WO2017101682A1 - 保护元件 - Google Patents

保护元件 Download PDF

Info

Publication number
WO2017101682A1
WO2017101682A1 PCT/CN2016/108286 CN2016108286W WO2017101682A1 WO 2017101682 A1 WO2017101682 A1 WO 2017101682A1 CN 2016108286 W CN2016108286 W CN 2016108286W WO 2017101682 A1 WO2017101682 A1 WO 2017101682A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
reservoir
fuse
protective
heat generating
Prior art date
Application number
PCT/CN2016/108286
Other languages
English (en)
French (fr)
Inventor
刘子岳
徐芸湘
郑雷
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017101682A1 publication Critical patent/WO2017101682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • H01H85/0043Boiling of a material associated with the fusible element, e.g. surrounding fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material

Definitions

  • the present disclosure relates to the field of circuit protection technologies, and in particular, to a protection element.
  • the circuit protection component in the related art mainly adopts an alloy fuse element composed of one or several metals such as silver, copper, tin, lead, etc., and locally designs a region of resistance density concentration in the fuse element, and the component is generally connected in series to the protected circuit.
  • an overload current in the protection range occurs in the circuit, the overload current flows through the fuse element, and the region where the resistance density is concentrated will heat up under the action of the electric heating power.
  • the fuse element acts on the surface tension or the arc. Disconnect yourself to achieve overcurrent protection of the circuit.
  • the protection element since the passing current of the fixed-shaped fuse element is substantially exponential with the fusing time, the protection element generally reaches the fusing current corresponding to the second-stage fusing time, which is usually 5-10 times or more of the normal current resistance value.
  • the current resistance requirement of the normal operation of the circuit can be satisfied, but the fuse time at the specified current is often too long, and it is difficult to achieve effective protection of the circuit;
  • Conventional protection components that are rapidly blown at a specified current the temperature rise of the protection component is high under the current condition of the normal operation of the circuit, and there is a risk of accidental cutting or even melting and fire of surrounding plastic parts.
  • the present disclosure is intended to address at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a protective element that can reduce the fusing time at low to medium rated currents.
  • a protective element includes a fuse assembly including: an insulating substrate having a through hole formed therethrough; a heat generating component disposed on one side of the insulating substrate; conductive An element, the conductive element is disposed on the other side of the insulating substrate, and a conductive cavity is defined between the conductive element and the through hole on the insulating substrate, and the conductive element includes a fuse portion opposite to the fuse chamber; and a reservoir, the reservoir being located within the fuse chamber, wherein the protection element is configured to when the heat generating element is heated to a temperature that triggers a chemical reaction of the reservoir The reservoir chemically reacts and releases heat and gas to impinge the melting on the conductive element Broken part.
  • the protective element of the present disclosure by using the heat generated by the chemical reaction of the reservoir and the gas to impinge on the fuse portion on the conductive member, the fuse time of the fuse portion at a medium low rated current can be reduced, so that the protection element has a higher At the same time of the current resistance level, it can also be quickly blown at a medium and low rated current to achieve effective protection of the circuit.
  • the reservoir is applied to a side surface of the heat generating component adjacent to the conductive component.
  • the heat generating component is in parallel with the conductive component.
  • a cross-sectional area of the first end of the through hole connected to the conductive element is smaller than a cross-sectional area of the second end of the through hole connected to the heat generating element.
  • the cross-sectional area of the through hole gradually decreases in a direction from the heat generating element to the conductive element.
  • the conductive element includes a fuse or a plurality of fuses spaced apart in a direction of current flow of the conductive element, each of the fuses being included perpendicular to the The current of the conductive elements is spaced apart by a plurality of perforations arranged in a direction.
  • the conductive element is a conductive plate having a thickness of 1 mm or less.
  • the protection element further includes: two first terminals, the two first terminals being connected to the conductive element for connecting the conductive element to an external circuit; And a second terminal, the two second terminals are connected to the heating element and respectively connected to the two first terminals, so that the heating element is connected in parallel with the conductive element.
  • each of the first terminals includes a first segment and a second segment, the first segment being coupled to the conductive element, and one end of the second segment The first segment is connected to one end and the other end extends away from the first segment.
  • the reservoir comprises: a nitrate comprising at least one of ammonium nitrate and potassium nitrate; a reducing agent comprising at least one of activated carbon and charcoal powder And a composite liquid organic material comprising a solvent and a binder.
  • the storage agent comprises 100 parts by mass of ammonium nitrate, and the storage further includes 4 to 12 parts by mass of activated carbon and 4 to 5 parts by mass of a composite liquid organic substance based on 100 parts by mass of ammonium nitrate.
  • the composite liquid organic material comprises 81 wt% to 86 wt% binder and 14 wt% to 19 wt% solvent based on the total mass of the composite liquid organics.
  • the solvent comprises at least one of n-pentanol, isoamyl alcohol, and isoprene glycol.
  • the binder comprises at least one of paraffin wax, hydrogenated rosin, and disproportionated rosin.
  • the reservoir is a mixed paste mixture
  • the reservoir is applied to the heating element and placed in a vacuum environment, the portion of the reservoir therein
  • the solvent is volatilized and adhered to the heating element on.
  • the protection element further includes: an insulation protector disposed outside the fuse assembly to protect the fuse assembly.
  • the insulating protection member is an insulating protective layer, and the insulating protective layer is coated on an outer surface of the fuse assembly.
  • the insulating protective layer is a room temperature curing epoxy layer.
  • FIG. 1 is a schematic illustration of a protective element in accordance with an embodiment of the present disclosure
  • Figure 2 is a schematic view of the conductive member shown in Figure 1;
  • Figure 3 is a schematic view of an angle of the conductive member and the insulating substrate shown in Figure 1;
  • Figure 4 is a schematic view showing another angle of the conductive member and the insulating substrate shown in Figure 3;
  • Figure 5 is a schematic view of the conductive member, the insulating substrate and the first terminal shown in Figure 4;
  • Figure 6 is a schematic view of the heat generating component, the reservoir and the second terminal shown in Figure 1;
  • Figure 7 is a schematic view of the fuse assembly, the first lead end and the second lead end shown in Figure 1;
  • FIG. 8 is a schematic diagram showing a relationship between a load current multiplier and a fusing time curve of a protective element and a protective element of Comparative Example 1 according to an embodiment of the present disclosure.
  • a protective element 100 in accordance with an embodiment of the present disclosure is described below with reference to FIGS.
  • a protection element 100 includes a fuse assembly including: insulation Substrate 1, conductive element 2, heat generating element 3, and reservoir 4.
  • a through hole 11 is formed in the insulating substrate 1 , and the heat generating component 3 is disposed on one side of the insulating substrate 1 (for example, the upper side of the insulating substrate 1 shown in FIG. 1 ), and the conductive member 2 is disposed on the insulating substrate 1
  • the other side for example, the lower side of the insulating substrate 1 shown in FIG. 1
  • the conductive member 2 and the heat generating element 3 and the through hole 11 on the insulating substrate 1 define a fuse cavity 5, and the conductive member 2 includes and is blown
  • the opposite portion of the cavity 5 is located in the fuse portion 2, and the reservoir 4 is located in the fuse chamber 5.
  • the protection element 100 is configured such that when the heating element 3 is heated to a temperature that triggers a chemical reaction of the reservoir 4, the reservoir 4 chemically reacts and releases the gas to impact. a fuse on the conductive element 2.
  • the conductive element 2 is disposed on the lower side of the insulating substrate 1, and the heat generating element 3 is disposed on the upper side of the insulating substrate 1.
  • the insulating substrate 1 is formed with a through hole 11 penetrating in the up and down direction, and the reservoir 4 is blown. In the cavity 5, the fuse portion 21 on the conductive member 2 is opposed to the fuse chamber 5.
  • the current flowing through the protection element 100 in the circuit is low.
  • the current usually does not exceed 1-1.5In (rated current), because the internal resistance of the conductive element 2 is much lower than the internal resistance of the heating element 3. Thereby, it can be ensured that the conductive element 2 has a lower temperature rise level, and the current resistance level of the protection element 100 is improved.
  • the current flowing through the heating element 3 causes the heating element 3 to rapidly rise to the starting temperature of the chemical reaction of the reservoir 4, triggering the storage agent 4 to perform an exothermic reaction. , a large amount of heat is released and a gas is generated, and heat and gas are quickly discharged along the through hole 11 to the opening of the lower end of the through hole 11, and impact the fuse portion 21 on the conductive member 2, and the heat of the fuse portion 21 and the impact of the gas Under the dual action, it quickly melts and realizes the action of cutting off the circuit.
  • a low-current rated current for example, 2-5In or more
  • the fusing time of the fuse portion 21 is mainly raised by the heating element 3 to the time t1 at which the reagent 4 triggers the reaction temperature.
  • the reservoir 4 is composed of a time t2 at which the chemical reaction releases heat and gas, and a time t3 at which the conductive member 2 is blown under the double action of heat and gas impact. The sum of the three is far less than the time required for the conductive element 2 to self-heat to the metal melting point of the conductive element 2 and to be blown, thereby effectively shortening the breaking time of the protective element 100 at a medium and low rated current.
  • a signal may be sent through the corresponding monitoring component to give a heating current to the heating element 3, so that the heating element 3 is heated to trigger the reaction of the reservoir 4, and the completion is completed.
