WO2017101767A1 - 一种磁悬浮抱轨式轨道交通双线轨道梁 - Google Patents

一种磁悬浮抱轨式轨道交通双线轨道梁 Download PDF

Info

Publication number
WO2017101767A1
WO2017101767A1 PCT/CN2016/109773 CN2016109773W WO2017101767A1 WO 2017101767 A1 WO2017101767 A1 WO 2017101767A1 CN 2016109773 W CN2016109773 W CN 2016109773W WO 2017101767 A1 WO2017101767 A1 WO 2017101767A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
rail transit
box girder
pier
magnetic suspension
Prior art date
Application number
PCT/CN2016/109773
Other languages
English (en)
French (fr)
Inventor
文望青
罗世东
耿杰
林文泉
赵志军
杨光
杜振华
崔阳华
陶志列
韩稼春
樊磊
葛建刚
胡俊
李超俊
李靖
梁会
刘阳明
赵涛
王存国
张宪国
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2017101767A1 publication Critical patent/WO2017101767A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • the invention belongs to the field of track beams, and more particularly to a magnetic suspension bridge type rail transit double track beam.
  • the track-type rail transit mainly includes maglev rail transit and straddle monorail traffic, both of which adopt a unique mode of holding rails.
  • the small-section single-line box girder that meets the vehicle limit is the most economical beam-type scheme for the rail-type rail transit.
  • two box beams of a conventional small cross-section two-track rail are arranged independently of each other, so that the lateral rigidity of the two-track rail is poor; in addition, each box girder is supported by two supports, and the support is arranged on the pier
  • the lateral spacing of the two supports is large, which causes the lateral width of the top cap of the pier to be larger, which increases the size of the top hat of the pier and the structure of the lower part of the pier, and increases the volume of the pier by about 35%, which is greatly increased.
  • the manufacturing cost of the pier is also unsightly.
  • FIG. 2(a) and Fig. 2(b) Chinese Patent Application No. 201410487247.0 discloses a straddle type monorail double box rectangular steel-hybrid combined track beam structure including: two parallel steels parallel to each other - The mixed rail main beam, the two steel-mixed rail main beams are connected by a lower cross beam and a lower flat longitudinal joint; wherein the steel-mixed rail main beam comprises: a steel beam structure and a cross section with a box cross section a rectangular concrete rectangular parallelepiped structure, the concrete rectangular parallelepiped structure is above the steel beam structure, and is connected with the steel beam structure through a shearing nail; the utility model is provided with a beam between the ordinary two-wire steel mixed track beam The lateral stiffness is increased, but the beam used is a truss structure.
  • the beam of the truss structure can increase the lateral stiffness, it is not suitable for the special bridge structure of the maglev track beam, except for its high cost.
  • the steel truss structure is susceptible to thermal expansion and contraction, and has a large impact on the flatness control of the magnetic levitation rail beam, which is not conducive to the smooth running of the maglev train. Heteroaryl truss structure beautiful Poor sex, does not meet the requirements of modern urban transport development.
  • the present invention provides a magnetic suspension orbital rail transit double-track beam with high lateral rigidity and effective cost saving.
  • a magnetic suspension orbit rail type double track beam which comprises a left box beam and a right box beam which are erected on a pier, the left box beam and the right box
  • the beams are identical in structure, and the left box girder is mounted on the pier by a left abutment mounted on the pier by a right abutment, the left and right abutments The same structure;
  • the left side of the left box girder is provided with a left wing plate extending obliquely upward, and the right side of the right box beam is provided with a right wing plate extending obliquely upward, and the left wing plate and the right wing plate are bilaterally symmetrical;
  • the right side of the left box girder and the left side of the right box girder are fixedly connected by a beam.
