WO2017099431A1 - Composé organique et dispositif électroluminescent organique le contenant - Google Patents

Composé organique et dispositif électroluminescent organique le contenant Download PDF

Info

Publication number
WO2017099431A1
WO2017099431A1 PCT/KR2016/014118 KR2016014118W WO2017099431A1 WO 2017099431 A1 WO2017099431 A1 WO 2017099431A1 KR 2016014118 W KR2016014118 W KR 2016014118W WO 2017099431 A1 WO2017099431 A1 WO 2017099431A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
alkyl
groups
boron
Prior art date
Application number
PCT/KR2016/014118
Other languages
English (en)
Korean (ko)
Inventor
한송이
김영배
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2017099431A1 publication Critical patent/WO2017099431A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to novel organic compounds that can be used as materials for organic electroluminescent devices and organic electroluminescent devices comprising the same.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the light emitting materials may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials for better natural colors according to light emission colors.
  • a host / dopant system may be used as the light emitting material in order to increase the light emission efficiency through increase in color purity and energy transfer.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB hole blocking layer
  • BCP hole blocking layer
  • electron transporting layer material anthracene derivatives have been reported as the light emitting layer material.
  • metal complex compounds containing Ir such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2 , which have advantages in terms of efficiency improvement among the light emitting layer materials, are blue, green, and red. (red) is used as the phosphorescent dopant material, 4,4-dicarbazolybiphenyl (CBP) is used as the phosphorescent host material.
  • the conventional organic material has an advantageous aspect in terms of light emission characteristics, but the thermal stability is not very good due to the low glass transition temperature, it is not a satisfactory level in terms of the life of the organic EL device. Therefore, development of the organic material layer material which is excellent in performance is calculated
  • an object of the present invention is to provide a novel compound and an organic electroluminescent device using the compound which can improve the efficiency, lifespan and stability of the organic electroluminescent device.
  • the present invention provides a compound represented by the following formula (1):
  • X 1 to X 7 are each independently N or C (R 2 ), but at least one of X 1 to X 7 is N;
  • L 1 and L 2 are each independently selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • Ar 1 is an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , a heteroaryl group of 5 to 60 nuclear atoms, an alkyloxy group of C 1 ⁇ C 40 , an aryloxy group of C 6 ⁇ C 60 , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group;
  • n is an integer from 0 to 5;
  • R 1 is deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups, C An alkylsilyl group of 3 to C 40 , an arylsilyl group of C 6 to C 60 , an alkyl boron group of C 1 to C 40, an aryl boron group of C 6 to C 60 , an arylphosphanyl group of C 6 to C 60 , C 6 ⁇ C 60 It is selected from the group consisting of mono or diaryl phosphinyl group and C 6 ⁇ C 60 An arylamine group, when there are a plurality of R
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, and when there are a plurality of R 2 , they are the same or different from each other;
  • the arylene group and heteroarylene group of L 1 and L 2 the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, of Ar 1 , R 1 and R 2 , Heterocycloalkyl group, arylamine group, alkylsilyl group, alkylboron group, arylboron group, arylphosphanyl group, mono or diarylphosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60 Aryloxy group, C 1 to C 40 alkyloxy group, C 6 tol
  • the present invention includes an anode, a cathode and one or more organic material layers interposed between the anode and the cathode, and at least one of the one or more organic material layers provides an organic electroluminescent device comprising the compound of Formula 1. .
  • Alkyl in the present invention is a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms, examples of which are methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl And the like, but are not limited thereto.
  • Alkenyl in the present invention is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having at least one carbon-carbon double bond, and examples thereof include vinyl, Allyl, isopropenyl, 2-butenyl, and the like, but is not limited thereto.
  • Alkynyl in the present invention is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having at least one carbon-carbon triple bond, examples of which are ethynyl. , 2-propynyl, and the like, but is not limited thereto.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms in which a single ring or two or more rings are combined.
  • monovalent having two or more rings condensed with each other, containing only carbon as a ring forming atom for example, may have 8 to 60 carbon atoms
  • the whole molecule has non-aromacity Substituents may also be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, fluorenyl, and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom selected from N, O, P, S and Se. In addition, two or more rings are simply pendant or condensed with each other, and in addition to carbon as a ring forming atom, a hetero atom selected from N, O, P, S and Se, the entire molecule is non-aromatic (non- It is also interpreted to include monovalent groups having aromacity).