  • the action of the circuit is cut off to achieve protection of multiple modes of the circuit.
  • the fuse portion 21 on the conductive member 2 is blown by the heat generated by the chemical reaction of the reservoir 4 and the gas, whereby the fuse time of the fuse portion 21 at a medium low rated current can be reduced.
  • the protection element 100 can be quickly blown at a medium and low rated current while achieving a high current resistance level, thereby achieving effective protection of the circuit.
  • the reservoir 4 may be attached to a side surface of the heat generating component 3 adjacent to the conductive component 2, thereby facilitating the heat generated by the chemical reaction of the reservoir 4. And gas directly impact the conductive element 2
  • the upper fuse portion 21 makes the structure of the protection element 100 more compact and reasonable.
  • the conductive member 2 is located below the heat generating component 3, and the reservoir 4 is attached to the lower end surface of the heat generating component 3, so that the heat generated by the chemical reaction of the reservoir 4 and the gas directly impact and blow the fuse. Department 21.
  • the heat generating component 3 may be connected in parallel with the conductive component 2, whereby the structure of the protective component 100 may be simplified, making the structure of the protective component 100 more reasonable.
  • the cross-sectional area of the first end of the through hole 11 connected to the conductive member 2 may be smaller than the through hole 11 and the heat generation.
  • the cross-sectional area of the second end to which the element 3 is connected such as the upper end of the through hole 11 shown in Fig. 1.
  • the cross-sectional area of the through hole 11 is gradually decreased.
  • the heat and gas generated by the chemical reaction of the reservoir 4, in the downward impact process as the cross-sectional area of the through hole 11 is gradually reduced, the impact force of the gas can be increased, and the fuse on the conductive element 2 is accelerated.
  • the fuse portion 21 is provided along the direction from the heat generating component 3 to the conductive member 2 (for example, from the top to the bottom in FIG. 1)
  • the longitudinal section of the through hole 11 is trapezoidal, and the width of the upper base of the trapezoid is larger than the width of the lower base, and the reservoir 4 is provided at one end of the upper bottom of the through hole 11, when storing
  • the agent 4 reacts, the gas and the heat are impacted downward, and as the opening of the through hole 11 becomes smaller, the impact of the gas and heat on the fuse portion 21 can be increased.
  • the insulating substrate 1 may be an alumina ceramic substrate, which has better conductivity and mechanical properties, thereby ensuring that the conductive element 2 is connected in parallel with the heat generating element 3 and is common to the through hole 11
  • the overall performance of the protective element 100 can be improved on the premise that the fuse cavity 5 is defined.
  • the insulating substrate 1 may be a sheet-like 99% alumina ceramic substrate.
  • the conductive member 2 may be adhered to the insulating substrate 1 by a hot press sintering process, whereby the connection strength between the conductive member 2 and the insulating substrate 1 can be ensured, and the conductive member 2 and the insulating substrate 1 are improved. The reliability of the connection between.
  • the conductor element includes a fuse portion 21 or a plurality of fuse portions 21 spaced apart in a current passing direction of the conductive element 2 (for example, the left-right direction shown in FIG. 2), each of which is blown
  • the portions 21 each include a plurality of perforations 22 spaced apart in a direction of current flow perpendicular to the conductive member 2, whereby the fuse portion can be shortened when the heat released by the chemical reaction and the gas impinge on the fuse portion 21 21 fuse time.
  • the fuse portion 21 may be an odd number and an odd number of fuse portions 21 are evenly spaced apart in the current passing direction of the conductive member 2 (for example, the left-right direction shown in FIG. 2), thereby ensuring the conductive member 2 There is a fuse portion 21 in the middle position along the current direction, and at the same time, the current distribution on the conductive member 2 can be made more uniform, and the structure of the conductive member 2 is more reasonable.
  • the fuse portion 21 at the intermediate position of the conductive member 2 is opposite to the through hole 11 so that The structure of the protection element 100 is more reasonable.
  • the conductive element 2 is formed with an odd number of fuses 21, each of which includes a plurality of perforations 22, wherein along the conductive elements
  • the fuse portion 21 at the intermediate position of the current direction of 2 is opposed to the narrow end of the through hole 11, whereby the fuse time of the conductive member 2 can be shortened, and the structure of the protection element 100 can be made more rational.
  • the conductive members 2 can satisfy the requirements of different rated current values.
  • the conductive member 2 may be a conductive plate having a thickness of 1 mm or less, thereby facilitating rapid melting of the conductive member 2 when the circuit current is overloaded, thereby protecting the circuit.
  • the conductive element 2 may be a conductive plate of pure copper material.
  • the conductive member 2 can be formed by etching or punching using a pure copper strip having a thickness of 1 mm or less, thereby facilitating the processing of the conductive member 2.
  • the protection element 100 may further include: two first terminals 6 and two second terminals 7, wherein the two first terminals 6 may be electrically conductive
  • the element 2 is connected for connecting the conductive element 2 to the external circuit
  • the two second terminals 7 can be connected to the heating element 3 and respectively connected to the two first terminals 6, so that the heating element 3 is connected in parallel with the conductive element 2.
  • the protection component 100 can be connected to the external circuit through the two first terminals 6 to protect the external circuit.
  • the heating element 3 can be connected in parallel with the conductive component 2 through the two second terminals 7 and is electrically conductive when the circuit current is overloaded. Element 2 provides the blowing energy.
  • each of the first terminals 6 is made of pure copper nickel-plated material. Since the pure copper nickel plating material has good chemical stability and high hardness, the overall performance of the protection component 100 can be improved, and the protection component 100 can be extended. The service life.
  • both of the first terminals 6 can be soldered to both ends in the longitudinal direction of the conductive member 2 by a soldering process, whereby the reliability of the connection between the first terminal 6 and the conductive member 2 can be improved.
  • the structure of the protection element 100 is made more reasonable.
  • the two first terminals 6 are soldered to both ends of the conductive member 2 in the longitudinal direction by brazing.
  • each of the first terminals 6 may include a first segment 61 and a second segment 62, the first segment 61 being connected to the conductive element 2, and the second segment 62 being One end is connected to one end of the first segment portion 61, and the other end extends in a direction away from the first segment portion 61.
  • first segment 61 being connected to the conductive element 2
  • second segment 62 being One end is connected to one end of the first segment portion 61, and the other end extends in a direction away from the first segment portion 61.
  • the first terminal 6 includes a first segment 61 and a second segment 62, the first segment 61 being disposed on the conductive member 2 and soldered to the conductive member 2,
  • the second section 62 is perpendicular to the first section 61, and the junction of the first section 61 and the second section 62 is smoothly transitioned, that is, the first section 61 and the second section 62 are bent to form L type.
  • the other end of the second segment 62 can be directly soldered to the pad preset on the circuit board, thereby eliminating the need to provide a special connector for the protection component 100, thereby facilitating integration of the protection component 100 with the circuit board, thereby Save installation space and simplify the installation process.
  • the first lead end 6 is annealed before brazing, thereby facilitating the first lead end The bending of 6 can also ensure that the first lead end 6 is in close contact with the pad when soldering.
  • each of the second terminals 7 may be soldered to the corresponding first segment portion 61 by a spot welding process, thereby ensuring parallel connection of the heat generating component 3 and the conductive component 2
  • the reliability of the connection between the second terminal 7 and the first terminal 6 can be improved, thereby improving the reliability of the protection element 100.
  • each of the second outlet ends 7 is provided on the corresponding first segment portion 61, and is joined to the corresponding first segment portion 61 by welding.
  • the reservoir 4 can include nitrates, reducing agents, and complex liquid organics.
  • the reducing agent plays a reducing role in the chemical reaction of the storage agent, that is, the nitrate and the reducing agent can undergo a redox reaction when the temperature is raised to a certain temperature, and generate a large amount of heat and gas, thereby accelerating the melting.
  • the fuse portion 21 on the conductive member 2 achieves the effect of protecting the circuit.
  • the composite liquid organic material can facilitate the formation of the reservoir 4, increase the adhesion strength of the reservoir 4, and the chemical reaction rate of the reservoir 4.
  • the nitrate may include at least one of ammonium nitrate and potassium nitrate, that is, the nitrate may be ammonium nitrate or potassium nitrate, or may be a mixture of ammonium nitrate and potassium nitrate.
  • the reducing agent may include at least one of activated carbon and charcoal powder, that is, the reducing agent may be activated carbon, may be charcoal powder, or may be a mixture of activated carbon and charcoal powder.
  • the composite liquid organic substance may include a solvent and a binder.
  • the solvent and the binder not only facilitate the formation of the reservoir 4, but also ensure that the reservoir 4 adheres to the heating element 3, and also adjust the chemical reaction speed of the reservoir 4, thereby shortening the conductivity.
  • the storage agent 4 may include 100 parts by mass of ammonium nitrate, and the storage agent 4 may further include 4 to 12 parts by mass of activated carbon and 4 to 5 parts by mass of composite liquid organic matter based on 100 parts by mass of ammonium nitrate, whereby The heat and gas released during the chemical reaction of the storage agent 4 are increased, and the fusing time of the fuse portion 21 on the conductive member 2 is further shortened, thereby realizing rapid protection of the circuit.
  • the composite liquid organic matter may include 81 wt% to 86 wt% of the binder and 14 wt% to 19 wt% of the solvent based on the total mass of the composite liquid organic matter, thereby not only improving the forming effect of the reservoir 4