  • the cross section of the beam is inverted T-shaped, and the steel shell has an inverted T shape in cross section.
  • the beam is disposed directly above the pier and has a spacing from the pier.
  • the left box beam and the right box beam are both hollow structures.
  • the bottom end faces of the beam, the left box beam and the right box beam are flush.
  • the height of the beam is 2/5 to 4/5 of the height of the left box girder.
  • the height of the support is 1/11 to 1/9 of the height of the beam.
  • the distance between the beam and the pier is 0.3 m to 0.5 m.
  • the weight ratio of the steel shell to the concrete in the beam is 0.2:1 to 0.5:1.
  • the beam has a tensile strength greater than 10 MPa.
  • the beam has a compressive strength greater than 15 MPa.
  • the beam includes a vertical portion in which a horizontal portion is disposed on a horizontal portion, and left and right ends of the horizontal portion are fixedly coupled to lower ends of the left and right box beams, respectively, of the vertical portion The left end and the right end are connected to the sides of the left and right box beams, respectively.
  • the present invention does not simply set the beam and reduce the support for simple superposition, but according to the characteristics of the magnetic levitation rail transit, selects an inverted T-shaped beam at the position of the pier to ensure the appearance of the appearance, in the case of temperature changes.
  • the effect on the orbital shape is small.
  • the connection between the two left and right box girders through the beam is greatly improved, and the stiffness of the two left and right single beams is more than three times.
  • the increase of structural rigidity greatly reduces the deformation of the structure under stress, which satisfies the strict requirements of the maglev engineering for structural deformation.
  • the four supports of the corresponding support box beam can be reduced to two supports, and the lateral dimension of the top hat of the bridge can be reduced by 35%, and the overall size of the pier Reduce and save the pile foundation pile length by about 25%. Therefore, by optimizing the support setting scheme, the manufacturing cost of the support can be reduced by 50%, the cost of the pier is reduced by 35%, and the cost of the lower pile foundation is reduced by 25%.
  • FIG. 1 is a schematic structural view of an independent arrangement of two single-line box beams in the prior art
  • FIGS. 2(a) and 2(b) are schematic views showing the use of a truss connection in the prior art
  • Figure 3 is a schematic view of the structure of the present invention.
  • FIG. 4 is a schematic view showing a box girder with a wing plate disposed on a pier in the prior art
  • Figure 5 is a schematic cross-sectional view of a beam of the present invention.
  • a magnetic suspension rail-type rail transit double-track beam comprises a left box beam 2 and a right box beam 3 which are erected on the pier 1, and the structure of the left box beam 2 and the right box beam 3
  • the left box girder 2 is mounted on the pier 1 by a left abutment 4 mounted on the pier 1 by a right abutment 5, the left abutment 4 and The structure of the right support 5 is the same;
  • the left side of the left box beam 2 is provided with a left wing panel 7 projecting obliquely upward, and the right side of the right box beam 3 is provided with a right wing panel 8 projecting obliquely upward, and the left wing panel 7 and the right wing
  • the plate 8 is symmetrical;
  • the right side of the left box girder 2 and the left side of the right box girder 3 are fixedly connected by a cross beam 6. Further, the cross section of the cross beam 6 is inverted T-shaped, and the cross section is inverted T
  • the shape of the steel shell is poured into the concrete; the outer steel shell of the inverted T-shaped beam 6 is formed by a steel plate to form a accommodating chamber, and the chamber is filled with reinforced concrete, and the connection with the box beams on both sides can be connected by a flange and a bolt.
  • the method can also be welded.
  • the two box beams are prefabricated in advance and then fixed by a bridge machine.
