WO2017101770A1 - 一种双重硬度复合钢板及其制造方法 - Google Patents

一种双重硬度复合钢板及其制造方法 Download PDF

Info

Publication number
WO2017101770A1
WO2017101770A1 PCT/CN2016/109781 CN2016109781W WO2017101770A1 WO 2017101770 A1 WO2017101770 A1 WO 2017101770A1 CN 2016109781 W CN2016109781 W CN 2016109781W WO 2017101770 A1 WO2017101770 A1 WO 2017101770A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
layer
double
hardness layer
composite
Prior art date
Application number
PCT/CN2016/109781
Other languages
English (en)
French (fr)
Inventor
赵小婷
闫博
姚连登
焦四海
李红斌
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020187018465A priority Critical patent/KR102138313B1/ko
Priority to JP2018549386A priority patent/JP6644163B2/ja
Priority to EP16874827.5A priority patent/EP3392600B1/en
Priority to US16/061,189 priority patent/US10851435B2/en
Publication of WO2017101770A1 publication Critical patent/WO2017101770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/42Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for armour plate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • F41H5/045Layered armour containing metal all the layers being metal layers

Definitions

  • the present invention relates to a steel sheet and a method of manufacturing the same, and more particularly to a composite steel sheet and a method of manufacturing the same.
  • an increase in the thickness and hardness of the steel plate is beneficial to improve the protection of the armored vehicle.
  • the increase in the thickness of the steel plate is not conducive to the weight loss of the vehicle, which affects the tactical mobility of the vehicle.
  • after the hardness of the steel plate exceeds a certain range it will cause a collapse after being exposed to the bullets or shells. These fragments will directly endanger the personal safety and the normal operation of the equipment.
  • the announcement number is CN202750372U, and the publication date is February 20, 2013.
  • the Chinese patent document entitled "A New Bulletproof Cabinet” discloses a cabinet body having a bulletproof function.
  • the cabinet is provided with bulletproof armor.
  • the bulletproof armor is made of 616 armor plate and Kevlar composite plate.
  • the 616 armor plate is the outer layer of bulletproof armor.
  • the Kevlar composite plate is the inner layer of bulletproof armor.
  • the outer layer 616 armor plate is made of 8 mm thick steel plate, and the inner Kevlar composite plate is 7 mm thick steel plate.
  • the Chinese patent literature does not cover the product characteristics and comprehensive properties of the relevant steel sheets.
  • One of the surfaces of the double-hardness composite steel sheet has an ultra-high hardness, and has a relatively low hardness and a high low-temperature toughness with respect to the other surface of the surface.
  • the double hardness composite steel plate of the present invention achieves a combination of high, low hardness and high toughness.
  • the double hardness composite steel sheet according to the present invention has good machinability and excellent ballistic performance.
  • the present invention provides a double-hardness composite steel plate having a high hardness layer on one surface and a low hardness layer on the other surface, and a rolling composite between the high hardness layer and the low hardness layer.
  • Atomic bonding is achieved in which the low hardness layer is Mn13 steel and the high hardness layer has a Brinell hardness of more than 600.
  • the low hardness layer means that it has a lower hardness with respect to the high hardness layer.
  • its Brinell hardness is generally less than 250.
  • Mn13 steel refers to a steel in which the Mn content is controlled within a range of 10% ⁇ Mn ⁇ 20%, and the microstructure of such steel is substantially a single austenite structure.
  • the balance is Fe and unavoidable impurities.
  • C It can act as a solid solution strengthening in steel, which is a strengthening element that contributes the most to the strength of steel and has the lowest cost.
  • the steel contains a high content of C.
  • the C content in the high hardness layer of the double hardness composite steel sheet according to the present invention should be controlled to be 0.35 to 0.45%.
  • Si is a deoxidizing element.
  • Si can be dissolved in ferrite to act as a solid solution strengthening, which is second only to carbon, nitrogen, and phosphorus and exceeds other alloying elements. Therefore, Si can significantly increase the strength and hardness of steel. If it is necessary to utilize Si solid solution strengthening, the amount thereof is usually not less than 0.6%. In the above high hardness layer, the Si content needs to be controlled between 0.8 and 1.6% to achieve solid solution strengthening.
  • Mn can reduce the critical cooling rate of steel, thereby greatly improving the hardenability and solid solution strengthening effect on steel.
  • the martensite transformation temperature will decrease too much, resulting in an increase in residual austenite at room temperature, which is not conducive to the increase of the strength of the steel; in the center segregation part of the slab
  • the formation of coarse MnS reduces the toughness of the center of the plate.
  • the Mn content in the above high hardness layer should be controlled to be 0.3 to 1.0%.
  • Al is also a deoxidizing element. At the same time, Al can form fine and insoluble AlN particles with nitrogen, refine the microstructure of the steel, and inhibit the formation of BN, so that B exists in a solid solution state, thereby ensuring the hardenability of the steel. Once the Al content exceeds 0.06%, coarse alumina inclusions are formed in the steel. Therefore, the Al content in the high hardness layer is controlled to 0.02 to 0.06%.
  • Ni is only soluble in the matrix phase ferrite and austenite in steel, and does not form carbides, and the austenite stabilization effect is very strong.
  • Ni is a main element for ensuring high toughness of steel, and the Ni content in the high hardness layer is set to 0.3 to 1.2% in consideration of the strengthening effect of Ni and the cost of addition thereof.
  • Cr is an element that reduces the austenite phase region, which is also a medium-strong carbide element. Cr is also soluble in ferrite. Cr can increase the stability of austenite, shifting the C curve to the right, thereby lowering the critical cooling rate to improve the hardenability of the steel.
  • the Cr content in the above high hardness layer needs to be controlled to be 0.3 to 1.0%.
  • Mo Since Mo can exist in both the solid solution phase and the carbide phase in steel, Mo has both solid solution strengthening and carbide dispersion strengthening effect on steel, thereby significantly increasing the hardness and strength of steel. . For this reason, the Mo content in the above high hardness layer needs to be controlled to be 0.20 to 0.80%.