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycides such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl Click ring; 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 5 to 60 carbon atoms.
  • R means aryl having 5 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means 1 to 40 alkyl, and is linear, branched or cyclic structure.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • cycloalkyl in the present invention is meant monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Heterocycloalkyl in the present invention means a monovalent substituent derived from 3 to 40 non-aromatic hydrocarbons of nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 carbons is N, O, Substituted with a hetero atom such as S or Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 60 carbon atoms.
  • Condensed ring in the present invention means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring or a combination thereof.
  • the compound represented by Formula 1 according to the present invention is excellent in thermal stability, hole transporting, hole injection performance, electron transporting and electron injection performance, and excellent phosphorescence characteristics of the light emitting layer, so that the organic material layer material of the organic electroluminescent device, preferably May be used as the light emitting layer material.
  • the present invention provides a compound represented by Formula 1:
  • X 1 to X 7 are each independently N or C (R 2 ), but at least one of X 1 to X 7 is N;
  • L 1 and L 2 are each independently selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • Ar 1 is an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , a heteroaryl group of 5 to 60 nuclear atoms, an alkyloxy group of C 1 ⁇ C 40 , an aryloxy group of C 6 ⁇ C 60 , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group;
  • n is an integer from 0 to 5;
  • R 1 is deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups, C An alkylsilyl group of 3 to C 40 , an arylsilyl group of C 6 to C 60 , an alkyl boron group of C 1 to C 40, an aryl boron group of C 6 to C 60 , an arylphosphanyl group of C 6 to C 60 , C 6 ⁇ C 60 It is selected from the group consisting of mono or diaryl phosphinyl group and C 6 ⁇ C 60 An arylamine group, when there are a plurality of R
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, and when there are a plurality of R 2 , they are the same or different from each other;
  • the arylene group and heteroarylene group of L 1 and L 2 the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, of Ar 1 , R 1 and R 2 , Heterocycloalkyl group, arylamine group, alkylsilyl group, alkylboron group, arylboron group, arylphosphanyl group, mono or diarylphosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60 Aryloxy group, C 1 to C 40 alkyloxy group, C 6 tol
  • novel organic compounds according to the invention have an azacarbazole skeleton in which phenyl is substituted at position 1 of the carbazole.
  • the azacarbazole moiety has a high T1 and a wide band gap, so that energy transfer to the dopant may be useful, thereby improving luminous efficiency of the device.
  • the novel organic compound according to the present invention is characterized in that the compound represented by the following formula (1):
  • X 1 to X 7 are each independently N or C (R 2 ), but at least one of X 1 to X 7 is N;
  • L 1 and L 2 are each independently selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • Ar 1 is an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , a heteroaryl group of 5 to 60 nuclear atoms, an alkyloxy group of C 1 ⁇ C 40 , an aryloxy group of C 6 ⁇ C 60 , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group;
  • n is an integer from 0 to 5;
  • R 1 is deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups, C An alkylsilyl group of 3 to C 40 , an arylsilyl group of C 6 to C 60 , an alkyl boron group of C 1 to C 40, an aryl boron group of C 6 to C 60 , an arylphosphanyl group of C 6 to C 60 , C 6 ⁇ C 60 It is selected from the group consisting of mono or diaryl phosphinyl group and C 6 ⁇ C 60 An arylamine group, when there are a plurality of R
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, and when there are a plurality of R 2 , they are the same or different from each other;
  • the arylene group and heteroarylene group of L 1 and L 2 the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, of Ar 1 , R 1 and R 2 , Heterocycloalkyl group, arylamine group, alkylsilyl group, alkylboron group, arylboron group, arylphosphanyl group, mono or diarylphosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60 Aryloxy group, C 1 to C 40 alkyloxy group, C 6 tol
  • the compound represented by Chemical Formula 1 may be a compound represented by any one of the following Chemical Formulas 2 to 8:
  • Y 1 to Y 7 are all C (R 3 ), but a plurality of R 3 are the same as or different from each other;
  • a plurality of R 3 's are each independently hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl groups, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 phosphazene aryl group, a mono- or diaryl the C 6 ⁇ C 60 Phosphinicosuccinic group and a C 6 ⁇ is selected from the group consisting of an aryl amine of the C 60;
  • Ar 1 , R 1 , L 1 , L 2 and n are each as defined in Chemical Formula 1.
