WO2017101769A1 - 一种磁悬浮抱轨式轨道交通双线轨道梁 - Google Patents

一种磁悬浮抱轨式轨道交通双线轨道梁 Download PDF

Info

Publication number
WO2017101769A1
WO2017101769A1 PCT/CN2016/109777 CN2016109777W WO2017101769A1 WO 2017101769 A1 WO2017101769 A1 WO 2017101769A1 CN 2016109777 W CN2016109777 W CN 2016109777W WO 2017101769 A1 WO2017101769 A1 WO 2017101769A1
Authority
WO
WIPO (PCT)
Prior art keywords
box girder
screw
rail transit
box
magnetic suspension
Prior art date
Application number
PCT/CN2016/109777
Other languages
English (en)
French (fr)
Inventor
文望青
罗世东
耿杰
林文泉
赵志军
杨光
杜振华
崔阳华
陶志列
韩稼春
樊磊
葛建刚
胡俊
李超俊
李靖
梁会
刘阳明
赵涛
王存国
张宪国
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2017101769A1 publication Critical patent/WO2017101769A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • the invention belongs to the field of track beams, and more particularly to a magnetic suspension bridge type rail transit double track beam.
  • the track-type rail transit mainly includes maglev rail transit and straddle monorail traffic, both of which adopt a unique mode of holding rails.
  • the small-section single-line box girder that meets the vehicle limit is the most economical beam-type scheme for the rail-type rail transit.
  • two box beams of a conventional small cross-section two-track rail are arranged independently of each other, so that the lateral rigidity of the two-track rail is poor; in addition, each box girder is supported by two supports, and the support is arranged on the pier
  • the lateral spacing of the two supports is large, which causes the lateral width of the top cap of the pier to be larger, which increases the size of the top hat of the pier and the structure of the lower part of the pier, and increases the volume of the pier by about 35%, which is greatly increased.
  • the manufacturing cost of the pier is also unsightly.
  • FIG. 2(a) and Fig. 2(b) Chinese Patent Application No. 201410487247.0 discloses a straddle type monorail double box rectangular steel-hybrid combined track beam structure including: two parallel steels parallel to each other - The mixed rail main beam, the two steel-mixed rail main beams are connected by a lower cross beam and a lower flat longitudinal joint; wherein the steel-mixed rail main beam comprises: a steel beam structure and a cross section with a box cross section a rectangular concrete rectangular parallelepiped structure, the concrete rectangular parallelepiped structure is above the steel beam structure, and is connected with the steel beam structure through a shearing nail; the utility model is provided with a beam between the ordinary two-wire steel mixed track beam The lateral stiffness is increased, but the beam used is a truss structure.
  • the beam of the truss structure can increase the lateral stiffness, it is not suitable for the special bridge structure of the maglev track beam, except for its high cost.
  • the steel truss structure is susceptible to thermal expansion and contraction, and has a large impact on the flatness control of the magnetic levitation rail beam, which is not conducive to the smooth running of the maglev train. Heteroaryl truss structure beautiful Poor sex, does not meet the requirements of modern urban transport development.
  • the present invention provides a magnetic suspension orbital rail transit double-track beam with high lateral rigidity and effective cost saving.
  • a magnetic suspension orbit rail type double track beam which comprises a left box beam and a right box beam which are erected on a pier, the left box beam and the right box
  • the beams are identical in structure, and the left box girder is mounted on the pier by a left abutment mounted on the pier by a right abutment, the left and right abutments The same structure;
  • the right side of the left box girder and the left side of the right box girder are fixedly connected by a horizontal beam;
  • the horizontal beam includes a left beam portion, a spiral pitch adjusting device and a right beam portion, and the left beam portion and the right beam portion are each formed of a concrete filled steel tube, and the spiral pitch adjusting device is located at the left beam portion and the right beam portion Between the departments;
  • the spiral pitch adjusting device includes a first screw, a threaded barrel and a second screw, wherein the first screw, the threaded barrel and the second screw are horizontally disposed, and the left end of the first screw and the left beam a fixed connection, a right end of the second screw is fixedly connected to the right beam portion, and the left end and the right end of the thread barrel are respectively provided with a first internal thread and a second internal thread and the first internal thread and the second inner
  • the rotation of the thread is reversed, the right end of the first screw is provided with a first external thread that cooperates with the first internal thread and the right end of the first screw is screwed to the left end of the threaded cylinder, and the left end of the second screw is provided with a second internal thread mating second external thread and a left end threadedly coupled to the right end of the threaded barrel;
  • the horizontal beam is disposed directly above the pier and has a spacing from the pier.
