the luminance difference between each pixel and the average luminance in the first image data (that is, “the luminance of each pixel” ⁇ “average luminance”), and the defect BB is calculated based on the luminance difference. And a defect CC may be detected.
  • the defect detection unit 1162 compares the first threshold value (> 0) and the second threshold value ( ⁇ 0) set in advance with the luminance difference, and detects a pixel having the luminance difference equal to or greater than the first threshold value as the defect BB. .
  • a pixel having a luminance difference equal to or smaller than the second threshold is detected as a defect CC.
  • the defect detection unit 1162 of the inspection apparatus 1160 can detect the defect BB and the defect CC present in the prepreg 1010 based on the first image data acquired from the first imaging apparatus 1121.
  • the defect CC that is a black foreign substance has been described.
  • the luminance of the pixel in the part where the defect CC exists and the part that does not have the defect The defect CC can be detected based on the difference from the luminance of the pixel.
  • step S ⁇ b> 1104 the second imaging device 1122 images the prepreg 1010 that is conveyed in the second imaging region between the second conveyance belt 1112 and the third conveyance belt 1113. To do.
  • the second imaging region of the second imaging device 1122 is provided between the second conveyor belt 1112 and the third conveyor belt 1113 as described above.
  • the second imaging device 1122 captures the entire prepreg 1010 by continuously capturing images of the prepreg 1010 transported by the transport device 1110.
  • step S1105 the defect detection unit 1162 of the inspection apparatus 1160 detects defects in the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122 (hereinafter referred to as second image data). To detect.
  • FIG. 13 is a diagram schematically illustrating second image data of the prepreg 1010 imaged by the second imaging device 1122.
  • the second imaging device 1122 receives specularly reflected light from the surface of the prepreg 1010 from a portion where the prepreg 1010 is not defective. Further, in the portion where the defect CC exists, the surface of the prepreg 1010 regularly reflects the irradiation light from the second light source 1132 in the same manner as the portion where there is no defect. Therefore, the second imaging device 1122 receives specularly reflected light from the surface of the prepreg 1010 from the portion where the defect CC of the prepreg 1010 exists, similarly to the portion without the defect.
  • the diffuse reflectance of the irradiation light from the second light source 1132 at the defect AA and the defect BB of the prepreg 1010 is higher than the diffuse reflectance of the portion having no defect. For this reason, the amount of light received by the second imaging device 1122 from the defect AA and the defect BB of the prepreg 1010 is smaller than the amount of light received by the second imaging device 1122 from a portion where there is no defect. Therefore, as shown in FIG. 13, in the second image data of the prepreg 1010, the portion where the defect AA and the defect BB are present is darker than the portion where there is no defect or the portion where the defect CC is present.
  • the reason why the amount of received light received by the second imaging device 1122 is smaller as the diffuse reflectance of the prepreg 1010 with respect to the irradiation light from the second light source 1132 is higher is as follows.
  • High diffuse reflectance means that diffuse reflection, that is, the degree of reflection that diffuses light in each direction regardless of the law of reflection when viewed macroscopically is high.
  • the positional relationship between the second light source 1132 and the second imaging device 1122 is a positional relationship in which the amount of light received by the second imaging device 1122 is larger as the degree of diffuse reflection is lower, that is, closer to regular reflection.
  • the defect detection unit 1162 of the inspection device 1160 is, for example, the second prepreg 1010.
  • the image data the average luminance of the pixels of the portion having no defect is calculated in advance, and the defect AA and the defect BB are detected by comparing the luminance of each pixel of the second image data with the previously calculated average luminance.
  • the defect detection unit 1162 detects, as the defect AA and the defect BB, pixels whose luminance is lower than the average luminance in the second image data.
  • the defect detection unit 1162 calculates, for example, a luminance difference with respect to the average luminance of each pixel in the second image data (that is, “the luminance of each pixel” ⁇ “average luminance”), and the luminance difference is preset. Pixels that are less than or equal to the threshold value may be detected as defects AA and BB.
  • the defect detection unit 1162 of the inspection apparatus 1160 detects the defect AA and the defect BB present in the prepreg 1010 based on the second image data acquired from the second imaging apparatus 1122.
  • step S1106 when none of the defect AA, the defect BB, and the defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1106: NO), the process proceeds to step S1107. Proceed to In step S1107, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the third transport belt 1113 to the first tray 1151, and ends the process.
  • step S1106 If the defect detection unit 1162 detects any one of the defects AA, BB, and CC from the prepreg 1010 (step S1106: YES), the process proceeds to step S1108.
  • step S1108 the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which the defect is detected from the third transport belt to the second tray 1152, and the process is ended.
  • the defect detection unit 1162 of the inspection device 1160 detects the defect BB and the defect CC of the prepreg 1010 from the first image data imaged by the first imaging device 1121 (step S1103). Further, the defect AA and the defect BB of the prepreg 1010 are detected from the second image data imaged by the second imaging device 1122 (step S1105). As described above, the type of defect to be detected is different between the process using the first image data and the process using the second image data.
  • step S1103 by the first image data the defect BB and the defect CC are processed differently (for example, a process in which a pixel having a luminance higher than the average luminance is detected as a defect BB, and a pixel having a luminance lower than the average luminance is determined as the defect CC. Detecting process).
  • step S1105 based on the second image data the defect AA and the defect BB are detected by the same process (for example, a process of detecting pixels whose luminance is lower than the average luminance as the defect AA and the defect BB).
  • the processing time t1 of the process using the first image data is longer than the processing time t2 of the process using the second image data.
  • the second imaging device 1122 is configured to capture an image upstream of the first imaging device 1121 in the transport path of the prepreg 1010, the overall processing time increases.
  • the transport time of the prepreg 1010 between the first imaging region of the first imaging device 1121 and the second imaging region of the second imaging device 1122 is t3, as shown in FIG. 14A, the first image data
  • the first imaging device 1121 is configured to capture an image upstream of the second imaging device 1122 in the transport path of the prepreg 1010.
  • the defect of the prepreg 1010 as the inspection object is detected based on the images captured by the first imaging device 1121 and the second imaging device 1122. can do.
  • the first imaging device 1121 captures an image upstream of the second imaging device 1122 in the transport path of the prepreg 1010, so that it is possible to shorten the time required for defect detection processing and improve productivity. Become.
  • the first imaging device 1121 is provided so as to inspect the prepreg 1010 in the gap between the conveyor belts 1111 and 1112 of the conveyor device 1110. Further, a second imaging device 1122 and the like are provided so as to inspect the prepreg 1010 in the gap between the conveyance belts 1112 and 1113 of the conveyance device 1110. With such a configuration, it is possible to inspect defects of the prepreg 1010 with high accuracy without being affected by irregularities on the surface of the conveyor belt in the conveyor 1110.
  • FIG. 15 is a diagram illustrating an inspection system 1200 according to the fourth embodiment.
  • the inspection system 1200 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160.
  • the inspection system 1200 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
  • the conveyance device 1110 includes a fourth conveyance belt 1114 as a fourth conveyance unit in addition to the first conveyance belt 1111, the second conveyance belt 1112, and the third conveyance belt 1113, and the prepreg 1010 is moved in the direction of the arrow in FIG. 15. Transport to.
  • the fourth conveyor belt has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the third conveyor belt 1113.
  • the third imaging device 1123 is, for example, a digital camera including an imaging element such as a CCD or a CMOS.
  • the third imaging device 1123 is such that at least a part of an imaging area (third imaging area) is a gap between the third conveyance belt 1113 and the fourth conveyance belt 1114 and overlaps with an area through which the prepreg 1010 passes. Is provided.
  • the third imaging device 1123 images the prepreg 1010 from the side opposite to the second imaging device 1122. In the present embodiment, the third imaging device 1123 images the prepreg 1010 via the mirror 1171.
  • the third light source 1133 is, for example, an LED array, and the third imaging device 1123 irradiates the third imaging region where the prepreg 1010 is imaged with light. Irradiation light from the third light source 1133 is reflected by the half mirror 1172 and guided to the third imaging region between the third conveyor belt 1113 and the fourth conveyor belt 1114.
  • the third light source 1133, the mirror 1171, and the half mirror 1172 receive specularly reflected light mainly from the surface of the prepreg 1010 that the third imaging device 1123 is transported between the third transport belt 1113 and the fourth transport belt 1114.
  • a light control film may be provided in the third light source 1133 so that the light emitted from the third light source 1133 becomes parallel light.
  • FIG. 16 is a diagram illustrating a flowchart of defect detection processing in the fourth embodiment.
  • step S1201 the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the fourth transport belt 1114.
  • step S1202 the first imaging device 1121 images the prepreg 1010 conveyed in the first imaging area between the first conveyance belt 1111 and the second conveyance belt 1112.
  • step S1203 the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg in the same manner as in the third embodiment described above based on the first image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the first imaging device 1121. 1010 defects BB and CC are detected.
  • step S1204 the second imaging device 1122 images the prepreg 1010 that is transported in the second imaging region between the second transport belt 1112 and the third transport belt 1113.
  • step S1205 the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg in the same manner as in the third embodiment described above based on the second image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122. Defect AA and defect BB on the first surface side of 1010 are detected.
  • step S1206 the third imaging device 1123 images the prepreg 1010 conveyed in the third imaging area between the third conveyor belt 1113 and the fourth conveyor belt 1114.
  • step S1207 the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg 1010 of the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the third imaging device 1123 (hereinafter referred to as third image data).
  • third image data hereinafter referred to as third image data.
  • the defect detection method of the third image data acquired from the third imaging device 1123 by the defect detection unit 1162 is the same as the defect detection method of the second image data captured by the second imaging device 1122.
  • the defect AA and the defect BB can be detected on both surfaces of the prepreg 1010 based on the second image data captured by the second imaging device 1122 and the third image data captured by the third imaging device 1123.
  • step S1208 If none of the defect AA, the defect BB, and the defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1208: NO), the process proceeds to step S1209.
  • the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the fourth transport belt 1114 to the first tray 1151, and ends the process.
  • step S1208 If any one of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1208: YES), the process proceeds to step S1210.
  • the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which a defect has been detected from the fourth transport belt 1114 to the second tray 1152, and the process ends.
  • the inspection object is based on the images captured by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123.
  • the defect of the prepreg 1010 can be detected.
  • the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process.
  • the inspection system 1200 performs the first imaging device 1121, the second imaging device 1122, and the third imaging device so that the prepreg 1010 is inspected in the gap between the respective transport belts of the transport device 1110.
  • An imaging device 1123 and the like are provided. With such a configuration, it is possible to inspect the prepreg 1010 for defects with high accuracy without being affected by irregularities on the surface of the conveyor belt in the conveyor 1110 as in the third embodiment. .
  • FIG. 17 is a diagram illustrating an inspection system 1300 according to the fifth embodiment.
  • the inspection system 1300 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a fourth light source 1134, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160.
  • the inspection system 1300 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
  • the first light sources 1131a and 1131b are, for example, blue LED arrays, and irradiate blue light between the first transport belt 1111 and the second transport belt 1112.
  • the first light sources 1131a and 1131b are arranged so that the first imaging device 1121 receives mainly diffuse reflected light from the surface of the prepreg 1010 being conveyed.
  • the fourth light source 1134 is, for example, a white LED array, and irradiates white light between the first conveyance belt 1111 and the second conveyance belt 1112.
  • the fourth light source 1134 is disposed so as to face the first imaging device 1121 so that the first imaging device 1121 receives the transmitted light that has passed through the prepreg 1010 being conveyed.
  • the first light sources 1131a and 1131b emit blue light in the first wavelength range (blue wavelength range), and the fourth light source 1134 is a second wavelength range different from the first wavelength range and the first wavelength range. Irradiate light including, for example, red and green wavelength regions.
  • the first light sources 1131a and 1131b and the fourth light source 1134 may irradiate light having different wavelength ranges, or may be configured to irradiate light having a different color from the present embodiment.
  • the first light sources 1131a and 1131b and the fourth light source 1134 may be, for example, an organic EL array, a cold cathode tube, a fluorescent lamp such as a halogen lamp, or the like.
  • the inspection apparatus 1160 includes a color information acquisition unit 1164 in addition to the image acquisition unit 1161, the defect detection unit 1162, and the sorting unit 1163.
  • the color information acquisition unit 1164 acquires color information from the image data acquired by the image acquisition unit 1161.
  • the defect detection unit 1162 detects a defect present in the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 and the color information acquired by the color information acquisition unit 1164.
  • FIG. 18 is a diagram illustrating a flowchart of defect detection processing in the fifth embodiment.
  • step S1301 the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the fourth transport belt 1114.
  • step S ⁇ b> 1302 the first imaging device 1121 images the prepreg 1010 that is conveyed in the first imaging region between the first conveyance belt 1111 and the second conveyance belt 1112.
  • step S1303 the color information acquisition unit 1164 of the inspection device 1160 acquires first color information from the first image data captured by the first imaging device 1121.
  • the first image data of the prepreg 1010 imaged by the first imaging device 1121 is expressed by numerical values of 0 to 255 for each color of R (red), G (green), and B (blue) for each pixel, for example. RGB values.
  • the color information acquisition unit 1164 acquires blue B channel data (B value of each pixel) corresponding to blue light emitted from the first light sources 1131a and 1131b and the fourth light source 1134 as the first color information. As described above, the color information acquisition unit 1164 acquires the color data included in the wavelength range of the blue light emitted from the first light sources 1131a and 1131b and the fourth light source 1134 as the first color information from the first image data. .
  • FIG. 19 is a diagram schematically illustrating the first image data (B channel data) of the prepreg 1010 imaged by the first imaging device 1121.
  • the blue light emitted from the first light sources 1131a and 1131b is reflected in the same manner as the part without the defect. For this reason, the amount of light received from the defect AA of the prepreg 1010 received by the first imaging device 1121 is equal to the amount of light received from the portion having no defect. Accordingly, as shown in FIG. 19, the B channel data shows the same brightness in the portion where the defect AA exists and the portion where there is no defect.
  • the diffuse reflectance of the blue light irradiated from the first light sources 1131a and 1131b is higher than the diffuse reflectance of the portion without the defect. For this reason, the amount of received light from the defect BB of the blue light emitted from the first light source 1131 received by the first imaging device 1121 is larger than the amount of light received from the portion having no defect. Therefore, as shown in FIG. 19, in the B channel data, the portion where the defect BB exists in the prepreg 1010 is brighter than the portion where there is no defect.
  • the irradiation light from the fourth light source 1134 is blocked by the foreign matter. For this reason, the amount of blue light received in the irradiation light from the fourth light source 1134 received by the first imaging device 1121 is smaller in the portion where the defect CC exists than in the portion where there is no defect. Accordingly, as shown in FIG. 19, in the B channel data, the portion where the defect CC exists is darker than the portion where there is no defect.
  • the portion where the defect BB exists is brighter than the portion where there is no defect. Further, the portion where the defect CC exists is darker than the portion where there is no defect.
  • the color information acquisition unit 1164 acquires the second color information from the first image data captured by the first imaging device 1121.
  • the color information acquisition unit 1164 acquires red R channel data (R value of each pixel) corresponding to red light included in white light emitted from the fourth light source 1134 as second color information.
  • the color information acquisition unit 1164 outputs the color data included in the wavelength range of the red light, which is different from the blue light irradiated from the first light source 1131 among the irradiation light from the fourth light source 1134. Obtained from the image data as second color information.
  • the color information acquisition unit 1164 may acquire green G channel data (G value of each pixel) corresponding to green light included in white light emitted from the fourth light source 1134 as second color information. Also in this case, the defect of the prepreg 1010 can be detected as in the case of using the R channel data described below.
  • FIG. 20 is a diagram schematically illustrating the first image data (R channel data) of the prepreg 1010 imaged by the first imaging device 1121.
  • the light emitted from the fourth light source 1134 toward the first imaging device 1121 is transmitted in the same manner in the portion where the defect AA exists and the portion where there is no defect in the prepreg 1010. For this reason, the amount of red light received in the irradiation light from the fourth light source 1134 received by the first imaging device 1121 is substantially equal between the portion where the defect AA exists and the portion where there is no defect. Therefore, as shown in FIG. 20, the R channel data shows the same brightness in the portion where the defect AA exists in the prepreg 1010 as in the portion where there is no defect.
  • the light emitted from the fourth light source 1134 toward the first imaging device 1121 is blocked by a portion where the defect BB or the defect CC exists in the prepreg 1010.
  • the amount of red light received in the irradiation light from the fourth light source 1134 is smaller in the portion where the defect BB or the defect CC exists than in the portion where there is no defect. Therefore, as shown in FIG. 20, in the R channel data, the portion where the defect BB and the defect CC exist in the prepreg 1010 is darker than the portion where there is no defect.
  • the R value of each pixel in the image data is not affected by the blue light emitted from the first light source 1131 by the first imaging device 1121, and the light emitted from the fourth light source 1134 by the first imaging device 1121. It is determined by the amount of red light received in. For this reason, the amount of blue light received from the first light source 1131 received by the first imaging device 1121 in the portion where the defect AA exists is increased, and the R value included in the image data does not increase. Therefore, as shown in FIG. 20, the portion where the defect AA exists in the R channel data is not affected by the blue light.
  • step S1305 the defect detection unit 1162 acquires the B channel data as the first color information acquired by the color information acquisition unit 1164 and the second color information. The difference from the R channel data is calculated. Subsequently, in step S1306, the defect detection unit 1162 detects a defect of the prepreg 1010 based on the first image data and the color information.
  • step S1305 the defect detection unit 1162 calculates a difference value ((B value ⁇ R value) in the same pixel) between the B channel data as the first color information and the R channel data as the second color information as image data. Are calculated for all the pixels included in.
  • the difference data between the B channel data and the R channel data obtained in this way is referred to as BR channel data.
  • the value of the defective BB portion is larger than the value of the portion having no defect (see FIG. 19).
  • the value of the defective BB portion is smaller than the value of the portion having no defect (see FIG. 20). Therefore, in the BR channel data, the difference between the value of the defective BB portion and the value of the non-defective portion is the difference between the value of the defective BB portion and the value of the non-defective portion in each of the B channel data and the R channel data. Greater than the difference.
  • the value of each part of (defect BB, no defect) is (250, 120).
  • the value of each part (defect BB, no defect) is (50, 120).
  • the value of each part of (defect AA, no defect) is (200, 0).
  • the difference between the value of the defective BB portion and the value of the portion without the defect is 200, and the difference between the value of the defective BB portion and the value of the portion without the defect in the B channel data (130). Greater than. Further, the difference (200) between the value of the defective BB portion and the value of the non-defective portion in the BR channel data is the difference (70) between the value of the defective BB portion and the non-defective portion of the R channel data. Bigger than.
  • the defect detection unit 1162 detects the defect BB based on the difference between the value of the defect BB portion and the value of the portion without the defect, the difference between the value of the defect BB portion and the value of the portion without the defect is By using large BR channel data, it becomes possible to detect the defect BB with higher accuracy. Further, in the BR channel data, luminance unevenness in a portion where there is no defect in the prepreg 1010 included in each of the B channel data and the R channel data is canceled. For this reason, the defect detection unit 1162 can detect the defect BB with high accuracy by reducing erroneous detection by using the BR channel data from which the luminance unevenness is canceled.
  • the defect detection unit 1162 has a pixel value smaller than the average value of the non-defective portion in the R channel data, and the difference from the average value of the non-defective portion is equal to or greater than a preset threshold value.
  • the part is detected as a defect BB or a defect CC.
  • step S1307 the second imaging device 1122 images the prepreg 1010 conveyed in the second imaging area between the second conveyance belt 1112 and the third conveyance belt 1113.
  • step S1308 the defect detection unit 1162 detects the defect AA and the defect BB on the first surface side of the prepreg 1010 based on the second image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122. .
  • step S1309 the third imaging device 1123 images the prepreg 1010 conveyed in the third imaging area between the third conveyance belt 1113 and the fourth conveyance belt 1114.
  • the defect detection unit 1162 uses the third image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the third imaging device 1123, and the second surface side of the prepreg 1010 opposite to the first surface. A defect AA and a defect BB are detected.
  • the detection method of the defect AA and the defect BB based on the second image data imaged by the second imaging device 1122 and the third image data imaged by the third imaging device 1123 is the same as that of the above-described fourth embodiment. .
  • step S1311 If none of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1311: NO), the process proceeds to step S1312.
  • the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the fourth transport belt 1114 to the first tray 1151, and ends the process.
  • step S1311 If any one of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1311: YES), the process proceeds to step S1313.
  • step S ⁇ b> 1313 the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which the defect is detected from the fourth transport belt 1114 to the second tray 1152, and the process is ended.
  • the inspection object is based on the images imaged by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123.
  • the defect of the prepreg 1010 can be detected.
  • the defect detection unit 1162 uses the B channel data as the first color information and the R channel data as the second color information acquired by the color information acquisition unit 1164 from the first image data, thereby reducing erroneous detection.
  • the defect BB can be detected with high accuracy.
  • the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device 1123, and thus the third embodiment described above. Similarly, productivity can be improved by shortening the time required for defect detection processing.
  • FIG. 21 is a diagram illustrating an inspection system 1400 according to the sixth embodiment.
  • the inspection system 1400 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160.
  • the inspection system 1400 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
  • the transport device 1110 includes a first transport belt 1111, a second transport belt 1112, and a third transport belt 1113, and transports the prepreg 1010 in the direction of the arrow in FIG.
  • the third imaging device 1123 is configured such that at least a part of an imaging area (third imaging area) is a gap between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps with an area through which the prepreg 1010 passes. Is provided.
  • the third imaging device 1123 images the prepreg 1010 from the side opposite to the second imaging device 1122. Similar to the second imaging device 1122, the third imaging device 1123 is provided so as to image the prepreg 1010 that passes between the second conveyance belt 1112 and the third conveyance belt 1113.
  • the defect detection accuracy based on the image data of each imaging device decreases.
  • the second imaging device 1122, the third imaging device 1122, the third imaging device 1122, and the third imaging device 1123 receive light from the second light source 1132 as low as possible. It is preferable to configure the imaging device 1123, the second light source 1132, the third light source 1133, and the like.
  • the defect detection unit 1162 of the inspection apparatus 1160 is based on the image data acquired from the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. AA, defect BB, and defect CC are detected.
  • the inspection system 1400 in the sixth embodiment detects a defect of the prepreg 1010 as an inspection object by the same process as the defect detection process in the fourth embodiment, and the first prepreg 1010 is detected according to the defect detection result. Sort into tray 1151 or second tray 1152.
  • the inspection object is based on the images imaged by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123.
  • the defect of the prepreg 1010 can be detected.
  • the third embodiment described above is configured such that the first imaging device 1121 images the prepreg 1010 upstream of the second imaging device 1122 and the third imaging device 1123 in the transport path of the prepreg 1010. Similarly, it is possible to improve productivity by reducing the time required for the defect detection processing.
  • both the second imaging device 1122 and the third imaging device 1123 image the prepreg 1010 between the second conveyance belt 1112 and the third conveyance belt 1113.
  • the overall configuration can be reduced in size.
  • a fourth light source 1134 is provided, color information is acquired from the first image data imaged by the first imaging device 1121, and a defect is detected based on the acquired color information. It may be configured.
  • FIG. 22 is a diagram illustrating an inspection system 1500 according to the seventh embodiment.
  • the inspection system 1500 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160.
  • the inspection system 1500 inspects for the presence or absence of a prepreg 1010 defect as an inspection object conveyed by the conveyance device 1110.
  • the third imaging device 1123 is configured such that at least a part of an imaging area (third imaging area) is a gap between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps with an area through which the prepreg 1010 passes. Is provided.
  • the third light source 1133 is disposed so that the third imaging device 1123 receives specularly reflected light mainly from the surface of the prepreg 1010 that is transported between the second transport belt 1112 and the third transport belt 1113. .
  • the defect detection accuracy based on the image data of each imaging device decreases.
  • the second light source 1132 and the third light source 1133 are preferably configured.
  • the optical axis 1132a (light irradiation direction) of the second light source 1132 and the optical axis 1133a (light irradiation direction) of the third light source 1133 are configured to be parallel.
  • the amount of light received from the third light source 1133 of the second imaging device 1122 and the amount of light received from the second light source 1132 of the third imaging device 1123 are reduced, and at the same time the defect detection accuracy of the prepreg 1010 is maintained.
  • the device configuration can be reduced in size.
  • the defect detection unit 1162 of the inspection apparatus 1160 is based on image data captured by the first imaging apparatus 1121, the second imaging apparatus 1122, and the third imaging apparatus 1123, respectively.
  • the defect AA, the defect BB, and the defect CC are detected.
  • the inspection system 1500 detects a defect of the prepreg 1010 as an inspection object by a process similar to the defect detection process according to the fourth embodiment, and the first prepreg 1010 is detected according to the defect detection result. Sort into tray 1151 or second tray 1152.
  • the inspection object is based on the images captured by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123.
  • the defect of the prepreg 1010 can be detected.
  • the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process.
  • a fourth light source 1134 is provided, color information is acquired from the first image data imaged by the first imaging device 1121, and a defect is detected based on the acquired color information. It may be configured.
  • FIG. 23 is a diagram illustrating an inspection system 1600 according to the eighth embodiment.
  • the inspection system 1600 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, first light sources 1131a and 1131b, a second light source 1132, a third light source 1133, a support member 1140, A sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160 are included.
  • the inspection system 1600 inspects the presence / absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
  • the first imaging device 1121 and the second imaging device 1122 are provided so as to image the prepreg 1010 conveyed by the conveying device 1110 on the conveying belt.
  • the first imaging device 1121 is provided to image the prepreg 1010 on the first transport belt 1111.
  • the second imaging device 1122 is provided so as to image the prepreg 1010 on the second conveyance belt 1112. Note that the first imaging device 1121 and the second imaging device 1122 may be provided so as to image the prepreg 1010 on the same conveyance belt.
  • the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg based on the first image data captured by the first image capturing apparatus 1121 and the second image data captured by the second image capturing apparatus 1122. 1010 defects are detected.
  • the defect of the prepreg 1010 as the inspection object is detected based on the images captured by the first imaging device 1121 and the second imaging device 1122. Can be detected.
  • the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process. Furthermore, by arranging the first imaging region of the first imaging device 1121 and the second imaging region of the second imaging device 1122 so as to be close to each other, the device configuration can be reduced in size.