  • L 1 and L 2 may be independently selected from the group consisting of a single bond, a phenylene group, a biphenylene group, a naphthalenyl group, a fluorenyl group and a carbazolyl group.
  • Ar 1 and R 2 are each independently hydrogen, C 1 ⁇ C 40 Alkyl group, C 6 ⁇ C 60 An aryl group and a nuclear atom of 5 to 60 heteroaryl group Can be selected from the group.
  • Z 1 to Z 5 are each independently N or C (R 4 );
  • L 3 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 4 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A silyl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, and when there are a plurality of R 4 , they are the same or different from each other;
  • Alkyl groups of the L 3 of the arylene group and a heteroarylene group, R 4, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, an alkyl Silyl group, alkyl boron group, aryl boron group, aryl phosphanyl group, mono or diaryl phosphinyl group and aryl silyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ aryloxy C 60, C 1 ⁇ C 40 alkyloxy groups
  • substituent represented by Formula 9 include a substituent represented by the following A-1 to A-16, but is not limited thereto:
  • R 4 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha Nyl group, C 6 ⁇ C 60 Mono or diaryl phosphinyl group and C 6 ⁇ C 60 An arylamine group selected from the group consisting of a plurality of R 4 in the formula A-1 to A-10 are the same or different from each other
  • m is an integer of 0 to 4, and when m is 0, it means that hydrogen is not substituted with a substituent R 5 , and when m is an integer of 1 to 4, R 5 is deuterium, halogen, cyano group, nitro C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom of 3 to 40 heterocycloalkyl group, C 6 Aryl group of ⁇ C 60 , heteroaryl group of 5 to 60 nuclear atoms, aryloxy group of C 6 ⁇ C 60 , alkyloxy group of C 1 ⁇ C 40 , arylamine group of C 6 ⁇ C 60 , C 1 ⁇ C 40 alkylsilyl group, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C group 60 arylboronic of, C 6 ⁇ C 60 aryl phosphazene group, C of 6
  • R 4 may be a C 6 ⁇ C 60 aryl group or a nuclear atom of 5 to 60 heteroaryl group.
  • R 4 may be selected from the group consisting of phenyl group, biphenyl group, fluorenyl group and carbazolyl group.
  • L 3 may be selected from the group consisting of a single bond, a phenylene group, a biphenylene group, a naphthalenyl group, a fluorenyl group and a carbazolyl group.
  • L 4 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 6 and R 7 are each independently a C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ selected from the group consisting of an aryl amine of the C 60 of the Or R 6 and R 7 may combine to form a condensed ring;
  • the arylene group and heteroarylene group of L 4 and the alkyl group, aryl group, heteroaryl group and arylamine group of R 6 and R 7 are each independently deuterium, halogen, cyano group, nitro group, C 1 to C 40 An alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 6 to C 60 aryl group, a nuclear atom having 5 to 60 heteroaryl groups, a C 6 to C 60 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 arylamine group, C 3 ⁇ C 40 cycloalkyl group, 3 to 40 heterocycloalkyl group, C 1 ⁇ C 40 alkylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phosphanyl group, C 6 ⁇ C 60 Mono or diaryl
  • R 6 and R 7 may be each independently a C 6 ⁇ C 60 aryl group or a nuclear atom of 5 to 60 heteroaryl group. .
  • R 6 and R 7 may be each independently selected from the group consisting of phenyl group, biphenyl group, fluorenyl group and carbazolyl group.
  • L 4 may be selected from the group consisting of a single bond, a phenylene group, a biphenylene group, a naphthalenyl group, a fluorenyl group and a carbazolyl group.