  • the left box beam and the right box beam are both hollow structures.
  • the bottom end faces of the horizontal beam, the left box beam and the right box beam are flush.
  • the height of the horizontal beam is 2/5 to 4/5 of the height of the left box girder.
  • the height of the support is 1/11 to 1/9 of the height of the horizontal beam.
  • the distance between the beam and the pier is 0.3 m to 0.5 m.
  • the weight ratio of the steel pipe to the concrete in the horizontal beam is 0.2:1 to 0.5:1.
  • the horizontal beam has a tensile strength greater than 10 MPa.
  • the horizontal beam has a compressive strength greater than 15 MPa.
  • the horizontal beam has a thickness of 1/10 to 1/5 of its length.
  • the present invention does not simply set the beam and reduce the support for simple superposition, but according to the characteristics of the magnetic levitation rail transit, the steel pipe concrete is poured at the position of the pier to form a beam, which ensures the appearance of the appearance, in the case of temperature changes.
  • the impact on the shape of the orbit is small.
  • the connection between the two left and right box girders through the horizontal beam is greatly improved, and the rigidity of the two left and right single beams is more than three times.
  • the increase of structural rigidity greatly reduces the deformation of the structure under stress, which satisfies the strict requirements of the maglev engineering for structural deformation.
  • the four supports of the corresponding support box beam can be reduced to two supports, and the lateral dimension of the top hat of the bridge can be reduced by 35%, the overall pier The size is reduced while saving the pile length of the lower pile foundation by about 25%. Therefore, by optimizing the support setting scheme, the manufacturing cost of the support can be reduced by 50%, the cost of the pier is reduced by 35%, and the cost of the lower pile foundation is reduced by 25%.
  • FIG. 1 is a schematic structural view of an independent arrangement of two single-line box beams in the prior art
  • FIGS. 2(a) and 2(b) are schematic views showing the use of a truss connection in the prior art
  • Figure 3 is a schematic view of the structure of the present invention.
  • Fig. 4 is a schematic view showing the structure of a spiral pitch adjusting device of the present invention.
  • a magnetic suspension rail-type rail transit double-track beam comprises a left box beam 2 and a right box beam 3 which are erected on the pier 1, and the structure of the left box beam 2 and the right box beam 3
  • the left box girder 2 is mounted on the pier 1 by a left abutment 4 mounted on the pier 1 by a right abutment 5, the left abutment 4 and The structure of the right support 5 is the same;
  • the right side of the left box girder 2 and the left side of the right box girder 3 are fixedly connected by a horizontal cross member 6;
  • the horizontal beam 6 includes a left beam portion 61, a spiral pitch adjusting device 62, and a right beam portion 63.
  • the left beam portion 61 and the right beam portion 63 are each formed of a concrete filled steel tube, and the spiral pitch adjusting device 62 is located at the Between the left beam portion 61 and the right beam portion 63;
  • the spiral pitch adjusting device 62 includes a first screw 621, a threaded barrel 622 and a second screw 623, wherein the first screw 621, the threaded barrel 622 and the second screw 623 are horizontally disposed, and the first screw 621
  • the left end of the second screw 623 is fixedly connected to the right beam portion 63, and the left end and the right end of the thread barrel are respectively provided with a first internal thread and a second internal thread.