Abstract

A testing system for testing a transparent sheet-shaped object to be tested, the testing system having an imaging device for imaging the object to be tested, a first light source for radiating light onto an imaging area of the imaging device so that the imaging device receives scattered and reflected light mainly from the surfaces of the object to be tested, and a testing device for testing whether any flaws are present in the object to be tested. The testing device has a detection unit for detecting flaws in the object to be tested on the basis of the imaged image produced by the imaging device.

Description

検査システム及び検査方法Inspection system and inspection method
 本発明は、検査システム及び検査方法に関する。 The present invention relates to an inspection system and an inspection method.
 例えばガラスやプリプレグ(prepreg)等を検査対象物として、製造工程において生じる可能性がある表層のひび割れや異物の混入といった欠陥を検出する様々な方法が提案されている。 For example, various methods have been proposed for detecting defects such as surface cracks and foreign matter that may occur in the manufacturing process using glass or prepreg as an inspection object.
 例えば、光源から照射された光がプリプレグを透過してカメラに入射するように、カメラと光源とをプリプレグを間に挟んで対向するように配置し、カメラ画像に基づいてプリプレグ内部のボイドを検出する方法が提案されている(例えば、特許文献1参照)。 For example, the camera and the light source are placed facing each other with the prepreg in between so that the light emitted from the light source passes through the prepreg and enters the camera, and voids inside the prepreg are detected based on the camera image A method has been proposed (see, for example, Patent Document 1).
 特許文献1に係る方法では、カメラには検査対象物としてのプリプレグからの透過光が入射する。このため、カメラの撮像画像には、検査対象物の表層のひび割れや内部に混入した異物といった種類が異なる欠陥も同様に影のように表れる。したがって、検査対象物に存在する欠陥の種類を判別できない可能性がある。 In the method according to Patent Document 1, transmitted light from a prepreg as an inspection object enters the camera. For this reason, in the captured image of the camera, defects of different types such as cracks in the surface layer of the inspection object and foreign matter mixed inside also appear as shadows. Therefore, there is a possibility that the type of defect present in the inspection object cannot be determined.
 本発明は上記に鑑みてなされたものであって、検出した欠陥の種類を判別可能な検査システムを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an inspection system capable of discriminating the type of detected defect.
 本発明の一態様によれば、透光性を有するシート状の検査対象物を検査する検査システムは、検査対象物を撮像する撮像装置と、撮像装置が検査対象物の表面から主として拡散反射光を受光するように、撮像装置の撮像領域に光を照射する第1光源と、検査対象物の欠陥の有無を検査する検査装置と、を有し、検査装置は、撮像装置による撮像画像に基づいて検査対象物の欠陥を検出する検出部を有する。 According to one embodiment of the present invention, an inspection system that inspects a light-transmitting sheet-like inspection object includes an imaging device that images the inspection object, and the imaging device mainly diffusely reflects light from the surface of the inspection object. A first light source that irradiates the imaging region of the imaging device with light and an inspection device that inspects for the presence or absence of a defect in the inspection object. The inspection device is based on an image captured by the imaging device. And a detector for detecting a defect of the inspection object.
 本発明の実施形態によれば、検出した欠陥の種類を判別可能な検査システムが提供される。 According to the embodiment of the present invention, an inspection system capable of discriminating the type of detected defect is provided.
第1の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 1st embodiment. プリプレグの欠陥を例示する図(その1)である。It is a figure (the 1) which illustrates the defect of a prepreg. 第1の実施形態における欠陥検査処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect inspection process in 1st Embodiment. 第1の実施形態における画像データを模式的に例示する図である。It is a figure which illustrates typically image data in a 1st embodiment. 第2の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 2nd embodiment. 第2の実施形態における欠陥検査処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect inspection process in 2nd Embodiment. 第2の実施形態における画像データ(Bチャンネル)を模式的に例示する図である。It is a figure which illustrates typically image data (B channel) in a 2nd embodiment. 第2の実施形態における画像データ(Rチャンネル)を模式的に例示する図である。It is a figure which illustrates typically image data (R channel) in a 2nd embodiment. 第3の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 3rd embodiment. プリプレグの欠陥を例示する図(その2)である。FIG. 3 is a diagram (part 2) illustrating a defect of a prepreg. 第3の実施形態における欠陥検出処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect detection process in 3rd Embodiment. 第3の実施形態における第1画像データを模式的に例示する図である。It is a figure which illustrates typically the 1st image data in a 3rd embodiment. 第3の実施形態における第2画像データを模式的に例示する図である。It is a figure which illustrates typically the 2nd image data in a 3rd embodiment. 欠陥検出の必要処理時間について説明する図(その1)である。It is FIG. (1) explaining the required processing time of a defect detection. 欠陥検出の必要処理時間について説明する図(その2)である。It is FIG. (2) explaining the required processing time of a defect detection. 第4の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 4th embodiment. 第4の実施形態における欠陥検出処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect detection process in 4th Embodiment. 第5の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 5th embodiment. 第5の実施形態における欠陥検出処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect detection process in 5th Embodiment. 第5の実施形態における第1画像データ(Bチャンネル)を模式的に例示する図である。It is a figure which illustrates typically the 1st image data (B channel) in a 5th embodiment. 第5の実施形態における第1画像データ(Rチャンネル)を模式的に例示する図である。It is a figure which illustrates typically the 1st image data (R channel) in a 5th embodiment. 第6の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 6th embodiment. 第7の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in a 7th embodiment. 第8の実施形態における検査システムを例示する図である。It is a figure which illustrates the inspection system in an 8th embodiment.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。なお、以下の実施形態では、検査対象物としてプリプレグの欠陥の有無を検査する方法について説明するが、検査対象物はプリプレグに限られない。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted. In addition, although the following embodiment demonstrates the method to test | inspect the presence or absence of the defect of a prepreg as an inspection target object, an inspection target object is not restricted to a prepreg.
 [第1の実施形態]
 図1は、第1の実施形態における検査システム100を例示する図である。
[First embodiment]
FIG. 1 is a diagram illustrating an inspection system 100 according to the first embodiment.
 検査システム100は、図1に示されるように、搬送装置110、撮像装置120、光源130a及び130b、並びに検査装置150を有し、検査対象物としてのプリプレグ10における欠陥の有無を検査する。 As shown in FIG. 1, the inspection system 100 includes a transport device 110, an imaging device 120, light sources 130a and 130b, and an inspection device 150, and inspects the presence or absence of defects in the prepreg 10 as an inspection object.
 プリプレグ10は、繊維基材に熱硬化性樹脂を含浸させた後、繊維基材中の熱硬化性樹脂を加熱して硬化させたものである。繊維基材は、例えば、ガラス繊維やポリエステル繊維等で形成された糸が織り込まれたものである。熱硬化性樹脂は、例えば、エポキシ樹脂やフェノール樹脂等である。本実施形態におけるプリプレグ10は、表面が平滑なシート状に形成され、繊維基材の間隙から透明な熱硬化性樹脂を通じて光を透過する。 The prepreg 10 is obtained by impregnating a fiber base material with a thermosetting resin and then heating and hardening the thermosetting resin in the fiber base material. The fiber base material is made by weaving a thread formed of, for example, glass fiber or polyester fiber. The thermosetting resin is, for example, an epoxy resin or a phenol resin. The prepreg 10 in the present embodiment is formed in a sheet shape with a smooth surface, and transmits light through a transparent thermosetting resin from a gap between fiber base materials.
 搬送装置110は、第1搬送部としての第1搬送ベルト111及び第2搬送部としての第2搬送ベルト112を有し、プリプレグ10を図1における矢印方向に搬送する。第1搬送ベルト111では、駆動ローラを含む複数のローラに無端ベルトが架け渡されている。回転する駆動ローラに従動して無端ベルトが回転することで第1搬送ベルト111はベルト上に載置されるプリプレグ10を搬送する。第2搬送ベルト112は第1搬送ベルト111と同様の構成を備え、第1搬送ベルト111から受け渡されるプリプレグ10を搬送する。 The transport device 110 has a first transport belt 111 as a first transport unit and a second transport belt 112 as a second transport unit, and transports the prepreg 10 in the direction of the arrow in FIG. In the first conveyor belt 111, an endless belt is stretched around a plurality of rollers including a driving roller. As the endless belt rotates following the rotation of the driving roller, the first transport belt 111 transports the prepreg 10 placed on the belt. The second conveyor belt 112 has the same configuration as the first conveyor belt 111 and conveys the prepreg 10 delivered from the first conveyor belt 111.
 なお、搬送装置110の構成は、本実施形態において例示される構成に限られるものではなく、例えば、複数の搬送ローラでプリプレグ10を搬送する構成であってもよい。 In addition, the structure of the conveying apparatus 110 is not restricted to the structure illustrated in this embodiment, For example, the structure which conveys the prepreg 10 with a some conveying roller may be sufficient.
 撮像装置120は、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を備えるデジタルカメラである。撮像装置120は、撮像領域の少なくとも一部が第1搬送ベルト111と第2搬送ベルト112との間の間隙であってプリプレグ10が通過する領域に重なるように設けられている。本実施形態では、撮像装置120は、第1搬送ベルト111と第2搬送ベルト112との間でプリプレグ10の幅方向の全体を撮像できるように設けられている。 The imaging device 120 is a digital camera including an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The imaging device 120 is provided so that at least a part of the imaging area is a gap between the first conveyor belt 111 and the second conveyor belt 112 and overlaps with an area through which the prepreg 10 passes. In the present embodiment, the imaging device 120 is provided so that the entire width of the prepreg 10 can be imaged between the first conveyor belt 111 and the second conveyor belt 112.
 光源130a及び130bは、それぞれが例えばLED(Light Emitting Diode)アレイであり、撮像装置120の撮像領域に白色光を照射する。なお、光源130a及び130bは、それぞれが例えば有機EL(ElectroLuminescence)アレイ、冷陰極管等の蛍光灯等であってもよい。 Each of the light sources 130a and 130b is an LED (Light Emitting Diode) array, for example, and irradiates the imaging region of the imaging device 120 with white light. The light sources 130a and 130b may each be, for example, an organic EL (ElectroLuminescence) array, a fluorescent lamp such as a cold cathode tube, or the like.
 光源130a及び130bは、それぞれ、撮像装置120が第1搬送ベルト111と第2搬送ベルト112との間を搬送されるプリプレグ10の表面から主として拡散反射光を受光するように配置されている。本実施形態では、光源130a及び130bは、それぞれ、照射光のプリプレグ10の表面への入射角度が45度となるように設けられている。また、撮像装置120は、光学系の光軸がプリプレグ10の表面に対して垂直になるように設けられている。 The light sources 130a and 130b are disposed so that the imaging device 120 mainly receives diffusely reflected light from the surface of the prepreg 10 that is transported between the first transport belt 111 and the second transport belt 112, respectively. In the present embodiment, the light sources 130a and 130b are provided so that the incident angle of the irradiated light to the surface of the prepreg 10 is 45 degrees. Further, the imaging device 120 is provided so that the optical axis of the optical system is perpendicular to the surface of the prepreg 10.
 なお、撮像装置120がプリプレグ10の表面から主として拡散反射光を受光することが可能であれば、光源130a及び130bと撮像装置120との位置関係は上記し位置関係に限られるものではない。本実施形態では、2つの光源130a及び130bが設けられているが、光源の数はこれに限られるものではなく、1つ又は3つ以上の光源が設けられてもよい。また、光源として、撮像装置120の撮像領域を照らすようにドーム照明が設けられてもよい。以下の説明では、「光源130a及び130b」を単に「光源130」という場合がある。 Note that the positional relationship between the light sources 130 a and 130 b and the imaging device 120 is not limited to the above-described positional relationship as long as the imaging device 120 can mainly receive diffusely reflected light from the surface of the prepreg 10. In the present embodiment, two light sources 130a and 130b are provided, but the number of light sources is not limited to this, and one or three or more light sources may be provided. Further, as a light source, dome illumination may be provided so as to illuminate the imaging region of the imaging device 120. In the following description, “ light sources 130a and 130b” may be simply referred to as “light source 130”.
 支持部材140は、第1搬送ベルト111と第2搬送ベルト112との間に設けられている。支持部材140は、第1搬送ベルト111と第2搬送ベルト112との間を搬送されるプリプレグ10を支持する。支持部材140は、プリプレグ10に当接する支持面141を有する。支持面141は、幅がプリプレグ10の幅以上に形成され、第1搬送ベルト111と第2搬送ベルト112との間でプリプレグ10の幅方向全体を支持する。プリプレグ10は、支持部材140の支持面141に支持されることで、第1搬送ベルト111と第2搬送ベルト112との間で撓みが生じることなく搬送される。 The support member 140 is provided between the first conveyor belt 111 and the second conveyor belt 112. The support member 140 supports the prepreg 10 that is transported between the first transport belt 111 and the second transport belt 112. The support member 140 has a support surface 141 that contacts the prepreg 10. The support surface 141 has a width that is greater than or equal to the width of the prepreg 10, and supports the entire width direction of the prepreg 10 between the first conveyance belt 111 and the second conveyance belt 112. Since the prepreg 10 is supported by the support surface 141 of the support member 140, the prepreg 10 is transported between the first transport belt 111 and the second transport belt 112 without bending.
 支持部材140の支持面141は、有彩色材料を用いて形成され、有彩色である。本実施形態では、支持面141はシアン色の材料で形成されている。なお、支持部材140では、例えば、支持面141に有彩色の塗料が塗布されてもよく、支持面141を含む部分が有彩色を有する材料で形成されてもよい。また、支持面141の色は、有彩色であればよく、シアン色に限られるものではない。 The support surface 141 of the support member 140 is formed using a chromatic color material and has a chromatic color. In the present embodiment, the support surface 141 is formed of a cyan material. In the support member 140, for example, a chromatic paint may be applied to the support surface 141, and a portion including the support surface 141 may be formed of a material having a chromatic color. Moreover, the color of the support surface 141 should just be a chromatic color, and is not restricted to a cyan color.
 検査装置150は、画像取得部151及び検出部152を有する。検査装置150は、例えば、CPU(Central Processing Unit),ROM(Read-Only Memory),RAM(Random Access Memory)等を備えるコンピュータである。検査装置150の各機能、すなわち画像取得部151及び検出部152は、例えば、CPUがROMから読み出したプログラムをRAMと協働して実行することで実現される。 The inspection apparatus 150 includes an image acquisition unit 151 and a detection unit 152. The inspection device 150 is, for example, a computer including a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), and the like. Each function of the inspection device 150, that is, the image acquisition unit 151 and the detection unit 152, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
 画像取得部151は、撮像装置120からプリプレグ10の画像データを取得する。検出部152は、画像取得部151が撮像装置120から取得した画像データに基づいて、プリプレグ10に存在する欠陥を検出する。 The image acquisition unit 151 acquires image data of the prepreg 10 from the imaging device 120. The detection unit 152 detects a defect present in the prepreg 10 based on the image data acquired by the image acquisition unit 151 from the imaging device 120.
 図2は、プリプレグ10の欠陥を例示する図である。 FIG. 2 is a diagram illustrating a defect of the prepreg 10.
 図2に示される欠陥Aは、表層のひび割れである。また、欠陥Bは、内部に混入した異物である。検査装置150の検出部152は、画像取得部151が撮像装置120から取得したプリプレグ10の画像データからプリプレグ10の欠陥を検出し、さらに検出した欠陥の種類(欠陥A又は欠陥B)を判別する。 The defect A shown in FIG. 2 is a crack in the surface layer. Further, the defect B is a foreign matter mixed inside. The detection unit 152 of the inspection device 150 detects a defect of the prepreg 10 from the image data of the prepreg 10 acquired by the image acquisition unit 151 from the imaging device 120, and further determines the type of the detected defect (defect A or defect B). .
 図3は、第1の実施形態における欠陥検出処理のフローチャートを例示する図である。 FIG. 3 is a diagram illustrating a flowchart of the defect detection process in the first embodiment.
 図3に示されるように、検査システム100における欠陥検出処理では、まずステップS101にて、搬送装置110が、第1搬送ベルト111から第2搬送ベルト112に受け渡すようにプリプレグ10を搬送する。 As shown in FIG. 3, in the defect detection process in the inspection system 100, first, in step S <b> 101, the transport device 110 transports the prepreg 10 so as to be transferred from the first transport belt 111 to the second transport belt 112.
 次にステップS102では、光源130が、撮像装置120の撮像領域に光を照射する。続いてステップS103では、撮像装置120が、第1搬送ベルト111と第2搬送ベルト112との間の撮像領域を搬送されるプリプレグ10を撮像する。撮像装置120は、上記したように撮像領域が第1搬送ベルト111と第2搬送ベルト112との間の間隙に設けられており、プリプレグ10のうち、支持部材140の支持面141に支持されている部分を撮像する。撮像装置120は、搬送装置110により搬送されるプリプレグ10を連続的に撮像することで、プリプレグ10の全体を撮像する。 Next, in step S102, the light source 130 irradiates the imaging region of the imaging device 120 with light. Subsequently, in step S <b> 103, the imaging device 120 captures an image of the prepreg 10 that is transported in the imaging region between the first transport belt 111 and the second transport belt 112. As described above, the imaging device 120 has the imaging region provided in the gap between the first conveyor belt 111 and the second conveyor belt 112, and is supported by the support surface 141 of the support member 140 of the prepreg 10. The part that is present is imaged. The imaging device 120 captures images of the entire prepreg 10 by continuously capturing images of the prepreg 10 transported by the transport device 110.
 ステップS104では、検査装置150の画像取得部151が、撮像装置120からプリプレグ10の画像データを取得する。続いてステップS105では、検出部152が、画像取得部151が取得した画像データに基づいて、プリプレグ10の欠陥を検出する。 In step S104, the image acquisition unit 151 of the inspection apparatus 150 acquires the image data of the prepreg 10 from the imaging apparatus 120. Subsequently, in step S <b> 105, the detection unit 152 detects a defect in the prepreg 10 based on the image data acquired by the image acquisition unit 151.
 図4は、撮像装置120によって撮像されたプリプレグ10の画像データを模式的に例示する図である。 FIG. 4 is a diagram schematically illustrating image data of the prepreg 10 imaged by the imaging device 120.
 撮像装置120は、プリプレグ10の欠陥が無い部分からは、プリプレグ10で反射された拡散反射光と、透光性を有するプリプレグ10を介して支持部材140の支持面141で反射された拡散反射光とを受光する。したがって、撮像装置120によって撮像されたプリプレグ10の画像データにおいて、欠陥が無い部分では、プリプレグ10を介して支持部材140の支持面141が見えるように、支持部材140の支持面141の色が表れる。本実施形態では、支持部材140の支持面141はシアン色なので、撮像装置120の撮像画像においてプリプレグ10の欠陥が無い部分はシアン色である。 In the imaging device 120, the diffuse reflection light reflected by the prepreg 10 and the diffuse reflection light reflected by the support surface 141 of the support member 140 through the prepreg 10 having translucency from a portion where the prepreg 10 has no defect. And receive light. Therefore, in the image data of the prepreg 10 imaged by the imaging device 120, the color of the support surface 141 of the support member 140 appears so that the support surface 141 of the support member 140 can be seen through the prepreg 10 in a portion having no defect. . In the present embodiment, since the support surface 141 of the support member 140 is cyan, the portion of the captured image of the imaging device 120 that is free of defects of the prepreg 10 is cyan.
 プリプレグ10の欠陥Aでは、光源130から照射された照射光の拡散反射率が、欠陥が無い部分の拡散反射率より高い。このため、プリプレグ10の欠陥Aで反射されて撮像装置120が受光する受光量が、欠陥が無い部分で反射されて撮像装置120が受光する受光量よりも大きい。したがって、図4に示されるように、プリプレグ10の画像データにおいて、欠陥Aが存在する部分は、欠陥が無い部分よりも明るい。 In the defect A of the prepreg 10, the diffuse reflectance of the irradiation light emitted from the light source 130 is higher than the diffuse reflectance of the portion having no defect. For this reason, the amount of light received by the imaging device 120 that is reflected by the defect A of the prepreg 10 is larger than the amount of light that is received by the imaging device 120 after being reflected by a portion having no defect. Therefore, as shown in FIG. 4, in the image data of the prepreg 10, the portion where the defect A exists is brighter than the portion where there is no defect.
 なお、光源130からの照射光に対する拡散反射率が高いほど撮像装置120が受光する受光量が大きい理由は以下の通りである。拡散反射率が高いとは、拡散反射、すなわち巨視的に見て反射の法則に無関係に各方向に光を拡散する態様の反射の度合いが高いことを意味する。他方、光源130(130a及び130b)と撮像装置120との位置関係は、拡散反射の度合いが高いほど、すなわち巨視的に見て反射の法則に無関係に各方向に光を拡散する態様の反射の度合いが高いほど撮像装置120の受光量が大きい位置関係である。したがって光源130からの照射光に対する拡散反射率が高いほど撮像装置120が受光する受光量が大きい。 The reason why the amount of light received by the imaging device 120 is larger as the diffuse reflectance with respect to the light emitted from the light source 130 is higher is as follows. High diffuse reflectance means that the degree of diffuse reflection, that is, the reflection in a mode in which light is diffused in each direction regardless of the law of reflection when viewed macroscopically, is high. On the other hand, the positional relationship between the light source 130 (130a and 130b) and the imaging device 120 is such that the higher the degree of diffuse reflection, that is, the reflection of the aspect in which light is diffused in each direction regardless of the reflection law when viewed macroscopically. The higher the degree is, the larger the received light amount of the imaging device 120 is. Therefore, the higher the diffuse reflectance with respect to the light emitted from the light source 130, the greater the amount of light received by the imaging device 120.
 また、撮像装置120は、プリプレグ10の欠陥Bが存在する部分からは、プリプレグ10の表面からの拡散反射光と、透光性を有するプリプレグ10を介して異物で反射された拡散反射光とを受光する。したがって、撮像装置120の画像データにおいてプリプレグ10の欠陥Bが存在する部分は、プリプレグ10を介して異物が見えるように異物の色が表れる。例えば、黒色の異物がプリプレグ10の内部に混入して欠陥Bが生じている場合には、撮像画像において欠陥Bが暗い影のように見える(図4参照)。 In addition, the imaging device 120 generates diffuse reflected light from the surface of the prepreg 10 and diffuse reflected light reflected by a foreign substance via the translucent prepreg 10 from a portion where the defect B of the prepreg 10 exists. Receive light. Therefore, in the image data of the imaging device 120, the color of the foreign matter appears so that the foreign matter can be seen through the prepreg 10 in the portion where the defect B of the prepreg 10 exists. For example, when a black foreign substance is mixed in the prepreg 10 to generate a defect B, the defect B looks like a dark shadow in the captured image (see FIG. 4).
 上記したように、プリプレグ10の画像データにおいて、欠陥Aが存在する部分は欠陥が無い部分よりも明るい。したがって、画像データにおいて欠陥Aが存在する部分の画素の輝度は、欠陥が無い部分の画素の輝度よりも高い。 As described above, in the image data of the prepreg 10, the portion where the defect A exists is brighter than the portion where there is no defect. Therefore, the luminance of the pixel in the portion where the defect A exists in the image data is higher than the luminance of the pixel in the portion where there is no defect.
 また、撮像装置120によって撮像された画像データにおいて、例えば黒色の異物による欠陥Bが存在する部分は欠陥が無い部分よりも暗い。したがってこの場合、画像データにおいて欠陥Bが存在する部分の画素の輝度は欠陥が無い部分の画素の輝度よりも低い。 In the image data picked up by the image pickup device 120, for example, a portion where the defect B due to a black foreign substance exists is darker than a portion where there is no defect. Therefore, in this case, the luminance of the pixel where the defect B exists in the image data is lower than the luminance of the pixel where there is no defect.
 そこで、検査装置150の検出部152は、例えば、プリプレグ10の画像データにおいて欠陥が無い部分の画素の平均輝度を予め算出しておき、画像データの各画素の輝度と予め算出した平均輝度との差に基づいて欠陥を検出する。検出部152は、例えば、画像データにおいて輝度が平均輝度より高い画素を欠陥Aとして検出する。また、検出部152は、例えば、画像データにおいて輝度が平均輝度より低い画素を欠陥Bとして検出する。 Therefore, for example, the detection unit 152 of the inspection apparatus 150 calculates in advance the average brightness of pixels in a portion having no defect in the image data of the prepreg 10, and calculates the brightness of each pixel of the image data and the previously calculated average brightness. Detect defects based on the difference. For example, the detection unit 152 detects, as a defect A, a pixel whose luminance is higher than the average luminance in the image data. For example, the detection unit 152 detects a pixel having a luminance lower than the average luminance in the image data as the defect B.
 また、検出部152は、画像データにおける各画素の輝度と平均輝度との差を算出し、輝度が平均輝度よりも高くかつ平均輝度との差が予め設定された第1閾値以上の画素を欠陥Aとして検出してもよい。また、検出部152は、輝度が平均輝度よりも低くかつ平均輝度との差が予め設定された第2閾値以上の画素を欠陥Bとして検出してもよい。各画素の輝度と平均輝度との差を閾値と比較して欠陥を検出することで、欠陥の誤検出を低減できる。 In addition, the detection unit 152 calculates the difference between the luminance of each pixel in the image data and the average luminance, and defectives pixels whose luminance is higher than the average luminance and whose difference from the average luminance is preset to a first threshold value or more. You may detect as A. Further, the detection unit 152 may detect, as the defect B, a pixel whose luminance is lower than the average luminance and whose difference from the average luminance is equal to or higher than a second threshold value set in advance. By detecting a defect by comparing the difference between the luminance of each pixel and the average luminance with a threshold value, it is possible to reduce erroneous detection of the defect.
 このように、検査装置150の検出部152は、撮像装置120による撮像画像の画像データに基づいて、プリプレグ10に存在する欠陥A(表層のひび割れ)や欠陥B(混入した異物)等の欠陥を区別して検出できる。上記した例では、黒色の異物である欠陥Bを検出する場合について説明したが、黒色以外の異物である欠陥Bを検出する場合であっても、欠陥Bが存在する部分の画素の輝度と、欠陥が無い部分の画素の輝度との差異に基づいて欠陥Bを検出できる。 As described above, the detection unit 152 of the inspection device 150 detects defects such as the defect A (surface crack) and the defect B (mixed foreign matter) existing in the prepreg 10 based on the image data of the image captured by the imaging device 120. It can be detected by distinguishing. In the above-described example, the case where the defect B that is a black foreign substance is detected has been described. However, even when the defect B that is a foreign substance other than black is detected, the luminance of the pixel in the portion where the defect B exists, The defect B can be detected based on the difference from the luminance of the pixel in the part having no defect.
 以上で説明したように、第1の実施形態における検査システム100によれば、検査対象物としてのプリプレグ10の欠陥を検出するとともに欠陥の種類を判別できる。 As described above, according to the inspection system 100 in the first embodiment, it is possible to detect the defect of the prepreg 10 as the inspection object and determine the type of the defect.
 また、検査システム100では、第1搬送ベルト111と第2搬送ベルト112との間の間隙でプリプレグ10の検査を行うように光源130及び撮像装置120が設けられている。このような構成により、第1搬送ベルト111及び第2搬送ベルト112の表面の凹凸等の影響を受けることなく、プリプレグ10の欠陥の検査を高精度に行うことが可能である。 Further, in the inspection system 100, the light source 130 and the imaging device 120 are provided so as to inspect the prepreg 10 in the gap between the first conveyance belt 111 and the second conveyance belt 112. With such a configuration, it is possible to inspect defects of the prepreg 10 with high accuracy without being affected by irregularities on the surfaces of the first conveyance belt 111 and the second conveyance belt 112.
 また、支持部材140が第1搬送ベルト111と第2搬送ベルト112との間でプリプレグ10を支持することで、第1搬送ベルト111と第2搬送ベルト112との間でプリプレグ10に撓みを生じさせることなく、検査を精度良く行うことが可能である。 Further, since the support member 140 supports the prepreg 10 between the first conveyance belt 111 and the second conveyance belt 112, the prepreg 10 is bent between the first conveyance belt 111 and the second conveyance belt 112. It is possible to carry out the inspection with high accuracy without causing it to occur.
 なお、仮に支持部材140の支持面141が、例えば黒色、白色又は灰色といった無彩色であった場合、撮像装置120によって撮像された画像データにおいて、欠陥A又は欠陥Bが存在する部分と欠陥が無い部分との差異が不明確になる可能性がある。そこで、本実施形態では、支持部材140の支持面141を有彩色とすることで、上記したように欠陥の有無による差異を明確にして欠陥を高精度に検出可能にしている。 If the support surface 141 of the support member 140 is an achromatic color such as black, white, or gray, for example, in the image data picked up by the image pickup device 120, there is no portion where there is a defect A or a defect B. The difference from the part may be unclear. Therefore, in the present embodiment, the support surface 141 of the support member 140 is made chromatic, so that the difference due to the presence or absence of a defect is clarified as described above so that the defect can be detected with high accuracy.