  • the chemical reaction speed of the reservoir 4 can be further accelerated, and the melting time of the fuse portion 21 can be shortened.
  • “14 wt% to 19 wt% of the solvent” means a part. The ratio of the solvent remaining in the solvent 4 after the solvent has evaporated.
  • the binder may be at least one of paraffin, hydrogenated rosin and disproportionated rosin, that is, the binder may be only one of paraffin, hydrogenated rosin and disproportionated rosin, and the binder may also be composed of Two or three kinds of substances are composed, whereby a suitable binder can be selected as needed, the adhesion strength of the reservoir 4 is improved, and the applicability of the reservoir 4 is improved.
  • the solvent may be at least one of n-pentanol, isoamyl alcohol and isoprene glycol, that is, the solvent may be only one of n-pentanol, isoamyl alcohol and isoprene glycol, and the solvent is also It may be composed of two or three of them, whereby a suitable solvent may be selected as needed to improve the applicability of the reservoir 4.
  • the reservoir 4 is a mixed paste mixture
  • the reservoir 4 is coated on the heat generating component 3 and placed in a vacuum environment, and the solvent 4 is adhered to a part of the solvent after volatilization.
  • the reliability of the connection between the reservoir 4 and the heating element 3 can be improved, and at the same time, direct contact between the heating element 3 and the reservoir 4 is facilitated to transfer heat, and the temperature of the reservoir 4 is shortened to a chemical reaction temperature. time.
  • the initial proportion of the solvent in the reservoir 4 should be greater than the final ratio (as in the above).
  • the 14% by weight to 19% by weight of the solvent is used to ensure that the proportion of the solvent and the composite liquid organic substance in the solvent 4 is satisfactory.
  • the present disclosure is not limited thereto, and the reservoir 4 may be adhered to the heat generating component 3 by other means as long as the reservoir 4 can be adhered to the heat generating component 3 and a firm connection can be formed.
  • the reservoir mounting space may be a capsule or a seal with a pressure relief device. In the cavity, when the reservoir 4 reacts, after the heat and gas pressure reach a certain level, the capsule is broken or the pressure relief valve on the sealed chamber is opened, so that the gas is flushed out to impact the fuse portion 21.
  • the protection element 100 may further include an insulation protector that may be disposed outside the fuse assembly to protect the fuse assembly, thereby isolating the fuse assembly from other conductors on the circuit board to ensure that the fuse assembly is normal. jobs.
  • the insulating protection member may be an insulating protective layer 8 coated on the outer surface of the fuse assembly, thereby not only simplifying the structure and production process of the protective member 100, but also completely covering the insulating layer 8 due to the insulating protective layer 8 The component can thereby improve the insulation effect of the insulating protective layer 8.
  • the insulating protective layer 8 may be a room temperature curing epoxy resin layer, thereby facilitating the coating of the insulating protective layer 8, simplifying the processing, and additionally, the physical and chemical properties of the cured epoxy resin are good, and the hardness is good. It is high and has excellent bonding strength to the surfaces of metal and non-metal materials, so that the overall reliability of the protective member 100 can be improved.
  • a protective element 100 and a protective element of a comparative example according to various embodiments of the present disclosure will be described below with reference to FIGS.
  • the protection component 100 includes a fuse assembly, a first terminal 6, a second terminal 7, and an insulating protection layer 8,
  • the fuse assembly includes an insulating substrate 1, a conductive element 2, a heat generating component 3, and a reservoir 4.
  • the insulating substrate 1 is a sheet-like 99% alumina ceramic substrate, and a center of the insulating substrate 1 is formed with a through hole 11 penetrating in the thickness direction of the insulating substrate 1, and a current along the conductive member 2. In the direction, the cross section of the through hole 11 is formed in a trapezoidal shape.
  • the conductive member 2 is formed by etching or punching using a pure copper strip having a thickness of 0.1 mm or less. In the direction of the current of the conductive member 2, an odd number of evenly spaced fuses are formed on the conductive member 2.
  • the portion 21 includes a plurality of perforations 22 in each of the fuse portions 21.
  • the conductive element 2 is adhered to one side of the ceramic substrate by hot press sintering, and the fuse portion 21 of the conductive element 2 at the intermediate position in the current direction is opposed to the end of the through hole 11 having a small opening.
  • the two ends of the conductive element 2 in the current direction are soldered to the first lead end 6 of pure copper nickel plating, and the first lead end 6 includes the first section 61 and the first
  • the second section 62, the first section 61 and the second section 62 are bent in an "L" shape, and the joint of the first section 61 and the second section 62 is smoothly transitioned, and the first section 61 and the conductive element 2 soldering connection, the second section 62 can be directly connected to the preset pad on the circuit board by spot welding, in order to facilitate the first lead end 6 to bend and ensure that the first lead end 6 and the pad are closely fitted, A lead end 6 is annealed prior to brazing.
  • the formulation of the reservoir 4 is: based on the total mass of the reservoir 4, the reservoir 4 comprises 92 wt% ammonium nitrate, 4 wt% activated carbon, and 4 wt% composite liquid organics, wherein the composite liquid organics comprises 83 wt% based on the total mass of the composite liquid organics.
  • the components of the reservoir 4 are mixed into a paste in a constant temperature sealed container, and then applied to one side of the heat generating component 3 having positive temperature coefficient characteristics, and the heat generating component coated with the reservoir 4 3 is placed in a vacuum box, and the storage agent 4 can form a firm connection with the heat generating component 3 after the solvent is volatilized.
  • the ratio of the composite liquid organic substance to the storage agent 4 and the ratio of the binder to the solvent in the composite liquid organic substance are all ratios after the solvent is partially volatilized.
  • the heat generating component 3 is assembled with the ceramic substrate, and the side on which the heat generating component 3 is coated with the reservoir 4 faces the ceramic substrate and is in close contact with the ceramic substrate, so that the reservoir 4 is located in the through hole 11. .
  • Two ends of the heating element 3 are brazed with two second terminals 7 respectively, and two second terminals 7 are spot-welded to the two first terminals 6 of the conductive member 2, so that the heating element 3 and the conductive element 2 are A parallel structure is formed, and the outer side of the entire fuse assembly is coated with a room temperature curing epoxy resin as the insulating protective layer 8.
  • the current flowing through the heating element 3 causes the heating element 3 to rapidly heat up to a temperature that triggers the chemical reaction of the reservoir 4, and the chemical reaction of the reservoir 4 releases a large amount of heat and generates a high-temperature gas.
  • the through hole 11 of the trapezoidal cross section preset on the ceramic substrate is accelerated to be discharged to the opening opposite to the reservoir 4, so that the fuse portion 21 attached to the conductive member 2 on the other surface of the ceramic substrate is rapidly heated and melted, thereby realizing the cutting circuit. action.
  • the protection element 100 may provide overcurrent protection for the circuit, or may be triggered by an external signal to achieve overvoltage protection or other failure mode protection of the circuit.
  • the protective element 100 has a sheet-like structure and can be directly soldered to the first lead on the circuit board by spot welding
  • the terminal 6 eliminates the need to provide a special connector for the protection component 100, which facilitates the integration of the protection component 100 with the circuit board, and the protection component 100 is directly integrated into the circuit board, which saves installation space and simplifies the installation process.
  • Comparative Example 1 is substantially the same as the structure of Example 1, except that Comparative Example 1 is a self-heating fuse protection element, that is, the protection element of Comparative Example 1 protects the circuit by self-heating of the conductive element 2 to the melting point of the metal. Further, the conductive member 2 is blown without the heat generating member 3 and the reservoir 4.
  • the fuse time of the protection element 100 according to Embodiment 1 of the present disclosure and the self-heat-fuse protection element of Comparative Example 1 at different currents was compared. It has been experimentally verified that, as shown in FIG. 8, the fuse time of the protection element 100 according to Embodiment 1 of the present disclosure is 2 to 5 times the rated current (for example, the area between the two vertical dashed lines shown in FIG. 8). The fuse time of the self-heat-fuse protection element of Comparative Example 1 was shortened by 95% or more.
  • This embodiment is the same as the structure of the embodiment 1, except that the formulation of the reservoir 4 in the embodiment is different. Specifically, the formulation of the reservoir 4 of the embodiment is based on the total mass of the reservoir 4.
  • Reagent 4 comprises 90 wt% potassium nitrate, 6 wt% activated carbon, and 4 wt% composite liquid organics.
  • the fuse element 100 has a blow time at 2 to 5 times the rated current (for example, the area between two vertical dashed lines shown in FIG. 8).
  • the fuse time of the self-heat-fuse protection element of the ratio 1 is shortened by 55% or more.
  • This embodiment is the same as the structure of the embodiment 1, except that the formulation of the reservoir 4 in the embodiment is different. Specifically, the formulation of the reservoir 4 of the embodiment is based on the total mass of the reservoir 4.
  • Reagent 4 comprises 86 wt% ammonium nitrate, 10 wt% activated carbon, and 4 wt% composite liquid organics.
  • the fuse element 100 has a blow time at 2 to 5 times the rated current (for example, the area between two vertical dashed lines shown in FIG. 8).
  • the fuse time of the self-heating fuse of the ratio 1 is shortened by 90% or more.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical connection, electrical connection, or communication; can be directly connected, or indirectly connected through an intermediate medium, can be the internal connection of two components or the interaction of two components .
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种保护元件(100),包括熔断组件,所述熔断组件包括:绝缘基板(1)、导电元件(2)、发热元件(3)和储剂(4),绝缘基板(1)上形成有贯穿的通孔(11),发热元件(3)设在绝缘基板(1)的一侧,导电元件(2)设在绝缘基板(1)的另一侧,导电元件(2)和发热元件(3)与绝缘基板(1)上的通孔(11)之间限定出熔断腔(5),导电元件(2)包括与熔断腔(5)相对的熔断部(21),储剂(4)位于熔断腔(5)内,保护元件(100)构造成当发热元件(3)升温至触发储剂(4)发生化学反应的温度时,储剂(4)发生化学反应并释放气体以冲击导电元件(2)上的熔断部(21)。