  • the right end of the first screw 621 is provided with a first external thread that cooperates with the first internal thread and the right end thereof is screwed to the threaded cylinder 622
  • the left end of the second screw 623 is provided with a second external thread that cooperates with the second internal thread and the left end thereof is screwed to the right end of the threaded cylinder 622; the left box beam can be adjusted by rotating the threaded cylinder 622
  • the spacing between the 2 and the right box girder 3 facilitates the precise adjustment of the plane position when the left box girder 2 and the right box girder 3 are erected, and then mixes after the adjustment is completed.
  • the concrete or steel tube concrete is overwrapped to the spiral pitch adjusting device 62.
  • the horizontal beam 6 of the invention does not adopt on-site pouring concrete, but adopts the method of filling the concrete in the steel pipe.
  • the connection manner of the filled concrete structure in the steel pipe and the box beams on both sides can be connected by flanges and bolts, or welded. the way.
  • the advantage is that the concrete itself has a good compressive effect, and when the concrete is filled in the steel pipe, a fastening effect is generated, and the pressure resistance is greatly enhanced.
  • the steel pipe can withstand a certain tensile effect.
  • the two box girders are prefabricated in advance and then fixed by the gantry machine. Due to the limited space between the two parallel box beams, this solution can greatly facilitate installation and save
  • the material has a small footprint and is suitable for use in a magnetic levitation orbital beam environment.
  • the horizontal cross member 6 is disposed directly above the pier 1 and has a spacing from the pier 1 .
  • the invention does not simply set the beam and reduce the support for simple superposition, but according to the characteristics of the magnetic levitation rail transit, the concrete pipe is cast at the position of the pier 1 to form a beam, which ensures the appearance of the appearance, in the case of temperature change.
  • the impact on the shape of the orbit is small.
  • the connection between the two left and right box girders through the horizontal beam 6 is greatly improved, and the rigidity of the two left and right single beams is more than three times.
  • the increase of structural rigidity greatly reduces the deformation of the structure under stress, which satisfies the strict requirements of the maglev engineering for structural deformation.
  • the four supports of the corresponding support box beam can be reduced to two supports, and the lateral dimension of the top hat of the pier 1 can be reduced by 35%.
  • the overall size is reduced while saving the lower pile foundation pile length by about 25%. Therefore, by optimizing the support setting scheme, the manufacturing cost of the support can be reduced by 50%, the cost of the pier 1 can be reduced by 35%, and the cost of the lower pile foundation can be reduced by 25%.
  • left box girder 2 and the right box girder 3 are both hollow structures, and the structure of the box girder is reduced from the important one, so that the box girder is more convenient to manufacture and erect, and the overall cost of the box girder is saved.
  • the bottom end faces of the horizontal beam 6, the left box beam 2 and the right box beam 3 are flush, and the left box beam 2 and the right box beam 3 are connected together by the horizontal beam 6, and the overall rigidity is increased by more than 3 times.
  • Beam and The bottom ends of the left and right box beams are flush, and the shape is simple and beautiful, which can reduce the difficulty in making the box beam template and save the production cost.
  • the beam is flush with the bottom end of the left and right box girder, avoiding the sudden change of structural stress caused by the sudden change of the section, avoiding the large concentrated stress of the joint between the box girder and the beam, so that the structural stress is uniform and the force performance is further improved.
  • the height of the horizontal beam 6 is 2/5 to 4/5 of the height of the left box beam 2, and the height of the seat is 1/10 of the height of the horizontal beam 6, the beam and the beam
  • the distance between the piers 1 is 0.3m to 0.5m
  • the weight ratio of the steel pipe to the concrete in the horizontal beam 6 is 0.2:1 to 0.5:1
  • the thickness of the horizontal beam 6 is 1/10 to 1 of the length thereof.
  • its structure volume is relatively small compared to the left and right box girder, especially the beam thickness is thinner, its own weight is smaller, correspondingly reduces the dead load of the left and right box girder, and also reduces the lower pier and pile foundation Load.