  • Cu:Cu exists mainly in the solid solution state and the elemental phase precipitation in steel, and the solid solution Cu can act as a solid solution strengthening. Since the solid solubility of Cu in ferrite rapidly decreases with decreasing temperature, Cu which is supersaturated with solid solution precipitates as a simple substance at a relatively low temperature, thereby exhibiting precipitation strengthening. The addition of 0.2 to 0.6% of Cu to the above high hardness layer can remarkably improve the resistance of the steel to atmospheric corrosion.
  • Ti:Ti can form titanium carbide, titanium nitride or titanium carbonitride with C and N in the steel, so as to refine the austenite grains during the heating and rolling stage of the billet, thereby increasing the strength of the steel and toughness.
  • an excessively high Ti content causes more coarse titanium nitride to form in the steel, which adversely affects the strength and toughness of the steel.
  • the Ti content in the above high hardness layer should be controlled within a range of 0.01 to 0.05%.
  • B When B is added in a small amount, the hardenability of the steel can be remarkably improved, and the martensite structure can be easily obtained in the steel. However, it is not advisable to add too much B because the strong binding force between B and the grain boundary is easy to be segregated to the grain boundary, thereby affecting the overall performance of the steel. For this reason, the B content in the above high hardness layer needs to be controlled in the range of 0.001 to 0.003%.
  • the unavoidable impurities in the high hardness layer of the double hardness composite steel sheet according to the present invention are mainly P and S.
  • microstructure of the above high hardness layer is martensite and a small amount of retained austenite.
  • the comparative example of the above retained austenite is less than 1%.
  • the reason why the microstructure of the high hardness layer is controlled to martensite and a small amount of retained austenite is that the retained austenite is not in the phase transition of the supercooled austenite after quenching. Avoiding the structure, strict control of retained austenite is beneficial to ensure the performance of the steel, while the martensite is solid solution strengthening due to the carbon dissolved in the ⁇ phase and the strengthening effect caused by the presence of high density dislocation substructure In order to make the martensite have a high hardness characteristic, in order to ensure the hardness of the high hardness layer, it is necessary to control the microstructure to almost all of the martensite structure.
  • the balance is Fe and other unavoidable impurities.
  • C is an element that stabilizes austenite, and keeps the austenite structure to room temperature when it is rapidly cooled.
  • the increase in carbon content enhances the solid solution strengthening of steel, which increases the strength and hardness of Mn13 steel. If the carbon content is too high, the carbides in the steel will dissolve into the austenite during solution treatment. Because of the large difference in specific volume between carbide and austenite, the high-manganese steel after solid solution has pore defects. This leads to a decrease in density, which has an effect on the properties of high-manganese steel. If water-toughened, the carbides may be distributed along the grain boundaries, resulting in a significant decrease in the toughness of the steel.
  • Si is added as a deoxidizing element, and also has a function of strengthening the solid solution and increasing the yield strength.
  • Mn is the main alloying element in high manganese steel, which has the function of expanding the austenite phase region, stabilizing austenite and lowering the Ms point. Manganese can maintain the austenite structure to room temperature. In addition to solid solution in the austenite, manganese is also present in the steel (Mn, Fe) C type carbide. If the manganese content is increased, the strength and toughness of the high-manganese steel will increase because manganese has an effect of increasing intergranular bonding force; if the manganese content is too high, the thermal conductivity of the steel increases, and thus the transgranular structure is easily generated, and the influence is high. Mechanical properties of manganese steel. In order to obtain stable mechanical properties, when the carbon content is 0.9-1.5%, the manganese content is generally controlled at 11-19%.
  • Al is also a deoxidizing element. At the same time, Al can form fine and insoluble AlN particles with nitrogen to refine the microstructure of the steel, and inhibit the formation of BN, so that B exists in a solid solution state, thereby ensuring the hardenability of the steel. Once the Al content exceeds 0.06%, coarse alumina inclusions are formed in the steel. Therefore, the Al content in the low hardness layer is controlled to 0.02 to 0.06%.
  • Mo may be further added in the low hardness layer: 0.90 to 1.80%.
  • the reason why the alloying element Mo is further added to the low hardness layer is that the binding force of Mo and iron is relatively strong, and the size of the molybdenum atom is large, and it is difficult to diffuse, so the precipitation amount of carbide in the as-cast high manganese steel to which Mo is added is higher. It is small and does not have a network distribution on the austenite grain boundaries. After water toughening treatment, molybdenum is dissolved in austenite, delaying the decomposition of austenite, which is beneficial to the strength and toughness of high manganese steel.
  • the double hardness composite steel sheet according to the present invention has an impact energy at 40 ° C of not less than 50 J.
  • the thickness ratio of the high hardness layer to the low hardness layer is (0.43 to 3):1.
  • Another object of the present invention is to provide a method for producing a double hardness composite steel sheet.
  • the manufacturing method is capable of obtaining a composite steel sheet having two surfaces having different hardness characteristics, one of which has an ultra-high hardness and the other of which has a relatively low hardness and a high low-temperature toughness.
  • the combination of high, low hardness and high toughness in the same steel sheet is achieved by this manufacturing method.
  • the double-hardness composite steel sheet obtained by the production method has good machinability and excellent ballistic performance.
  • a method for manufacturing a double-hardness composite steel sheet according to the present invention includes the steps of:
  • Heat treatment heat treatment heating temperature is 1050 ⁇ 1100 ° C, heating time is 2 ⁇ 3min / mm ⁇ plate thickness, the heated composite plate is water-cooled, the water temperature is less than 40 ° C, wherein the unit thickness is mm.
  • the key to the manufacturing method of the double-hardness composite steel sheet according to the present invention is that the slab atoms having different hardness characteristics are bonded together by composite rolling.
  • Another key point of this manufacturing method is The heating temperature in the heat treatment step is set to 1050 to 1100 ° C to obtain a single uniform austenite microstructure in the low hardness layer slab.