  • the horizontal part of the inverted T-shaped structure is fixedly connected with the bottom end of the side of the box girder to ensure the rigidity in the horizontal direction, the vertical part of the inverted T-shaped structure and the side of the box girder
  • the fixed connection ensures the rigidity in the vertical direction, so that the present invention uses less material, occupies a smaller volume, and can obtain higher rigidity in the horizontal direction and the vertical direction. Suitable for magnetic suspension orbital beam environments.
  • the cross member 6 is disposed directly above the pier 1 and has a spacing from the pier 1.
  • the invention does not simply set the beam and reduce the support for simple superposition, but according to the characteristics of the magnetic levitation rail transit, the beam is selected at the position of the pier 1 to ensure the appearance of the shape, and the shape of the track in the case of temperature change Less affected.
  • the connection between the two left and right box girders through the beam is greatly improved, and the stiffness of the two left and right single beams is more than three times.
  • the increase of structural rigidity greatly reduces the deformation of the structure under stress, which satisfies the strict requirements of the maglev engineering for structural deformation.
  • the four supports of the corresponding support box beam can be reduced to two supports, and the lateral dimension of the top hat of the pier 1 can be reduced by 35%, and the overall size of the pier 1 Reduce and save the pile foundation pile length by about 25%. Therefore, by optimizing the support setting scheme, the manufacturing cost of the support can be reduced by 50%, the cost of the pier 1 can be reduced by 35%, and the cost of the lower pile foundation can be reduced by 25%.
  • left box girder 2 and the right box girder 3 are both hollow structures, and the structure of the box girder is reduced from the important one, so that the box girder is more convenient to manufacture and erect, and the overall cost of the box girder is saved.
  • the bottom end faces of the beam 6, the left box beam 2 and the right box beam 3 are flush, and the left box beam 2 and the right box beam 3 are connected together by the beam 6, and the overall rigidity is increased by more than 3 times.
  • the beam is flush with the bottom end of the left and right box beams, and the shape is simple and beautiful, which can reduce the difficulty of making the box beam template and save the production cost.
  • the beam is flush with the bottom end of the left and right box girder, avoiding the sudden change of structural stress caused by the sudden change of the section, avoiding the large concentrated stress of the joint between the box girder and the beam, so that the structural stress is uniform and the force performance is further improved.
  • the height of the beam 6 is 2/5 to 4/5 of the height of the left box girder 2
  • the height of the support is 1/10 of the height of the beam 6, and the beam and the pier 1
  • the spacing between the steel shell and the concrete in the beam 6 is 0.2:1 to 0.5:1, and the structural volume is relatively small compared to the left and right box girder beams, especially the beam thickness. It is thinner and has a lower self-weight, which reduces the dead load on the left and right box girder and reduces the load on the lower pier and pile foundation.
  • the light profile of the beam increases the under-bridge lighting effect between the two box beams and enhances the landscape effect.
  • the horizontal beam 6 has a tensile strength greater than 10 MPa, and the horizontal beam 6 has a compressive strength greater than 15 MPa to accommodate the strength requirements of the rail transit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种磁悬浮抱轨式轨道交通双线轨道梁,包括架设在桥墩(1)上的左箱梁(2)和右箱梁(3),左箱梁(2)和右箱梁(3)的结构相同,左箱梁(2)通过一个左支座(4)安装在桥墩(1)上,右箱梁(3)通过一个右支座(5)安装在桥墩(1)上,左支座(4)和右支座(5)的结构相同;左箱梁(2)的右侧和右箱梁(3)的左侧通过一根横梁(6)固定连接在一起,横梁(6)的横截面呈倒T形;横梁(6)设置于桥墩(1)的正上方,并且与桥墩(1)之间存在间距。左、右两个箱梁通过横梁的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上,结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁悬浮工程对于结构形变的严格要求。