  • the light profile of the beam increases the under-bridge lighting effect between the two box beams and enhances the landscape effect.
  • the horizontal beam 6 has a tensile strength greater than 10 MPa, and the horizontal beam 6 has a compressive strength greater than 15 MPa to accommodate the strength requirements of the rail transit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种磁悬浮抱轨式轨道交通双线轨道梁,包括架设在桥墩(1)上的左箱梁(2)和右箱梁(3),左箱梁(2)和右箱梁(3)的结构相同,左箱梁(2)通过一个左支座(4)安装在桥墩(1)上,右箱梁(3)通过一个右支座(5)安装在桥墩(1)上,左支座(4)和右支座(5)的结构相同;左箱梁(2)的右侧和右箱梁(3)的左侧通过一根水平横梁(6)固定连接在一起,水平横梁(6)整体呈圆柱状并且其由钢管混凝土制成;水平横梁(6)设置于桥墩(1)的正上方,并且与桥墩(1)之间存在间距。左、右两个箱梁通过水平横梁的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上,结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁悬浮工程对于结构形变的严格要求。

Description

一种磁悬浮抱轨式轨道交通双线轨道梁 【技术领域】
本发明属于轨道梁领域,更具体地,涉及一种磁悬浮抱轨式轨道交通双线轨道梁。
【背景技术】
抱轨式轨道交通主要包括磁浮轨道交通和跨座式单轨交通,二者均采用独特的抱轨运行方式,满足车辆限界的小截面单线箱梁是抱轨式轨道交通最经济的梁型方案。
参照图1,传统小截面的两线轨道的两个箱梁相互独立进行设置,使得两线轨道的横向刚度较差;另外每个箱梁分别依靠两个支座进行支撑,支座设置于桥墩上,这两个支座的横向间距大,造成桥墩顶帽的横向宽度也较大,这样就提高了桥墩顶帽以及墩底下部结构的尺寸,增加了桥墩体积约为35%,极大增加了桥墩的制造成本,而且也使得桥墩也不美观。
参照图2(a)、图2(b),中国专利申请号为201410487247.0的中国专利公开了一种跨座式单轨双箱矩形钢-混结合轨道梁结构,包括:相互平行的两线钢-混轨道主梁,两个钢-混轨道主梁之间通过下部的横梁、下平纵联相连接;其中,所述钢-混轨道主梁包括:横断面为箱型的钢梁结构和横断面为矩形的混凝土长方体结构,所述混凝土长方体结构处于所述钢梁结构的上方,且与所述钢梁结构通过剪力钉连接;其是在普通两线钢混结合轨道梁之间设置横梁以增加横向刚度,但是其采用的横梁为桁架结构,这种桁架结构的横梁虽然能够增加横向刚度,但是其不适合应用在磁浮轨道梁这种特殊的桥梁结构上上,除了其成本较高的因素以外,钢桁架结构容易受热胀冷缩的影响,对磁悬浮轨道梁的平整度控制存在较大的影响,这样就不利于磁悬浮列车的平稳行驶,同时,复杂的桁架结构美观 性较差,不符合现代城市交通发展的要求。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种磁悬浮抱轨式轨道交通双线轨道梁,其横向刚度高,而且能有效节约制造成本。
为实现上述目的,按照本发明,提供了一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,包括架设在桥墩上的左箱梁和右箱梁,所述左箱梁和右箱梁的结构相同,并且所述左箱梁通过一个左支座安装在所述桥墩上,所述右箱梁通过一个右支座安装在所述桥墩上,所述左支座和右支座的结构相同;
所述左箱梁的右侧和所述右箱梁的左侧通过一根水平横梁固定连接在一起;
所述水平横梁包括左横梁部、螺旋式间距调整装置和右横梁部,所述左横梁部和右横梁部均由钢管混凝土形成,所述螺旋式间距调整装置位于所述左横梁部和右横梁部之间;
所述螺旋式间距调整装置包括第一螺杆、螺纹筒和第二螺杆,其中,所述第一螺杆、螺纹筒和第二螺杆均水平设置,所述第一螺杆的左端与所述左横梁部固定连接,所述第二螺杆的右端与所述右横梁部固定连接,所述螺纹筒的左端和右端分别设置有第一内螺纹和第二内螺纹并且所述第一内螺纹和第二内螺纹的旋向相反,所述第一螺杆的右端设置有与第一内螺纹相配合的第一外螺纹并且其右端螺纹连接在所述螺纹筒的左端,所述第二螺杆的左端设置有与第二内螺纹相配合的第二外螺纹并且其左端螺纹连接在所述螺纹筒的右端;