Description

保护元件
相关申请的交叉引用
本申请主张在2015年12月16日在中国提交的中国专利申请号No.201510943178.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电路保护技术领域,尤其是涉及一种保护元件。
背景技术
相关技术中的电路保护元件主要采用由银、铜、锡、铅等一种或几种金属组成的合金熔断元件,并在熔断元件局部设计电阻密度集中区域,该元件一般串联接入被保护电路中,当电路中出现保护范围内的过载电流时,过载电流流经熔断元件,电阻密度集中区域会在电热功率作用下升温,当温度达到熔断元件金属熔点时,熔断元件在表面张力或电弧作用下自行断开,实现对电路的过流保护。
但是,由于固定形状的熔断元件的通过电流与熔断时间基本为指数关系,一般保护元件其达到秒级熔断时间对应的熔断电流,通常为正常耐流值的5-10倍,甚至更高。当选定额定电流值较高的保护元件时,可以满足电路正常工作的耐流要求,但其在指定电流下的熔断时间往往过长,难以实现对电路的有效保护;反之,当选用可以在指定电流下迅速熔断的常规保护元件,在电路正常工作时的电流条件下保护元件温升较高,存在误切断甚至造成周围塑胶件融化、起火的风险。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种保护元件,所述保护元件可以缩短在中低倍额定电流下的熔断时间。
根据本公开的保护元件,包括熔断组件,所述熔断组件包括:绝缘基板,所述绝缘基板上形成有贯穿的通孔;发热元件,所述发热元件设在所述绝缘基板的一侧;导电元件,所述导电元件设在所述绝缘基板的另一侧,所述导电元件和所述发热元件与所述绝缘基板上的所述通孔之间限定出熔断腔,所述导电元件包括与所述熔断腔相对的熔断部;和储剂,所述储剂位于所述熔断腔内,其中所述保护元件构造成当所述发热元件升温至触发所述储剂发生化学反应的温度时,所述储剂发生化学反应并释放热量和气体以冲击所述导电元件上的所述熔 断部。
根据本公开的保护元件,通过利用储剂化学反应产生的热量和气体冲击导电元件上的熔断部,由此可以减少熔断部在中低倍额定电流下的熔断时间,使保护元件在具有较高的耐流水平的同时,还可以在中低倍额定电流下迅速熔断,实现对电路的有效保护。
在本公开的一些实施例中,所述储剂贴合在发热元件的邻近所述导电元件的一侧表面上。
在本公开的一些实施例中,所述发热元件与所述导电元件并联。
在本公开的一些实施例中,所述通孔与所述导电元件相连的第一端的横截面积小于所述通孔与所述发热元件相连的第二端的横截面积。
进一步地,沿着从所述发热元件到所述导电元件的方向,所述通孔的横截面积逐渐减小。
在本公开的一些实施例中,所述导电元件包括一个熔断部或者在所述导电元件的电流通过方向上间隔开排布的多个熔断部,每个所述熔断部均包括在垂直于所述导电元件的电流通过方向上间隔开排布的多个穿孔。
在本公开的一些实施例中,所述导电元件为厚度小于等于1mm的导电板。
在本公开的一些实施例中,保护元件进一步包括:两个第一引出端,所述两个第一引出端与所述导电元件相连以用于将所述导电元件连接至外电路;和两个第二引出端,所述两个第二引出端与所述发热元件相连且分别与所述两个第一引出端相连,以使所述发热元件与所述导电元件并联。
在本公开的一些实施例中,每个所述第一引出端均包括第一段部和第二段部,所述第一段部与所述导电元件相连,所述第二段部的一端与所述第一段部的一端相连、另一端向远离所述第一段部的方向延伸。
在本公开的一些实施例中,所述储剂包括:硝酸盐,所述硝酸盐包括硝酸铵和硝酸钾中的至少一种;还原剂,所述还原剂包括活性炭和木炭粉末中的至少一种;和复合液态有机物,所述复合液态有机物包括溶剂和粘结剂。
进一步地,所述储剂包括100质量份的硝酸铵,基于100质量份的硝酸铵,所述储剂还包括4-12质量份的活性炭以及4-5质量份的复合液态有机物。
在本公开的一些实施例中,基于所述复合液态有机物的总质量,所述复合液态有机物包括81wt%~86wt%的粘结剂和14wt%~19wt%的溶剂。
可选地,所述溶剂包括正戊醇、异戊醇和异戊二醇中的至少一种。
可选地,所述粘结剂包括石蜡、氢化松香和歧化松香中的至少一种。
在本公开的一些实施例中,所述储剂为混合而成的膏状混合物,将所述储剂涂覆在所述发热元件上后置于真空环境中,所述储剂在其中的部分所述溶剂挥发后粘附在所述发热元件 上。
根据本公开的一些实施例,保护元件进一步包括:绝缘保护件,所述绝缘保护件设在所述熔断组件外以保护所述熔断组件。
进一步地,所述绝缘保护件为绝缘保护层,所述绝缘保护层涂覆在所述熔断组件的外表面上。
可选地,所述绝缘保护层为常温固化环氧树脂层。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是根据本公开实施例的保护元件的示意图;
图2是图1中所示的导电元件的示意图;
图3是图1中所示的导电元件与绝缘基板的一个角度的示意图;
图4是图3中所示的导电元件与绝缘基板的另一个角度的示意图;
图5是图4中所示的导电元件、绝缘基板与第一引出端的示意图;
图6是图1中所示的发热元件、储剂与第二引出端的示意图;
图7是图1中所示的熔断组件、第一引出端和第二引出端的示意图;
图8是根据本公开实施例的保护元件和对比例1的保护元件的加载电流倍数与熔断时间曲线关系示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下文的公开提供了许多不同的实施例或例子用来实现本公开的不同结构。为了简化本公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论的各种实施例和/或设置之间的关系。此外,本公开提供了各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其它工艺的可应用性和/或其他材料的使用。
下面参考图1-图7描述根据本公开实施例的保护元件100。
如图1所示,根据本公开实施例的保护元件100,包括熔断组件,熔断组件包括:绝缘 基板1、导电元件2、发热元件3和储剂4。
具体地,绝缘基板1上形成有贯穿的通孔11,发热元件3设在绝缘基板1的一侧(例如图1中所示的绝缘基板1的上侧),导电元件2设在绝缘基板1的另一侧(例如图1中所示的绝缘基板1的下侧),导电元件2和发热元件3与绝缘基板1上的通孔11之间限定出熔断腔5,导电元件2包括与熔断腔5相对的熔断部21,储剂4位于熔断腔5内,保护元件100构造成当发热元件3升温至触发储剂4发生化学反应的温度时,储剂4发生化学反应并释放气体以冲击导电元件2上的熔断部。
如图1所示,导电元件2设在绝缘基板1的下侧,发热元件3设在绝缘基板1的上侧,绝缘基板1上形成有沿上下方向贯穿的通孔11,储剂4位于熔断腔5内,导电元件2上的熔断部21与熔断腔5相对。
在电路正常工作状态下,电路中流经保护元件100的电流较低,此时,电流通常不超过1-1.5In(额定电流),由于导电元件2的内阻远低于发热元件3的内阻,由此可保证导电元件2具有较低的温升水平,提高保护元件100的耐流水平。
当电路中出现中低倍的额定电流(例如2-5In以上)时,流经发热元件3的电流使发热元件3迅速升温至储剂4化学反应的启动温度,触发储剂4进行放热反应,释放出大量的热量并生成气体,热量和气体沿通孔11迅速排放至通孔11下端的开口处,并冲击导电元件2上的熔断部21,熔断部21在热量的加热和气体的冲击的双重作用下,迅速熔断,实现切断电路的动作。
这里,需要说明的是,由于提供熔断部21熔断能源的主体变为储剂4化学反应放热,所以熔断部21的熔断时间,主要由发热元件3升温至储剂4触发反应温度的时间t1,储剂4进行化学反应释放热量和气体的时间t2以及导电元件2在热量和气体冲击的双重作用下熔断的时间t3组成。而三者相加之和远远小于导电元件2通电自行放热至导电元件2金属熔点进而熔断所需的时间,从而有效地缩短了保护元件100在中低倍额定电流下的熔断时间。