  • the purpose of cooling the heated composite sheet with water having a temperature of less than 40 ° C is to perform a water toughening treatment on the low hardness layer slab of the composite sheet to obtain a single austenite microstructure.
  • the heat treatment step is quenched for the high hardness layer slab of the composite sheet to obtain a martensite microstructure.
  • the heating temperature is 1130 to 1250 ° C, and the heating time is 120 to 180 min.
  • step (3) the heating temperature is controlled to be 1130 to 1250 ° C, and the controlled heating time is 120 to 180 min to ensure uniform alloy composition in the composite slab to obtain a complete austenite phase in the low hardness layer. , thereby reducing the yield stress of the slab, thereby reducing the deformation resistance of the finished composite steel sheet.
  • the finishing rolling temperature is controlled to be 850 to 1000 °C.
  • the final rolling temperature is set to ⁇ 950 ° C in the step (4) in order to reduce the deformation resistance of the composite slab during the rolling stage.
  • the alloy composition in the technical solution of the present invention is simple and easy to control, and is mainly composed of medium carbon low alloying elements, and fully utilizes solid solution strengthening effects of alloying elements such as C, Si, Mn, Cr, Ni, Cu, and B, and microalloys.
  • the role of fine Ti (C, N) particles formed by the elements Ti and C and N elements refines the austenite grains, and obtains different hardness characteristics through process steps such as rolling and heat treatment in the manufacturing process. Double hardness composite steel plate.
  • the microstructure of the high hardness layer in the double hardness composite steel sheet according to the present invention is martensite and a small amount of retained austenite
  • the microstructure of the low hardness layer in the double hardness composite steel sheet according to the present invention is a single Austenite.
  • the thickness ratio of the high hardness layer and the low hardness layer is adjusted, and then the composite composite is processed to obtain a double composite steel plate having both high and low hardness.
  • the manufacturing method of the double hardness composite steel plate according to the present invention achieves the water toughening treatment of the low hardness layer in the composite steel plate by the same heat treatment process step, and also completes the quenching treatment of the high hardness layer in the composite steel plate. .
  • the double hardness composite steel plate of the invention has different surface hardness, wherein one surface has a Brinell hardness of >600 and the other surface has a Brinell hardness of ⁇ 250, and has excellent anti-elasticity, which can meet the requirements of domestic armored vehicles for steel plates. Bulletproof requirements.
  • the double hardness composite steel sheet according to the present invention has excellent low temperature toughness, and its -40 ° C summer
  • the longitudinal impact energy of the V-type is not less than 50J.
  • the double-hardness composite steel plate according to the present invention also has good machinability, and is suitable for manufacturing and obtaining a vehicle having bulletproof requirements and structural components thereof.
  • the method for producing a double-hardness composite steel sheet according to the present invention can obtain a composite steel sheet having different surface hardness characteristics, and the steel sheet has excellent low-temperature toughness, excellent ballistic performance, and good machinability.
  • the manufacturing method of the double-hardness composite steel plate according to the present invention is simple and easy, and is suitable for stable production on medium and heavy plate production lines.
  • Fig. 1 is a photograph showing the metallographic structure of the double-hardness composite steel plate of Example A4.
  • Example 2 is a microstructure diagram of a high hardness layer in the double hardness composite steel plate of Example A4.
  • the thickness of the blank is determined according to the thickness of the finished double hardness composite steel plate and the thickness ratio of the high hardness layer and the low hardness layer;
  • heating temperature is 1130 ⁇ 1250 ° C, heating time is 120 ⁇ 180min;
  • Heat treatment heat treatment heating temperature is 1050 ⁇ 1100 ° C, heating time is 2 ⁇ 3min / mm ⁇ plate thickness, the heated composite board is water-cooled in the roller or pool, the water temperature is less than 40 °C.
  • Table 1 lists the mass distribution ratios of the respective chemical elements in the high hardness layer and the low hardness layer of the double hardness composite steel sheets of Examples A1 to A6.
  • I indicates a high hardness layer and II indicates a low hardness layer.
  • Table 2 lists the specific process parameters of the manufacturing method of the double hardness composite steel sheets of Examples A1 to A6.
  • Table 3 lists the relevant mechanical property parameters of the double hardness composite steel sheets of Examples A1 to A4.
  • the impact specimen size of the test plates in A1 and A2 is 5 ⁇ 10 ⁇ 55mm; the impact specimen size of the test plates in A3 ⁇ A6 is 10 ⁇ 10 ⁇ 55mm.
  • the position of the impact sample in the thickness direction of the test plate is: sampling on the side of the low hardness layer of the steel plate, and after removing the surface layer of the steel plate by 1 mm, the longitudinal impact sample is processed.
  • HB10/3000 indicates the Brinell hardness value measured under a load of 3000 kg using a head having a diameter of 10 mm.
  • the high hardness layer of the double hardness composite steel sheets of Examples A1 to A6 has a Brinell hardness of ⁇ 613 HB, and the Brinell hardness of the low hardness layer is ⁇ 250 HB, thereby explaining the composite steel sheet of this embodiment.
  • the hardness of the two surfaces is different, and the composite steel sheet has two different hardness characteristics.
  • the impact hardness KV2 (-40 ° C) of the double-hardness composite steel sheets of Examples A1 to A6 was all >50 J, thereby demonstrating that the composite steel sheets of the above examples have excellent low temperature toughness.
  • Table 4 lists the firing test results for the double hardness composite steels of Examples A1 - A4.
  • Examples A1-A6 have excellent ballistic performance, and their anti-elastic properties are in accordance with the FB5 standard in EN.1063.
  • Figure 1 shows the metallographic structure of the double hardness composite steel plate of Example A4.
  • Fig. 2 shows the microstructure of the high hardness layer in the double hardness composite steel plate of Example A4.
  • the double-hardness composite steel plate has a high hardness layer and a low hardness layer, wherein the upper layer is a high hardness layer, the microstructure is martensite and a small amount of retained austenite, and the lower layer is a low hardness layer, The microstructure is a single austenite. It can be seen from Fig. 2 that the microstructure of the high hardness layer is substantially all martensite, and the ratio of retained austenite is less than 1%.