所述水平横梁设置于所述桥墩的正上方,并且与所述桥墩之间存在间距。
优选地,所述左箱梁和所述右箱梁均为中空结构。
优选地,所述水平横梁、左箱梁和右箱梁的底端面平齐。
优选地,所述水平横梁的高度是所述左箱梁高度的2/5~4/5。
优选地,所述支座的高度是所述水平横梁高度的1/11~1/9。
优选地,所述横梁与所述桥墩之间的间距为0.3m~0.5m。
优选地,所述水平横梁中钢管和混凝土的重量比为0.2:1~0.5:1。
优选地,所述水平横梁的抗拉强度大于10MPa。
优选地,所述水平横梁的抗压强度大于15MPa。
优选地,所述水平横梁的厚度是其长度的1/10~1/5。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)本发明并非简单地设置横梁与减少支座进行简单的叠加,而是根据磁悬浮轨道交通的特点,选择在桥墩位置处浇筑钢管混凝土形成横梁,保证了外形的美观,在温度变化的情况下对轨道形态的影响较小。左、右两个箱梁通过水平横梁的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上。
结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁浮工程对于结构形变的严格要求。
2)本发明由于在箱梁上与支座对应的位置设置了水平横梁,相应的支撑箱梁的四个支座可减少为两个支座,桥墩顶帽横向尺寸可减少35%,桥墩整体尺寸减少同时节省下部桩基础桩长约25%。因此,通过优化支座设置方案,可以使支座的制造成本减少50%,减少了桥墩成本35%,减少了下部桩基础成本25%。
【附图说明】
图1是现有技术中两单线箱梁独立设置的结构示意图;
图2(a)和图2(b)是现有技术中使用桁架连接的示意图;
图3是本发明的结构示意图;
图4是本发明中螺旋式间距调整装置的结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图3、图4,一种磁悬浮抱轨式轨道交通双线轨道梁,包括架设在桥墩1上的左箱梁2和右箱梁3,所述左箱梁2和右箱梁3的结构相同,并且所述左箱梁2通过一个左支座4安装在所述桥墩1上,所述右箱梁3通过一个右支座5安装在所述桥墩1上,所述左支座4和右支座5的结构相同;
所述左箱梁2的右侧和所述右箱梁3的左侧通过一根水平横梁6固定连接在一起;
所述水平横梁6包括左横梁部61、螺旋式间距调整装置62和右横梁部63,所述左横梁部61和右横梁部63均由钢管混凝土形成,所述螺旋式间距调整装置62位于所述左横梁部61和右横梁部63之间;
所述螺旋式间距调整装置62包括第一螺杆621、螺纹筒622和第二螺杆623,其中,所述第一螺杆621、螺纹筒622和第二螺杆623均水平设置,所述第一螺杆621的左端与所述左横梁部61固定连接,所述第二螺杆623的右端与所述右横梁部63固定连接,所述螺纹筒的左端和右端分别设置有第一内螺纹和第二内螺纹并且所述第一内螺纹和第二内螺纹的旋向相反,所述第一螺杆621的右端设置有与第一内螺纹相配合的第一外螺纹并且其右端螺纹连接在所述螺纹筒622的左端,所述第二螺杆623的左端设置有与第二内螺纹相配合的第二外螺纹并且其左端螺纹连接在所述螺纹筒622的右端;通过旋转螺纹筒622,可以调整左箱梁2和右箱梁3之间的间距,方便左箱梁2和右箱梁3架设时的平面位置精确调整,调整完成后再以混 凝土或钢管混凝土对螺旋式间距调整装置62进行外包裹。
本发明的水平横梁6不采用现场浇注混凝土,而是采用钢管内填充混凝土的方式,钢管内填充混凝土结构与两侧箱梁的连接方式可以采用法兰和螺栓的连接方式,也可以采用焊接的方式。其优点是:混凝土本身具有良好的抗压效果,当混凝土填充在钢管内时,会产生一个紧固效应,抗压能力大大增强。同时,钢管能够承受一定的抗拉的效果。在磁悬浮轨道梁建造过程中,两条箱梁事先预制,然后通过架桥机安装固定.由于两条平行设置的箱型梁之间空间十分有限,采用本方案,能极大地方便安装,同时节省了材料,占用空间小,适合应用于磁悬浮轨道梁环境。
所述水平横梁6设置于所述桥墩1的正上方,并且与所述桥墩1之间存在间距。
本发明并非简单地设置横梁与减少支座进行简单的叠加,而是根据磁悬浮轨道交通的特点,选择在桥墩1位置处浇筑钢管混凝土形成横梁,,保证了外形的美观,在温度变化的情况下对轨道形态的影响较小。左、右两个箱梁通过水平横梁6的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上。结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁浮工程对于结构形变的严格要求。