另外,还需要说明的是,当电路中出现过压、高温等其它失效可能时,也可通过相应监控元件发出信号,给予发热元件3发热电流,使发热元件3升温触发储剂4反应,完成切断电路的动作,从而实现对电路的多种模式的保护。
根据本公开实施例的保护元件100,通过利用储剂4化学反应产生的热量和气体冲击熔断导电元件2上的熔断部21,由此可以减少熔断部21在中低倍额定电流下的熔断时间,使保护元件100在具有较高的耐流水平的同时,还可以在中低倍额定电流下迅速熔断,实现对电路的有效保护。
在本公开的一些实施例中,如图1所示,储剂4可以贴合在发热元件3的邻近导电元件2的一侧表面上,由此,有利于储剂4发生化学反应产生的热量和气体直接冲击导电元件2 上的熔断部21,使保护元件100的结构更加紧凑合理。例如在图1所示的示例中,导电元件2位于发热元件3的下方,储剂4贴合在发热元件3的下端面,以使储剂4化学反应生成的热量和气体直接冲击并熔断熔断部21。
根据本公开的一些实施例,发热元件3可以与导电元件2并联,由此可以简化保护元件100的结构,使保护元件100的结构更加合理。
在本公开的一个实施例中,参照图1,通孔11与导电元件2相连的第一端(例如图1中所示的通孔11的下端)的横截面积可以小于通孔11与发热元件3相连的第二端(例如图1中所示的通孔11的上端)的横截面积。由此,储剂4发生化学反应产生的热量和气体,在向下冲击的过程中,可以提高热量和气体的冲击力度,加速熔断导电元件2上的熔断部21。
进一步地,沿着从发热元件3到导电元件2的方向(例如图1中从上往下的方向),通孔11的横截面积逐渐减小。由此,储剂4发生化学反应产生的热量和气体,在向下冲击的过程中,随着通孔11的横截面积逐渐减小,可以提高气体的冲击力度,加速熔断导电元件2上的熔断部21。
例如,在图1所示的示例中,通孔11的纵截面为梯形,且该梯形的上底的宽度大于下底的宽度,储剂4设在通孔11的上底的一端,当储剂4发生反应时,气体和热量向下冲击,随着通孔11的开口的变小,从而可以增大气体和热量对熔断部21的冲击力度。
根据本公开的一些实施例,绝缘基板1可以为氧化铝陶瓷基板,氧化铝陶瓷具有较好的传导性和机械性能,由此在保证导电元件2与发热元件3并联、且与通孔11共同限定出熔断腔5的前提下,可以提高保护元件100的整体性能。例如,绝缘基板1可以为薄片状99%氧化铝陶瓷基板。
根据本公开的一些实施例,导电元件2可以通过热压烧结工艺粘附在绝缘基板1上,由此可以保证导电元件2与绝缘基板1之间的连接强度,提高导电元件2与绝缘基板1之间连接的可靠性。
根据本公开的一些实施例,导体元件包括一个熔断部21或者在导电元件2的电流通过方向(例如图2中所示的左右方向)上间隔开排布的多个熔断部21,每个熔断部21均包括在垂直于导电元件2的电流通过方向上间隔开排布的多个穿孔22,由此,当储剂4发生化学反应释放的热量和气体冲击熔断部21时,可以缩短熔断部21的熔断时间。
进一步地,熔断部21可以为奇数个且奇数个熔断部21在导电元件2的电流通过方向(例如图2中所示的左右方向)上均匀地间隔开排布,由此可以保证导电元件2沿电流方向的中间位置必有一个熔断部21,同时,还可以使导电元件2上的电流分布更为均匀,使导电元件2的结构更加合理。可选地,导电元件2的中间位置的熔断部21与通孔11相对,从而使 保护元件100的结构更加合理。
例如,在图3和图4所示的示例中,沿导电元件2的电流方向,导电元件2上形成有奇数个熔断部21,每个熔断部21包括多个穿孔22,其中,沿导电元件2的电流方向的中间位置的熔断部21与通孔11的窄的一端相对,由此可以缩短导电元件2的熔断时间,使保护元件100的结构更加合理。
这里,需要说明的是,通过调整熔断部21的数量、每个熔断部21上的穿孔22的数量和穿孔22的大小,可以使导电元件2满足不同额定电流值的要求。
可选地,导电元件2可以为厚度小于等于1mm的导电板,由此,当电路电流过载时,有利于快速熔断导电元件2,起到保护电路的效果。可选地,导电元件2可以为纯铜材料导电板。例如,导电元件2可以采用厚度小于等于1mm的纯铜带通过蚀刻或冲切的方式制成,由此便于导电元件2的加工成型。
根据本公开的一些实施例,参照图5-图7,保护元件100可以进一步包括:两个第一引出端6和两个第二引出端7,其中,两个第一引出端6可以与导电元件2相连以用于将导电元件2连接至外电路,两个第二引出端7可以与发热元件3相连且分别与两个第一引出端6相连,以使发热元件3与导电元件2并联。由此,保护元件100可以通过两个第一引出端6与外电路连接以保护外电路,发热元件3可以通过两个第二引出端7与导电元件2并联,当电路电流过载时,为导电元件2提供熔断能量。
可选地,每个第一引出端6均为纯铜镀镍材料件,由于纯铜镀镍材料的化学稳定性好,硬度高,由此可以提高保护元件100的整体性能,延长保护元件100的使用寿命。
进一步地,两个第一引出端6均可以通过钎焊工艺焊接在导电元件2的长度方向上的两端,由此可以提高第一引出端6与导电元件2之间的连接的可靠性,同时使保护元件100的结构更加合理。例如在图5所示的示例中,两个第一引出端6通过钎焊焊接在导电元件2沿长度方向的两端。
根据本公开的一些实施例,参照图5,每个第一引出端6均可以包括第一段部61和第二段部62,第一段部61与导电元件2相连,第二段部62的一端与第一段部61的一端相连,另一端向远离第一段部61的方向延伸。例如,在图5所示的示例中,第一引出端6包括第一段部61和第二段部62,第一段部61设在导电元件2上,并与导电元件2焊接在一起,第二段部62垂直于第一段部61,且第一段部61和第二段部62的连接处圆滑过渡,也就是说,第一段部61和第二段部62折弯形成为L型。
进一步地,第二段部62的另一端可以直接与电路板上预置的焊盘点焊连接,由此,无需为保护元件100设置专门的接插件,便于保护元件100与电路板的集成,从而节约安装空间,简化安装工艺。可选地,第一引出端6在钎焊前作退火处理,由此可以便于第一引出端 6的折弯,同时可以保证第一引出端6与焊盘焊接时紧密贴合。
根据本公开的一些实施例,参照图7,每个第二引出端7均可以通过点焊工艺焊接在相应的第一段部61上,由此,在确保发热元件3与导电元件2形成并联结构的前提下,可以提高第二引出端7与第一引出端6之间的连接的可靠性,从而提高保护元件100的可靠性。例如,在图7所示的示例中,每个第二引出端7均设在相应的第一段部61上,且通过焊接连接在相应的第一段部61上。
在本公开的一些实施例中,储剂4可以包括硝酸盐、还原剂和复合液态有机物。其中,还原剂在储剂发生化学反应时起到还原的作用,也就是说,硝酸盐和还原剂在升温至一定温度时,可以发生氧化还原反应,并产生大量的热量和气体,从而加速熔断导电元件2上的熔断部21,达到保护电路的效果。复合液态有机物可以有利于储剂4的成型,提高储剂4的粘附强度以及储剂4的化学反应速度。
具体地,硝酸盐可以包括硝酸铵和硝酸钾中的至少一种,也就是说,硝酸盐可以为硝酸铵,也可以为硝酸钾,还可以为硝酸铵和硝酸钾的混合物。还原剂可以包括活性炭和木炭粉末中的至少一种,也就是说,还原剂可以为活性炭,也可以为木炭粉末,还可以为活性炭和木炭粉末的混合物。当硝酸铵和硝酸钾中的至少一种与活性炭和木炭粉末中的至少一种升温至发生化学反应温度时,储剂4发生氧化还原反应,活性炭和/或木炭粉末在反应过程中起到还原的作用、被氧化,生成大量的热量和气体,以冲击并加速熔断熔断部21。复合液态有机物可以包括溶剂和粘结剂,溶剂和粘结剂不仅有利于储剂4成型,确保储剂4粘附于发热元件3上,还可以调整储剂4的化学反应速度,从而缩短导电元件2上熔断部21的熔断时间。