Description

一种磁悬浮抱轨式轨道交通双线轨道梁 [技术领域]
本发明属于轨道梁领域,更具体地,涉及一种磁悬浮抱轨式轨道交通双线轨道梁。
[背景技术]
抱轨式轨道交通主要包括磁浮轨道交通和跨座式单轨交通,二者均采用独特的抱轨运行方式,满足车辆限界的小截面单线箱梁是抱轨式轨道交通最经济的梁型方案。
参照图1,传统小截面的两线轨道的两个箱梁相互独立进行设置,使得两线轨道的横向刚度较差;另外每个箱梁分别依靠两个支座进行支撑,支座设置于桥墩上,这两个支座的横向间距大,造成桥墩顶帽的横向宽度也较大,这样就提高了桥墩顶帽以及墩底下部结构的尺寸,增加了桥墩体积约为35%,极大增加了桥墩的制造成本,而且也使得桥墩也不美观。
参照图2(a)、图2(b),中国专利申请号为201410487247.0的中国专利公开了一种跨座式单轨双箱矩形钢-混结合轨道梁结构,包括:相互平行的两线钢-混轨道主梁,两个钢-混轨道主梁之间通过下部的横梁、下平纵联相连接;其中,所述钢-混轨道主梁包括:横断面为箱型的钢梁结构和横断面为矩形的混凝土长方体结构,所述混凝土长方体结构处于所述钢梁结构的上方,且与所述钢梁结构通过剪力钉连接;其是在普通两线钢混结合轨道梁之间设置横梁以增加横向刚度,但是其采用的横梁为桁架结构,这种桁架结构的横梁虽然能够增加横向刚度,但是其不适合应用在磁浮轨道梁这种特殊的桥梁结构上上,除了其成本较高的因素以外,钢桁架结构容易受热胀冷缩的影响,对磁悬浮轨道梁的平整度控制存在较大的影响,这样就不利于磁悬浮列车的平稳行驶,同时,复杂的桁架结构美观 性较差,不符合现代城市交通发展的要求。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种磁悬浮抱轨式轨道交通双线轨道梁,其横向刚度高,而且能有效节约制造成本。
为实现上述目的,按照本发明,提供了一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,包括架设在桥墩上的左箱梁和右箱梁,所述左箱梁和右箱梁的结构相同,并且所述左箱梁通过一个左支座安装在所述桥墩上,所述右箱梁通过一个右支座安装在所述桥墩上,所述左支座和右支座的结构相同;
所述左箱梁的左侧设有向斜上方伸出的左翼板,所述右箱梁的右侧设有向斜上方伸出的右翼板,并且所述左翼板和右翼板左右对称;
所述左箱梁的右侧和所述右箱梁的左侧通过一根横梁固定连接在一起,此外,所述横梁的横截面呈倒T形,其由横截面呈倒T形的钢壳内灌入混凝土形成;
所述横梁设置于所述桥墩的正上方,并且与所述桥墩之间存在间距。
优选地,所述左箱梁和所述右箱梁均为中空结构。
优选地,所述横梁、左箱梁和右箱梁的底端面平齐。
优选地,所述横梁的高度是所述左箱梁高度的2/5~4/5。
优选地,所述支座的高度是所述横梁高度的1/11~1/9。
优选地,所述横梁与所述桥墩之间的间距为0.3m~0.5m。
优选地,所述横梁中钢壳和混凝土的重量比为0.2:1~0.5:1。
优选地,所述横梁的抗拉强度大于10MPa。
优选地,所述横梁的抗压强度大于15MPa。
优选地,所述横梁包括水平部分设置在水平部分上的竖直部分,所述水平部分的左端和右端分别与所述左箱梁和右箱梁的下端固定连接,所述竖直部分的的左端和右端分别与所述左箱梁和右箱梁的侧面连接。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)本发明并非简单地设置横梁与减少支座进行简单的叠加,而是根据磁悬浮轨道交通的特点,选择在桥墩位置处设置倒T形的横梁,保证了外形的美观,在温度变化的情况下对轨道形态的影响较小。左、右两个箱梁通过横梁的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上。
结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁浮工程对于结构形变的严格要求。
2)本发明由于在箱梁上与支座对应的位置设置了横梁,相应的支撑箱梁的四个支座可减少为两个支座,桥墩顶帽横向尺寸可减少35%,桥墩整体尺寸减少同时节省下部桩基础桩长约25%。因此,通过优化支座设置方案,可以使支座的制造成本减少50%,减少了桥墩成本35%,减少了下部桩基础成本25%。
[附图说明]
图1是现有技术中两单线箱梁独立设置的结构示意图;
图2(a)和图2(b)是现有技术中使用桁架连接的示意图;
图3是本发明的结构示意图;
图4是现有技术中带翼板的箱梁设置在桥墩上的示意图;
图5是本发明中横梁的横截面示意图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图4、图5,一种磁悬浮抱轨式轨道交通双线轨道梁,包括架设在桥墩1上的左箱梁2和右箱梁3,所述左箱梁2和右箱梁3的结构相同,并且所述左箱梁2通过一个左支座4安装在所述桥墩1上,所述右箱梁3通过一个右支座5安装在所述桥墩1上,所述左支座4和右支座5的结构相同;
所述左箱梁2的左侧设有向斜上方伸出的左翼板7,所述右箱梁3的右侧设有向斜上方伸出的右翼板8,并且所述左翼板7和右翼板8左右对称;