Abstract

一种双重硬度复合钢板,其中一个表面为高硬度层,其另一个表面为低硬度层,高硬度层和低硬度层之间通过轧制复合实现原子结合,其中低硬度层为Mn13钢,高硬度层的布氏硬度大于600。还包括一种双重硬度复合钢板的制造方法:1)分别制备高硬度层坯和低硬度层坯;2)组坯:对板坯结合面进行预处理,并对板坯贴合面进行四周焊接密封,对焊接密封后的复合坯进行抽真空处理;3)加热;4)复合轧制;5)冷却;6)热处理:加热温度为1050~1100℃,加热时间为2~3min/mm×板厚,对加热后的复合板进行水冷,水温小于40℃。该钢板兼具不同硬度特性和良好的低温韧性。

Description

一种双重硬度复合钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种复合钢板及其制造方法。
背景技术
一般来说,钢板厚度和硬度级别的增加有利于提高装甲车辆的防护能力。然而,钢板的厚度增加并不利于车量减重,影响车辆的战术机动性。同时,钢板硬度超出一定范围后,接触到枪弹或炮弹后会产生崩落,这些碎片则会直接危及人身安全和仪器设备的正常运行。
公告号为CN202750372U,公开日为2013年2月20日,名称为“一种新型防弹机柜”的中国专利文献公开了一种具有防弹功能的柜体。该柜体外设置有防弹披甲,防弹披甲由616装甲钢板和凯夫拉复合板粘接而成,616装甲钢板为防弹披甲的外层,凯夫拉复合板为防弹披甲的内层。外层616装甲钢板采用采用8毫米厚的钢板,内层凯夫拉复合板为7毫米厚的钢板。然而,该篇中国专利文献中并没有涉及相关钢板的产品特点和综合性能。
为此,期望获得一种钢板,这种钢板应当既具有很高的硬度,又能够吸收较大的冲击动能。
发明内容
本发明的目的在于提供一种双重硬度复合钢板,其在两个不同的表面具有两种不同的硬度特性。该双重硬度复合钢板的其中一个表面具有超高硬度,相对于该表面的另一表面则具有相对较低的硬度与较高的低温韧性。本发明所述的双重硬度复合钢板实现了高、低硬度和高韧性的结合。另外,本发明所述的双重硬度复合钢板具有良好的机械加工性能和优良的防弹性能。
为了实现上述目的,本发明提出了一种双重硬度复合钢板,其一个表面为高硬度层,其另一个表面为低硬度层,高硬度层与低硬度层之间通过轧制复合 实现原子结合,其中低硬度层为Mn13钢,高硬度层的布氏硬度大于600。
在本技术方案中,低硬度层是指其相对于高硬度层具有较低的硬度。另外,由于低硬度层为Mn13钢,因此,其布氏硬度一般低于250。
在本技术方案中,Mn13钢是指将Mn含量控制在10%<Mn<20%范围之间的钢,此类钢的微观组织基本为单一的奥氏体组织。
进一步地,上述高硬度层的化学元素质量百分比为:
C:0.35~0.45%;
Si:0.80~1.60%;
Mn:0.3~1.0%;
Al:0.02~0.06%;
Ni:0.3~1.2%;
Cr:0.30~1.00%;
Mo:0.20~0.80%;
Cu:0.20~0.60%;
Ti:0.01~0.05%;
B:0.001~0.003%;
余量为Fe和不可避免的杂质。
上述高硬度层中的各化学元素的设计原理为:
C:在钢中可以起到固溶强化的作用,其是对钢的强度贡献最大且成本最低的强化元素。为了达到一定的硬度级别,希望钢中含有较高含量C,然而,C含量过高,会对钢的焊接性能和韧性产生不利影响。为此,综合考虑钢板的强韧性匹配,在本发明所述的双重硬度复合钢板的高硬度层中的C含量应当控制为0.35~0.45%。
Si:Si是脱氧元素。另外,Si可以溶于铁素体中,以起到固溶强化的作用,其仅次于碳、氮、磷而超过其它合金元素,因此,Si能够显著地提高钢的强度和硬度。如果需要利用Si固溶强化作用,其加入量通常不低于0.6%。在上述高硬度层中,Si含量需要被控制0.8~1.6%的范围之间以起到固溶强化作用。
Mn:Mn可以降低钢的临界冷却速度,以此大大提高淬透性,并且会对钢产生固溶强化作用。但是,当Mn含量过高时,会使得马氏体转变温度下降幅度太多,导致室温残余奥氏体增加,不利于钢的强度增加;在铸坯中心偏析部 位生成粗大的MnS,令板厚中心的韧性降低。鉴于此,在上述高硬度层中的Mn含量应当控制为0.3~1.0%。
Al:Al也是脱氧元素。同时,Al还可以与氮形成细小难溶的AlN颗粒,细化钢的显微组织,并且抑制BN的生成,使B以固溶状态存在,从而保证钢的淬透性。一旦Al含量超过0.06%时,会在钢中生成粗大的氧化铝夹杂物。因此,将高硬度层中的Al含量控制为0.02~0.06%。
Ni:Ni在钢中只溶于基体相铁素体和奥氏体中,并且不形成碳化物,其所产生的奥氏体稳定化作用非常强。Ni是保证钢的高韧性的主要元素,考虑到Ni的强化作用及其添加成本,将高硬度层中的Ni含量设定为0.3~1.2%。
Cr:Cr是缩小奥氏体相区元素,其也是中强碳化物元素。Cr也可溶于铁素体。Cr能够提高奥氏体的稳定性,使得C曲线向右偏移,由此来降低临界冷却速度,以提高钢的淬透性。上述高硬度层中的Cr含量需要控制为0.3~1.0%。
Mo:由于Mo在钢中可以同时存在于固溶体相和碳化物相中,因此,Mo对于钢兼具有固溶强化和碳化物弥散强化的作用,从而起到显著提高钢的硬度和强度的作用。为此,上述高硬度层中的Mo含量需要控制为0.20~0.80%。
Cu:Cu在钢中主要以固溶态和单质相沉淀析出状态存在,固溶的Cu可以起到固溶强化作用。由于Cu在铁素体中的固溶度会随着温度降低而迅速减小,因而,在较低温度下,以过饱和固溶的Cu以单质形式沉淀析出,从而起到析出强化作用。在上述高硬度层的加入0.2~0.6%的Cu,可以显著地提高钢的抗大气腐蚀能力。