进一步地,储剂4可以包括100质量份的硝酸铵,基于100质量份的硝酸铵,储剂4还可以包括4-12质量份的活性炭以及4-5质量份的复合液态有机物,由此可以增加储剂4发生化学反应时放出的热量和气体,进一步缩短导电元件2上的熔断部21的熔断时间,实现对电路的快速保护。这里,需要说明的是,当采用下文所述的“置于真空环境中蒸发溶剂的方式连接储剂4和发热元件3”的技术方式时,“4-5质量份的复合液态有机物”指的是部分溶剂已经挥发后所余下的复合液态有机物在储剂4中的比例。
根据本公开的一个实施例,基于复合液态有机物的总质量,复合液态有机物可以包括81wt%~86wt%的粘结剂和14wt%~19wt%的溶剂,由此不仅可以提高储剂4的成型效果,增加储剂4的粘结强度,还可以进一步加快储剂4的化学反应速度,缩短熔断部21的熔断时间。这里,需要说明的是,当采用下文所述的“置于真空环境中蒸发溶剂的方式连接储剂4和发热元件3”的技术方式时,“14wt%~19wt%的溶剂”指的是部分溶剂已经挥发后所余下的溶剂在储剂4中的比例。
可选地,粘结剂可以为石蜡、氢化松香和歧化松香中的至少一个,也就是说,粘结剂可以仅为石蜡、氢化松香和歧化松香中的一个,粘结剂也可以由其中的两种或三种物质组成,由此可以根据需要选择合适的粘结剂,提高储剂4的粘附强度,提高储剂4的适用性。
可选地,溶剂可以为正戊醇、异戊醇和异戊二醇中的至少一种,也就是说,溶剂可以仅为正戊醇、异戊醇和异戊二醇中的一种,溶剂也可以由其中的两种或三种物质组成,由此可以根据需要选择合适的溶剂,提高储剂4的适用性。
根据本公开的一些实施例,储剂4为混合而成的膏状混合物,将储剂4涂覆在发热元件3上后置于真空环境中,储剂4在其中的部分溶剂挥发后粘附在发热元件3上,由此可以提高储剂4与发热元件3连接的可靠性,同时,有利于发热元件3与储剂4之间直接接触以传递热量,缩短储剂4升温至化学反应温度的时间。
由此,基于上文所述,当利用真空环境将储剂4牢固粘附在发热元件上时,由于溶剂会挥发,因此,储剂4中溶剂的初始占比应当大于最终占比(如上文中所述的14wt%~19wt%),以保证部分挥发后的溶剂及复合液态有机物在储剂4中所占的比例满足要求。
当然,本公开不限于此,储剂4也可以通过其它方式粘附在发热元件3上,只要能将储剂4粘附于发热元件3上,并形成牢固的连接即可。当然,还可以通过在发热元件3的下端面设置一个密闭的储剂安放空间,并将储剂4装在储剂安放空间内,储剂安放空间可以为囊体或带有泄压装置的密封腔体,当储剂4发生反应时,在热量、气体压力达到一定程度后,囊体破裂或者密封腔体上的泄压阀打开,从而气体冲出以冲击熔断部21。
根据本公开的一些实施例,保护元件100可以进一步包括绝缘保护件,绝缘保护件可以设在熔断组件外以保护熔断组件,从而将熔断组件与电路板上的其他导体隔离,保证熔断组件可以正常工作。
进一步地,绝缘保护件可以为绝缘保护层8,绝缘保护层8涂覆在熔断组件的外表面上,由此不仅可以简化保护元件100的结构和生产工艺,同时由于绝缘保护层8完全覆盖熔断组件,从而可以提高绝缘保护层8的绝缘效果。
可选地,绝缘保护层8可以为常温固化环氧树脂层,由此可以便于绝缘保护层8的涂覆,简化加工,另外,由于固化后的环氧树脂的物理和化学性能较好,硬度高,且对金属和非金属材料的表面具有优异的粘接强度,从而可以提高保护元件100的整体可靠性。
下面将参考图1-图7描述根据本公开多个实施例的保护元件100和一个对比例的保护元件。
实施例1
参照图1,保护元件100包括熔断组件、第一引出端6、第二引出端7和绝缘保护层8, 其中,熔断组件包括绝缘基板1、导电元件2、发热元件3和储剂4。
具体地,如图3和图4所示,绝缘基板1为薄片状99%氧化铝陶瓷基板,绝缘基板1的中央形成有沿绝缘基板1厚度方向贯穿的通孔11,沿导电元件2的电流方向,通孔11的截面形成为梯形。
如图2所示,导电元件2采用厚度在0.1mm以下的纯铜带通过蚀刻或冲切的方式制成,沿导电元件2的电流方向,导电元件2上形成有奇数个均匀间隔分布的熔断部21,每个熔断部21上包括多个穿孔22。将导电元件2采用热压烧结的方式附着于陶瓷基板的一侧,使导电元件2沿电流方向的中间位置的熔断部21与通孔11的开口小的一端相对。
如图5所示,导电元件2的沿电流方向的两端,分别以钎焊的方式焊接有纯铜镀镍材质的第一引出端6,第一引出端6包括第一段部61和第二段部62,第一段部61和第二段部62呈“L”型折弯,且第一段部61和第二段部62的连接处圆滑过渡,第一段部61与导电元件2钎焊连接,第二段部62可直接与电路板上预置的焊盘通过点焊连接,为便于第一引出端6折弯并保证第一引出端6与焊盘紧密贴合,第一引出端6在钎焊前作退火处理。
储剂4的配方为:基于储剂4的总质量,储剂4包括92wt%硝酸铵、4wt%活性炭以及4wt%复合液态有机物,其中,基于复合液态有机物的总质量,复合液态有机物包括83wt%粘结剂和17wt%溶剂,溶剂由正戊醇组成,粘结剂由氢化松香组成。在添加适量溶剂后,将储剂4各组分在恒温密闭容器内混合成膏状,然后涂覆至具有正温度系数特性的发热元件3的一侧,将涂敷有储剂4的发热元件3置于真空箱内,待溶剂挥发后储剂4可与发热元件3形成牢固连接。这里,需要说明的是,复合液态有机物所占储剂4的比例,及复合液态有机物中粘结剂与溶剂的比例,均为溶剂部分挥发后的比例。
如图6和图7所示,发热元件3与陶瓷基板组装,将发热元件3涂敷有储剂4的一侧朝向陶瓷基板并紧贴于陶瓷基板上,使储剂4位于通孔11内。发热元件3的两端钎焊有两个第二引出端7,两个第二引出端7分别点焊于导电元件2的两个第一引出端6上,从而使发热元件3与导电元件2形成并联结构,整个熔断组件的外侧涂覆有常温固化环氧树脂作为绝缘保护层8。
当电路中出现中低倍额定电流的过电流时,分流经发热元件3的电流使发热元件3迅速升温至触发储剂4化学反应的温度,储剂4发生化学反应放出大量热量并生成高温气体,沿陶瓷基板上预置的梯形截面的通孔11加速排放至储剂4对面的开口处,使附着于陶瓷基板另一面上的导电元件2上的熔断部21迅速加热熔断,实现切断电路的动作。
根据本公开实施例的保护元件100,可以为电路提供过流保护,或通过外部信号触发,实现对电路的过压保护或其它失效形式的保护。
另外,由于保护元件100采用薄片状结构及可通过点焊直接焊接于电路板上的第一引出 端6,从而无需为保护元件100设置专门的接插件,便于保护元件100与电路板的集成,同时保护元件100直接集成于电路板的方式,可节约安装空间,简化安装工艺。
对比例1
对比例1与实施例1的结构大致相同,不同之处仅在于,对比例1为自发热熔断的保护元件,即对比例1的保护元件对电路的保护是通过导电元件2自发热至金属熔点,进而熔断导电元件2,而不设发热元件3和储剂4。
将根据本公开实施例1的保护元件100与对比例1的自发热熔断的保护元件在不同电流下的熔断时间进行对比。经实验验证,如图8所示,根据本公开实施例1的保护元件100在2~5倍额定电流(例如图8中所示的两条竖直虚线之间的区域)下的熔断时间较对比例1的自发热熔断的保护元件的熔断时间缩短95%以上。
实施例2
本实施例与实施例1的结构相同,不同之处仅在于本实施例中的储剂4的配方不同,具体地,本实施例的储剂4的配方为:基于储剂4的总质量,储剂4包括90wt%硝酸钾、6wt%活性炭以及4wt%复合液态有机物。
经实验验证,如图8所示,根据本公开实施例的保护元件100在2~5倍额定电流(例如图8中所示的两条竖直虚线之间的区域)下的熔断时间较对比例1的自发热熔断的保护元件的熔断时间缩短55%以上。
实施例3
本实施例与实施例1的结构相同,不同之处仅在于本实施例中的储剂4的配方不同,具体地,本实施例的储剂4的配方为:基于储剂4的总质量,储剂4包括86wt%硝酸铵、10wt%活性炭以及4wt%复合液态有机物。
经实验验证,如图8所示,根据本公开实施例的保护元件100在2~5倍额定电流(例如图8中所示的两条竖直虚线之间的区域)下的熔断时间较对比例1的自发热熔断的保护元件的熔断时间缩短90%以上。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (18)