本发明由于在箱梁上与支座对应的位置设置了水平横梁6,相应的支撑箱梁的四个支座可减少为两个支座,桥墩1顶帽横向尺寸可减少35%,桥墩1整体尺寸减少同时节省下部桩基础桩长约25%。因此,通过优化支座设置方案,可以使支座的制造成本减少50%,减少了桥墩1成本35%,减少了下部桩基础成本25%。
进一步,所述左箱梁2和所述右箱梁3均为中空结构,箱梁的结构自重大为减少,使箱梁制作、架设都更为方便,箱梁整体成本节省较多。
进一步,所述水平横梁6、左箱梁2和右箱梁3的底端面平齐,左箱梁2和右箱梁3通过水平横梁6连接在一起,整体刚度提高3倍以上。横梁与 左右箱梁底端平齐,其造型简洁美观,可减少箱梁模板的制作难度,节省制作成本。同时,横梁与左右箱梁底端平齐,避免截面突变带来的结构应力突变,避免了箱梁与横梁连接部位出现较大的集中应力,使结构受力均匀,受力性能得到进一步提高。
进一步,所述水平横梁6的高度是所述左箱梁2高度的2/5~4/5,所述支座的高度是所述水平横梁6高度的1/10,所述横梁与所述桥墩1之间的间距为0.3m~0.5m,所述水平横梁6中钢管和混凝土的重量比为0.2:1~0.5:1,所述水平横梁6的厚度是其长度的1/10~1/5,其结构体积较为相对于左右两片箱梁很小,尤其是横梁厚度较薄,自重较小,相应的减少了左右箱梁承受的恒载,同时也降低了下部桥墩、桩基础承受的荷载。此外横梁轻盈的外形,增加了两片箱梁之间的桥下采光效果,也增强了景观效果。
进一步,所述水平横梁6的抗拉强度大于10Mpa,所述水平横梁6的抗压强度大于15Mpa,以便适应轨道交通的强度要求。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,包括架设在桥墩上的左箱梁和右箱梁,所述左箱梁和右箱梁的结构相同,并且所述左箱梁通过一个左支座安装在所述桥墩上,所述右箱梁通过一个右支座安装在所述桥墩上,所述左支座和右支座的结构相同;
    所述左箱梁的右侧和所述右箱梁的左侧通过一根水平横梁固定连接在一起;
    所述水平横梁包括左横梁部、螺旋式间距调整装置和右横梁部,所述左横梁部和右横梁部均由钢管混凝土形成,所述螺旋式间距调整装置位于所述左横梁部和右横梁部之间;
    所述螺旋式间距调整装置包括第一螺杆、螺纹筒和第二螺杆,其中,所述第一螺杆、螺纹筒和第二螺杆均水平设置,所述第一螺杆的左端与所述左横梁部固定连接,所述第二螺杆的右端与所述右横梁部固定连接,所述螺纹筒的左端和右端分别设置有第一内螺纹和第二内螺纹并且所述第一内螺纹和第二内螺纹的旋向相反,所述第一螺杆的右端设置有与第一内螺纹相配合的第一外螺纹并且其右端螺纹连接在所述螺纹筒的左端,所述第二螺杆的左端设置有与第二内螺纹相配合的第二外螺纹并且其左端螺纹连接在所述螺纹筒的右端;
    所述水平横梁设置于所述桥墩的正上方,并且与所述桥墩之间存在间距。
  2. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述左箱梁和所述右箱梁均为中空结构。
  3. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述水平横梁、左箱梁和右箱梁的底端面平齐。
  4. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其 特征在于,所述水平横梁的高度是所述左箱梁高度的2/5~4/5。
  5. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述支座的高度是所述水平横梁高度的1/11~1/9。
  6. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁与所述桥墩之间的间距为0.3m~0.5m。
  7. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述水平横梁中钢管和混凝土的重量比为0.2:1~0.5:1。
  8. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述水平横梁的抗拉强度大于10MPa。
  9. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述水平横梁的抗压强度大于15MPa。
  10. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述水平横梁的厚度是其长度的1/10~1/5。
PCT/CN2016/109777 2015-12-17 2016-12-14 一种磁悬浮抱轨式轨道交通双线轨道梁 WO2017101769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510952235.5A CN105603859B (zh) 2015-12-17 2015-12-17 一种磁悬浮抱轨式轨道交通双线轨道梁