Ti:Ti可以与钢中的C、N形成碳化钛、氮化钛或碳氮化钛,从而在钢坯加热轧制阶段,起到细化奥氏体晶粒的作用,进而提高钢的强度和韧性。但是,过高的Ti含量会使得钢中形成较多粗大的氮化钛,对于钢的强度和韧性产生不利影响。基于本发明的技术方案,上述高硬度层中的Ti含量应当控制在0.01~0.05%范围之间。
B:较少量地添加B就能够显著地提升钢的淬透性,并在钢中较为容易地获得马氏体组织。然而,不宜添加太多的B,其原因在于:B与晶界之间存在着较强的结合力,其容易偏聚到晶界处,从而影响钢的综合性能。为此,上述高硬度层中的B含量需要控制在0.001~0.003%范围之间。
本发明所述的双重硬度复合钢板的高硬度层中的不可避免的杂质主要为P和S。
更进一步地,上述高硬度层的微观组织为马氏体和少量残余奥氏体。
更进一步地,上述残余奥氏体的相比例低于1%。
在此,基于本发明的技术方案,将高硬度层的微观组织控制为马氏体和少量残余奥氏体的原因在于:残余奥氏体是在淬火后过冷奥氏体发生相变时不可避免出现的组织,严格控制残余奥氏体有利于保证钢种的性能,而马氏体中由于溶解于α相中的碳起到固溶强化作用及存在高密度位错亚结构引起的强化作用,使得马氏体具有高硬度特征,因此为了保证高硬度层的硬度,需要将微观组织控制为几乎全部为马氏体组织。
进一步地,上述低硬度层的化学元素质量百分比为:
C:1.00~1.35%;
Si:0.30~0.90%;
Mn:11.0~19.0%;
Al:0.02~0.06%;
余量为Fe和其他不可避免的杂质。
上述低硬度层中的各化学元素的设计原理为:
C:C是稳定奥氏体的元素,进行快冷时可使奥氏体组织保持到室温。碳含量增加使钢的固溶强化作用增强,这样可以提高Mn13钢的强度和硬度。若含碳量过高,钢中的碳化物在固溶处理时,会溶入奥氏体中,因碳化物与奥氏体比容差别大,使固溶后的高锰钢产生孔洞缺陷,导致密度下降,对高锰钢的性能产生影响;若经水韧处理,碳化物有可能沿晶界分布,导致钢的韧性大大下降。
Si:Si作为脱氧元素加入,同时还有强化固溶体、提高屈服强度的作用。
Mn:Mn是高锰钢中的主要合金元素,具有扩大奥氏体相区,稳定奥氏体和降低Ms点的作用,锰可以使奥氏体组织保持到室温。在钢中锰除了固溶在奥氏体中外,还有一部分存在(Mn,Fe)C型碳化物中。若锰含量增加,则高锰钢的强度和韧性都会增加,这是因为锰具有增加晶间结合力的作用;若锰含量过高,钢的导热性增加,进而容易产生穿晶组织,影响高锰钢的力学性能。为获得稳定的力学性能,碳含量在0.9-1.5%时,锰含量一般控制在11-19%。
Al:Al也是脱氧元素。同时,Al还可以与氮形成细小难溶的AlN颗粒,以细化钢的显微组织,并且抑制BN的生成,使B以固溶状态存在,从而保证钢的淬透性。一旦Al含量超过0.06%时,会在钢中生成粗大的氧化铝夹杂物。因此,将低硬度层中的Al含量控制为0.02~0.06%。
更进一步地,上述低硬度层还可以进一步添加Mo:0.90~1.80%。
在低硬度层中进一步添加合金元素Mo的原因在于:Mo与铁的结合力比较强,同时钼原子尺寸较大,不易扩散,故在加Mo的铸态高锰钢中碳化物的析出量较少,且在奥氏体晶界上不呈网状分布。经水韧化处理后,钼固溶于奥氏体中,推迟奥氏体分解,这对高锰钢的强度和韧性都有利。
进一步地,本发明所述的双重硬度复合钢板在-40℃下的冲击功不低于50J。
进一步地,上述高硬度层与低硬度层的厚度比为(0.43~3):1。
本发明的目的还在于提供一种双重硬度复合钢板的制造方法。该制造方法能够获得一种复合钢板,该复合钢板的两个表面具有不同的硬度特性,其中一个表面具有超高的硬度,另一个表面则具有相对较低的硬度与较高的低温韧性。通过该制造方法实现了在同一钢板中高、低硬度和高韧性的结合。另外,由该制造方法所获得双重硬度复合钢板具备良好的机械加工性能和优良的防弹性能。
为了达到上述发明目的,本发明所涉及的双重硬度复合钢板的制造方法包括步骤:
(1)分别制备高硬度层板坯和低硬度层板坯;
(2)组坯:对板坯结合面进行预处理,并对板坯贴合面进行四周焊接密封,对焊接密封后的复合坯进行抽真空处理;
(3)加热;
(4)复合轧制;
(5)冷却;
(6)热处理:热处理加热温度为1050~1100℃,加热时间为2~3min/mm×板厚,对加热后的复合板进行水冷,水温小于40℃,其中板厚的单位为mm。
本发明所述的双重硬度复合钢板的制造方法的关键之处在于:通过复合轧制将具有不同硬度特性的板坯原子结合在一起。该制造方法的另一关键之处在 于:将热处理步骤中的加热温度设定为1050~1100℃,以在低硬度层板坯中获得单一均匀的奥氏体微观组织。对于加热后的复合板采取用温度小于40℃的水进行冷却的目的在于:对于复合板的低硬度层板坯进行水韧化处理,以获得单一的奥氏体微观组织。与此同时,该热处理步骤对于复合板的高硬度层板坯来说是淬火处理,以获得马氏体微观组织。
进一步地,在上述步骤(3)中,加热温度为1130~1250℃,加热时间为120~180min。
在步骤(3)中将加热温度控制为1130~1250℃,且控制加热时间为120~180min则是为了保证复合板坯中的合金成分均匀,以在低硬度层中获得完全的奥氏体相,从而减小板坯的屈服应力,进而降低成品复合钢板的变形抗力。
更进一步地,在上述步骤(4)中,控制终轧温度为850-1000℃。
在步骤(4)中将终轧温度设定为≥950℃也是为了降低复合板坯在轧制阶段的变形抗力。
本发明的技术方案中的合金成分简单且易于控制,以中碳低合金元素为主,充分利用C、Si、Mn、Cr、Ni、Cu和B等合金元素的固溶强化作用,以及微合金化元素Ti与C、N元素形成的细小Ti(C,N)质点所起到的细化奥氏体晶粒的作用,在制造过程中通过轧制、热处理等工艺步骤,获得具有不同硬度特性的双重硬度复合钢板。