  1. 一种保护元件,包括熔断组件,所述熔断组件包括:
    绝缘基板,所述绝缘基板上形成有贯穿的通孔;
    发热元件,所述发热元件设在所述绝缘基板的一侧;
    导电元件,所述导电元件设在所述绝缘基板的另一侧,所述导电元件和所述发热元件与所述绝缘基板上的所述通孔之间限定出熔断腔,所述导电元件包括与所述熔断腔相对的熔断部;和
    储剂,所述储剂位于所述熔断腔内,
    其中所述保护元件构造成当所述发热元件升温至触发所述储剂发生化学反应的温度时,所述储剂发生化学反应并释放热量和气体以冲击所述导电元件上的所述熔断部。
  2. 根据权利要求1所述的保护元件,其中所述储剂贴合在所述发热元件的邻近所述导电元件的一侧表面上。
  3. 根据权利要求1或2所述的保护元件,其中所述发热元件与所述导电元件并联。
  4. 根据权利要求1至3中任一项所述的保护元件,其中所述通孔与所述导电元件相连的第一端的横截面积小于所述通孔与所述发热元件相连的第二端的横截面积。
  5. 根据权利要求1至4中任一项所述的保护元件,其中沿着从所述发热元件到所述导电元件的方向,所述通孔的横截面积逐渐减小。
  6. 根据权利要求1至5中任一项所述的保护元件,其中所述导电元件包括一个熔断部或者在所述导电元件的电流通过方向上间隔开排布的多个熔断部,每个所述熔断部均包括在垂直于所述导电元件的电流通过方向上间隔开排布的多个穿孔。
  7. 根据权利要求1至6中任一项所述的保护元件,其中所述导电元件为厚度小于等于1mm的导电板。
  8. 根据权利要求1至7中任一项所述的保护元件,进一步包括:
    两个第一引出端,所述两个第一引出端与所述导电元件相连以用于将所述导电元件连接至外电路;和
    两个第二引出端,所述两个第二引出端与所述发热元件相连且分别与所述两个第一引出端相连,以使所述发热元件与所述导电元件并联。
  9. 根据权利要求8所述的保护元件,其中每个所述第一引出端均包括第一段部和第二段部,所述第一段部与所述导电元件相连,所述第二段部的一端与所述第一段部的一端相连、另一端向远离所述第一段部的方向延伸。
  10. 根据权利要求1至9中任一项所述的保护元件,其中所述储剂包括:
    硝酸盐,所述硝酸盐包括硝酸铵和硝酸钾中的至少一种;
    还原剂,所述还原剂包括活性炭和木炭粉末中的至少一种;和
    复合液态有机物,所述复合液态有机物包括溶剂和粘结剂。
  11. 根据权利要求10所述的保护元件,其中所述储剂包括100质量份的所述硝酸铵,基于100质量份的所述硝酸铵,所述储剂还包括4-12质量份的所述活性炭以及4-5质量份的所述复合液态有机物。
  12. 根据权利要求10或11所述的保护元件,其中基于所述复合液态有机物的总质量,所述复合液态有机物包括81wt%~86wt%的粘结剂和14wt%~19wt%的溶剂。
  13. 根据权利要求10至12中任一项所述的保护元件,其中所述溶剂包括正戊醇、异戊醇和异戊二醇中的至少一种。
  14. 根据权利要求10至13中任一项所述的保护元件,其中所述粘结剂包括石蜡、氢化松香和歧化松香中的至少一种。
  15. 根据权利要求10至14中任一项所述的保护元件,其中所述储剂为混合而成的膏状混合物,将所述储剂涂覆在所述发热元件上后置于真空环境中,所述储剂在其中的部分所述溶剂挥发后粘附在所述发热元件上。
  16. 根据权利要求1至15中任一项所述的保护元件,进一步包括:
    绝缘保护件,所述绝缘保护件设在所述熔断组件外以保护所述熔断组件。
  17. 根据权利要求16所述的保护元件,其中所述绝缘保护件为绝缘保护层,所述绝缘保护层涂覆在所述熔断组件的外表面上。
  18. 根据权利要求17所述的保护元件,其中所述绝缘保护层为常温固化环氧树脂层。
PCT/CN2016/108286 2015-12-16 2016-12-01 保护元件 WO2017101682A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510943178.4A CN106887368B (zh) 2015-12-16 2015-12-16 保护元件
CN201510943178.4 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101682A1 true WO2017101682A1 (zh) 2017-06-22