 ここで、撮像装置120が撮像する撮像画像の画像データは、例えば、画素ごとにR(赤)、G(緑)、B(青)の各色が0~255の数値で表されたRGB値を有する。そこで、検出部152は、支持部材140の支持面141の色に応じて、RGB値に含まれる各色の値のうち、欠陥部分と欠陥が無い部分との輝度差が最も大きい色の値を用いて欠陥を検出してもよい。 Here, the image data of the captured image captured by the imaging device 120 is, for example, an RGB value in which each color of R (red), G (green), and B (blue) is represented by a numerical value of 0 to 255 for each pixel. Have. Therefore, the detection unit 152 uses the color value having the largest luminance difference between the defective portion and the non-defective portion among the color values included in the RGB values according to the color of the support surface 141 of the support member 140. A defect may be detected.
 例えば、支持部材140の支持面141を青色とした場合には、表層のひび割れにより白化したように見える欠陥Aの検出には、各画素のG値を有するGチャンネルデータや、各画素のR値を有するRチャンネルデータを用いる。GチャンネルデータやRチャンネルデータを用いることで、欠陥Aと欠陥が無い部分との差異を明確にし、検出感度を上げることが可能になる。また、この場合において、例えば黒い異物である欠陥Bの検出には、各画素のB値を有するBチャンネルデータを用いることで、欠陥Bと欠陥が無い部分との差異を明確にし、検出感度を上げることが可能になる。 For example, when the support surface 141 of the support member 140 is blue, the detection of the defect A that appears to be whitened due to cracks in the surface layer may be performed using G channel data having the G value of each pixel or the R value of each pixel. R channel data having By using the G channel data and the R channel data, it is possible to clarify the difference between the defect A and the portion without the defect and increase the detection sensitivity. In this case, for example, the defect B, which is a black foreign substance, is detected by using B channel data having the B value of each pixel, thereby clarifying the difference between the defect B and the portion having no defect, thereby increasing the detection sensitivity. It becomes possible to raise.
 また、第1の実施形態の説明では、光源130が白色光を照射する例について説明したが、光源の照射光は白色光に限られるものではなく、支持部材140の支持面141の色の波長を含めばよい。例えば、支持面141の色が青色の場合には、光源は青色光を含む他の色の光であってもよく、シアン光、マゼンタ光であってもよい。 In the description of the first embodiment, an example in which the light source 130 emits white light has been described. However, the light emitted from the light source is not limited to white light, and the wavelength of the color of the support surface 141 of the support member 140. Should be included. For example, when the color of the support surface 141 is blue, the light source may be light of other colors including blue light, or may be cyan light or magenta light.
 [第2の実施形態]
 次に、第2の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Second Embodiment]
Next, a second embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図5は、第2の実施形態における検査システム200を例示する図である。 FIG. 5 is a diagram illustrating an inspection system 200 according to the second embodiment.
 検査システム200は、図5に示されるように、搬送装置210、撮像装置220、第1光源230、第2光源240及び検査装置250を有し、検査対象物としてのプリプレグ10における欠陥の有無を検査する。 As shown in FIG. 5, the inspection system 200 includes a transport device 210, an imaging device 220, a first light source 230, a second light source 240, and an inspection device 250, and checks whether there is a defect in the prepreg 10 as an inspection object. inspect.
 搬送装置210は、第1搬送部としての第1搬送ベルト211及び第2搬送部としての第2搬送ベルト212を有し、プリプレグ10を図5における矢印方向に搬送する。第1搬送ベルト211では、駆動ローラを含む複数のローラに無端ベルトが架け渡されている。回転する駆動ローラに従動して無端ベルトが回転することで、第1搬送ベルト211はベルト上に載置されるプリプレグ10を搬送する。第2搬送ベルト212は第1搬送ベルト211と同様の構成を備え、第1搬送ベルト211から受け渡されるプリプレグ10を搬送する。 The transport device 210 includes a first transport belt 211 as a first transport unit and a second transport belt 212 as a second transport unit, and transports the prepreg 10 in the direction of the arrow in FIG. In the first conveying belt 211, an endless belt is stretched around a plurality of rollers including a driving roller. As the endless belt rotates following the rotation of the driving roller, the first transport belt 211 transports the prepreg 10 placed on the belt. The second transport belt 212 has the same configuration as the first transport belt 211 and transports the prepreg 10 delivered from the first transport belt 211.
 なお、搬送装置210の構成は、本実施形態において例示される構成に限られるものではなく、例えば、複数の搬送ローラでプリプレグ10を受け渡して搬送する構成であってもよい。 The configuration of the transport device 210 is not limited to the configuration illustrated in the present embodiment, and may be a configuration in which the prepreg 10 is delivered and transported by a plurality of transport rollers, for example.
 撮像装置220は、例えば、CCD、CMOS等の撮像素子を備えるデジタルカメラである。撮像装置220は、撮像領域の少なくとも一部が第1搬送ベルト211と第2搬送ベルト212との間の間隙であってプリプレグ10が通過する領域に重なるように設けられている。本実施形態では、撮像装置220は、第1搬送ベルト211と第2搬送ベルト212との間でプリプレグ10の幅方向の全体を撮像できるように設けられている。 The imaging device 220 is a digital camera including an imaging element such as a CCD or CMOS. The imaging device 220 is provided so that at least a part of the imaging area is a gap between the first conveyor belt 211 and the second conveyor belt 212 and overlaps the area through which the prepreg 10 passes. In the present embodiment, the imaging device 220 is provided so that the entire width of the prepreg 10 can be imaged between the first conveyor belt 211 and the second conveyor belt 212.
 第1光源230は、例えば青色LEDアレイであり、第1搬送ベルト211と第2搬送ベルト212との間に青色光を照射する。第1光源230は、撮像装置220が、搬送されるプリプレグ10の表面から主として拡散反射光を受光するように配置されている。 The first light source 230 is, for example, a blue LED array, and irradiates blue light between the first conveyance belt 211 and the second conveyance belt 212. The first light source 230 is arranged such that the imaging device 220 receives mainly diffuse reflected light from the surface of the prepreg 10 being conveyed.
 第2光源240は、例えば白色LEDアレイであり、第1搬送ベルト211と第2搬送ベルト212との間に白色光を照射する。第2光源240は、撮像装置220が、搬送されるプリプレグ10を透過した透過光を受光するように、撮像装置220に対向するように配置されている。 The second light source 240 is, for example, a white LED array, and irradiates white light between the first conveyance belt 211 and the second conveyance belt 212. The second light source 240 is disposed so as to face the imaging device 220 so that the imaging device 220 receives the transmitted light transmitted through the prepreg 10 being conveyed.
 本実施形態では、第1光源230が第1波長域(青の波長域)の青色光を照射し、第2光源240が第1波長域及び第1波長域とは異なる第2波長域(例えば赤や緑の波長域)を含む白色光を照射する。なお、第1光源230及び第2光源240は、それぞれ波長域が異なる光を照射してもよく、本実施形態とは異なる色の光を照射するように構成されてもよい。また、第1光源230及び第2光源240は、例えば有機ELアレイ、冷陰極管等の蛍光灯等であってもよい。 In the present embodiment, the first light source 230 emits blue light in a first wavelength range (blue wavelength range), and the second light source 240 has a second wavelength range different from the first wavelength range and the first wavelength range (for example, Irradiate white light including red and green wavelength regions. In addition, the 1st light source 230 and the 2nd light source 240 may each irradiate the light from which a wavelength range differs, and may be comprised so that the light of a color different from this embodiment may be irradiated. The first light source 230 and the second light source 240 may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, or the like.
 検査装置250は、画像取得部251、色情報取得部252及び検出部253を有する。検査装置250は、例えば、CPU,ROM,RAM等を備えるコンピュータである。検査装置250の各機能、すなわち画像取得部251、色情報取得部252及び検出部253は、例えば、CPUがROMから読み出したプログラムをRAMと協働して実行することで実現される。 The inspection apparatus 250 includes an image acquisition unit 251, a color information acquisition unit 252, and a detection unit 253. The inspection device 250 is a computer including a CPU, a ROM, a RAM, and the like, for example. Each function of the inspection apparatus 250, that is, the image acquisition unit 251, the color information acquisition unit 252, and the detection unit 253, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
 画像取得部251は、撮像装置220からプリプレグ10の画像データを取得する。色情報取得部252は、画像取得部251が取得した画像データから色情報を取得する。検出部253は、色情報取得部252が取得した色情報に基づいて、プリプレグ10に存在する欠陥を検出する。 The image acquisition unit 251 acquires the image data of the prepreg 10 from the imaging device 220. The color information acquisition unit 252 acquires color information from the image data acquired by the image acquisition unit 251. The detection unit 253 detects defects present in the prepreg 10 based on the color information acquired by the color information acquisition unit 252.
 図6は、第2の実施形態における欠陥検出処理のフローチャートを例示する図である。 FIG. 6 is a diagram illustrating a flowchart of defect detection processing in the second embodiment.
 図6に示されるように、検査システム200における欠陥検出処理では、まずステップS201にて、搬送装置210が、第1搬送ベルト211から第2搬送ベルト212に受け渡されるようにプリプレグ10を搬送する。 As shown in FIG. 6, in the defect detection process in the inspection system 200, first, in step S <b> 201, the transport device 210 transports the prepreg 10 so as to be transferred from the first transport belt 211 to the second transport belt 212. .
 次にステップS202では、第1光源230及び第2光源240が、撮像装置120の撮像領域に光を照射する。続いてステップS203では、撮像装置120が、第1搬送ベルト211から第2搬送ベルト212に受け渡されるプリプレグ10を撮像する。撮像装置220は、搬送装置110により搬送されるプリプレグ10を連続的に撮像することで、プリプレグ10の全体を撮像する。 Next, in step S202, the first light source 230 and the second light source 240 irradiate the imaging region of the imaging device 120 with light. Subsequently, in step S <b> 203, the imaging device 120 images the prepreg 10 that is transferred from the first conveyance belt 211 to the second conveyance belt 212. The imaging device 220 captures images of the entire prepreg 10 by continuously capturing images of the prepreg 10 transported by the transport device 110.
 ステップS204では、検査装置250の画像取得部251が、撮像装置220からプリプレグ10の画像データを取得する。続いてステップS205では、色情報取得部252が、画像取得部151が取得したプリプレグ10の画像データから、後述する第1色情報を取得する。 In step S204, the image acquisition unit 251 of the inspection device 250 acquires the image data of the prepreg 10 from the imaging device 220. Subsequently, in step S205, the color information acquisition unit 252 acquires first color information described later from the image data of the prepreg 10 acquired by the image acquisition unit 151.
 ここで、撮像装置220によって撮像されたプリプレグ10の画像データは、例えば、画素ごとにR(赤)、G(緑)、B(青)の各色が0~255の数値で表されたRGB値を有する。色情報取得部252は、第1光源230及び第2光源240のそれぞれから照射される青色光に対応する青色のBチャンネルデータ(各画素のB値)を第1色情報として取得する。色情報取得部252は、このように、第1光源230から照射される青色光の波長域に含まれる色のデータを第1色情報として画像データから取得する。 Here, the image data of the prepreg 10 imaged by the imaging device 220 is, for example, an RGB value in which each color of R (red), G (green), and B (blue) is represented by a numerical value of 0 to 255 for each pixel. Have The color information acquisition unit 252 acquires blue B channel data (B value of each pixel) corresponding to blue light emitted from each of the first light source 230 and the second light source 240 as first color information. In this way, the color information acquisition unit 252 acquires the color data included in the wavelength range of the blue light emitted from the first light source 230 from the image data as the first color information.
 図7は、プリプレグ10の画像データ(Bチャンネルデータ)を模式的に例示する図である。 FIG. 7 is a diagram schematically illustrating image data (B channel data) of the prepreg 10.
 プリプレグ10の欠陥Aでは、第1光源230から照射される青色光の拡散反射率が、欠陥が無い部分の拡散反射率より高い。このため、第1光源230から照射される青色光が欠陥Aで反射されて撮像装置220が受光する受光量が、欠陥が無い部分で反射されて撮像装置220が受光する受光量よりも大きい。したがって、図7に示されるように、Bチャンネルデータでは、プリプレグ10において欠陥Aが存在する部分が、欠陥が無い部分よりも明るい。 In the defect A of the prepreg 10, the diffuse reflectance of the blue light emitted from the first light source 230 is higher than the diffuse reflectance of the portion without the defect. For this reason, the amount of light received by the imaging device 220 when the blue light emitted from the first light source 230 is reflected by the defect A is larger than the amount of light received by the imaging device 220 after being reflected by a portion having no defect. Therefore, as shown in FIG. 7, in the B channel data, the portion where the defect A exists in the prepreg 10 is brighter than the portion where there is no defect.
 なお、第1光源230からの照射光に対する拡散反射率が高いほど撮像装置220が受光する受光量が大きい理由は、第1の実施形態の説明において説明した理由と同様である。 Note that the reason why the amount of light received by the imaging apparatus 220 is larger as the diffuse reflectance of the irradiation light from the first light source 230 is higher is the same as the reason described in the description of the first embodiment.
 また、プリプレグ10の欠陥Bでは、異物によって第2光源240からの照射光が遮られる。このため、第2光源240からの照射光に含まれる青色光のうち、撮像装置220が受光する受光量は、欠陥が無い部分よりも欠陥Bが存在する部分の方が小さい。したがって、図7に示されるように、Bチャンネルの画像データでは、プリプレグ10において欠陥Bが存在する部分が、欠陥が無い部分よりも暗い。 Further, in the defect B of the prepreg 10, the irradiation light from the second light source 240 is blocked by the foreign matter. For this reason, among the blue light included in the irradiation light from the second light source 240, the amount of light received by the imaging device 220 is smaller in the portion where the defect B exists than in the portion where there is no defect. Therefore, as shown in FIG. 7, in the B channel image data, the portion where the defect B exists in the prepreg 10 is darker than the portion where there is no defect.
 また、ステップS206では、色情報取得部252が、画像取得部151が取得したプリプレグ10の画像データから、後述する第2色情報を取得する。色情報取得部252は、第2光源240から照射される白色光に含まれる赤色光に対応する赤色のRチャンネルデータ(各画素のR値)を第2色情報として取得する。色情報取得部252は、このように、第2光源240からの照射光のうち、第1光源230から照射される青色光とは波長域が異なる赤色光の波長域に含まれる色のデータを第2色情報として画像データから取得する。 In step S206, the color information acquisition unit 252 acquires second color information described later from the image data of the prepreg 10 acquired by the image acquisition unit 151. The color information acquisition unit 252 acquires red R channel data (R value of each pixel) corresponding to red light included in white light emitted from the second light source 240 as second color information. As described above, the color information acquisition unit 252 stores the data of the color included in the wavelength range of the red light, which is different from the blue light irradiated from the first light source 230 among the irradiation light from the second light source 240. Obtained from the image data as second color information.
 なお、色情報取得部252は、第2光源240から照射される白色光に含まれる緑色光に対応する緑色のGチャンネルデータ(各画素のG値)を第2色情報として取得してもよい。この場合においても、以下で説明するRチャンネルデータを用いた場合と同様にプリプレグ10の欠陥を検出できる。 The color information acquisition unit 252 may acquire green G channel data (G value of each pixel) corresponding to green light included in the white light emitted from the second light source 240 as the second color information. . Even in this case, the defect of the prepreg 10 can be detected as in the case of using the R channel data described below.
 図8は、プリプレグ10の画像データ(Rチャンネルデータ)を模式的に例示する図である。 FIG. 8 is a diagram schematically illustrating image data (R channel data) of the prepreg 10.
 第2光源240から撮像装置220に向かって照射される光は、プリプレグ10において欠陥A又は欠陥Bが存在する部分で遮られる。このため、第2光源240からの照射光に含まれる赤色光のうち、撮像装置220が受光する受光量が、欠陥が無い部分よりも欠陥A又は欠陥Bが存在する部分の方が小さい。したがって、図8に示されるように、Rチャンネルデータでは、プリプレグ10において欠陥A及び欠陥Bが存在する部分が、欠陥が無い部分よりも暗い。 The light emitted from the second light source 240 toward the imaging device 220 is blocked at a portion where the defect A or the defect B exists in the prepreg 10. For this reason, in the red light included in the irradiation light from the second light source 240, the amount of light received by the imaging device 220 is smaller in the portion where the defect A or the defect B exists than in the portion where there is no defect. Therefore, as shown in FIG. 8, in the R channel data, the portion where the defect A and the defect B exist in the prepreg 10 is darker than the portion where there is no defect.
 ここで、画像データにおける各画素のR値は、第1光源230から照射される青色光の影響は受けず、第2光源240から照射される白色光に含まれる赤色光の撮像装置220による受光量によって決まる。このため、欠陥Aが存在する部分で第1光源230からの青色光の撮像装置220による受光量が増えても、画像データに含まれるR値が大きくなることはない。したがって、図8に示されるように、Rチャンネルデータにおいて欠陥Aが存在する部分が青色光によって影響を受けることはない。 Here, the R value of each pixel in the image data is not affected by the blue light emitted from the first light source 230, and the red light included in the white light emitted from the second light source 240 is received by the imaging device 220. It depends on the amount. For this reason, even if the amount of light received by the imaging device 220 of the blue light from the first light source 230 increases in the portion where the defect A exists, the R value included in the image data does not increase. Therefore, as shown in FIG. 8, the portion where the defect A exists in the R channel data is not affected by the blue light.
 次にステップS207にて、検出部253が、色情報取得部252によって取得された第1色情報としてのBチャンネルデータと、第2色情報としてのRチャンネルデータとの差分を算出する。続いてステップS208にて、検出部253が、プリプレグ10の欠陥を検出する。 Next, in step S207, the detection unit 253 calculates the difference between the B channel data as the first color information acquired by the color information acquisition unit 252 and the R channel data as the second color information. Subsequently, in step S <b> 208, the detection unit 253 detects a defect in the prepreg 10.
 ステップS208で検出部253は、第1色情報としてのBチャンネルデータと、第2色情報としてのRチャンネルデータとの差分値(同一画素における(B値-R値))を、画像データに含まれる全ての画素について算出する。以下、このようにして求められたBチャンネルデータとRチャンネルデータとの差分値のデータを、B-Rチャンネルデータという。 In step S208, the detection unit 253 includes a difference value ((B value−R value) in the same pixel) between the B channel data as the first color information and the R channel data as the second color information in the image data. The calculation is performed for all pixels to be processed. Hereinafter, the difference data between the B channel data and the R channel data obtained in this way is referred to as BR channel data.
 上記したように、Bチャンネルデータでは、欠陥A部分の値が、欠陥が無い部分の値よりも大きい(図7参照)。これに対して、Rチャンネルデータでは、欠陥A部分の値が、欠陥が無い部分の値よりも小さい(図8参照)。このため、B-Rチャンネルデータでは、欠陥A部分の値と欠陥が無い部分の値との差が、Bチャンネルデータ及びRチャンネルデータのそれぞれにおける欠陥A部分の値と欠陥が無い部分の値との差よりも大きい。 As described above, in the B channel data, the value of the defect A portion is larger than the value of the portion having no defect (see FIG. 7). On the other hand, in the R channel data, the value of the defect A portion is smaller than the value of the portion having no defect (see FIG. 8). Therefore, in the BR channel data, the difference between the value of the defective A portion and the value of the non-defective portion is the difference between the value of the defective A portion and the value of the non-defective portion in each of the B channel data and the R channel data. Greater than the difference.
 例えば、Bチャンネルデータにおいて、(欠陥A,欠陥B,欠陥無し)の各部分の値が(250,50,120)だったとする。また、Rチャンネルデータにおいて、(欠陥A,欠陥B,欠陥無し)の各部分の値が(50,50,120)だったとする。このような場合、B-Rチャンネルデータは、(欠陥A,欠陥B,欠陥無し)の各部分の値が(200,0,0)となる。 For example, in the B channel data, it is assumed that the value of each part of (defect A, defect B, no defect) is (250, 50, 120). In the R channel data, the value of each part (defect A, defect B, no defect) is (50, 50, 120). In such a case, the BR channel data has a value of (200, 0, 0) for each part of (defect A, defect B, no defect).
 したがって、B-Rチャンネルデータにおいて、欠陥A部分の値と欠陥が無い部分の値との差が200となり、Bチャンネルデータにおける欠陥A部分の値と欠陥が無い部分の値との差(130)よりも大きい。また、B-Rチャンネルデータにおける欠陥A部分の値と欠陥が無い部分の値との差(200)は、Rチャンネルデータにおける欠陥A部分の値と欠陥が無い部分の値との差(70)よりも大きい。 Accordingly, in the BR channel data, the difference between the value of the defect A portion and the value of the portion without the defect is 200, and the difference between the value of the defect A portion and the value of the portion without the defect in the B channel data (130). Bigger than. Further, the difference (200) between the value of the defect A portion and the value of the non-defect portion in the BR channel data is the difference (70) between the value of the defect A portion and the value of the non-defect portion in the R channel data. Bigger than.
 したがって、検出部253は、欠陥A部分の値と欠陥が無い部分の値との差に基づいて欠陥Aを検出する場合に、欠陥A部分の値と欠陥が無い部分の値との差が大きいB-Rチャンネルデータを用いることで、より高精度に欠陥Aを検出することが可能になる。また、B-Rチャンネルデータでは、Bチャンネルデータ及びRチャンネルデータのそれぞれに含まれるプリプレグ10の欠陥が無い部分における輝度ムラがキャンセルされる。このため、検出部253は、輝度ムラがキャンセルされたB-Rチャンネルデータを用いることで、欠陥Aの誤検出を低減できる。 Therefore, when the detection unit 253 detects the defect A based on the difference between the value of the defect A portion and the value of the portion without the defect, the difference between the value of the defect A portion and the value of the portion without the defect is large. By using the BR channel data, the defect A can be detected with higher accuracy. Further, in the BR channel data, luminance unevenness in a portion where there is no defect in the prepreg 10 included in each of the B channel data and the R channel data is canceled. For this reason, the detection unit 253 can reduce erroneous detection of the defect A by using the BR channel data from which the luminance unevenness is canceled.
 また、検出部253は、Bチャンネルデータにおいて、画素の値が欠陥の無い部分の値の平均値よりも小さくかつ欠陥の無い部分の値の平均値との差が予め設定された閾値以上の部分を欠陥Bとして検出する。 In addition, the detection unit 253 is a part of the B channel data in which the pixel value is smaller than the average value of the non-defective part and the difference from the average value of the non-defective part is equal to or greater than a preset threshold value. Is detected as a defect B.
 以上で説明したように、第2の実施形態における検査システム200によれば、検査対象物としてのプリプレグ10の欠陥を検出するとともに欠陥の種類を判別できる。また、撮像装置220によって撮像された画像データから、第1色情報としてBチャンネルデータを取得するとともに、第2色情報としてRチャンネルデータを取得し、これらの差分に基づいて欠陥を検出することで、欠陥Aの検出精度が向上するとともに誤検出が低減される。 As described above, according to the inspection system 200 in the second embodiment, it is possible to detect the defect of the prepreg 10 as the inspection object and determine the type of the defect. In addition, B channel data is acquired as the first color information and R channel data is acquired as the second color information from the image data captured by the imaging device 220, and a defect is detected based on these differences. In addition, the detection accuracy of the defect A is improved and the erroneous detection is reduced.
 次に第3の実施形態、第4の実施形態、第5の実施形態、第6の実施形態、第7の実施形態および第8の実施形態について説明する。 Next, a third embodiment, a fourth embodiment, a fifth embodiment, a sixth embodiment, a seventh embodiment, and an eighth embodiment will be described.
 上記の如く、プリプレグは、炭素繊維のような繊維基材にエポキシ樹脂等の熱硬化性樹脂を含浸させ、加熱及び乾燥して繊維基材中の熱硬化性樹脂を硬化させることで得られ、多層基板等に用いられている。このようなプリプレグには、製造工程において表面の凹凸、表層のひび割れ、及び異物の混入といった欠陥が生じる場合がある。 As described above, the prepreg is obtained by impregnating a fiber base material such as carbon fiber with a thermosetting resin such as an epoxy resin, and heating and drying to cure the thermosetting resin in the fiber base material. It is used for multilayer substrates. Such prepregs may have defects such as surface irregularities, surface layer cracks, and contamination by foreign matters in the manufacturing process.
 従来は、このような欠陥検査は目視により行われていたが、生産性を向上させるために自動化が望まれていた。そこで、光源から照射された光がプリプレグを透過してカメラに入射するように、カメラと光源とをプリプレグを間に挟んで対向するように配置し、カメラ画像に基づいてプリプレグ内部のボイドを検出する方法が提案されている(例えば、特許文献1参照)。 Conventionally, such defect inspection has been performed visually, but automation has been desired in order to improve productivity. Therefore, the camera and the light source are placed facing each other with the prepreg in between so that the light emitted from the light source passes through the prepreg and enters the camera, and the void inside the prepreg is detected based on the camera image. A method has been proposed (see, for example, Patent Document 1).
 特許文献1に係る方法では、カメラにはプリプレグからの透過光が入射する。このため、カメラの撮像画像にはプリプレグの表層のひび割れや内部に混入した異物といった種類が異なる欠陥も同様に影のように表れ、欠陥の種類の判別が難しい可能性がある。また、表面に凹凸が存在する部分は欠陥が無い部分と同様に光を透過するため、表面の凹凸のような欠陥は検出できない可能性がある。 In the method according to Patent Document 1, transmitted light from the prepreg enters the camera. For this reason, defects of different types, such as cracks in the surface layer of the prepreg and foreign matter mixed inside, also appear as shadows in the captured image of the camera, and it may be difficult to determine the type of defect. In addition, since a portion with unevenness on the surface transmits light in the same manner as a portion without a defect, there is a possibility that defects such as surface unevenness cannot be detected.
 例えばプリプレグの製造工程では、上記したような様々な欠陥を検出する必要がある。そこで、例えばそれぞれ異なる欠陥を検出する複数の検査装置を用いてプリプレグの検査を順次行うことが考えられる。しかし、このような構成では、装置の大型化を招くとともに、欠陥検出に要する時間が増大して生産性が低下する可能性がある。 For example, in the prepreg manufacturing process, it is necessary to detect various defects as described above. Thus, for example, it is conceivable to sequentially inspect the prepreg using a plurality of inspection apparatuses that detect different defects. However, such a configuration may increase the size of the apparatus, increase the time required for defect detection, and reduce productivity.
 以下に説明する実施形態は上記した状況に鑑みてなされたものであって、検査対象物の種類が異なる複数の欠陥を短時間で検出可能な検査システムを提供することを目的とする。 Embodiment described below is made in view of the above-described situation, and an object thereof is to provide an inspection system capable of detecting a plurality of defects having different types of inspection objects in a short time.
 以下に説明する実施形態によれば、検査対象物の種類が異なる複数の欠陥を短時間で検出可能な検査システムが提供される。 According to the embodiment described below, an inspection system capable of detecting a plurality of defects with different types of inspection objects in a short time is provided.
 [第3の実施形態]
 図9は、第3の実施形態における検査システム1100を例示する図である。
[Third embodiment]
FIG. 9 is a diagram illustrating an inspection system 1100 according to the third embodiment.
 検査システム1100は、図9に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第1光源1131a及び1131b、第2光源1132、支持部材1140、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1100は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010の欠陥の有無を検査する。 As shown in FIG. 9, the inspection system 1100 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, first light sources 1131 a and 1131 b, a second light source 1132, a support member 1140, a sorting mechanism 1150, 1 tray 1151, second tray 1152, and inspection device 1160. The inspection system 1100 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
 プリプレグ1010は上記の如く、繊維基材に熱硬化性樹脂を含浸させた後、繊維基材中の熱硬化性樹脂を加熱して硬化させたものである。繊維基材は、例えば、ガラス繊維やポリエステル繊維等で形成された糸が織り込まれたものである。また、熱硬化性樹脂は、例えば、エポキシ樹脂やフェノール樹脂等である。本実施形態におけるプリプレグ1010は、表面が平滑なシート状に形成され、繊維基材の間隙から透明な熱硬化性樹脂を通じて光を透過する。 As described above, the prepreg 1010 is obtained by impregnating a fiber base material with a thermosetting resin and then heating and curing the thermosetting resin in the fiber base material. The fiber base material is made by weaving a thread formed of, for example, glass fiber or polyester fiber. The thermosetting resin is, for example, an epoxy resin or a phenol resin. The prepreg 1010 in this embodiment is formed in a sheet shape with a smooth surface, and transmits light through a transparent thermosetting resin from a gap between fiber base materials.
 搬送装置1110は、第1搬送部としての第1搬送ベルト1111、第2搬送部としての第2搬送ベルト1112、及び第3搬送部としての第3搬送ベルト1113を有し、プリプレグ1010を図9における矢印方向に搬送する。 The conveyance device 1110 includes a first conveyance belt 1111 as a first conveyance unit, a second conveyance belt 1112 as a second conveyance unit, and a third conveyance belt 1113 as a third conveyance unit, and the prepreg 1010 is illustrated in FIG. Transport in the direction of the arrow.
 第1搬送ベルト1111では、駆動ローラを含む複数のローラに無端ベルトが架け渡されている。回転する駆動ローラに従動して無端ベルトが回転することで、第1搬送ベルト1111はベルト上に載置されるプリプレグ1010を搬送する。第2搬送ベルト1112は第1搬送ベルト1111と同様の構成を備え、第1搬送ベルト1111から受け渡されるプリプレグ1010を搬送する。第3搬送ベルト1113は第1搬送ベルト1111と同様の構成を備え、第2搬送ベルト1112から受け渡されるプリプレグ1010を搬送する。 In the first conveying belt 1111, an endless belt is stretched around a plurality of rollers including a driving roller. As the endless belt rotates following the rotation of the driving roller, the first transport belt 1111 transports the prepreg 1010 placed on the belt. The second conveyor belt 1112 has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the first conveyor belt 1111. The third conveyor belt 1113 has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the second conveyor belt 1112.