所述左箱梁2的右侧和所述右箱梁3的左侧通过一根横梁6固定连接在一起,此外,所述横梁6的横截面呈倒T形,其由横截面呈倒T形的钢壳内灌入混凝土形成;倒T字形的横梁6外周的钢壳采用钢板形成容纳腔室,腔室内填充钢筋混凝土,其与两侧箱梁的连接方式可以采用法兰和螺栓的连接方式,也可以采用焊接的方式。在磁悬浮轨道梁建造过程中,两条箱梁事先预制,然后通过架桥机安装固定。由于两条平行设置的箱型梁之间空间十分有限,倒T字形结构的水平部分与箱梁侧面底端固定连接,保证水平方向上的刚度,倒T字形结构的竖直部分与箱梁侧面固定连接,保证垂直方向上的刚度,这样使得本发明采用了较少的材料,占用了较小的体积,能够获得水平方向和垂直方向上较高地刚度。适合应用于磁悬浮轨道梁环境。
所述横梁6设置于所述桥墩1的正上方,并且与所述桥墩1之间存在间距。
本发明并非简单地设置横梁与减少支座进行简单的叠加,而是根据磁悬浮轨道交通的特点,选择在桥墩1位置处设置横梁,保证了外形的美观,在温度变化的情况下对轨道形态的影响较小。左、右两个箱梁通过横梁的连接,其整体刚度得到了极大提高,为单独设置左右两片单梁时刚度的3倍以上。结构刚度的提升,相应的大大减小了结构受力时形变,满足了磁浮工程对于结构形变的严格要求。
本发明由于在箱梁上与支座对应的位置设置了横梁,相应的支撑箱梁的四个支座可减少为两个支座,桥墩1顶帽横向尺寸可减少35%,桥墩1整体尺寸减少同时节省下部桩基础桩长约25%。因此,通过优化支座设置方案,可以使支座的制造成本减少50%,减少了桥墩1成本35%,减少了下部桩基础成本25%。
进一步,所述左箱梁2和所述右箱梁3均为中空结构,箱梁的结构自重大为减少,使箱梁制作、架设都更为方便,箱梁整体成本节省较多。
进一步,所述横梁6、左箱梁2和右箱梁3的底端面平齐,左箱梁2和右箱梁3通过横梁6连接在一起,整体刚度提高3倍以上。横梁与左右箱梁底端平齐,其造型简洁美观,可减少箱梁模板的制作难度,节省制作成本。同时,横梁与左右箱梁底端平齐,避免截面突变带来的结构应力突变,避免了箱梁与横梁连接部位出现较大的集中应力,使结构受力均匀,受力性能得到进一步提高。
进一步,所述横梁6的高度是所述左箱梁2高度的2/5~4/5,所述支座的高度是所述横梁6高度的1/10,所述横梁与所述桥墩1之间的间距为0.3m~0.5m,所述横梁6中钢壳和混凝土的重量比为0.2:1~0.5:1,其结构体积较为相对于左右两片箱梁很小,尤其是横梁厚度较薄,自重较小,相应的减少了左右箱梁承受的恒载,同时也降低了下部桥墩、桩基础承受的荷载。此外横梁轻盈的外形,增加了两片箱梁之间的桥下采光效果,也增强了景观效果。
进一步,所述水平横梁6的抗拉强度大于10Mpa,所述水平横梁6的抗压强度大于15Mpa,以便适应轨道交通的强度要求。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,包括架设在桥墩上的左箱梁和右箱梁,所述左箱梁和右箱梁的结构相同,并且所述左箱梁通过一个左支座安装在所述桥墩上,所述右箱梁通过一个右支座安装在所述桥墩上,所述左支座和右支座的结构相同;
    所述左箱梁的左侧设有向斜上方伸出的左翼板,所述右箱梁的右侧设有向斜上方伸出的右翼板,并且所述左翼板和右翼板左右对称;
    所述左箱梁的右侧和所述右箱梁的左侧通过一根横梁固定连接在一起,此外,所述横梁的横截面呈倒T形,其由横截面呈倒T形的钢壳内灌入混凝土形成;
    所述横梁设置于所述桥墩的正上方,并且与所述桥墩之间存在间距。
  2. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述左箱梁和所述右箱梁均为中空结构。
  3. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁、左箱梁和右箱梁的底端面平齐。
  4. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁的高度是所述左箱梁高度的2/5~4/5。
  5. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述支座的高度是所述横梁高度的1/11~1/9。
  6. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁与所述桥墩之间的间距为0.3m~0.5m。
  7. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁中钢壳和混凝土的重量比为0.2:1~0.5:1。
  8. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁的抗拉强度大于10MPa。
  9. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁的抗压强度大于15MPa。
  10. 根据权利要求1所述的一种磁悬浮抱轨式轨道交通双线轨道梁,其特征在于,所述横梁包括水平部分设置在水平部分上的竖直部分,所述水平部分的左端和右端分别与所述左箱梁和右箱梁的下端固定连接,所述竖直部分的的左端和右端分别与所述左箱梁和右箱梁的侧面连接。
PCT/CN2016/109773 2015-12-17 2016-12-14 一种磁悬浮抱轨式轨道交通双线轨道梁 WO2017101767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015109521437 2015-12-17
CN201510952143.7A CN105544372B (zh) 2015-12-17 2015-12-17 一种磁悬浮抱轨式轨道交通双线轨道梁