CN201510952235.5 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017101769A1 true WO2017101769A1 (zh) 2017-06-22

Family

ID=55984169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109777 WO2017101769A1 (zh) 2015-12-17 2016-12-14 一种磁悬浮抱轨式轨道交通双线轨道梁

Country Status (2)

Country Link
CN (1) CN105603859B (zh)
WO (1) WO2017101769A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988857A (zh) * 2017-11-28 2018-05-04 中铁第四勘察设计院集团有限公司 一种跨座式单轨半固定连续梁
CN108203901A (zh) * 2018-02-09 2018-06-26 北京交通大学 一种跨座式单轨交通固结式双轨道梁
CN109763432A (zh) * 2019-03-14 2019-05-17 中铁八局集团有限公司 一种跨坐式单轨边跨墩墩缝模板结构及使用方法
CN114134765A (zh) * 2021-11-26 2022-03-04 中铁第四勘察设计院集团有限公司 一种轨道梁支撑体系及安装工法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603859B (zh) * 2015-12-17 2017-05-10 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262513A (ja) * 2000-03-17 2001-09-26 Nippon Steel Corp スラブ付き複合合成鋼管桁材を備えた斜長橋およびその桁材の架設方法
CN101220576A (zh) * 2008-01-31 2008-07-16 重庆钢铁(集团)有限责任公司 弧形钢轨道梁及其制作方法
KR20090001261A (ko) * 2007-06-29 2009-01-08 (주)한맥기술 강봉을 이용한 지점부 연결구조를 가지는 프리스트레스트콘크리트 거더를 이용한 다경간 연속교 및 그 시공방법
EP2218825A2 (de) * 2009-02-13 2010-08-18 SSF Ingenieure GmbH Brücke für Eisenbahnen sowie Längsträger und Verfahren für ihre Herstellung
CN203654157U (zh) * 2013-12-05 2014-06-18 深圳市市政设计研究院有限公司 一种双层杆支撑轨道梁结构
CN104912004A (zh) * 2015-06-25 2015-09-16 中铁第四勘察设计院集团有限公司 一种抱轨式轨道交通桥梁疏散检修平台
CN105603859A (zh) * 2015-12-17 2016-05-25 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660920B (zh) * 2012-06-07 2013-04-03 河北燕峰路桥建设集团有限公司 构架式大跨度组合预应力公路桥梁及其制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262513A (ja) * 2000-03-17 2001-09-26 Nippon Steel Corp スラブ付き複合合成鋼管桁材を備えた斜長橋およびその桁材の架設方法
KR20090001261A (ko) * 2007-06-29 2009-01-08 (주)한맥기술 강봉을 이용한 지점부 연결구조를 가지는 프리스트레스트콘크리트 거더를 이용한 다경간 연속교 및 그 시공방법
CN101220576A (zh) * 2008-01-31 2008-07-16 重庆钢铁(集团)有限责任公司 弧形钢轨道梁及其制作方法
EP2218825A2 (de) * 2009-02-13 2010-08-18 SSF Ingenieure GmbH Brücke für Eisenbahnen sowie Längsträger und Verfahren für ihre Herstellung
CN203654157U (zh) * 2013-12-05 2014-06-18 深圳市市政设计研究院有限公司 一种双层杆支撑轨道梁结构