 なお、搬送装置1110の構成は、本実施形態において例示される構成に限られるものではなく、例えば、複数の搬送ローラでプリプレグ1010を搬送する構成であってもよい。 Note that the configuration of the transport device 1110 is not limited to the configuration illustrated in the present embodiment, and may be a configuration in which the prepreg 1010 is transported by a plurality of transport rollers, for example.
 第1撮像装置1121は、例えば、CCD、CMOS等の撮像素子を備えるデジタルカメラである。第1撮像装置1121は、撮像する領域(第1撮像領域)の少なくとも一部が第1搬送ベルト1111と第2搬送ベルト1112との間の間隙であってプリプレグ1010が通過する領域に重なるように設けられている。本実施形態では、第1撮像装置1121は、第1搬送ベルト1111と第2搬送ベルト1112との間でプリプレグ1010の幅方向の全体を撮像できるように設けられている。 The first imaging device 1121 is a digital camera provided with an imaging element such as a CCD or CMOS. The first imaging device 1121 is configured such that at least a part of an imaging area (first imaging area) is a gap between the first conveyance belt 1111 and the second conveyance belt 1112 and overlaps an area through which the prepreg 1010 passes. Is provided. In the present embodiment, the first imaging device 1121 is provided so that the entire width of the prepreg 1010 can be imaged between the first conveyor belt 1111 and the second conveyor belt 1112.
 第1光源1131a及び1131bは、例えばLED(Light Emitting Diode)アレイであり、第1撮像装置1121がプリプレグ1010を撮像する第1撮像領域に光を照射する。なお、第1光源1131a及び1131bは、例えば有機ELアレイ、冷陰極管等の蛍光灯、ハロゲンランプ等であってもよい。光源としては、長寿命で発熱が少なく、単色光が選べるといった観点からLEDが好ましい。 The first light sources 1131a and 1131b are, for example, LED (Light Emitting Diode) arrays, and the first imaging device 1121 irradiates light to the first imaging region where the prepreg 1010 is imaged. The first light sources 1131a and 1131b may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, a halogen lamp, or the like. The light source is preferably an LED from the viewpoint of long life, little heat generation, and monochromatic light can be selected.
 第1光源1131a及び1131bは、それぞれ、第1撮像装置1121が、第1搬送ベルト1111と第2搬送ベルト1112との間を搬送されるプリプレグ1010の表面から主として拡散反射光を受光するように配置されている。本実施形態では、第1光源1131a及び1131bは、それぞれ、照射光のプリプレグ1010の表面への入射角度が45度となるように設けられている。また、第1撮像装置1121は、光学系の光軸がプリプレグ1010の表面に対して垂直になるように設けられている。 The first light sources 1131a and 1131b are arranged so that the first imaging device 1121 receives mainly diffuse reflected light from the surface of the prepreg 1010 conveyed between the first conveyance belt 1111 and the second conveyance belt 1112, respectively. Has been. In the present embodiment, the first light sources 1131a and 1131b are provided so that the incident angle of the irradiated light on the surface of the prepreg 1010 is 45 degrees. The first imaging device 1121 is provided so that the optical axis of the optical system is perpendicular to the surface of the prepreg 1010.
 なお、第1撮像装置1121がプリプレグ1010の表面から主として拡散反射光を受光することが可能であれば、第1光源1131a及び1131bと第1撮像装置1121との位置関係は上記した位置関係に限られるものではない。本実施形態では、2つの光源1131a及び1131bが対称に設けられているが、光源の数はこれに限られるものではなく、1つ又は3つ以上の光源が設けられてもよい。また、光源として、第1撮像装置1121の第1撮像領域を照らすようにドーム照明が設けられてもよい。以下の説明では、「第1光源1131a及び1131b」を単に「第1光源1131」という場合がある。 If the first imaging device 1121 can mainly receive diffusely reflected light from the surface of the prepreg 1010, the positional relationship between the first light sources 1131a and 1131b and the first imaging device 1121 is limited to the above-described positional relationship. It is not something that can be done. In this embodiment, the two light sources 1131a and 1131b are provided symmetrically, but the number of light sources is not limited to this, and one or three or more light sources may be provided. Further, a dome illumination may be provided as a light source so as to illuminate the first imaging region of the first imaging device 1121. In the following description, “ first light sources 1131a and 1131b” may be simply referred to as “first light source 1131”.
 支持部材1140は、第1搬送ベルト1111と第2搬送ベルト1112との間に設けられている。支持部材1140は、第1搬送ベルト1111と第2搬送ベルト1112との間を搬送されるプリプレグ1010を支持する。支持部材1140は、プリプレグ1010に当接する支持面1141を有する。支持面1141は、幅がプリプレグ1010の幅以上に形成され、第1搬送ベルト1111と第2搬送ベルト1112との間でプリプレグ1010の幅方向全体を支持する。プリプレグ1010は、支持部材1140の支持面1141に支持されることで、第1搬送ベルト111と第2搬送ベルト1112との間で撓みが生じることなく搬送される。 The support member 1140 is provided between the first transport belt 1111 and the second transport belt 1112. The support member 1140 supports the prepreg 1010 that is transported between the first transport belt 1111 and the second transport belt 1112. The support member 1140 has a support surface 1141 that contacts the prepreg 1010. The support surface 1141 is formed to have a width equal to or greater than the width of the prepreg 1010, and supports the entire width direction of the prepreg 1010 between the first conveyance belt 1111 and the second conveyance belt 1112. The prepreg 1010 is supported by the support surface 1141 of the support member 1140, so that the prepreg 1010 is transported between the first transport belt 111 and the second transport belt 1112 without being bent.
 このように、支持部材1140が第1搬送ベルト1111と第2搬送ベルト1112との間でプリプレグ1010を支持することで、第1搬送ベルト1111と第2搬送ベルト1112との間でプリプレグ1010に撓みを生じさせることなく、欠陥の検査を精度良く行うことが可能となっている。 As described above, the support member 1140 supports the prepreg 1010 between the first conveyance belt 1111 and the second conveyance belt 1112, so that the prepreg 1010 is bent between the first conveyance belt 1111 and the second conveyance belt 1112. It is possible to accurately inspect the defect without causing the occurrence of the problem.
 支持部材1140の支持面1141は、有彩色材料を用いて形成され、有彩色である。本実施形態では、支持面1141はシアン色の材料で形成されている。なお、支持部材1140では、例えば、支持面1141に有彩色の塗料が塗布されてもよく、支持面1141を含む部分が有彩色を有する材料で形成されてもよい。また、支持面1141の色は、有彩色であればよく、シアン色に限られるものではない。 The support surface 1141 of the support member 1140 is formed using a chromatic color material and has a chromatic color. In this embodiment, the support surface 1141 is formed of a cyan material. In the support member 1140, for example, a chromatic paint may be applied to the support surface 1141, and a portion including the support surface 1141 may be formed of a material having a chromatic color. Moreover, the color of the support surface 1141 should just be a chromatic color, and is not restricted to a cyan color.
 仮に支持部材1140の支持面1141が、例えば黒色、白色又は灰色といった無彩色であった場合、第1撮像装置1121によって撮像された画像データにおいて、欠陥の有無による差異が不明確になる可能性がある。そこで、本実施形態では、画像データにおける欠陥の有無による差異を明確にして欠陥検出精度を高めるために、支持部材1140の支持面1141を有彩色としている。 If the support surface 1141 of the support member 1140 is an achromatic color such as black, white, or gray, for example, the difference due to the presence or absence of a defect may be unclear in the image data captured by the first imaging device 1121. is there. Therefore, in the present embodiment, the support surface 1141 of the support member 1140 is chromatic in order to clarify the difference due to the presence or absence of defects in the image data and increase the defect detection accuracy.
 第2撮像装置1122は、例えば、CCD、CMOS等の撮像素子を備えるデジタルカメラである。第2撮像装置1122は、撮像する領域(第2撮像領域)の少なくとも一部が第2搬送ベルト1112と第3搬送ベルト1113との間であってプリプレグ1010が通過する領域に重なるように設けられている。本実施形態では、第2撮像装置1122は、第2搬送ベルト1112と第3搬送ベルト1113との間でプリプレグ1010の幅方向の全体を撮像できるように設けられている。 The second imaging device 1122 is a digital camera including an imaging element such as a CCD or a CMOS, for example. The second imaging device 1122 is provided so that at least a part of the imaging region (second imaging region) is between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps the region through which the prepreg 1010 passes. ing. In the present embodiment, the second imaging device 1122 is provided so that the entire width of the prepreg 1010 can be imaged between the second conveyance belt 1112 and the third conveyance belt 1113.
 第2光源1132は、例えばLEDアレイであり、第2撮像装置1122がプリプレグ1010を撮像する第2撮像領域に光を照射する。なお、第2光源1132は、例えば有機ELアレイ、冷陰極管等の蛍光灯、ハロゲンランプ等であってもよい。 The second light source 1132 is, for example, an LED array, and the second imaging device 1122 irradiates the second imaging region where the prepreg 1010 is imaged with light. The second light source 1132 may be, for example, an organic EL array, a fluorescent lamp such as a cold cathode tube, a halogen lamp, or the like.
 第2光源1132は、第2撮像装置1122が第2搬送ベルト1112と第3搬送ベルト1113との間を搬送されるプリプレグ1010の表面から主として正反射光を受光するように配置されている。本実施形態では、第2光源1132は、照射光のプリプレグ1010の表面への入射角度が45度となるように設けられている。また、第2撮像装置1122は、光学系の光軸がプリプレグ1010の表面に対する角度が45度となるように設けられている。 The second light source 1132 is disposed so that the second imaging device 1122 mainly receives specularly reflected light from the surface of the prepreg 1010 that is transported between the second transport belt 1112 and the third transport belt 1113. In the present embodiment, the second light source 1132 is provided so that the incident angle of the irradiated light to the surface of the prepreg 1010 is 45 degrees. The second imaging device 1122 is provided such that the angle of the optical axis of the optical system with respect to the surface of the prepreg 1010 is 45 degrees.
 仕分け機構1150は、後述するように、欠陥検査結果に応じてプリプレグ1010を第3搬送ベルト1113から第1トレイ1151又は第2トレイ1152に導く。仕分け機構1150は、欠陥検査結果に応じてプリプレグ1010を仕分けることが可能であれば、どのような構成であってもよい。 The sorting mechanism 1150 guides the prepreg 1010 from the third transport belt 1113 to the first tray 1151 or the second tray 1152 according to the defect inspection result, as will be described later. The sorting mechanism 1150 may have any configuration as long as the prepreg 1010 can be sorted according to the defect inspection result.
 すなわち第1トレイ1151には、欠陥が検出されなかったプリプレグ1010Aが仕分け機構1150により導かれて積載される。第2トレイ1152には、欠陥が検出されたプリプレグ1010Bが仕分け機構1150により導かれて積載される。 That is, the prepreg 1010A in which no defect is detected is guided and stacked on the first tray 1151 by the sorting mechanism 1150. On the second tray 1152, the prepreg 1010B in which a defect is detected is guided and stacked by the sorting mechanism 1150.
 検査装置1160は、画像取得部1161、欠陥検出部1162及び仕分け部1163を有する。検査装置1160は、例えば、CPU,ROM,RAM等を備えるコンピュータである。検査装置1160の各機能、すなわち画像取得部1161、欠陥検出部1162及び仕分け部1163は、例えば、CPUがROMから読み出したプログラムをRAMと協働して実行することで実現される。 The inspection apparatus 1160 includes an image acquisition unit 1161, a defect detection unit 1162, and a sorting unit 1163. The inspection device 1160 is, for example, a computer that includes a CPU, a ROM, a RAM, and the like. Each function of the inspection apparatus 1160, that is, the image acquisition unit 1161, the defect detection unit 1162, and the sorting unit 1163, for example, is realized by the CPU executing a program read from the ROM in cooperation with the RAM.
 画像取得部1161は、第1撮像装置1121及び第2撮像装置1122からプリプレグ1010の画像データを取得する。欠陥検出部1162は、画像取得部1161が第1撮像装置1121及び第2撮像装置1122から取得した画像データに基づいて、プリプレグ1010に存在する欠陥を検出する。 The image acquisition unit 1161 acquires image data of the prepreg 1010 from the first imaging device 1121 and the second imaging device 1122. The defect detection unit 1162 detects a defect present in the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 from the first imaging device 1121 and the second imaging device 1122.
 仕分け部1163は、欠陥検出部1162によるプリプレグ1010の欠陥検出結果に基づいて仕分け機構1150を制御し、プリプレグ1010を第3搬送ベルト1113から第1トレイ1151又は第2トレイ1152に導く。仕分け部1163は、欠陥が検出されなかったプリプレグ1010Aを第1トレイ1151に導き、欠陥が検出されたプリプレグ1010Bを第2トレイ1152に導くように仕分け機構1150を制御する。 The sorting unit 1163 controls the sorting mechanism 1150 based on the defect detection result of the prepreg 1010 by the defect detection unit 1162, and guides the prepreg 1010 from the third transport belt 1113 to the first tray 1151 or the second tray 1152. The sorting unit 1163 controls the sorting mechanism 1150 so that the prepreg 1010A in which no defect is detected is guided to the first tray 1151, and the prepreg 1010B in which the defect is detected is guided to the second tray 1152.
 図10は、プリプレグ1010の欠陥を例示する図である。 FIG. 10 is a diagram illustrating a defect of the prepreg 1010.
 図10に示されている欠陥AAは、プリプレグ1010の表面にできた凹凸である。欠陥BBは、プリプレグ1010の表層のひび割れである。また、欠陥CCは、プリプレグ1010の内部に混入した異物である。検査装置1160の欠陥検出部1162は、画像取得部1161が第1撮像装置1121及び第2撮像装置1122から取得した画像データに基づいてプリプレグ1010の欠陥を検出する。なお、図10には、欠陥AAを誇張して示しており、欠陥AAは実際には目視での確認ができない微小な凹凸である。 The defect AA shown in FIG. 10 is unevenness formed on the surface of the prepreg 1010. The defect BB is a crack in the surface layer of the prepreg 1010. Further, the defect CC is a foreign matter mixed in the prepreg 1010. The defect detection unit 1162 of the inspection apparatus 1160 detects a defect of the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 from the first imaging device 1121 and the second imaging device 1122. In FIG. 10, the defect AA is exaggerated, and the defect AA is a minute unevenness that cannot actually be visually confirmed.
 図11は、第3の実施形態における欠陥検出処理のフローチャートを例示する図である。 FIG. 11 is a diagram illustrating a flowchart of defect detection processing in the third embodiment.
 図11に示されるように、検査システム1100における欠陥検出処理では、まずステップS1101にて、搬送装置1110が、第1搬送ベルト1111から第3搬送ベルト1113に向かってプリプレグ1010を搬送する。 As shown in FIG. 11, in the defect detection process in the inspection system 1100, first, in step S <b> 1101, the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the third transport belt 1113.
 次にステップS1102では、第1撮像装置1121が、第1搬送ベルト1111と第2搬送ベルト1112との間の第1撮像領域を搬送されるプリプレグ1010を撮像する。第1撮像装置1121の第1撮像領域は、上記したように第1搬送ベルト1111と第2搬送ベルト1112との間に設けられており、第1撮像装置1121はプリプレグ1010の支持部材1140の支持面1141に支持されている部分を撮像する。第1撮像装置1121は搬送装置1110により搬送されるプリプレグ1010を連続的に撮像することでプリプレグ1010の全体を撮像する。 Next, in step S1102, the first imaging device 1121 images the prepreg 1010 conveyed in the first imaging area between the first conveyance belt 1111 and the second conveyance belt 1112. As described above, the first imaging region of the first imaging device 1121 is provided between the first conveyor belt 1111 and the second conveyor belt 1112, and the first imaging device 1121 supports the support member 1140 of the prepreg 1010. The part supported by the surface 1141 is imaged. The first imaging device 1121 images the entire prepreg 1010 by continuously capturing images of the prepreg 1010 conveyed by the conveying device 1110.
 ステップS1103では、検査装置1160の欠陥検出部1162が、画像取得部1161が第1撮像装置1121から取得したプリプレグ1010の画像データ(以下、第1画像データという)に基づいてプリプレグ1010の欠陥を検出する。 In step S1103, the defect detection unit 1162 of the inspection apparatus 1160 detects a defect of the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the first imaging device 1121 (hereinafter referred to as first image data). To do.
 図12は、第1撮像装置1121によって撮像されたプリプレグ1010の第1画像データを模式的に例示する図である。 FIG. 12 is a diagram schematically illustrating the first image data of the prepreg 1010 imaged by the first imaging device 1121.
 第1撮像装置1121は、プリプレグ1010の欠陥が無い部分からは、プリプレグ1010からの拡散反射光と、透光性を有するプリプレグ1010を介して支持部材1140の支持面1141で反射された拡散反射光とを受光する。したがって、プリプレグ1010の第1画像データにおいて、欠陥が無い部分では、プリプレグ1010を介して支持部材1140の支持面1141が見えるように、支持部材1140の支持面1141の色が表れる。本実施形態では、支持部材1140の支持面1141はシアン色なので、第1撮像装置1121の撮像画像においてプリプレグ1010の欠陥が無い部分はシアン色である。 The first imaging device 1121 has diffuse reflection light from the prepreg 1010 and diffuse reflection light reflected on the support surface 1141 of the support member 1140 via the prepreg 1010 having translucency from a portion where the prepreg 1010 is not defective. And receive light. Therefore, in the first image data of the prepreg 1010, the color of the support surface 1141 of the support member 1140 appears so that the support surface 1141 of the support member 1140 can be seen through the prepreg 1010 in a portion having no defect. In this embodiment, since the support surface 1141 of the support member 1140 is cyan, the portion of the captured image of the first imaging device 1121 that has no defect in the prepreg 1010 is cyan.
 プリプレグ1010の欠陥AAは、欠陥が無い部分と同様に第1光源1131からの照射光を反射する。このため、プリプレグ1010の欠陥AAから第1撮像装置1121が受光する受光量と、欠陥が無い部分から第1撮像装置1121が受光する受光量とが同等となる。したがって、図12に示されるように、プリプレグ1010の第1画像データにおいて欠陥AAが存在する部分は欠陥が無い部分と同等の明るさを有する。 The defect AA of the prepreg 1010 reflects the irradiation light from the first light source 1131 in the same manner as the part having no defect. For this reason, the amount of light received by the first imaging device 1121 from the defect AA of the prepreg 1010 is equal to the amount of light received by the first imaging device 1121 from a portion having no defect. Therefore, as shown in FIG. 12, the portion where the defect AA exists in the first image data of the prepreg 1010 has the same brightness as the portion without the defect.
 プリプレグ1010の欠陥BBは、内部のひび割れにより白化したような状態を有する。第1撮像装置1121は、プリプレグ1010の欠陥BBが存在する部分からは、プリプレグ1010の表面からの拡散反射光と、透光性を有するプリプレグ1010を介して欠陥BBで反射される拡散反射光とを受光する。したがって、プリプレグ1010の第1画像データにおいて欠陥BBが存在する部分は、欠陥が無い部分より輝度が高い。 The defect BB of the prepreg 1010 has a state of whitening due to internal cracks. The first imaging device 1121 has a diffuse reflection light from the surface of the prepreg 1010 and a diffuse reflection light reflected by the defect BB through the prepreg 1010 having translucency from a portion where the defect BB of the prepreg 1010 exists. Is received. Accordingly, the portion where the defect BB exists in the first image data of the prepreg 1010 has a higher luminance than the portion where there is no defect.
 また、第1撮像装置1121は、プリプレグ1010の欠陥CCが存在する部分からは、プリプレグ1010の表面からの拡散反射光と、透光性を有するプリプレグ1010を介して異物で反射される拡散反射光とを受光する。したがって、第1撮像装置1121の第1画像データにおいて、プリプレグ1010の欠陥CCが存在する部分では、プリプレグ1010を通して異物が見えるように異物の色が表れる。例えば、黒色の異物がプリプレグ1010の内部に混入して欠陥CCが生じた場合には、第1画像データにおいて、欠陥CCが暗い影のように表れる。 In addition, the first imaging device 1121 has diffuse reflection light from the surface of the prepreg 1010 and diffuse reflection light reflected by foreign matter through the prepreg 1010 having translucency from a portion where the defect CC of the prepreg 1010 exists. And receive light. Accordingly, in the first image data of the first imaging device 1121, the color of the foreign matter appears so that the foreign matter can be seen through the prepreg 1010 in the portion where the defect CC of the prepreg 1010 exists. For example, when a black foreign substance is mixed into the prepreg 1010 and a defect CC occurs, the defect CC appears as a dark shadow in the first image data.
 上記したように、第1撮像装置1121によるプリプレグ1010の第1画像データにおいて、欠陥BB及び欠陥CCが存在する部分は、欠陥が無い部分とは明るさや色が異なる。 As described above, in the first image data of the prepreg 1010 by the first imaging device 1121, the portion where the defect BB and the defect CC are present is different in brightness and color from the portion having no defect.
 そこで、検査装置1160の欠陥検出部1162は、例えば、プリプレグ1010の第1画像データにおいて欠陥が無い部分の画素の平均輝度を予め算出しておき、第1画像データの各画素の輝度と、予め算出した平均輝度との比較に基づいて欠陥を検出する。欠陥検出部1162は、例えば、第1画像データにおいて輝度が平均輝度よりも高い画素を欠陥BBとして検出する。また、欠陥検出部1162は、例えば、第1画像データにおいて輝度が平均輝度よりも低い画素を欠陥CCとして検出する。 Therefore, for example, the defect detection unit 1162 of the inspection apparatus 1160 calculates in advance the average luminance of the pixels in the first image data of the prepreg 1010 where there is no defect, and the luminance of each pixel of the first image data is calculated in advance. A defect is detected based on the comparison with the calculated average luminance. For example, the defect detection unit 1162 detects, as the defect BB, a pixel whose luminance is higher than the average luminance in the first image data. In addition, the defect detection unit 1162 detects, for example, a pixel whose luminance is lower than the average luminance in the first image data as a defect CC.
 また、欠陥検出部1162は、例えば、第1画像データにおける各画素の輝度と平均輝度に対する輝度差(すなわち「各画素の輝度」-「平均輝度」)を算出し、輝度差に基づいて欠陥BB及び欠陥CCを検出してもよい。欠陥検出部1162は、例えば、予め設定された第1閾値(>0)及び第2閾値(<0)と輝度差とを比較し、輝度差が第1閾値以上の画素を欠陥BBとして検出する。また、輝度差が第2閾値以下の画素を欠陥CCとして検出する。 In addition, the defect detection unit 1162 calculates, for example, the luminance difference between each pixel and the average luminance in the first image data (that is, “the luminance of each pixel” − “average luminance”), and the defect BB is calculated based on the luminance difference. And a defect CC may be detected. For example, the defect detection unit 1162 compares the first threshold value (> 0) and the second threshold value (<0) set in advance with the luminance difference, and detects a pixel having the luminance difference equal to or greater than the first threshold value as the defect BB. . In addition, a pixel having a luminance difference equal to or smaller than the second threshold is detected as a defect CC.
 このように、検査装置1160の欠陥検出部1162は、第1撮像装置1121から取得した第1画像データに基づいて、プリプレグ1010に存在する欠陥BB及び欠陥CCを検出できる。上記した例では、黒色の異物である欠陥CCを検出する場合について説明したが、黒色以外の異物である欠陥CCであっても、欠陥CCが存在する部分の画素の輝度と、欠陥が無い部分の画素の輝度との差異に基づいて欠陥CCを検出できる。 Thus, the defect detection unit 1162 of the inspection apparatus 1160 can detect the defect BB and the defect CC present in the prepreg 1010 based on the first image data acquired from the first imaging apparatus 1121. In the above-described example, the case where the defect CC that is a black foreign substance is detected has been described. However, even if the defect CC is a non-black foreign substance, the luminance of the pixel in the part where the defect CC exists and the part that does not have the defect The defect CC can be detected based on the difference from the luminance of the pixel.
 図11に示す欠陥検出処理のフローチャートに戻り、ステップS1104では、第2撮像装置1122が、第2搬送ベルト1112と第3搬送ベルト1113との間の第2撮像領域を搬送されるプリプレグ1010を撮像する。第2撮像装置1122の第2撮像領域は、上記したように第2搬送ベルト1112と第3搬送ベルト1113との間に設けられている。第2撮像装置1122は、搬送装置1110により搬送されるプリプレグ1010を連続的に撮像することで、プリプレグ1010の全体を撮像する。 Returning to the flowchart of the defect detection process shown in FIG. 11, in step S <b> 1104, the second imaging device 1122 images the prepreg 1010 that is conveyed in the second imaging region between the second conveyance belt 1112 and the third conveyance belt 1113. To do. The second imaging region of the second imaging device 1122 is provided between the second conveyor belt 1112 and the third conveyor belt 1113 as described above. The second imaging device 1122 captures the entire prepreg 1010 by continuously capturing images of the prepreg 1010 transported by the transport device 1110.
 ステップS1105では、検査装置1160の欠陥検出部1162が、画像取得部1161が第2撮像装置1122から取得したプリプレグ1010の画像データ(以下、第2画像データという)に基づいて、プリプレグ1010の欠陥を検出する。 In step S1105, the defect detection unit 1162 of the inspection apparatus 1160 detects defects in the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122 (hereinafter referred to as second image data). To detect.
 図13は、第2撮像装置1122によって撮像されたプリプレグ1010の第2画像データを模式的に例示する図である。 FIG. 13 is a diagram schematically illustrating second image data of the prepreg 1010 imaged by the second imaging device 1122.
 第2撮像装置1122は、プリプレグ1010の欠陥が無い部分からは、プリプレグ1010の表面からの正反射光を受光する。また、欠陥CCが存在する部分では、欠陥が無い部分と同様に、プリプレグ1010の表面が第2光源1132からの照射光を正反射する。したがって、第2撮像装置1122は、プリプレグ1010の欠陥CCが存在する部分からも、欠陥が無い部分と同様にプリプレグ1010の表面からの正反射光を受光する。 The second imaging device 1122 receives specularly reflected light from the surface of the prepreg 1010 from a portion where the prepreg 1010 is not defective. Further, in the portion where the defect CC exists, the surface of the prepreg 1010 regularly reflects the irradiation light from the second light source 1132 in the same manner as the portion where there is no defect. Therefore, the second imaging device 1122 receives specularly reflected light from the surface of the prepreg 1010 from the portion where the defect CC of the prepreg 1010 exists, similarly to the portion without the defect.
 プリプレグ1010の欠陥AA及び欠陥BBにおける第2光源1132からの照射光の拡散反射率は欠陥が無い部分の拡散反射率より高い。このため、プリプレグ1010の欠陥AA及び欠陥BBから第2撮像装置1122が受光する受光量が、欠陥が無い部分から第2撮像装置1122が受光する受光量よりも小さい。したがって、図13に示されるように、プリプレグ1010の第2画像データにおいて欠陥AA及び欠陥BBが存在する部分は、欠陥が無い部分や欠陥CCが存在する部分よりも暗い。 The diffuse reflectance of the irradiation light from the second light source 1132 at the defect AA and the defect BB of the prepreg 1010 is higher than the diffuse reflectance of the portion having no defect. For this reason, the amount of light received by the second imaging device 1122 from the defect AA and the defect BB of the prepreg 1010 is smaller than the amount of light received by the second imaging device 1122 from a portion where there is no defect. Therefore, as shown in FIG. 13, in the second image data of the prepreg 1010, the portion where the defect AA and the defect BB are present is darker than the portion where there is no defect or the portion where the defect CC is present.
 なお、第2光源1132からの照射光に対するプリプレグ1010の拡散反射率が高いほど第2撮像装置1122が受光する受光量が小さい理由は以下の通りである。拡散反射率が高いとは、拡散反射、すなわち巨視的に見て反射の法則に無関係に各方向に光を拡散する反射の度合いが高いことを意味する。他方、第2光源1132と第2撮像装置1122との位置関係は、拡散反射の度合いが低いほど、すなわち正反射に近いほど第2撮像装置1122の受光量が大きい位置関係である。したがって第2光源1132からの照射光に対するプリプレグ1010の拡散反射率が高いほど第2撮像装置1122が受光する受光量が小さい
 そこで、検査装置1160の欠陥検出部1162は、例えば、プリプレグ1010の第2画像データにおいて欠陥が無い部分の画素の平均輝度を予め算出しておき、第2画像データの各画素の輝度と予め算出した平均輝度とを比較して欠陥AA及び欠陥BBを検出する。欠陥検出部1162は、例えば、第2画像データにおいて輝度が平均輝度よりも低い画素を欠陥AA及び欠陥BBとして検出する。また、欠陥検出部1162は、例えば、第2画像データにおける各画素の輝度の、平均輝度に対する輝度差(すなわち「各画素の輝度」-「平均輝度」)を算出し、輝度差が予め設定された閾値以下となった画素を欠陥AA及び欠陥BBとして検出してもよい。
The reason why the amount of received light received by the second imaging device 1122 is smaller as the diffuse reflectance of the prepreg 1010 with respect to the irradiation light from the second light source 1132 is higher is as follows. High diffuse reflectance means that diffuse reflection, that is, the degree of reflection that diffuses light in each direction regardless of the law of reflection when viewed macroscopically is high. On the other hand, the positional relationship between the second light source 1132 and the second imaging device 1122 is a positional relationship in which the amount of light received by the second imaging device 1122 is larger as the degree of diffuse reflection is lower, that is, closer to regular reflection. Accordingly, the higher the diffuse reflectance of the prepreg 1010 with respect to the irradiation light from the second light source 1132, the smaller the amount of light received by the second imaging device 1122. Therefore, the defect detection unit 1162 of the inspection device 1160 is, for example, the second prepreg 1010. In the image data, the average luminance of the pixels of the portion having no defect is calculated in advance, and the defect AA and the defect BB are detected by comparing the luminance of each pixel of the second image data with the previously calculated average luminance. For example, the defect detection unit 1162 detects, as the defect AA and the defect BB, pixels whose luminance is lower than the average luminance in the second image data. Further, the defect detection unit 1162 calculates, for example, a luminance difference with respect to the average luminance of each pixel in the second image data (that is, “the luminance of each pixel” − “average luminance”), and the luminance difference is preset. Pixels that are less than or equal to the threshold value may be detected as defects AA and BB.
 このように、検査装置1160の欠陥検出部1162は、第2撮像装置1122から取得した第2画像データに基づいて、プリプレグ1010に存在する欠陥AA及び欠陥BBを検出する。 Thus, the defect detection unit 1162 of the inspection apparatus 1160 detects the defect AA and the defect BB present in the prepreg 1010 based on the second image data acquired from the second imaging apparatus 1122.