另外,本发明所述的双重硬度复合钢板中的高硬度层的微观组织为马氏体和少量残余奥氏体,而本发明所述的双重硬度复合钢板中的低硬度层的微观组织为单一奥氏体。
此外,根据实际生产情况来调节高硬度层与低硬度层的厚度比后进行复合组坯,以获得兼具高、低两种不同硬度的双重复合钢板。
本发明所述的双重硬度复合钢板的制造方法通过同一热处理工艺步骤,实现了对于复合钢板中的低硬度层的水韧化处理的同时,还完成了对于复合钢板中的高硬度层的淬火处理。
本发明所述的双重硬度复合钢板具有不同的表面硬度,其中一个表面的布氏硬度>600,另一表面的布氏硬度<250,其具备优良的防弹性能,能够满足国内装甲车辆对于钢板提出的防弹要求。
另外,本发明所述的双重硬度复合钢板具有优异的低温韧性,其-40℃夏 比V型纵向冲击功不低于50J。
此外,本发明所述的双重硬度复合钢板还具有良好的机械加工性能,适用于制造生产获得具有防弹要求的车辆及其结构部件。
本发明所述的双重硬度复合钢板的制造方法可以获得兼具不同表面硬度特性的复合钢板,且该钢板具有优异的低温韧性、优良的防弹性能和良好的机械加工性能。
此外,本发明所述的双重硬度复合钢板的制造方法简单易行,适合于中、厚板生产线上的稳定生产。
附图说明
图1为实施例A4的双重硬度复合钢板的金相组织照片。
图2为实施例A4的双重硬度复合钢板中的高硬度层的微观组织图。
具体实施方式
下面将结合附图说明和具体的实施例对本发明所述的双重硬度复合钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A1-A4
上述实施例中的双重硬度复合钢板采用以下步骤制得:
(1)分别制备高硬度层板坯和低硬度层板坯,并分别控制高硬度层板坯和低硬度层板坯中的各化学元素如表1所示;
(2)组坯:
(2a)根据实际需要对于高硬度层板坯和低硬度层板坯进行轧制开坯,开坯厚度根据成品双重硬度复合钢板的厚度以及高硬度层与低硬度层的厚度比决定;
(2b)对板坯结合面进行预处理,采用铣床或刨床对高硬度层板坯和低硬度层板坯的结合面分别进行加工,去除板坯表面的氧化铁皮或夹渣等缺陷,再对板坯的单面进行清理后,对于板坯单面的四条边进行坡口加工;
(2c)将经过清洁处理后的两个板坯的清理面对清理面相对放 置,并对板坯-板坯的贴合面进行四周焊接密封;
(2d)在经过焊接后的板坯边部留有真空通道,对焊接密封后的复合板坯进行抽真空处理;
(3)加热:加热温度为1130~1250℃,加热时间为120~180min;
(4)复合轧制,并控制终轧温度为850-1000℃;
(5)冷却;
(6)热处理:热处理加热温度为1050~1100℃,加热时间为2~3min/mm×板厚,对加热后的复合板在辊道或水池进行水冷,水温小于40℃。
表1列出了实施例A1-A6的双重硬度复合钢板的高硬度层和低硬度层中的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和其他不可避免的杂质元素)
Figure PCTCN2016109781-appb-000001
*注:I表示高硬度层,II表示低硬度层。
表2列出了实施例A1-A6的双重硬度复合钢板的制造方法的具体工艺参数。
表2
Figure PCTCN2016109781-appb-000002
Figure PCTCN2016109781-appb-000003
对上述实施例的双重硬度复合钢板取样后,进行各项力学性能测试,将试验测得到的相关力学性能列于表3中。同时,对于双重硬度复合钢板样品进行射击测试,测试后的结果列于表4中。
表3列出了实施例A1-A4的双重硬度复合钢板的相关力学性能参数。
表3.
Figure PCTCN2016109781-appb-000004
注:A1、A2中试验板的冲击试样尺寸为5×10×55mm;A3~A6中试验板的冲击试样尺寸为10×10×55mm。冲击试样在试验板厚度截面方向位置为:在钢板的低硬度层一侧取样,去掉钢板表面层1mm后,加工纵向冲击试样。表中,HB10/3000表示采用直径为10mm的压头,在3000公斤的载荷下测得的布氏硬度值。
从表3可以看出,实施例A1-A6的双重硬度复合钢板的高硬度层的布氏硬度均≥613HB,且低硬度层的布氏硬度均<250HB,由此说明该实施例的复合钢板的两个表面的硬度不同,该复合钢板兼具有两种不同的硬度特性。另外,实施例A1-A6的双重硬度复合钢板的冲击功KV2(-40℃)均>50J,由此说明上述实施例的复合钢板具备优良的低温韧性。
表4列出了实施例A1-A4的双重硬度复合钢的射击测试结果。
表4
Figure PCTCN2016109781-appb-000005
从表4可以看出,采用同一枪弹型号,以基本相同的射击速度,对于处在不同的射击距离的实施例A1-A6进行射击,实施例A1-A6的双重硬度复合钢板均未被击穿,说明了实施例A1-A6具有优良的防弹性能,其抗弹性能符合EN.1063中FB5级标准。
图1显示了实施例A4的双重硬度复合钢板的金相组织。同时,图2显示了实施例A4的双重硬度复合钢板中的高硬度层的微观组织。
从图1可以看出,该双重硬度复合钢板具有高硬度层与低硬度层,其中,上层为高硬度层,其微观组织为马氏体和少量残余奥氏体,下层为低硬度层,其微观组织为单一的奥氏体。从图2则可以看出,高硬度层的微观组织基本全部为马氏体,残余奥氏体的相比例低于1%。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (11)