Publications (1)

Publication Number Publication Date
WO2017101767A1 true WO2017101767A1 (zh) 2017-06-22

Family

ID=55823904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109773 WO2017101767A1 (zh) 2015-12-17 2016-12-14 一种磁悬浮抱轨式轨道交通双线轨道梁

Country Status (2)

Country Link
CN (1) CN105544372B (zh)
WO (1) WO2017101767A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203901A (zh) * 2018-02-09 2018-06-26 北京交通大学 一种跨座式单轨交通固结式双轨道梁
CN109112975A (zh) * 2018-10-31 2019-01-01 中冶建工集团有限公司 一种鱼腹式钢箱梁组装辅助装置及鱼腹式钢箱梁组装方法
CN111473983A (zh) * 2020-04-09 2020-07-31 中铁十四局集团第一工程发展有限公司 装配式预制梁台座底模
CN109112975B (zh) * 2018-10-31 2024-06-04 中冶建工集团有限公司 一种鱼腹式钢箱梁组装辅助装置及鱼腹式钢箱梁组装方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105544372B (zh) * 2015-12-17 2017-08-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568788B (zh) * 2015-12-17 2017-09-29 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN114108398B (zh) * 2020-08-27 2023-01-06 比亚迪股份有限公司 轨道梁的制造方法、轨道桥梁以及轨道桥梁的制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051416A (ja) * 2005-08-12 2007-03-01 Gijutsu Kaihatsu Kenkyusho:Kk 足場装置
CN104594173A (zh) * 2014-11-28 2015-05-06 中铁第四勘察设计院集团有限公司 一种抱轨式磁浮轨道交通箱梁
CN204875390U (zh) * 2015-08-10 2015-12-16 中铁二十三局集团轨道交通工程有限公司 预制钢筋混凝土中低速磁悬浮梁
CN105544372A (zh) * 2015-12-17 2016-05-04 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105544371A (zh) * 2015-12-17 2016-05-04 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568789A (zh) * 2015-12-17 2016-05-11 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568788A (zh) * 2015-12-17 2016-05-11 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276115U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276073U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276076U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205329437U (zh) * 2015-12-17 2016-06-22 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220576B (zh) * 2008-01-31 2011-06-15 重庆钢铁(集团)有限责任公司 弧形钢轨道梁及其制作方法
CN201400850Y (zh) * 2009-04-15 2010-02-10 中铁二院工程集团有限责任公司 跨座式单轨交通系统大跨度钢轨道梁
CN203654157U (zh) * 2013-12-05 2014-06-18 深圳市市政设计研究院有限公司 一种双层杆支撑轨道梁结构
CN104912004B (zh) * 2015-06-25 2017-03-22 中铁第四勘察设计院集团有限公司 一种抱轨式轨道交通桥梁疏散检修平台