 図11に示す欠陥検出処理のフローチャートに戻り、欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れも検出されなかった場合(ステップS1106:NO)には、処理はステップS1107に進む。ステップS1107では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されなかったプリプレグ1010を第3搬送ベルト1113から第1トレイ1151に排出させて処理を終了する。 Returning to the flowchart of the defect detection process shown in FIG. 11, when none of the defect AA, the defect BB, and the defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1106: NO), the process proceeds to step S1107. Proceed to In step S1107, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the third transport belt 1113 to the first tray 1151, and ends the process.
 また、欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れかの欠陥が検出された場合(ステップS1106:YES)には、処理はステップS1108に進む。ステップS1108では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されたプリプレグ1010を第3搬送ベルトから第2トレイ1152に排出させて処理を終了する。 If the defect detection unit 1162 detects any one of the defects AA, BB, and CC from the prepreg 1010 (step S1106: YES), the process proceeds to step S1108. In step S1108, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which the defect is detected from the third transport belt to the second tray 1152, and the process is ended.
 ここで上記の如く、検査装置1160の欠陥検出部1162は、第1撮像装置1121により撮像された第1画像データからプリプレグ1010の欠陥BB及び欠陥CCを検出する(ステップS1103)。また第2撮像装置1122により撮像された第2画像データからプリプレグ1010の欠陥AA及び欠陥BBを検出する(ステップS1105)。このように、第1画像データによる処理と第2画像データによる処理とでは検出する欠陥の種類が異なる。また、第1画像データによるステップS1103では欠陥BBと欠陥CCとを異なる処理(例えば、輝度が平均輝度よりも高い画素を欠陥BBとして検出する処理と、輝度が平均輝度よりも低い画素を欠陥CCとして検出する処理)で検出する。これに対し、第2画像データによるステップS1105では、欠陥AAと欠陥BBとを同一の処理(例えば、輝度が平均輝度よりも低い画素を欠陥AA及び欠陥BBとして検出する処理)で検出する。その結果、第1画像データによる処理の処理時間t1が、第2画像データによる処理の処理時間t2よりも長い。 Here, as described above, the defect detection unit 1162 of the inspection device 1160 detects the defect BB and the defect CC of the prepreg 1010 from the first image data imaged by the first imaging device 1121 (step S1103). Further, the defect AA and the defect BB of the prepreg 1010 are detected from the second image data imaged by the second imaging device 1122 (step S1105). As described above, the type of defect to be detected is different between the process using the first image data and the process using the second image data. Further, in step S1103 by the first image data, the defect BB and the defect CC are processed differently (for example, a process in which a pixel having a luminance higher than the average luminance is detected as a defect BB, and a pixel having a luminance lower than the average luminance is determined as the defect CC. Detecting process). On the other hand, in step S1105 based on the second image data, the defect AA and the defect BB are detected by the same process (for example, a process of detecting pixels whose luminance is lower than the average luminance as the defect AA and the defect BB). As a result, the processing time t1 of the process using the first image data is longer than the processing time t2 of the process using the second image data.
 したがって、例えばプリプレグ1010の搬送経路において、第2撮像装置1122が第1撮像装置1121よりも上流側で撮像するように構成すると、全体の処理時間が増大する。この場合、第1撮像装置1121の第1撮像領域と第2撮像装置1122の第2撮像領域との間でのプリプレグ1010の搬送時間をt3とすると、図14Aに示すように、第1画像データ及び第2画像データからの欠陥検出に要する必要処理時間はT21=t1+t3となる。 Therefore, for example, if the second imaging device 1122 is configured to capture an image upstream of the first imaging device 1121 in the transport path of the prepreg 1010, the overall processing time increases. In this case, when the transport time of the prepreg 1010 between the first imaging region of the first imaging device 1121 and the second imaging region of the second imaging device 1122 is t3, as shown in FIG. 14A, the first image data The necessary processing time required for detecting a defect from the second image data is T21 = t1 + t3.
 これに対して、本実施形態における検査システム1100では、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122よりも上流側で撮像するように構成されている。このような構成により、図14Bに示すように、第1画像データ及び第2画像データからの欠陥検出に要する必要処理時間はT12=t1となり、上記した必要処理時間T21(=t1+t3)よりも短縮することが可能になる。 In contrast, in the inspection system 1100 according to the present embodiment, the first imaging device 1121 is configured to capture an image upstream of the second imaging device 1122 in the transport path of the prepreg 1010. With such a configuration, as shown in FIG. 14B, the necessary processing time required for defect detection from the first image data and the second image data is T12 = t1, which is shorter than the above-described necessary processing time T21 (= t1 + t3). It becomes possible to do.
 以上で説明したように、第3の実施形態における検査システム1100によれば、第1撮像装置1121及び第2撮像装置1122によって撮像された画像に基づいて検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122よりも上流側で撮像することにより、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能になる。 As described above, according to the inspection system 1100 in the third embodiment, the defect of the prepreg 1010 as the inspection object is detected based on the images captured by the first imaging device 1121 and the second imaging device 1122. can do. In addition, the first imaging device 1121 captures an image upstream of the second imaging device 1122 in the transport path of the prepreg 1010, so that it is possible to shorten the time required for defect detection processing and improve productivity. Become.
 また、第3の実施形態における検査システム1100では、搬送装置1110の搬送ベルト1111及び1112の間の間隙でプリプレグ1010の検査を行うように第1撮像装置1121が設けられている。また、搬送装置1110の搬送ベルト1112及び1113の間の間隙でプリプレグ1010の検査を行うように第2撮像装置1122等が設けられている。このような構成により、搬送装置1110における搬送ベルト表面の凹凸等の影響を受けることなく、プリプレグ1010の欠陥の検査を高精度に行うことが可能になっている。 In the inspection system 1100 according to the third embodiment, the first imaging device 1121 is provided so as to inspect the prepreg 1010 in the gap between the conveyor belts 1111 and 1112 of the conveyor device 1110. Further, a second imaging device 1122 and the like are provided so as to inspect the prepreg 1010 in the gap between the conveyance belts 1112 and 1113 of the conveyance device 1110. With such a configuration, it is possible to inspect defects of the prepreg 1010 with high accuracy without being affected by irregularities on the surface of the conveyor belt in the conveyor 1110.
 [第4の実施形態]
 次に、第4の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Fourth Embodiment]
Next, a fourth embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図15は、第4の実施形態における検査システム1200を例示する図である。 FIG. 15 is a diagram illustrating an inspection system 1200 according to the fourth embodiment.
 検査システム1200は、図15に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第3撮像装置1123、第1光源1131a及び1131b、第2光源1132、第3光源1133、支持部材1140、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1200は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010の欠陥の有無を検査する。 As shown in FIG. 15, the inspection system 1200 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160. The inspection system 1200 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
 搬送装置1110は、第1搬送ベルト1111、第2搬送ベルト1112、及び第3搬送ベルト1113に加えて、第4搬送部としての第4搬送ベルト1114を有し、プリプレグ1010を図15における矢印方向に搬送する。第4搬送ベルトは、第1搬送ベルト1111と同様の構成を備え、第3搬送ベルト1113から受け渡されるプリプレグ1010を搬送する。 The conveyance device 1110 includes a fourth conveyance belt 1114 as a fourth conveyance unit in addition to the first conveyance belt 1111, the second conveyance belt 1112, and the third conveyance belt 1113, and the prepreg 1010 is moved in the direction of the arrow in FIG. 15. Transport to. The fourth conveyor belt has the same configuration as the first conveyor belt 1111, and conveys the prepreg 1010 delivered from the third conveyor belt 1113.
 第3撮像装置1123は、例えば、CCD、CMOS等の撮像素子を備えるデジタルカメラである。第3撮像装置1123は、撮像する領域(第3撮像領域)の少なくとも一部が第3搬送ベルト1113と第4搬送ベルト1114との間の間隙であってプリプレグ1010が通過する領域に重なるように設けられている。第3撮像装置1123は、第2撮像装置1122とは反対側からプリプレグ1010を撮像する。本実施形態では、第3撮像装置1123は、ミラー1171を介してプリプレグ1010を撮像する。 The third imaging device 1123 is, for example, a digital camera including an imaging element such as a CCD or a CMOS. The third imaging device 1123 is such that at least a part of an imaging area (third imaging area) is a gap between the third conveyance belt 1113 and the fourth conveyance belt 1114 and overlaps with an area through which the prepreg 1010 passes. Is provided. The third imaging device 1123 images the prepreg 1010 from the side opposite to the second imaging device 1122. In the present embodiment, the third imaging device 1123 images the prepreg 1010 via the mirror 1171.
 第3光源1133は、例えばLEDアレイであり、第3撮像装置1123がプリプレグ1010を撮像する第3撮像領域に光を照射する。第3光源1133からの照射光は、ハーフミラー1172により反射されて第3搬送ベルト1113と第4搬送ベルト1114との間の第3撮像領域に導かれる。 The third light source 1133 is, for example, an LED array, and the third imaging device 1123 irradiates the third imaging region where the prepreg 1010 is imaged with light. Irradiation light from the third light source 1133 is reflected by the half mirror 1172 and guided to the third imaging region between the third conveyor belt 1113 and the fourth conveyor belt 1114.
 第3光源1133、ミラー1171、及びハーフミラー1172は、第3撮像装置1123が第3搬送ベルト1113と第4搬送ベルト1114との間を搬送されるプリプレグ1010の表面から主として正反射光を受光するように配置されている。なお、第3光源1133から照射される光が平行光となるように、例えばライトコントロールフィルムを第3光源1133に設けてもよい。 The third light source 1133, the mirror 1171, and the half mirror 1172 receive specularly reflected light mainly from the surface of the prepreg 1010 that the third imaging device 1123 is transported between the third transport belt 1113 and the fourth transport belt 1114. Are arranged as follows. For example, a light control film may be provided in the third light source 1133 so that the light emitted from the third light source 1133 becomes parallel light.
 図16は、第4の実施形態における欠陥検出処理のフローチャートを例示する図である。 FIG. 16 is a diagram illustrating a flowchart of defect detection processing in the fourth embodiment.
 図16に示されるように、検査システム1200における欠陥検出処理では、まずステップS1201にて、搬送装置1110が、第1搬送ベルト1111から第4搬送ベルト1114に向かってプリプレグ1010を搬送する。 As shown in FIG. 16, in the defect detection processing in the inspection system 1200, first, in step S1201, the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the fourth transport belt 1114.
 次にステップS1202では、第1撮像装置1121が、第1搬送ベルト1111と第2搬送ベルト1112との間の第1撮像領域を搬送されるプリプレグ1010を撮像する。ステップS1203では、検査装置1160の欠陥検出部1162が、画像取得部1161が第1撮像装置1121から取得したプリプレグ1010の第1画像データに基づいて、上記した第3の実施形態と同様にしてプリプレグ1010の欠陥BB及び欠陥CCを検出する。 Next, in step S1202, the first imaging device 1121 images the prepreg 1010 conveyed in the first imaging area between the first conveyance belt 1111 and the second conveyance belt 1112. In step S1203, the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg in the same manner as in the third embodiment described above based on the first image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the first imaging device 1121. 1010 defects BB and CC are detected.
 ステップS1204では、第2撮像装置1122が、第2搬送ベルト1112と第3搬送ベルト1113との間の第2撮像領域を搬送されるプリプレグ1010を撮像する。ステップS1205では、検査装置1160の欠陥検出部1162が、画像取得部1161が第2撮像装置1122から取得したプリプレグ1010の第2画像データに基づいて、上記した第3の実施形態と同様にしてプリプレグ1010の第1面側における欠陥AA及び欠陥BBを検出する。 In step S1204, the second imaging device 1122 images the prepreg 1010 that is transported in the second imaging region between the second transport belt 1112 and the third transport belt 1113. In step S1205, the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg in the same manner as in the third embodiment described above based on the second image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122. Defect AA and defect BB on the first surface side of 1010 are detected.
 ステップS1206では、第3撮像装置1123が、第3搬送ベルト1113と第4搬送ベルト1114との間の第3撮像領域を搬送されるプリプレグ1010を撮像する。ステップS1207では、検査装置1160の欠陥検出部1162が、画像取得部1161が第3撮像装置1123から取得したプリプレグ1010の画像データ(以下、第3画像データという)に基づいて、プリプレグ1010の、第1面とは反対側の第2面側における欠陥AA欠陥BBを検出する。 In step S1206, the third imaging device 1123 images the prepreg 1010 conveyed in the third imaging area between the third conveyor belt 1113 and the fourth conveyor belt 1114. In step S1207, the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg 1010 of the prepreg 1010 based on the image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the third imaging device 1123 (hereinafter referred to as third image data). A defect AA defect BB on the second surface side opposite to the first surface is detected.
 欠陥検出部1162による第3撮像装置1123から取得した第3画像データの欠陥検出方法は、第2撮像装置1122によって撮像された第2画像データの欠陥検出方法と同様である。このように、第2撮像装置1122によって撮像された第2画像データ及び第3撮像装置1123によって撮像された第3画像データに基づいて、プリプレグ1010の両面で欠陥AA及び欠陥BBを検出できる。 The defect detection method of the third image data acquired from the third imaging device 1123 by the defect detection unit 1162 is the same as the defect detection method of the second image data captured by the second imaging device 1122. As described above, the defect AA and the defect BB can be detected on both surfaces of the prepreg 1010 based on the second image data captured by the second imaging device 1122 and the third image data captured by the third imaging device 1123.
 欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れも検出されなかった場合(ステップS1208:NO)には、処理はステップS1209に進む。ステップS1209では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されなかったプリプレグ1010を第4搬送ベルト1114から第1トレイ1151に排出させて処理を終了する。 If none of the defect AA, the defect BB, and the defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1208: NO), the process proceeds to step S1209. In step S1209, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the fourth transport belt 1114 to the first tray 1151, and ends the process.
 また、欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れかの欠陥が検出された場合(ステップS1208:YES)には、処理はステップS1210に進む。ステップS1210では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されたプリプレグ1010を第4搬送ベルト1114から第2トレイ1152に排出させて処理を終了する。 If any one of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1208: YES), the process proceeds to step S1210. In step S1210, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which a defect has been detected from the fourth transport belt 1114 to the second tray 1152, and the process ends.
 以上で説明したように、第4の実施形態における検査システム1200によれば、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123によって撮像された画像に基づいて、検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122及び第3撮像装置よりも上流側でプリプレグ1010を撮像するように構成することで、上記した第3の実施形態同様、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能になる。 As described above, according to the inspection system 1200 of the fourth embodiment, the inspection object is based on the images captured by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. The defect of the prepreg 1010 can be detected. Further, the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process.
 また、第4の実施形態における検査システム1200は、搬送装置1110のそれぞれの搬送ベルトの間の間隙でプリプレグ1010の検査を行うように、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123等が設けられている。このような構成により、上記した第3の実施形態同様、搬送装置1110における搬送ベルト表面の凹凸等の影響を受けることなく、プリプレグ1010の欠陥の検査を高精度に行うことが可能になっている。 In addition, the inspection system 1200 according to the fourth embodiment performs the first imaging device 1121, the second imaging device 1122, and the third imaging device so that the prepreg 1010 is inspected in the gap between the respective transport belts of the transport device 1110. An imaging device 1123 and the like are provided. With such a configuration, it is possible to inspect the prepreg 1010 for defects with high accuracy without being affected by irregularities on the surface of the conveyor belt in the conveyor 1110 as in the third embodiment. .
 [第5の実施形態]
 次に、第5の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Fifth Embodiment]
Next, a fifth embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図17は、第5の実施形態における検査システム1300を例示する図である。 FIG. 17 is a diagram illustrating an inspection system 1300 according to the fifth embodiment.
 検査システム1300は、図17に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第3撮像装置1123、第1光源1131a及び1131b、第2光源1132、第3光源1133、第4光源1134、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1300は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010の欠陥の有無を検査する。 As shown in FIG. 17, the inspection system 1300 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a fourth light source 1134, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160. The inspection system 1300 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
 第1光源1131a及び1131bは、例えば青色LEDアレイであり、第1搬送ベルト1111と第2搬送ベルト1112との間に青色光を照射する。第1光源1131a及び1131bは、搬送されるプリプレグ1010の表面から主として拡散反射光を第1撮像装置1121が受光するように配置されている。 The first light sources 1131a and 1131b are, for example, blue LED arrays, and irradiate blue light between the first transport belt 1111 and the second transport belt 1112. The first light sources 1131a and 1131b are arranged so that the first imaging device 1121 receives mainly diffuse reflected light from the surface of the prepreg 1010 being conveyed.
 第4光源1134は、例えば白色LEDアレイであり、第1搬送ベルト1111と第2搬送ベルト1112との間に白色光を照射する。第4光源1134は、搬送されるプリプレグ1010を透過した透過光を第1撮像装置1121が受光するように、第1撮像装置1121に対向するように配置されている。 The fourth light source 1134 is, for example, a white LED array, and irradiates white light between the first conveyance belt 1111 and the second conveyance belt 1112. The fourth light source 1134 is disposed so as to face the first imaging device 1121 so that the first imaging device 1121 receives the transmitted light that has passed through the prepreg 1010 being conveyed.
 本実施形態では、第1光源1131a及び1131bが第1波長域(青の波長域)の青色光を照射し、第4光源1134が第1波長域及び第1波長域とは異なる第2波長域(例えば赤や緑の波長域)を含む光を照射する。なお、第1光源1131a及び1131bと第4光源1134とは、それぞれ波長域が異なる光を照射してもよく、本実施形態とは異なる色の光を照射するように構成されてもよい。また、第1光源1131a及び1131b並びに第4光源1134は、例えば有機ELアレイ、冷陰極管、ハロゲンランプ等の蛍光灯等であってもよい。 In the present embodiment, the first light sources 1131a and 1131b emit blue light in the first wavelength range (blue wavelength range), and the fourth light source 1134 is a second wavelength range different from the first wavelength range and the first wavelength range. Irradiate light including, for example, red and green wavelength regions. The first light sources 1131a and 1131b and the fourth light source 1134 may irradiate light having different wavelength ranges, or may be configured to irradiate light having a different color from the present embodiment. The first light sources 1131a and 1131b and the fourth light source 1134 may be, for example, an organic EL array, a cold cathode tube, a fluorescent lamp such as a halogen lamp, or the like.
 検査装置1160は、画像取得部1161、欠陥検出部1162、及び仕分け部1163に加えて、色情報取得部1164を有する。色情報取得部1164は、画像取得部1161が取得した画像データから色情報を取得する。欠陥検出部1162は、画像取得部1161が取得した画像データ及び色情報取得部1164が取得した色情報に基づいてプリプレグ1010に存在する欠陥を検出する。 The inspection apparatus 1160 includes a color information acquisition unit 1164 in addition to the image acquisition unit 1161, the defect detection unit 1162, and the sorting unit 1163. The color information acquisition unit 1164 acquires color information from the image data acquired by the image acquisition unit 1161. The defect detection unit 1162 detects a defect present in the prepreg 1010 based on the image data acquired by the image acquisition unit 1161 and the color information acquired by the color information acquisition unit 1164.
 図18は、第5の実施形態における欠陥検出処理のフローチャートを例示する図である。 FIG. 18 is a diagram illustrating a flowchart of defect detection processing in the fifth embodiment.
 図18に示されるように、検査システム1300における欠陥検出処理では、まずステップS1301にて、搬送装置1110が、第1搬送ベルト1111から第4搬送ベルト1114に向かってプリプレグ1010を搬送する。次にステップS1302では、第1撮像装置1121が、第1搬送ベルト1111と第2搬送ベルト1112との間の第1撮像領域を搬送されるプリプレグ1010を撮像する。 18, in the defect detection process in the inspection system 1300, first, in step S1301, the transport device 1110 transports the prepreg 1010 from the first transport belt 1111 toward the fourth transport belt 1114. In step S <b> 1302, the first imaging device 1121 images the prepreg 1010 that is conveyed in the first imaging region between the first conveyance belt 1111 and the second conveyance belt 1112.
 ステップS1303では、検査装置1160の色情報取得部1164が、第1撮像装置1121によって撮像された第1画像データから、第1色情報を取得する。 In step S1303, the color information acquisition unit 1164 of the inspection device 1160 acquires first color information from the first image data captured by the first imaging device 1121.
 ここで、第1撮像装置1121によって撮像されたプリプレグ1010の第1画像データは、例えば、画素ごとにR(赤)、G(緑)、B(青)の各色が0~255の数値で表されたRGB値を有する。色情報取得部1164は、第1光源1131a及び1131bと第4光源1134とから照射される青色光に対応する青色のBチャンネルデータ(各画素のB値)を第1色情報として取得する。このように、色情報取得部1164は、第1光源1131a及び1131b並びに第4光源1134から照射される青色光の波長域に含まれる色のデータを第1色情報として第1画像データから取得する。 Here, the first image data of the prepreg 1010 imaged by the first imaging device 1121 is expressed by numerical values of 0 to 255 for each color of R (red), G (green), and B (blue) for each pixel, for example. RGB values. The color information acquisition unit 1164 acquires blue B channel data (B value of each pixel) corresponding to blue light emitted from the first light sources 1131a and 1131b and the fourth light source 1134 as the first color information. As described above, the color information acquisition unit 1164 acquires the color data included in the wavelength range of the blue light emitted from the first light sources 1131a and 1131b and the fourth light source 1134 as the first color information from the first image data. .
 図19は、第1撮像装置1121によって撮像されたプリプレグ1010の第1画像データ(Bチャンネルデータ)を模式的に例示する図である。 FIG. 19 is a diagram schematically illustrating the first image data (B channel data) of the prepreg 1010 imaged by the first imaging device 1121.
 プリプレグ1010の欠陥AAでは、欠陥が無い部分と同様に第1光源1131a及び1131bから照射される青色光を反射する。このため、第1撮像装置1121が受光する、プリプレグ1010の欠陥AAからの受光量と、欠陥が無い部分からの受光量とが同等となる。したがって、図19に示されるように、Bチャンネルデータは、欠陥AAが存在する部分と欠陥が無い部分とで同等の明るさを示す。 In the defect AA of the prepreg 1010, the blue light emitted from the first light sources 1131a and 1131b is reflected in the same manner as the part without the defect. For this reason, the amount of light received from the defect AA of the prepreg 1010 received by the first imaging device 1121 is equal to the amount of light received from the portion having no defect. Accordingly, as shown in FIG. 19, the B channel data shows the same brightness in the portion where the defect AA exists and the portion where there is no defect.
 プリプレグ1010の欠陥BBでは、第1光源1131a及び1131bから照射される青色光の拡散反射率が、欠陥が無い部分の拡散反射率より高い。このため、第1撮像装置1121が受光する、第1光源1131から照射される青色光の欠陥BBからの受光量が、欠陥が無い部分からの受光量よりも大きい。したがって、図19に示されるように、Bチャンネルデータでは、プリプレグ1010において欠陥BBが存在する部分が、欠陥が無い部分よりも明るい。 In the defect BB of the prepreg 1010, the diffuse reflectance of the blue light irradiated from the first light sources 1131a and 1131b is higher than the diffuse reflectance of the portion without the defect. For this reason, the amount of received light from the defect BB of the blue light emitted from the first light source 1131 received by the first imaging device 1121 is larger than the amount of light received from the portion having no defect. Therefore, as shown in FIG. 19, in the B channel data, the portion where the defect BB exists in the prepreg 1010 is brighter than the portion where there is no defect.
 また、プリプレグ1010の欠陥CCでは、異物によって第4光源1134からの照射光が遮られる。このため、第1撮像装置1121が受光する、第4光源1134からの照射光に含まれる青色光の受光量が、欠陥が無い部分よりも欠陥CCが存在する部分の方が小さい。したがって、図19に示されるように、Bチャンネルデータでは、欠陥CCが存在する部分が、欠陥が無い部分よりも暗い。 Further, in the defect CC of the prepreg 1010, the irradiation light from the fourth light source 1134 is blocked by the foreign matter. For this reason, the amount of blue light received in the irradiation light from the fourth light source 1134 received by the first imaging device 1121 is smaller in the portion where the defect CC exists than in the portion where there is no defect. Accordingly, as shown in FIG. 19, in the B channel data, the portion where the defect CC exists is darker than the portion where there is no defect.
 なお、第1光源1131a及び1131bからの照射光の反射光と第4光源1134からの照射光の透過光の和が第1画像データとなるため、図19に示されるように、Bチャンネルデータでは、欠陥BBが存在する部分は欠陥が無い部分よりも明るい。また、欠陥CCが存在する部分は欠陥が無い部分よりも暗い。 Since the sum of the reflected light of the irradiation light from the first light sources 1131a and 1131b and the transmitted light of the irradiation light from the fourth light source 1134 becomes the first image data, as shown in FIG. The portion where the defect BB exists is brighter than the portion where there is no defect. Further, the portion where the defect CC exists is darker than the portion where there is no defect.
 また、ステップS1304では、色情報取得部1164が、第1撮像装置1121によって撮像された第1画像データから第2色情報を取得する。色情報取得部1164は、第4光源1134から照射される白色光に含まれる赤色光に対応する赤色のRチャンネルデータ(各画素のR値)を第2色情報として取得する。このように、色情報取得部1164は、第4光源1134からの照射光のうち、第1光源1131から照射される青色光とは波長域が異なる赤色光の波長域に含まれる色のデータを第2色情報として画像データから取得する。 In step S1304, the color information acquisition unit 1164 acquires the second color information from the first image data captured by the first imaging device 1121. The color information acquisition unit 1164 acquires red R channel data (R value of each pixel) corresponding to red light included in white light emitted from the fourth light source 1134 as second color information. As described above, the color information acquisition unit 1164 outputs the color data included in the wavelength range of the red light, which is different from the blue light irradiated from the first light source 1131 among the irradiation light from the fourth light source 1134. Obtained from the image data as second color information.
 なお、色情報取得部1164は、第4光源1134から照射される白色光に含まれる緑色光に対応する緑色のGチャンネルデータ(各画素のG値)を第2色情報として取得してもよい。この場合においても、以下で説明するRチャンネルデータを用いた場合と同様にプリプレグ1010の欠陥を検出できる。 Note that the color information acquisition unit 1164 may acquire green G channel data (G value of each pixel) corresponding to green light included in white light emitted from the fourth light source 1134 as second color information. . Also in this case, the defect of the prepreg 1010 can be detected as in the case of using the R channel data described below.
 図20は、第1撮像装置1121によって撮像されたプリプレグ1010の第1画像データ(Rチャンネルデータ)を模式的に例示する図である。 FIG. 20 is a diagram schematically illustrating the first image data (R channel data) of the prepreg 1010 imaged by the first imaging device 1121.
 第4光源1134から第1撮像装置1121に向かって照射される光は、プリプレグ1010において欠陥AAが存在する部分及び欠陥が無い部分で同じように透過する。このため、第1撮像装置1121が受光する、第4光源1134からの照射光に含まれる赤色光の受光量が、欠陥AAが存在する部分と欠陥が無い部分とでほぼ同等になる。したがって、図20に示されるように、Rチャンネルデータは、プリプレグ1010において欠陥AAが存在する部分では、欠陥が無い部分と同等の明るさを示す。 The light emitted from the fourth light source 1134 toward the first imaging device 1121 is transmitted in the same manner in the portion where the defect AA exists and the portion where there is no defect in the prepreg 1010. For this reason, the amount of red light received in the irradiation light from the fourth light source 1134 received by the first imaging device 1121 is substantially equal between the portion where the defect AA exists and the portion where there is no defect. Therefore, as shown in FIG. 20, the R channel data shows the same brightness in the portion where the defect AA exists in the prepreg 1010 as in the portion where there is no defect.
 また、第4光源1134から第1撮像装置1121に向かって照射される光は、プリプレグ1010において欠陥BB又は欠陥CCが存在する部分で遮られる。このため、第1撮像装置1121では、第4光源1134からの照射光に含まれる赤色光の受光量が、欠陥が無い部分よりも欠陥BB又は欠陥CCが存在する部分の方が小さい。したがって、図20に示されるように、Rチャンネルデータでは、プリプレグ1010において欠陥BB及び欠陥CCが存在する部分が、欠陥が無い部分よりも暗い。 Further, the light emitted from the fourth light source 1134 toward the first imaging device 1121 is blocked by a portion where the defect BB or the defect CC exists in the prepreg 1010. For this reason, in the first imaging device 1121, the amount of red light received in the irradiation light from the fourth light source 1134 is smaller in the portion where the defect BB or the defect CC exists than in the portion where there is no defect. Therefore, as shown in FIG. 20, in the R channel data, the portion where the defect BB and the defect CC exist in the prepreg 1010 is darker than the portion where there is no defect.