Family

ID=59055802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108286 WO2017101682A1 (zh) 2015-12-16 2016-12-01 保护元件

Country Status (2)

Country Link
CN (1) CN106887368B (zh)
WO (1) WO2017101682A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099218A (en) * 1990-12-07 1992-03-24 Avx Corporation Binary fuse device
CN101004989A (zh) * 2005-07-20 2007-07-25 力特保险丝有限公司 具有放热反应材料的反应熔丝元件
US20080191832A1 (en) * 2007-02-14 2008-08-14 Besdon Technology Corporation Chip-type fuse and method of manufacturing the same
CN101261914A (zh) * 2007-03-08 2008-09-10 诚佑科技股份有限公司 芯片型保险丝及其制造方法
CN103730298A (zh) * 2012-10-13 2014-04-16 温州市方为熔断器有限公司 一种熔体表面带有防氧化涂层的熔断器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE266899T1 (de) * 2001-06-01 2004-05-15 Abb Research Ltd Selbstangetriebenes leistungsschaltgerät
JP5545231B2 (ja) * 2011-01-28 2014-07-09 豊田合成株式会社 導通遮断装置
JP5675859B2 (ja) * 2013-01-28 2015-02-25 太平洋精工株式会社 ヒューズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099218A (en) * 1990-12-07 1992-03-24 Avx Corporation Binary fuse device
CN101004989A (zh) * 2005-07-20 2007-07-25 力特保险丝有限公司 具有放热反应材料的反应熔丝元件
US20080191832A1 (en) * 2007-02-14 2008-08-14 Besdon Technology Corporation Chip-type fuse and method of manufacturing the same
CN101261914A (zh) * 2007-03-08 2008-09-10 诚佑科技股份有限公司 芯片型保险丝及其制造方法
CN103730298A (zh) * 2012-10-13 2014-04-16 温州市方为熔断器有限公司 一种熔体表面带有防氧化涂层的熔断器

Also Published As

Publication number Publication date
CN106887368A (zh) 2017-06-23
CN106887368B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN105051855B (zh) 熔丝元件以及熔丝器件
CN110268501B (zh) 熔丝器件
TWI697023B (zh) 熔絲單元、熔絲元件及發熱體內設熔絲元件
TW201438034A (zh) 過電流保護元件
CN107615440B (zh) 熔丝元件、熔丝器件、保护元件、短路元件、切换元件
CN107004538A (zh) 安装体的制造方法、温度熔丝器件的安装方法以及温度熔丝器件
CN105453211A (zh) 保护元件及电池组
WO2014171515A1 (ja) 保護装置
US10727019B2 (en) Fuse device
CN111527580B (zh) 熔丝器件
JP7319237B2 (ja) ヒューズ素子
WO2018159283A1 (ja) ヒューズ素子
JP2007059295A (ja) 回路保護素子及び回路の保護方法
US20220199346A1 (en) Protective element
TWI713696B (zh) 電流熔絲
CN105869806B (zh) 一种高稳定性ptc热敏组件
CN101295570B (zh) 保护电路板和其过电流保护元件
WO2017101682A1 (zh) 保护元件
KR101082865B1 (ko) 도전성 패턴이 형성된 보호회로 기판을 포함하는 전지팩
CN108701566A (zh) 保护元件
JP2009032567A (ja) ヒューズ
JP2014143141A (ja) 保護素子
TWI639169B (zh) 表面黏著型過電流保護元件
JP3409189B2 (ja) ヒューズ抵抗器
JP2004296422A (ja) 保護素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874739

Country of ref document: EP

Kind code of ref document: A1