  1. 一种双重硬度复合钢板,其特征在于:其一个表面为高硬度层,其另一个表面为低硬度层,所述高硬度层与低硬度层之间通过轧制复合实现原子结合,其中低硬度层为Mn13钢,所述高硬度层的布氏硬度大于600。
  2. 如权利要求1所述的双重硬度复合钢板,其特征在于,所述高硬度层的化学元素质量百分比为:
    C:0.35~0.45%、Si:0.80~1.60%、Mn:0.3~1.0%、Al:0.02~0.06%、Ni:0.3~1.2%、Cr:0.30~1.00%、Mo:0.20~0.80%、Cu:0.20~0.60%、Ti:0.01~0.05%、B:0.001~0.003%,余量为Fe和不可避免的杂质。
  3. 如权利要求2所述的双重硬度复合钢板,其特征在于,所述高硬度层的微观组织为马氏体和少量残余奥氏体。
  4. 如权利要求3所述的双重硬度复合钢板,其特征在于,所述残余奥氏体的相比例低于1%。
  5. 如权利要求1所述的双重硬度复合钢板,其特征在于,所述低硬度层的化学元素质量百分比为:
    C:1.00~1.35%、Si:0.30~0.90%、Mn:11.0~19.0%、Al:0.02~0.06%,余量为Fe和其他不可避免的杂质。
  6. 如权利要求5所述的双重硬度复合钢板,其特征在于,所述低硬度层还具有化学元素Mo:0.90~1.80%。
  7. 如权利要求1所述的双重硬度复合钢板,其特征在于,其-40℃下的冲击功不低于50J。
  8. 如权利要求1所述的双重硬度复合钢板,其特征在于,所述高硬度层与低硬度层的厚度比为(0.43~3):1。
  9. 如权利要求1-8中任意一项所述的双重硬度复合钢板的制造方法,其特征在于,包括步骤:
    (1)分别制备高硬度层板坯和低硬度层板坯;
    (2)组坯:对板坯结合面进行预处理,并对板坯贴合面进行四周焊接密封,对焊接密封后的复合坯进行抽真空处理;
    (3)加热;
    (4)复合轧制;
    (5)冷却;
    (6)热处理:热处理加热温度为1050~1100℃,加热时间为2~3min/mm×板厚,对加热后的复合板进行水冷,水温小于40℃,其中板厚的单位为mm。
  10. 如权利要求9所述的双重硬度复合钢板的制造方法,其特征在于,在所述步骤(3)中,加热温度为1130~1250℃,加热时间为120~180min。
  11. 如权利要求10所述的双重硬度复合钢板的制造方法,其特征在于,在所述步骤(4)中,控制终轧温度为850~1000℃。
PCT/CN2016/109781 2015-12-14 2016-12-14 一种双重硬度复合钢板及其制造方法 WO2017101770A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187018465A KR102138313B1 (ko) 2015-12-14 2016-12-14 이중경도 복합강판 및 그의 제조방법
JP2018549386A JP6644163B2 (ja) 2015-12-14 2016-12-14 二重硬度合わせ鋼板及びその製造方法
EP16874827.5A EP3392600B1 (en) 2015-12-14 2016-12-14 Dual-hardness clad steel plate and production method thereof
US16/061,189 US10851435B2 (en) 2015-12-14 2016-12-14 Dual-hardness clad steel plate and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510926272.9 2015-12-14
CN201510926272.9A CN105499269A (zh) 2015-12-14 2015-12-14 一种双重硬度复合钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2017101770A1 true WO2017101770A1 (zh) 2017-06-22