 ここで、画像データにおける各画素のR値は、第1撮像装置1121が第1光源1131から照射される青色光の影響は受けず、第1撮像装置1121が第4光源1134から照射される光に含まれる赤色光の受光量によって決まる。このため、仮に欠陥AAが存在する部分で第1撮像装置1121が受光する第1光源1131からの青色光の受光量が増えたとても、画像データに含まれるR値が大きくなることはない。したがって、図20に示されるように、Rチャンネルデータにおいて欠陥AAが存在する部分が青色光によって影響を受けることはない。 Here, the R value of each pixel in the image data is not affected by the blue light emitted from the first light source 1131 by the first imaging device 1121, and the light emitted from the fourth light source 1134 by the first imaging device 1121. It is determined by the amount of red light received in. For this reason, the amount of blue light received from the first light source 1131 received by the first imaging device 1121 in the portion where the defect AA exists is increased, and the R value included in the image data does not increase. Therefore, as shown in FIG. 20, the portion where the defect AA exists in the R channel data is not affected by the blue light.
 図18に示す欠陥検出処理のフローチャートに戻り、次にステップS1305にて、欠陥検出部1162が、色情報取得部1164によって取得された第1色情報としてのBチャンネルデータと、第2色情報としてのRチャンネルデータとの差分を算出する。続いてステップS1306にて、欠陥検出部1162が、第1画像データ及び色情報に基づいてプリプレグ1010の欠陥を検出する。 Returning to the flowchart of the defect detection process shown in FIG. 18, in step S1305, the defect detection unit 1162 acquires the B channel data as the first color information acquired by the color information acquisition unit 1164 and the second color information. The difference from the R channel data is calculated. Subsequently, in step S1306, the defect detection unit 1162 detects a defect of the prepreg 1010 based on the first image data and the color information.
 欠陥検出部1162はステップS1305にて、第1色情報としてのBチャンネルデータと、第2色情報としてのRチャンネルデータとの差分値(同一画素における(B値-R値))を、画像データに含まれる全ての画素について算出する。以下、このようにして求められたBチャンネルデータとRチャンネルデータとの差分値のデータを、B-Rチャンネルデータという。 In step S1305, the defect detection unit 1162 calculates a difference value ((B value−R value) in the same pixel) between the B channel data as the first color information and the R channel data as the second color information as image data. Are calculated for all the pixels included in. Hereinafter, the difference data between the B channel data and the R channel data obtained in this way is referred to as BR channel data.
 上記したように、Bチャンネルデータでは、欠陥BB部分の値が、欠陥が無い部分の値よりも大きい(図19参照)。これに対して、Rチャンネルデータでは、欠陥BB部分の値が、欠陥が無い部分の値よりも小さい(図20参照)。このため、B-Rチャンネルデータでは、欠陥BB部分の値と欠陥が無い部分の値との差が、Bチャンネルデータ及びRチャンネルデータのそれぞれにおける欠陥BB部分の値と欠陥が無い部分の値との差よりも大きい。 As described above, in the B channel data, the value of the defective BB portion is larger than the value of the portion having no defect (see FIG. 19). On the other hand, in the R channel data, the value of the defective BB portion is smaller than the value of the portion having no defect (see FIG. 20). Therefore, in the BR channel data, the difference between the value of the defective BB portion and the value of the non-defective portion is the difference between the value of the defective BB portion and the value of the non-defective portion in each of the B channel data and the R channel data. Greater than the difference.
 例えば、Bチャンネルデータにおいて、(欠陥BB,欠陥無し)の各部分の値が(250,120)だったとする。また、Rチャンネルデータにおいて、(欠陥BB,欠陥無し)の各部分の値が(50,120)だったとする。このような場合、B-Rチャンネルデータは、(欠陥AA,欠陥無し)の各部分の値が(200,0)となる。 For example, in the B channel data, the value of each part of (defect BB, no defect) is (250, 120). In the R channel data, the value of each part (defect BB, no defect) is (50, 120). In such a case, in the BR channel data, the value of each part of (defect AA, no defect) is (200, 0).
 したがって、B-Rチャンネルデータにおいて、欠陥BB部分の値と欠陥が無い部分の値との差が200となり、Bチャンネルデータにおける欠陥BB部分の値と欠陥が無い部分の値との差(130)より大きい。また、B-Rチャンネルデータにおける欠陥BB部分の値と欠陥が無い部分の値との差(200)は、Rチャンネルデータにおける欠陥BB部分の値と欠陥が無い部分の値との差(70)よりも大きい。 Therefore, in the BR channel data, the difference between the value of the defective BB portion and the value of the portion without the defect is 200, and the difference between the value of the defective BB portion and the value of the portion without the defect in the B channel data (130). Greater than. Further, the difference (200) between the value of the defective BB portion and the value of the non-defective portion in the BR channel data is the difference (70) between the value of the defective BB portion and the non-defective portion of the R channel data. Bigger than.
 したがって、欠陥検出部1162は、欠陥BB部分の値と欠陥が無い部分の値との差に基づいて欠陥BBを検出する場合に、欠陥BB部分の値と欠陥が無い部分の値との差が大きいB-Rチャンネルデータを用いることで、より高精度に欠陥BBを検出することが可能になる。また、B-Rチャンネルデータでは、Bチャンネルデータ及びRチャンネルデータのそれぞれに含まれるプリプレグ1010の欠陥が無い部分における輝度ムラがキャンセルされる。このため、欠陥検出部1162は、輝度ムラがキャンセルされたB-Rチャンネルデータを用いることで、誤検出を低減して欠陥BBを高精度に検出することが可能になる。 Therefore, when the defect detection unit 1162 detects the defect BB based on the difference between the value of the defect BB portion and the value of the portion without the defect, the difference between the value of the defect BB portion and the value of the portion without the defect is By using large BR channel data, it becomes possible to detect the defect BB with higher accuracy. Further, in the BR channel data, luminance unevenness in a portion where there is no defect in the prepreg 1010 included in each of the B channel data and the R channel data is canceled. For this reason, the defect detection unit 1162 can detect the defect BB with high accuracy by reducing erroneous detection by using the BR channel data from which the luminance unevenness is canceled.
 また、欠陥検出部1162は、Rチャンネルデータにおいて、画素の値が欠陥の無い部分の値の平均値よりも小さくかつ欠陥の無い部分の値の平均値との差が予め設定された閾値以上の部分を欠陥BB又は欠陥CCとして検出する。 Further, the defect detection unit 1162 has a pixel value smaller than the average value of the non-defective portion in the R channel data, and the difference from the average value of the non-defective portion is equal to or greater than a preset threshold value. The part is detected as a defect BB or a defect CC.
 ステップS1307では、第2撮像装置1122が、第2搬送ベルト1112と第3搬送ベルト1113との間の第2撮像領域を搬送されるプリプレグ1010を撮像する。ステップS1308では、欠陥検出部1162が、画像取得部1161が第2撮像装置1122から取得したプリプレグ1010の第2画像データに基づいて、プリプレグ1010の第1面側における欠陥AA及び欠陥BBを検出する。 In step S1307, the second imaging device 1122 images the prepreg 1010 conveyed in the second imaging area between the second conveyance belt 1112 and the third conveyance belt 1113. In step S1308, the defect detection unit 1162 detects the defect AA and the defect BB on the first surface side of the prepreg 1010 based on the second image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the second imaging device 1122. .
 ステップS1309では、第3撮像装置1123が、第3搬送ベルト1113と第4搬送ベルト1114との間の第3撮像領域を搬送されるプリプレグ1010を撮像する。ステップS1310では、欠陥検出部1162が、画像取得部1161が第3撮像装置1123から取得したプリプレグ1010の第3画像データに基づいて、プリプレグ1010の、第1面とは逆側の第2面側における欠陥AA及び欠陥BBを検出する。 In step S1309, the third imaging device 1123 images the prepreg 1010 conveyed in the third imaging area between the third conveyance belt 1113 and the fourth conveyance belt 1114. In step S1310, the defect detection unit 1162 uses the third image data of the prepreg 1010 acquired by the image acquisition unit 1161 from the third imaging device 1123, and the second surface side of the prepreg 1010 opposite to the first surface. A defect AA and a defect BB are detected.
 第2撮像装置1122によって撮像された第2画像データ及び第3撮像装置1123によって撮像された第3画像データに基づく欠陥AA及び欠陥BBの検出方法は、上記した第4の実施形態と同様である。 The detection method of the defect AA and the defect BB based on the second image data imaged by the second imaging device 1122 and the third image data imaged by the third imaging device 1123 is the same as that of the above-described fourth embodiment. .
 欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れも検出されなかった場合(ステップS1311:NO)には、処理はステップS1312に進む。ステップS1312では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されなかったプリプレグ1010を第4搬送ベルト1114から第1トレイ1151に排出させて処理を終了する。 If none of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1311: NO), the process proceeds to step S1312. In step S1312, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which no defect has been detected from the fourth transport belt 1114 to the first tray 1151, and ends the process.
 また、欠陥検出部1162によってプリプレグ1010から欠陥AA、欠陥BB、及び欠陥CCの何れかの欠陥が検出された場合(ステップS1311:YES)には、処理はステップS1313に進む。ステップS1313では、仕分け部1163が、仕分け機構1150を制御して、欠陥が検出されたプリプレグ1010を第4搬送ベルト1114から第2トレイ1152に排出させて処理を終了する。 If any one of the defect AA, defect BB, and defect CC is detected from the prepreg 1010 by the defect detection unit 1162 (step S1311: YES), the process proceeds to step S1313. In step S <b> 1313, the sorting unit 1163 controls the sorting mechanism 1150 to discharge the prepreg 1010 in which the defect is detected from the fourth transport belt 1114 to the second tray 1152, and the process is ended.
 以上で説明したように、第5の実施形態における検査システム1300によれば、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123によって撮像された画像に基づいて、検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、欠陥検出部1162は、色情報取得部1164が第1画像データから取得した第1色情報としてのBチャンネルデータ及び第2色情報としてのRチャンネルデータを用いることで、誤検出を低減して欠陥BBを精度良く検出することが可能になる。さらに、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122及び第3撮像装置1123よりも上流側でプリプレグ1010を撮像するように構成することで、上記した第3の実施形態同様、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能となっている。 As described above, according to the inspection system 1300 in the fifth embodiment, the inspection object is based on the images imaged by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. The defect of the prepreg 1010 can be detected. In addition, the defect detection unit 1162 uses the B channel data as the first color information and the R channel data as the second color information acquired by the color information acquisition unit 1164 from the first image data, thereby reducing erroneous detection. Thus, the defect BB can be detected with high accuracy. Furthermore, in the conveyance path of the prepreg 1010, the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device 1123, and thus the third embodiment described above. Similarly, productivity can be improved by shortening the time required for defect detection processing.
 [第6の実施形態]
 次に、第6の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Sixth Embodiment]
Next, a sixth embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図21は、第6の実施形態における検査システム1400を例示する図である。 FIG. 21 is a diagram illustrating an inspection system 1400 according to the sixth embodiment.
 検査システム1400は、図21に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第3撮像装置1123、第1光源1131a及び1131b、第2光源1132、第3光源1133、支持部材1140、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1400は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010の欠陥の有無を検査する。 As shown in FIG. 21, the inspection system 1400 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160. The inspection system 1400 inspects the presence or absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
 搬送装置1110は、第1搬送ベルト1111、第2搬送ベルト1112、及び第3搬送ベルト1113を有し、プリプレグ1010を図21における矢印方向に搬送する。 The transport device 1110 includes a first transport belt 1111, a second transport belt 1112, and a third transport belt 1113, and transports the prepreg 1010 in the direction of the arrow in FIG.
 第3撮像装置1123は、撮像する領域(第3撮像領域)の少なくとも一部が第2搬送ベルト1112と第3搬送ベルト1113との間の間隙であってプリプレグ1010が通過する領域に重なるように設けられている。第3撮像装置1123は、第2撮像装置1122とは反対側からプリプレグ1010を撮像する。第3撮像装置1123は、第2撮像装置1122と同様に、第2搬送ベルト1112と第3搬送ベルト1113との間を通過するプリプレグ1010を撮像するように設けられている。 The third imaging device 1123 is configured such that at least a part of an imaging area (third imaging area) is a gap between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps with an area through which the prepreg 1010 passes. Is provided. The third imaging device 1123 images the prepreg 1010 from the side opposite to the second imaging device 1122. Similar to the second imaging device 1122, the third imaging device 1123 is provided so as to image the prepreg 1010 that passes between the second conveyance belt 1112 and the third conveyance belt 1113.
 ここで、第2撮像装置1122の第3光源1133からの受光量及び第3撮像装置1123の第2光源1132からの受光量が増加すると、各撮像装置の画像データに基づく欠陥検出精度が低下する可能性がある。このため、第2撮像装置1122の第3光源1133からの受光量及び第3撮像装置1123の第2光源1132からの受光量を可能な範囲で低く抑えるように、第2撮像装置1122、第3撮像装置1123、第2光源1132、及び第3光源1133等を構成することが好ましい。 Here, when the amount of light received from the third light source 1133 of the second imaging device 1122 and the amount of light received from the second light source 1132 of the third imaging device 1123 increase, the defect detection accuracy based on the image data of each imaging device decreases. there is a possibility. For this reason, the second imaging device 1122, the third imaging device 1122, the third imaging device 1122, and the third imaging device 1123 receive light from the second light source 1132 as low as possible. It is preferable to configure the imaging device 1123, the second light source 1132, the third light source 1133, and the like.
 検査装置1160の欠陥検出部1162は、第4の実施形態と同様に、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123から取得した画像データに基づいて、プリプレグ1010の欠陥AA、欠陥BB、及び欠陥CCを検出する。 As in the fourth embodiment, the defect detection unit 1162 of the inspection apparatus 1160 is based on the image data acquired from the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. AA, defect BB, and defect CC are detected.
 第6の実施形態における検査システム1400は、第4の実施形態における欠陥検出処理と同様の処理により、検査対象物としてのプリプレグ1010の欠陥を検出し、欠陥検出結果に応じてプリプレグ1010を第1トレイ1151又は第2トレイ1152に仕分ける。 The inspection system 1400 in the sixth embodiment detects a defect of the prepreg 1010 as an inspection object by the same process as the defect detection process in the fourth embodiment, and the first prepreg 1010 is detected according to the defect detection result. Sort into tray 1151 or second tray 1152.
 以上で説明したように、第6の実施形態における検査システム1400によれば、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123によって撮像された画像に基づいて、検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122及び第3撮像装置1123よりも上流側でプリプレグ1010を撮像するように構成することで、上記した第3の実施形態同様、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能になる。 As described above, according to the inspection system 1400 in the sixth embodiment, the inspection object is based on the images imaged by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. The defect of the prepreg 1010 can be detected. The third embodiment described above is configured such that the first imaging device 1121 images the prepreg 1010 upstream of the second imaging device 1122 and the third imaging device 1123 in the transport path of the prepreg 1010. Similarly, it is possible to improve productivity by reducing the time required for the defect detection processing.
 また、第6の実施形態における検査システム1400によれば、第2撮像装置1122及び第3撮像装置1123の双方を、第2搬送ベルト1112と第3搬送ベルト1113との間でプリプレグ1010を撮像するように構成することで、全体構成を小型化することが可能になっている。 Further, according to the inspection system 1400 in the sixth embodiment, both the second imaging device 1122 and the third imaging device 1123 image the prepreg 1010 between the second conveyance belt 1112 and the third conveyance belt 1113. With this configuration, the overall configuration can be reduced in size.
 なお、第5の実施形態と同様に第4光源1134を設け、第1撮像装置1121によって撮像された第1画像データから色情報を取得し、取得した色情報に基づいて欠陥を検出するように構成してもよい。 As in the fifth embodiment, a fourth light source 1134 is provided, color information is acquired from the first image data imaged by the first imaging device 1121, and a defect is detected based on the acquired color information. It may be configured.
 [第7の実施形態]
 次に、第7の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Seventh Embodiment]
Next, a seventh embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図22は、第7の実施形態における検査システム1500を例示する図である。 FIG. 22 is a diagram illustrating an inspection system 1500 according to the seventh embodiment.
 検査システム1500は、図22に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第3撮像装置1123、第1光源1131a及び1131b、第2光源1132、第3光源1133、支持部材1140、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1500は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010欠陥の有無を検査する。 As shown in FIG. 22, the inspection system 1500 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, a third imaging device 1123, first light sources 1131a and 1131b, a second light source 1132, and a third light source. 1133, a support member 1140, a sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160. The inspection system 1500 inspects for the presence or absence of a prepreg 1010 defect as an inspection object conveyed by the conveyance device 1110.
 第3撮像装置1123は、撮像する領域(第3撮像領域)の少なくとも一部が第2搬送ベルト1112と第3搬送ベルト1113との間の間隙であってプリプレグ1010が通過する領域に重なるように設けられている。また、第3光源1133は、第3撮像装置1123が第2搬送ベルト1112と第3搬送ベルト1113との間を搬送されるプリプレグ1010の表面から主として正反射光を受光するように配置されている。 The third imaging device 1123 is configured such that at least a part of an imaging area (third imaging area) is a gap between the second conveyance belt 1112 and the third conveyance belt 1113 and overlaps with an area through which the prepreg 1010 passes. Is provided. The third light source 1133 is disposed so that the third imaging device 1123 receives specularly reflected light mainly from the surface of the prepreg 1010 that is transported between the second transport belt 1112 and the third transport belt 1113. .
 ここで、第2撮像装置1122の第3光源1133からの受光量及び第3撮像装置1123の第2光源1132からの受光量が増加すると、各撮像装置の画像データに基づく欠陥検出精度が低下する可能性がある。このため、第2撮像装置1122の第3光源1133からの受光量及び第3撮像装置1123の第2光源1132からの受光量を低減できるように、第2撮像装置1122、第3撮像装置1123、第2光源1132、及び第3光源1133等を構成することが好ましい。 Here, when the amount of light received from the third light source 1133 of the second imaging device 1122 and the amount of light received from the second light source 1132 of the third imaging device 1123 increase, the defect detection accuracy based on the image data of each imaging device decreases. there is a possibility. For this reason, the second imaging device 1122, the third imaging device 1123, so that the amount of light received from the third light source 1133 of the second imaging device 1122 and the amount of light received from the second light source 1132 of the third imaging device 1123 can be reduced. The second light source 1132 and the third light source 1133 are preferably configured.
 そこで、本実施形態では、図22に示されるように、第2光源1132の光軸1132a(光照射方向)と第3光源1133の光軸1133a(光照射方向)とが平行になるように構成されている。このような構成により、第2撮像装置1122の第3光源1133からの受光量及び第3撮像装置1123の第2光源1132からの受光量がそれぞれ低減し、プリプレグ1010の欠陥検出精度を維持すると同時に、装置構成を小型化することが可能になる。 Therefore, in the present embodiment, as shown in FIG. 22, the optical axis 1132a (light irradiation direction) of the second light source 1132 and the optical axis 1133a (light irradiation direction) of the third light source 1133 are configured to be parallel. Has been. With such a configuration, the amount of light received from the third light source 1133 of the second imaging device 1122 and the amount of light received from the second light source 1132 of the third imaging device 1123 are reduced, and at the same time the defect detection accuracy of the prepreg 1010 is maintained. Thus, the device configuration can be reduced in size.
 検査装置1160の欠陥検出部1162は、第4の実施形態と同様に、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123によってそれぞれ撮像された画像データに基づいて、プリプレグ1010の欠陥AA、欠陥BB、及び欠陥CCを検出する。 As in the fourth embodiment, the defect detection unit 1162 of the inspection apparatus 1160 is based on image data captured by the first imaging apparatus 1121, the second imaging apparatus 1122, and the third imaging apparatus 1123, respectively. The defect AA, the defect BB, and the defect CC are detected.
 第7の実施形態における検査システム1500は、第4の実施形態における欠陥検出処理と同様の処理により、検査対象物としてのプリプレグ1010の欠陥を検出し、欠陥検出結果に応じてプリプレグ1010を第1トレイ1151又は第2トレイ1152に仕分ける。 The inspection system 1500 according to the seventh embodiment detects a defect of the prepreg 1010 as an inspection object by a process similar to the defect detection process according to the fourth embodiment, and the first prepreg 1010 is detected according to the defect detection result. Sort into tray 1151 or second tray 1152.
 以上で説明したように、第7の実施形態における検査システム1500によれば、第1撮像装置1121、第2撮像装置1122、及び第3撮像装置1123によって撮像された画像に基づいて、検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122及び第3撮像装置よりも上流側でプリプレグ1010を撮像するように構成することで、上記した第3の実施形態同様、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能になる。 As described above, according to the inspection system 1500 in the seventh embodiment, the inspection object is based on the images captured by the first imaging device 1121, the second imaging device 1122, and the third imaging device 1123. The defect of the prepreg 1010 can be detected. Further, the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process.
 なお、第5の実施形態と同様に第4光源1134を設け、第1撮像装置1121によって撮像された第1画像データから色情報を取得し、取得した色情報に基づいて欠陥を検出するように構成してもよい。 As in the fifth embodiment, a fourth light source 1134 is provided, color information is acquired from the first image data imaged by the first imaging device 1121, and a defect is detected based on the acquired color information. It may be configured.
 [第8の実施形態]
 次に、第8の実施形態について図面に基づいて説明する。なお、既に説明した実施形態と同一構成部分についての説明は適宜省略する。
[Eighth embodiment]
Next, an eighth embodiment will be described based on the drawings. Note that the description of the same components as those of the already described embodiment will be omitted as appropriate.
 図23は、第8の実施形態における検査システム1600を例示する図である。 FIG. 23 is a diagram illustrating an inspection system 1600 according to the eighth embodiment.
 検査システム1600は、図23に示されるように、搬送装置1110、第1撮像装置1121、第2撮像装置1122、第1光源1131a及び1131b、第2光源1132、第3光源1133、支持部材1140、仕分け機構1150、第1トレイ1151、第2トレイ1152並びに検査装置1160を有する。検査システム1600は、搬送装置1110により搬送される検査対象物としてのプリプレグ1010の欠陥の有無を検査する。 As shown in FIG. 23, the inspection system 1600 includes a transport device 1110, a first imaging device 1121, a second imaging device 1122, first light sources 1131a and 1131b, a second light source 1132, a third light source 1133, a support member 1140, A sorting mechanism 1150, a first tray 1151, a second tray 1152, and an inspection device 1160 are included. The inspection system 1600 inspects the presence / absence of a defect in the prepreg 1010 as an inspection object conveyed by the conveyance device 1110.
 本実施形態では、第1撮像装置1121及び第2撮像装置1122が、搬送装置1110により搬送されるプリプレグ1010を搬送ベルト上で撮像するように設けられている。第1撮像装置1121は、第1搬送ベルト1111上でプリプレグ1010を撮像するように設けられている。また、第2撮像装置1122は、第2搬送ベルト1112上でプリプレグ1010を撮像するように設けられている。なお、第1撮像装置1121及び第2撮像装置1122は、同じ搬送ベルト上でプリプレグ1010を撮像するように設けられてもよい。 In the present embodiment, the first imaging device 1121 and the second imaging device 1122 are provided so as to image the prepreg 1010 conveyed by the conveying device 1110 on the conveying belt. The first imaging device 1121 is provided to image the prepreg 1010 on the first transport belt 1111. The second imaging device 1122 is provided so as to image the prepreg 1010 on the second conveyance belt 1112. Note that the first imaging device 1121 and the second imaging device 1122 may be provided so as to image the prepreg 1010 on the same conveyance belt.
 検査装置1160の欠陥検出部1162は、第3の実施形態と同様に、第1撮像装置1121により撮像された第1画像データ及び第2撮像装置1122により撮像された第2画像データに基づいてプリプレグ1010の欠陥を検出する。 As in the third embodiment, the defect detection unit 1162 of the inspection apparatus 1160 uses the prepreg based on the first image data captured by the first image capturing apparatus 1121 and the second image data captured by the second image capturing apparatus 1122. 1010 defects are detected.
 以上で説明したように、第8の実施形態における検査システム1600によれば、第1撮像装置1121及び第2撮像装置1122によって撮像された画像に基づいて、検査対象物としてのプリプレグ1010の欠陥を検出することができる。また、プリプレグ1010の搬送経路において、第1撮像装置1121が第2撮像装置1122及び第3撮像装置よりも上流側でプリプレグ1010を撮像するように構成することで、上記した第3の実施形態同様、欠陥検出処理に必要な時間を短縮して生産性を向上させることが可能になる。さらに、第1撮像装置1121の第1撮像領域と第2撮像装置1122の第2撮像領域とを近付けるように配置することで、装置構成を小型化することが可能になる。 As described above, according to the inspection system 1600 in the eighth embodiment, the defect of the prepreg 1010 as the inspection object is detected based on the images captured by the first imaging device 1121 and the second imaging device 1122. Can be detected. Further, the first imaging device 1121 is configured to image the prepreg 1010 on the upstream side of the second imaging device 1122 and the third imaging device in the transport path of the prepreg 1010, and is similar to the above-described third embodiment. It is possible to improve the productivity by shortening the time required for the defect detection process. Furthermore, by arranging the first imaging region of the first imaging device 1121 and the second imaging region of the second imaging device 1122 so as to be close to each other, the device configuration can be reduced in size.
 以上、実施形態に係る検査システム及び検査方法について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。上記した各実施形態の説明では、検査対象物としてプリプレグ1010を検査する方法について説明したが、検査対象物はプリプレグに限られるものではない。 The inspection system and the inspection method according to the embodiment have been described above, but the present invention is not limited to the above embodiment, and various modifications and improvements can be made within the scope of the present invention. In the description of each embodiment described above, the method for inspecting the prepreg 1010 as the inspection object has been described, but the inspection object is not limited to the prepreg.
 本国際出願は2015年12月16日に出願した日本国特許出願第2015-245600号および2015年12月16日に出願した日本国特許出願第2015-245708号に基づく優先権を主張するものであり、日本国特許出願第2015-245600号および日本国特許出願第2015-245708号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2015-245600 filed on December 16, 2015 and Japanese Patent Application No. 2015-245708 filed on December 16, 2015. Yes, the entire contents of Japanese Patent Application No. 2015-245600 and Japanese Patent Application No. 2015-245708 are incorporated herein by reference.
10 プリプレグ(検査対象物)
100,200 検査システム
110,210 搬送装置
111,211 第1搬送ベルト(第1搬送部)
112,212 第2搬送ベルト(第2搬送部)
120,220 撮像装置
130a,130b 光源
140 支持部材
141 支持面
150,250 検査装置
152,253 検出部
230 第1光源
240 第2光源
252 色情報取得部
1010 プリプレグ(検査対象物)
1100,1200,1300,1400,1500,1600 検査システム
1110 搬送装置
1111 第1搬送ベルト(第1搬送部)
1112 第2搬送ベルト(第2搬送部)
1113 第3搬送ベルト(第3搬送部)
1121 第1撮像装置
1122 第2撮像装置
1123 第3撮像装置
1131a,1131b 第1光源
1132 第2光源
1133 第3光源
1134 第4光源
1140 支持部材
1141 支持面
1160 検査装置
1162 欠陥検出部
1164 色情報取得部
A,B,AA,BB,CC 欠陥
10 prepreg (inspection object)
100, 200 Inspection systems 110, 210 Conveying devices 111, 211 First conveying belt (first conveying unit)
112, 212 Second conveyor belt (second conveyor)
120, 220 Imaging device 130a, 130b Light source 140 Support member 141 Support surface 150, 250 Inspection device 152, 253 Detection unit 230 First light source 240 Second light source 252 Color information acquisition unit 1010 Prepreg (inspection object)
1100, 1200, 1300, 1400, 1500, 1600 Inspection system 1110 Conveying device 1111 First conveying belt (first conveying unit)
1112 Second conveyor belt (second conveyor)
1113 Third conveyor belt (third conveyor)
1121 1st imaging device 1122 2nd imaging device 1123 3rd imaging device 1131a, 1131b 1st light source 1132 2nd light source 1133 3rd light source 1134 4th light source 1140 Support member 1141 Support surface 1160 Inspection device 1162 Defect detection part 1164 Color information acquisition Part A, B, AA, BB, CC Defect
特開2006-64531号公報JP 2006-64531 A