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051416A (ja) * 2005-08-12 2007-03-01 Gijutsu Kaihatsu Kenkyusho:Kk 足場装置
CN104594173A (zh) * 2014-11-28 2015-05-06 中铁第四勘察设计院集团有限公司 一种抱轨式磁浮轨道交通箱梁
CN204875390U (zh) * 2015-08-10 2015-12-16 中铁二十三局集团轨道交通工程有限公司 预制钢筋混凝土中低速磁悬浮梁
CN105544372A (zh) * 2015-12-17 2016-05-04 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105544371A (zh) * 2015-12-17 2016-05-04 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568789A (zh) * 2015-12-17 2016-05-11 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568788A (zh) * 2015-12-17 2016-05-11 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276115U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276073U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276076U (zh) * 2015-12-17 2016-06-01 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205329437U (zh) * 2015-12-17 2016-06-22 中铁第四勘察设计院集团有限公司 一种磁悬浮抱轨式轨道交通双线轨道梁

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203901A (zh) * 2018-02-09 2018-06-26 北京交通大学 一种跨座式单轨交通固结式双轨道梁
CN109112975A (zh) * 2018-10-31 2019-01-01 中冶建工集团有限公司 一种鱼腹式钢箱梁组装辅助装置及鱼腹式钢箱梁组装方法
CN109112975B (zh) * 2018-10-31 2024-06-04 中冶建工集团有限公司 一种鱼腹式钢箱梁组装辅助装置及鱼腹式钢箱梁组装方法
CN111473983A (zh) * 2020-04-09 2020-07-31 中铁十四局集团第一工程发展有限公司 装配式预制梁台座底模

Also Published As

Publication number Publication date
CN105544372A (zh) 2016-05-04
CN105544372B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2017101767A1 (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
WO2017101768A1 (zh) 一种抱轨式轨道交通双线轨道梁
CN202482710U (zh) 一种预制短板浮置道床
CN201581344U (zh) 双线铁路钢桁斜拉桥
CN204662235U (zh) 一种钢板组合t梁桥
CN103556566B (zh) 大跨度铁路斜拉桥主梁结构
WO2017101769A1 (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN203639802U (zh) 大跨度铁路斜拉桥主梁结构
CN103590315A (zh) 公铁同层大悬臂钢箱梁
CN203603020U (zh) 公铁同层大悬臂钢箱梁
CN205276073U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105544371B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205276115U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN109930469B (zh) 一种适用于跨座式单轨的钢箱梁薄壁墩刚构斜拉桥
CN109930437B (zh) 一种跨座式单轨区间道岔梁接车站的过渡系统
CN105568838B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN205329437U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN207793846U (zh) 一种高架铁路站台梁
CN205276076U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105568789B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN203613460U (zh) 一种铁路钢桁梁rpc道砟槽板
CN205329436U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN105421167B (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁
CN209941469U (zh) 一种适用于跨座式单轨的钢箱梁薄壁墩刚构斜拉桥
CN205276075U (zh) 一种磁悬浮抱轨式轨道交通双线轨道梁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874824

Country of ref document: EP

Kind code of ref document: A1