Family

ID=55707789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109781 WO2017101770A1 (zh) 2015-12-14 2016-12-14 一种双重硬度复合钢板及其制造方法

Country Status (6)

Country Link
US (1) US10851435B2 (zh)
EP (1) EP3392600B1 (zh)
JP (1) JP6644163B2 (zh)
KR (1) KR102138313B1 (zh)
CN (1) CN105499269A (zh)
WO (1) WO2017101770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504574A (ja) * 2017-11-28 2021-02-15 宝山鋼鉄股▲分▼有限公司 高強度高靭性耐摩耗複合鋼板及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499269A (zh) * 2015-12-14 2016-04-20 宝山钢铁股份有限公司 一种双重硬度复合钢板及其制造方法
CN107310218B (zh) * 2016-04-26 2019-03-29 宝山钢铁股份有限公司 一种复合防弹钢板及其制造方法
CN107310219B (zh) * 2016-04-26 2019-03-29 宝山钢铁股份有限公司 一种冷弯加工性能优良的防弹钢板及其制造方法
CN109835013B (zh) * 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种高强耐磨复合钢板及其制造方法
CN109835015B (zh) * 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种耐磨复合钢板及其制造方法
JP7070794B2 (ja) * 2019-03-29 2022-05-18 日本製鉄株式会社 高強度熱間圧延鋼板
DE102019116363A1 (de) 2019-06-17 2020-12-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Panzerungsbauteils für Kraftfahrzeuge
CN112756408A (zh) * 2020-12-21 2021-05-07 山东荣升重型机械股份有限公司 多个工件合轧方法
WO2022183736A1 (zh) * 2021-03-05 2022-09-09 江苏康瑞新材料科技股份有限公司 一种手机边框及制造方法
EP4302993A1 (en) * 2021-03-05 2024-01-10 Jiangsu Kangrui New Material Technology Co., Ltd. Mobile phone frame and manufacturing method
CN113106351A (zh) * 2021-04-20 2021-07-13 吉安锐迈管道配件有限公司 一种超低温9Ni钢及其制备工艺
CN113528949A (zh) * 2021-06-22 2021-10-22 河钢股份有限公司承德分公司 一种550MPa级太阳能支架用热轧钢卷及其生产方法
CN113399948A (zh) * 2021-07-02 2021-09-17 东北大学 一种生产厚度100mm以上规格1000MPa水电钢的方法
CN114891989B (zh) * 2022-06-20 2023-05-02 河北普阳钢铁有限公司 一种耐磨耐蚀复合钢板的轧制工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694174A (en) * 1971-05-13 1972-09-26 Us Army Dual property steel armor
CN2715093Y (zh) * 2004-08-24 2005-08-03 天津市圣恺工业技术发展有限公司 用于坦克的外挂式复合装甲板
US20100257997A1 (en) * 2009-04-10 2010-10-14 NOVA Research, Inc Armor Plate
EP2465954A1 (en) * 2010-12-14 2012-06-20 CRS Holdings, Inc. Blast resistant, non-magnetic stainless steel armor
CN202750372U (zh) 2012-09-17 2013-02-20 南京恩瑞特实业有限公司 一种新型防弹机柜
CN103348213A (zh) * 2011-01-07 2013-10-09 Ati资产公司 双硬度钢制品及其制造方法
CN103451546A (zh) * 2012-12-24 2013-12-18 河南理工大学 一种高耐磨高锰钢及其制备方法
CN104501660A (zh) * 2015-01-04 2015-04-08 成都索伊新材料有限公司 一种装甲车用轻质复合防弹结构
CN105088090A (zh) * 2015-08-28 2015-11-25 宝山钢铁股份有限公司 一种抗拉强度2000MPa级的防弹钢板及其制造方法
CN105499269A (zh) * 2015-12-14 2016-04-20 宝山钢铁股份有限公司 一种双重硬度复合钢板及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT372113B (de) * 1981-12-22 1983-09-12 Voest Alpine Ag Dreilagiger formkoerper, insbesondere blech, von hoher verschleissfestigkeit
JP3545963B2 (ja) * 1998-03-30 2004-07-21 株式会社神戸製鋼所 高靱性超耐摩耗鋳鋼及びその製造方法
CN100371121C (zh) * 2005-04-06 2008-02-27 吉欣(英德)热轧不锈复合钢有限公司 一种压制钎焊热轧复合坯的加工方法
CN101214497A (zh) * 2008-01-07 2008-07-09 吉欣(英德)热轧不锈复合钢有限公司 采用复合坯同时轧制三块金属复合板的方法
CN101215669B (zh) * 2008-01-08 2011-07-06 济南钢铁股份有限公司 一种大型石油储罐用高强度厚钢板及其低成本制造方法
ES2709433T3 (es) * 2008-05-07 2019-04-16 Thyssenkrupp Steel Europe Ag Material compuesto con efecto de protección balística
JP2010280127A (ja) * 2009-06-04 2010-12-16 Nippon Steel Corp 張り剛性に優れた複合パネル
CN101892443A (zh) * 2010-07-09 2010-11-24 天津钢管集团股份有限公司 屈服强度170~180ksi钢级的高强高韧性石油套管及其制造方法
CN103484599B (zh) * 2013-08-20 2015-05-20 山西太钢不锈钢股份有限公司 一种高锰耐磨钢的冶炼方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694174A (en) * 1971-05-13 1972-09-26 Us Army Dual property steel armor
CN2715093Y (zh) * 2004-08-24 2005-08-03 天津市圣恺工业技术发展有限公司 用于坦克的外挂式复合装甲板
US20100257997A1 (en) * 2009-04-10 2010-10-14 NOVA Research, Inc Armor Plate
EP2465954A1 (en) * 2010-12-14 2012-06-20 CRS Holdings, Inc. Blast resistant, non-magnetic stainless steel armor
CN103348213A (zh) * 2011-01-07 2013-10-09 Ati资产公司 双硬度钢制品及其制造方法
CN202750372U (zh) 2012-09-17 2013-02-20 南京恩瑞特实业有限公司 一种新型防弹机柜
CN103451546A (zh) * 2012-12-24 2013-12-18 河南理工大学 一种高耐磨高锰钢及其制备方法
CN104501660A (zh) * 2015-01-04 2015-04-08 成都索伊新材料有限公司 一种装甲车用轻质复合防弹结构
CN105088090A (zh) * 2015-08-28 2015-11-25 宝山钢铁股份有限公司 一种抗拉强度2000MPa级的防弹钢板及其制造方法
CN105499269A (zh) * 2015-12-14 2016-04-20 宝山钢铁股份有限公司 一种双重硬度复合钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392600A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504574A (ja) * 2017-11-28 2021-02-15 宝山鋼鉄股▲分▼有限公司 高強度高靭性耐摩耗複合鋼板及びその製造方法

Also Published As

Publication number Publication date
EP3392600B1 (en) 2021-03-24
KR20180097176A (ko) 2018-08-30
JP6644163B2 (ja) 2020-02-12
EP3392600A4 (en) 2019-05-15
EP3392600A1 (en) 2018-10-24
US20180363093A1 (en) 2018-12-20
CN105499269A (zh) 2016-04-20
KR102138313B1 (ko) 2020-08-14
US10851435B2 (en) 2020-12-01
JP2019505687A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017101770A1 (zh) 一种双重硬度复合钢板及其制造方法
JP6528004B2 (ja) 引張強度2000MPa級の防弾鋼板およびその製造方法
CN105543649B (zh) 一种三层复合钢板及其制造方法
JP5871109B1 (ja) 厚鋼板及びその製造方法
JPWO2018199145A1 (ja) 高Mn鋼およびその製造方法
US11441214B2 (en) Low-yield-ratio ultra-high-strength high-toughness steel for pressure hulls and preparation method therefor
WO2016103537A1 (ja) 油井用高強度継目無鋼管およびその製造方法
WO2016103538A1 (ja) 油井用高強度継目無鋼管およびその製造方法
WO2013044641A1 (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
CN113249645A (zh) 一种高延性超高强韧钢及其制备方法
JP5630321B2 (ja) 靭性に優れる高張力鋼板とその製造方法
KR101412267B1 (ko) 강판 및 그 제조 방법
CN115305409B (zh) 一种5~60mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法
WO2022100056A1 (zh) 一种bca2级集装箱船用止裂钢板及其制造方法
KR101726091B1 (ko) 저온 인성과 항복강도가 우수한 후판용 고망간강 및 그 제조방법
KR101344610B1 (ko) 강판 및 그 제조 방법
WO2017208329A1 (ja) 低温靭性に優れた高張力鋼板
KR102209561B1 (ko) 취성균열전파 저항성이 우수한 극후물 강재 및 그 제조방법
KR20120097159A (ko) 고강도 강판 및 그 제조 방법
JP6519025B2 (ja) 油井用低合金高強度継目無鋼管
WO2016039136A1 (ja) 高強度鋼板
CN115478210A (zh) 一种1500MPa级高强度自强韧防护钢板及其制造方法
KR101505290B1 (ko) 라인파이프용 강판 및 그 제조 방법
KR101310998B1 (ko) 후 강판 및 그 제조 방법
CN117660833A (zh) 一种无磁高强度钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018549386

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018465

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016874827

Country of ref document: EP