Claims (18)

  1.  透光性を有するシート状の検査対象物を検査する検査システムであって、
     前記検査対象物を撮像する撮像装置と、
     前記撮像装置が前記検査対象物の表面から主として拡散反射光を受光するように、前記撮像装置の撮像領域に光を照射する第1光源と、
     前記検査対象物の欠陥の有無を検査する検査装置と、を有し、
     前記検査装置は、前記撮像装置による撮像画像に基づいて前記検査対象物の欠陥を検出する検出部を有する
    ことを特徴とする検査システム。
    An inspection system for inspecting a sheet-like inspection object having translucency,
    An imaging device for imaging the inspection object;
    A first light source that irradiates light to an imaging region of the imaging device such that the imaging device receives mainly diffuse reflected light from the surface of the inspection object;
    An inspection device for inspecting the inspection object for defects, and
    The inspection system includes a detection unit that detects a defect of the inspection target based on an image captured by the imaging device.
  2.  前記検査対象物を第1搬送部から第2搬送部に受け渡して搬送する搬送装置を有し、
     前記撮像装置は、前記撮像領域の少なくとも一部が前記第1搬送部と前記第2搬送部との間の間隙であって前記検査対象物が通過する領域に重なるように設けられている
    ことを特徴とする請求項1に記載の検査システム。
    A transfer device that transfers the inspection object from the first transfer unit to the second transfer unit;
    The imaging apparatus is provided so that at least a part of the imaging region is a gap between the first transport unit and the second transport unit and overlaps a region through which the inspection object passes. The inspection system according to claim 1, wherein
  3.  前記撮像領域において前記検査対象物を支持する支持部材を有する
    ことを特徴とする請求項2に記載の検査システム。
    The inspection system according to claim 2, further comprising a support member that supports the inspection object in the imaging region.
  4.  前記支持部材は、前記検査対象物に当接する支持面が有彩色である
    ことを特徴とする請求項3に記載の検査システム。
    The inspection system according to claim 3, wherein the support member has a chromatic color on a support surface that abuts on the inspection object.
  5.  前記撮像装置が前記検査対象物を透過した光を受光するように、前記撮像領域に光を照射する第2光源を有し、
     前記第1光源は、第1波長域の光を照射し、
     前記第2光源は、前記第1波長域とは異なる第2波長域を含む光を照射し、
     前記検査装置は、前記撮像画像から前記第1波長域に含まれる色の第1色情報及び前記第2波長域に含まれる色の第2色情報を取得する色情報取得部を有し、
     前記検出部は、前記第1色情報と前記第2色情報との差分に基づいて、前記検査対象物の欠陥を検出する
    ことを特徴とする請求項1又は2に記載の検査システム。
    A second light source for irradiating the imaging region with light so that the imaging device receives light transmitted through the inspection object;
    The first light source emits light in a first wavelength range;
    The second light source irradiates light including a second wavelength range different from the first wavelength range,
    The inspection apparatus includes a color information acquisition unit that acquires first color information of a color included in the first wavelength range and second color information of a color included in the second wavelength range from the captured image,
    The inspection system according to claim 1, wherein the detection unit detects a defect of the inspection object based on a difference between the first color information and the second color information.
  6.  前記検出部が検出する前記検査対象物の欠陥は、前記検査対象物の表層のひび割れ及び前記検査対象物の内部に混入した異物である
    ことを特徴とする請求項1~5の何れか一項に記載の検査システム。
    6. The defect of the inspection object detected by the detection unit is a crack in a surface layer of the inspection object and a foreign matter mixed in the inspection object. Inspection system as described in.
  7.  透光性を有するシート状の検査対象物を検査する検査方法であって、
     撮像装置により前記検査対象物を撮像する撮像ステップと、
     前記撮像装置が前記検査対象物の表面から主として拡散反射光を受光するように、前記撮像装置の撮像領域に光を照射する光照射ステップと、
     前記撮像装置による撮像画像に基づいて前記検査対象物の欠陥を検出する検出ステップと、を有する
    ことを特徴とする検査方法。 
    An inspection method for inspecting a sheet-like inspection object having translucency,
    An imaging step of imaging the inspection object by an imaging device;
    A light irradiation step of irradiating light to an imaging region of the imaging device so that the imaging device mainly receives diffuse reflected light from the surface of the inspection object;
    A detection step of detecting a defect of the inspection object based on an image captured by the imaging device.
  8.  透光性を有するシート状の検査対象物を検査する検査システムであって、
     前記検査対象物を搬送する搬送装置と、
     前記搬送装置により搬送されて第1撮像領域を通過する前記検査対象物を撮像する第1撮像装置と、
     前記第1撮像装置が前記検査対象物の表面から主として拡散反射光を受光するように前記第1撮像領域に光を照射する第1光源と、
     前記搬送装置により搬送されて前記第1撮像領域よりも下流側の第2撮像領域を通過する前記検査対象物を撮像する第2撮像装置と、
     前記第2撮像装置が前記検査対象物の表面から主として正反射光を受光するように前記第2撮像領域に光を照射する第2光源と、
     前記第1撮像装置による撮像画像及び前記第2撮像装置による撮像画像に基づいて、前記検査対象物の欠陥を検出する欠陥検出部と、を有する
    ことを特徴とする検査システム。
    An inspection system for inspecting a sheet-like inspection object having translucency,
    A transport device for transporting the inspection object;
    A first imaging device that images the inspection object that is transported by the transport device and passes through a first imaging region;
    A first light source that emits light to the first imaging region so that the first imaging device receives mainly diffuse reflected light from the surface of the inspection object;
    A second imaging device that images the inspection object that is transported by the transport device and passes through a second imaging region downstream of the first imaging region;
    A second light source for irradiating the second imaging region with light so that the second imaging device receives mainly regular reflection light from the surface of the inspection object;
    An inspection system comprising: a defect detection unit configured to detect a defect of the inspection object based on an image captured by the first image capturing device and an image captured by the second image capturing device.
  9.  前記搬送装置は、前記検査対象物を搬送する第1搬送部と、前記第1搬送部から受け渡される前記検査対象物を搬送する第2搬送部と、を有し、
     前記第1撮像装置は、前記第1撮像領域の少なくとも一部が前記第1搬送部と前記第2搬送部との間の間隙であって前記検査対象物が通過する領域に重なるように設けられている
    ことを特徴とする請求項8に記載の検査システム。
    The transport device includes a first transport unit that transports the inspection object, and a second transport unit that transports the inspection object delivered from the first transport unit,
    The first imaging device is provided so that at least a part of the first imaging region is a gap between the first transport unit and the second transport unit and overlaps a region through which the inspection object passes. The inspection system according to claim 8, wherein:
  10.  前記第1搬送部と前記第2搬送部との間に設けられ、前記第1搬送部から前記第2搬送部に受け渡される前記検査対象物を支持する支持部材を有する
    ことを特徴とする請求項9に記載の検査システム。
    It has a supporting member which is provided between the 1st conveyance part and the 2nd conveyance part, and supports the inspection subject passed to the 2nd conveyance part from the 1st conveyance part. Item 10. The inspection system according to Item 9.
  11.  前記支持部材は、前記検査対象物に当接する支持面が有彩色である
    ことを特徴とする請求項10に記載の検査システム。
    The inspection system according to claim 10, wherein the support member has a chromatic color on a support surface that abuts the inspection object.
  12.  前記第1撮像装置が前記検査対象物を透過した光を受光するように前記第1撮像領域に光を照射する第4光源と、
     前記第1撮像装置による撮像画像から色情報を取得する色情報取得部と、をさらに有し、
     前記第1光源は、第1波長域の光を照射し、
     前記第4光源は、前記第1波長域とは異なる第2波長域を含む光を照射し、
     前記色情報取得部は、前記第1撮像装置による撮像画像から前記第1波長域に含まれる色の第1色情報及び前記第2波長域に含まれる色の第2色情報を取得し、
     前記欠陥検出部は、前記第1色情報と前記第2色情報との差分に基づいて、前記検査対象物の欠陥を検出する
    ことを特徴とする請求項9に記載の検査システム。
    A fourth light source that irradiates the first imaging region with light so that the first imaging device receives light transmitted through the inspection object;
    A color information acquisition unit that acquires color information from an image captured by the first imaging device;
    The first light source emits light in a first wavelength range;
    The fourth light source irradiates light including a second wavelength range different from the first wavelength range,
    The color information acquisition unit acquires first color information of a color included in the first wavelength range and second color information of a color included in the second wavelength range from an image captured by the first imaging device,
    The inspection system according to claim 9, wherein the defect detection unit detects a defect of the inspection object based on a difference between the first color information and the second color information.
  13.  前記搬送装置は、前記第2搬送部から受け渡される前記検査対象物を搬送する第3搬送部をさらに有し、
     前記第2撮像装置は、前記第2撮像領域の少なくとも一部が前記第2搬送部と前記第3搬送部との間の間隙であって前記検査対象物が通過する領域に重なるように設けられている
    ことを特徴とする請求項9~12の何れか一項に記載の検査システム。
    The transport device further includes a third transport unit that transports the inspection object delivered from the second transport unit,
    The second imaging device is provided so that at least a part of the second imaging region is a gap between the second transport unit and the third transport unit and overlaps with a region through which the inspection object passes. The inspection system according to any one of claims 9 to 12, wherein the inspection system is provided.
  14.  前記搬送装置により搬送されて前記第1撮像領域よりも下流側の第3撮像領域を通過する前記検査対象物を、前記第2撮像装置とは反対面側から撮像する第3撮像装置と、
     前記第3撮像装置が前記検査対象物の表面から主として正反射光を受光するように前記第3撮像領域に光を照射する第3光源と、をさらに有し、
     前記欠陥検出部は、前記第3撮像装置による撮像画像に基づいて、前記検査対象物の欠陥を検出する
    ことを特徴とする請求項8~13の何れか一項に記載の検査システム。
    A third imaging device that images the inspection object that is transported by the transport device and passes through a third imaging region downstream of the first imaging region, from the side opposite to the second imaging device;
    A third light source that irradiates the third imaging region with light so that the third imaging device mainly receives specularly reflected light from the surface of the inspection object;
    The inspection system according to any one of claims 8 to 13, wherein the defect detection unit detects a defect of the inspection object based on an image captured by the third imaging device.
  15.  前記第3撮像装置は、前記第3撮像領域の少なくとも一部が前記第2撮像領域に重なるように設けられている
    ことを特徴とする請求項14に記載の検査システム。
    The inspection system according to claim 14, wherein the third imaging device is provided so that at least a part of the third imaging region overlaps the second imaging region.
  16.  前記第2光源の光軸と前記第3光源の光軸とが平行である
    ことを特徴とする請求項15に記載の検査システム。
    The inspection system according to claim 15, wherein an optical axis of the second light source and an optical axis of the third light source are parallel to each other.
  17.  前記欠陥検出部が検出する前記検査対象物の欠陥は、前記検査対象物の表面にできた凹凸、前記検査対象物の表層のひび割れ及び前記検査対象物の内部に混入した異物である
    ことを特徴とする請求項8~16の何れか一項に記載の検査システム。
    The defect of the inspection object detected by the defect detection unit is unevenness formed on the surface of the inspection object, cracks in the surface layer of the inspection object, and foreign matter mixed in the inspection object. The inspection system according to any one of claims 8 to 16.
  18.  透光性を有するシート状の検査対象物を搬送する搬送装置と、
     前記搬送装置により搬送されて第1撮像領域を通過する前記検査対象物を撮像する第1撮像装置と、
     前記第1撮像装置が前記検査対象物の表面から主として拡散反射光を受光するように前記第1撮像領域に光を照射する第1光源と、
     前記搬送装置により搬送されて前記第1撮像領域よりも下流側の第2撮像領域を通過する前記検査対象物を撮像する第2撮像装置と、
     前記第2撮像装置が前記検査対象物の表面から主として正反射光を受光するように前記第2撮像領域に光を照射する第2光源と、
    を有する検査システムにおいて前記検査対象物を検査する検査方法であって、
     前記搬送装置により搬送されて前記第1撮像領域を通過する前記検査対象物を前記第1撮像装置により撮像する第1撮像ステップと、
     前記第1撮像装置による撮像画像に基づいて前記検査対象物の欠陥を検出する第1欠陥検出ステップと、
     前記搬送装置により搬送されて前記第2撮像領域を通過する前記検査対象物を前記第2撮像装置により撮像する第2撮像ステップと、
     前記第2撮像装置による撮像画像に基づいて前記検査対象物の欠陥を検出する第2欠陥検出ステップと、を有する
    ことを特徴とする検査方法。
    A transport device for transporting a sheet-like inspection object having translucency;
    A first imaging device that images the inspection object that is transported by the transport device and passes through a first imaging region;
    A first light source that emits light to the first imaging region so that the first imaging device receives mainly diffuse reflected light from the surface of the inspection object;
    A second imaging device that images the inspection object that is transported by the transport device and passes through a second imaging region downstream of the first imaging region;
    A second light source for irradiating the second imaging region with light so that the second imaging device receives mainly regular reflection light from the surface of the inspection object;
    An inspection method for inspecting the inspection object in an inspection system comprising:
    A first imaging step in which the inspection object that is conveyed by the conveyance device and passes through the first imaging region is imaged by the first imaging device;
    A first defect detection step of detecting a defect of the inspection object based on an image captured by the first imaging device;
    A second imaging step in which the inspection object that is conveyed by the conveyance device and passes through the second imaging region is imaged by the second imaging device;
    A second defect detection step of detecting a defect of the inspection object based on an image captured by the second imaging device.
PCT/JP2016/086778 2015-12-16 2016-12-09 Testing system and testing method WO2017104575A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017556028A JP6677260B2 (en) 2015-12-16 2016-12-09 Inspection system and inspection method
KR1020187016347A KR102141216B1 (en) 2015-12-16 2016-12-09 Inspection system and inspection method
CN201680071390.9A CN108369194A (en) 2015-12-16 2016-12-09 inspection system and inspection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015245708 2015-12-16
JP2015245600 2015-12-16
JP2015-245708 2015-12-16
JP2015-245600 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104575A1 true WO2017104575A1 (en) 2017-06-22