  • T 1 is selected from the group consisting of O, S, N (R 8 ) and C (R 9 ) (R 10 ),
  • R 8 to R 10 are each independently hydrogen, deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 6 -C 60 aryl group, C 5-60 heteroaryl group, C 1 -C 40 alkyloxy group, C 6- C 60 aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ for C 60 aryl phosphazene group, C 6 ⁇ C 60 mono or diaryl phosphine blood group and a C 6 ⁇ is selected from the group consisting of an aryl amine of the C 60 of the;
  • alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group, heterocycloalkyl group, arylamine group, alkylsilyl group, alkyl boron group, aryl of the above R 8 to R 10 Boron, arylphosphanyl, mono or diarylphosphinyl and arylsilyl groups are each independently deuterium, halogen, cyano, nitro, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C Alkynyl group of 2 to C 40 , aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, aryloxy group of C 6 to C 60 , alkyloxy group of C 1 to C 40 , C 6 ⁇ C 60 arylamine group, C 3 ⁇ C 40 cycloalkyl group, a number of nuclear
  • the preferred of the invention in the substituent represented by the formula 11, wherein R 8 to R 10 are each independently hydrogen, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 6 It may be selected from the group consisting of an aryl group of ⁇ C 60 and a heteroaryl group of 5 to 60 nuclear atoms.
  • R 8 to R 10 are each independently hydrogen, methyl, ethyl, propanyl, butyl, phenyl, phenyl, biphenyl, naph It may be selected from the group consisting of a thalenyl group and a pyridinyl group.
  • Compound represented by Formula 1 of the present invention may be represented by the following compounds, but is not limited thereto:
  • the compound represented by Chemical Formula 1 may be synthesized according to a general synthetic method (Chem. Rev., 60: 313 (1960); J. Chem. SOC. 4482 (1955); Chem. Rev. 95: 2457 (1995) et al. Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.
  • organic electroluminescent device comprising the compound represented by the formula (1) according to the present invention.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer It includes a compound represented by the formula (1).
  • the compound may be used alone or mixed two or more.
  • the at least one organic material layer may be at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron transport auxiliary layer, and an electron injection layer, and at least one organic material layer may include a compound represented by Formula 1 above.
  • a hole injection layer a hole transport layer, a light emitting layer
  • an electron transport layer an electron transport auxiliary layer
  • an electron injection layer and at least one organic material layer may include a compound represented by Formula 1 above.
  • the organic material layer including the compound represented by Chemical Formula 1 may be a light emitting layer.
  • the light emitting layer of the organic EL device may include a host material, and may include a compound represented by Chemical Formula 1 as a host material, in particular, a green host material.
  • a compound represented by Chemical Formula 1 when included as a light emitting layer material of the organic electroluminescent device, preferably a green phosphorescent host, the binding force between the holes and the electrons in the light emitting layer is increased. Efficiency and power efficiency), lifespan, brightness and driving voltage can be improved.
  • the structure of the organic EL device according to the present invention described above is not particularly limited, and may be, for example, a structure in which a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked.
  • an electron transport auxiliary layer may be further stacked between the emission layer and the electron transport layer, and an electron injection layer may be further stacked on the electron transport layer.
  • at least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron transport auxiliary layer and the electron injection layer may include a compound represented by the formula (1), preferably the light emitting layer is represented by the formula (1) It may include a compound represented.
  • the structure of the organic EL device according to the present invention may be a structure in which an anode, one or more layers of organic material layers, and a cathode are sequentially stacked, and an insulating layer or an adhesive layer is inserted at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device of the present invention may be formed using other materials and methods known in the art, except that at least one of the organic material layers (eg, the light emitting layer) is formed to include the compound represented by Chemical Formula 1. It may be prepared by forming an organic material layer and an electrode.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and silicon wafers, quartz, glass plates, metal plates, plastic films, sheets, and the like may be used.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • M-MTDATA 60 nm) / TCTA (80 nm) / C 3 to C 105 + 10% Ir (ppy) 3 (300nm) / BCP (10 nm) / Alq 3 ( 30 nm) / LiF (1 nm) / Al (200 nm) was laminated to fabricate an organic EL device.
  • a green organic electroluminescent device was manufactured in the same manner as in Example 1, except that CBP was used instead of Compound C 3 as a light emitting host material when forming the emission layer.