CN104912004A (zh) * 2015-06-25 2015-09-16 中铁第四勘察设计院集团有限公司 一种抱轨式轨道交通桥梁疏散检修平台
CN105603859A (zh) * 2015-12-17 2016-05-25 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988857A (zh) * 2017-11-28 2018-05-04 中铁第四勘察设计院集团有限公司 一种跨座式单轨半固定连续梁
CN107988857B (zh) * 2017-11-28 2023-08-25 中铁第四勘察设计院集团有限公司 一种跨座式单轨半固定连续梁
CN108203901A (zh) * 2018-02-09 2018-06-26 北京交通大学 一种跨座式单轨交通固结式双轨道梁
CN109763432A (zh) * 2019-03-14 2019-05-17 中铁八局集团有限公司 一种跨坐式单轨边跨墩墩缝模板结构及使用方法
CN114134765A (zh) * 2021-11-26 2022-03-04 中铁第四勘察设计院集团有限公司 一种轨道梁支撑体系及安装工法
CN114134765B (zh) * 2021-11-26 2024-06-07 中铁第四勘察设计院集团有限公司 一种轨道梁支撑体系及安装工法

Also Published As

Publication number Publication date
CN105603859A (zh) 2016-05-25
CN105603859B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017101769A1 (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
WO2017101767A1 (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
WO2017101768A1 (zh) 一种抱轨式轨道交通双线轨道梁
CN202482710U (zh) 一种预制短板浮置道床
CN202482709U (zh) 一种预制式浮置板道床
CN204662235U (zh) 一种钢板组合t梁桥
CN111206489A (zh) 一种装配式波形腹板钢箱-uhpc组合梁桥及施工方法
CN203559341U (zh) 一种铁路纵梁型箱梁的纵横梁体系槽型梁
CN202519540U (zh) 浮置道床板端隔振装置
CN105544371B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276073U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN203755127U (zh) 预应力高性能混凝土连续箱梁桥
CN203393635U (zh) 一种弧线变直线主塔斜拉桥拼装模板
CN205276115U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568789B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN210712526U (zh) 一种跨座式单轨钢管混凝土双线桥墩
CN206956534U (zh) 一种铁路及轨道交通用挂梁式框架墩
CN203334182U (zh) 一种铁路混凝土挡砟墙与钢桥面板的连接结构
CN105568838B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN202577061U (zh) 预制式浮置板
CN205329438U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205329437U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205259010U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105421167B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN210917010U (zh) 带有抛物线拱形塔帽的空间混合索网悬索桥的筒中筒桥塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874826

Country of ref document: EP

Kind code of ref document: A1