Family

ID=59056609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086778 WO2017104575A1 (en) 2015-12-16 2016-12-09 Testing system and testing method

Country Status (5)

Country Link
JP (1) JP6677260B2 (en)
KR (1) KR102141216B1 (en)
CN (1) CN108369194A (en)
TW (1) TWI622766B (en)
WO (1) WO2017104575A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643291A (en) * 2017-10-25 2018-01-30 佛山市南海鑫隆机工机械有限公司 A kind of porcelain tool handle defect detecting device and method
WO2019142503A1 (en) * 2018-01-18 2019-07-25 東レ株式会社 Method for measuring conditions of resin on prepreg surface and apparatus for measuring said conditions
CN111141745A (en) * 2020-01-07 2020-05-12 武汉精立电子技术有限公司 Image detection device and detection method thereof
JP2021139777A (en) * 2020-03-06 2021-09-16 フロンティアシステム株式会社 Surface inspection device
JP7363357B2 (en) 2019-10-21 2023-10-18 住友ゴム工業株式会社 Inspection method and apparatus for rubberized cord members

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376203A (en) * 2019-06-26 2019-10-25 阳程科技股份有限公司 Glass fiber detects board and its detection method
CN111982929A (en) * 2020-08-14 2020-11-24 加藤义晴 Electronic component detection equipment and electronic component detection method
CN113267514A (en) * 2021-06-25 2021-08-17 国网河南省电力公司电力科学研究院 Optical detection method and device for quality of glass fiber insulation pull rod
KR20230046683A (en) * 2021-09-30 2023-04-06 주식회사 엘지화학 System for detecting foreign substance and defect of optical film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413954A (en) * 1990-05-03 1992-01-17 Showa Denko Kk Defect inspecting device for web
JPH0495861A (en) * 1990-08-13 1992-03-27 Toshiba Corp Detector of defect of transparent circular work
WO1998058241A1 (en) * 1997-06-17 1998-12-23 Yuki Engineering System, Ltd Device for checking sheet packaging
WO2006057125A1 (en) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited Method and device for inspecting defect of transparent plate body
JP2010008170A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Defect detection device for optically transparent film
WO2012153662A1 (en) * 2011-05-10 2012-11-15 旭硝子株式会社 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method
US20140368634A1 (en) * 2011-12-02 2014-12-18 Saint-Gobain Glass France Device for analyzing visible defects in a transparent substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064531A (en) 2004-08-26 2006-03-09 Matsushita Electric Works Ltd Inspection method of prepreg
JP4970085B2 (en) * 2007-02-28 2012-07-04 太平洋セメント株式会社 Foreign matter removal device
KR20100135277A (en) * 2008-04-25 2010-12-24 에르테에스 로만 테라피-시스테메 아게 Patch transfer and inspection device
CN103076344A (en) * 2012-12-27 2013-05-01 深圳市华星光电技术有限公司 Defect detection method and device for display panel
JP6314557B2 (en) * 2014-03-12 2018-04-25 オムロン株式会社 Sheet inspection device
JP2015220219A (en) * 2014-05-21 2015-12-07 株式会社Joled Method for manufacturing organic el display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413954A (en) * 1990-05-03 1992-01-17 Showa Denko Kk Defect inspecting device for web
JPH0495861A (en) * 1990-08-13 1992-03-27 Toshiba Corp Detector of defect of transparent circular work
WO1998058241A1 (en) * 1997-06-17 1998-12-23 Yuki Engineering System, Ltd Device for checking sheet packaging
WO2006057125A1 (en) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited Method and device for inspecting defect of transparent plate body
JP2010008170A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Defect detection device for optically transparent film
WO2012153662A1 (en) * 2011-05-10 2012-11-15 旭硝子株式会社 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
US20140368634A1 (en) * 2011-12-02 2014-12-18 Saint-Gobain Glass France Device for analyzing visible defects in a transparent substrate
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643291A (en) * 2017-10-25 2018-01-30 佛山市南海鑫隆机工机械有限公司 A kind of porcelain tool handle defect detecting device and method
WO2019142503A1 (en) * 2018-01-18 2019-07-25 東レ株式会社 Method for measuring conditions of resin on prepreg surface and apparatus for measuring said conditions
JP7363357B2 (en) 2019-10-21 2023-10-18 住友ゴム工業株式会社 Inspection method and apparatus for rubberized cord members
CN111141745A (en) * 2020-01-07 2020-05-12 武汉精立电子技术有限公司 Image detection device and detection method thereof
JP2021139777A (en) * 2020-03-06 2021-09-16 フロンティアシステム株式会社 Surface inspection device

Also Published As

Publication number Publication date
TW201723473A (en) 2017-07-01
JPWO2017104575A1 (en) 2018-08-30
TWI622766B (en) 2018-05-01
CN108369194A (en) 2018-08-03
KR20180081576A (en) 2018-07-16
JP6677260B2 (en) 2020-04-08
KR102141216B1 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
JP6677260B2 (en) Inspection system and inspection method
JP5989475B2 (en) Image reading apparatus and paper sheet processing apparatus
JP4523474B2 (en) Defect inspection device and PTP packaging machine
JP6834174B2 (en) Visual inspection method and visual inspection equipment
JP2017085501A (en) Image reader and processing unit for sheet of paper or the like
JP2006226724A (en) Label inspection method and label inspection device
JP2012173264A (en) Article defect inspection apparatus and article defect inspection method
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
KR102162693B1 (en) System and method for defect detection
US20220405904A1 (en) Inspection method and inspection apparatus
JP2004212159A (en) Inspection device for tape member
CN112557410A (en) Appearance inspection device for annular product
JP2006153534A (en) Defect inspection device and ptp packaging machine
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP2000171403A (en) Surface inspection apparatus
TWI687672B (en) Optical inspection system and image processing method thereof
JP2020034345A (en) Inspection system and inspection method
JP6428554B2 (en) Inspection system, inspection method
JP2006244869A (en) Plasma display panel inspection device, manufacturing method of plasma display panel, and device inspection method
JP2017067622A (en) Article inspection device
JP2016125817A (en) Inspection system, and inspection method
JP2015194348A (en) Inspection system and inspection method
WO2019064622A1 (en) Damage inspection method of optical display panel
TW201018895A (en) Detection device and method of obtaining detection image
JP2001203855A (en) Image input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556028

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187016347

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016347

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875555

Country of ref document: EP

Kind code of ref document: A1