  • Example 1 C 3 6.62 516 39.6
  • Example 2 C 5 6.71 517 39.9
  • Example 3 C 15 6.51 518 39.5
  • Example 4 C 23 6.80 518 40.1
  • Example 5 C 35 6.72 517 40.2
  • Example 6 C 45 6.72 516 41.8
  • Example 7 C 50 6.73 517 40.7
  • Example 8 C 55 6.70 518 40.2
  • Example 9 C 59 6.69 518 39.8
  • Example 10 C 65 6.70 517 39.9
  • Example 11 C 75 6.44 518 39.5
  • Example 12 C 80 6.81 517 41.1
  • Example 13 85 6.60 518 41.3
  • Example 14 C 104 6.71 515 43.4
  • Example 15 C 105 6.72 516 42.2 Comparative Example 1 CBP 6.93 516 38.2
  • the present invention relates to novel organic compounds that can be used as materials for organic electroluminescent devices and organic electroluminescent devices comprising the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un nouveau composé et un dispositif électroluminescent organique le contenant. Le composé selon la présente invention est utilisé dans une couche organique d'un dispositif électroluminescent organique, de préférence, dans une couche électroluminescente, et permet ainsi d'améliorer l'efficacité lumineuse, la tension d'excitation, la durée de vie, et d'autres propriétés similaires du dispositif électroluminescent organique.
PCT/KR2016/014118 2015-12-10 2016-12-02 Composé organique et dispositif électroluminescent organique le contenant WO2017099431A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150176013A KR102508486B1 (ko) 2015-12-10 2015-12-10 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR10-2015-0176013 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017099431A1 true WO2017099431A1 (fr) 2017-06-15

Family

ID=59013450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014118 WO2017099431A1 (fr) 2015-12-10 2016-12-02 Composé organique et dispositif électroluminescent organique le contenant

Country Status (2)

Country Link
KR (1) KR102508486B1 (fr)
WO (1) WO2017099431A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235977A (zh) * 2017-07-13 2017-10-10 长春海谱润斯科技有限公司 一种吡啶并吲哚化合物及其有机发光器件
CN107253948A (zh) * 2017-07-13 2017-10-17 长春海谱润斯科技有限公司 一种吡啶并吲哚化合物及其有机发光器件
CN110294755A (zh) * 2019-04-30 2019-10-01 北京诚志永华显示科技有限公司 有机电致发光化合物及其应用
CN110305124A (zh) * 2019-05-24 2019-10-08 浙江华显光电科技有限公司 一种三嗪类化合物及含有该化合物的有机发光器件
CN111825697A (zh) * 2020-07-10 2020-10-27 北京燕化集联光电技术有限公司 一种含咔唑环的化合物及其应用
CN111825671A (zh) * 2020-07-10 2020-10-27 北京燕化集联光电技术有限公司 一种含咔唑环化合物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206413A (zh) * 2017-07-07 2019-01-15 固安鼎材科技有限公司 一种含重原子化合物、其应用及有机电致发光器件
CN110869372B (zh) * 2017-11-17 2022-05-27 株式会社Lg化学 化合物及利用其的有机发光元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055912A1 (fr) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les utilisant
KR20140009263A (ko) * 2011-02-11 2014-01-22 유니버셜 디스플레이 코포레이션 유기 발광 디바이스 및 이것에 사용되는 재료
KR20140079306A (ko) * 2012-12-18 2014-06-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20140122929A (ko) * 2013-04-11 2014-10-21 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN104497013A (zh) * 2014-12-11 2015-04-08 石家庄诚志永华显示材料有限公司 氮杂咔唑类oled材料及其制备方法与应用
KR20150083786A (ko) * 2014-01-10 2015-07-20 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055912A1 (fr) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les utilisant
KR20140009263A (ko) * 2011-02-11 2014-01-22 유니버셜 디스플레이 코포레이션 유기 발광 디바이스 및 이것에 사용되는 재료
KR20140079306A (ko) * 2012-12-18 2014-06-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20140122929A (ko) * 2013-04-11 2014-10-21 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20150083786A (ko) * 2014-01-10 2015-07-20 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자
CN104497013A (zh) * 2014-12-11 2015-04-08 石家庄诚志永华显示材料有限公司 氮杂咔唑类oled材料及其制备方法与应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235977A (zh) * 2017-07-13 2017-10-10 长春海谱润斯科技有限公司 一种吡啶并吲哚化合物及其有机发光器件
CN107253948A (zh) * 2017-07-13 2017-10-17 长春海谱润斯科技有限公司 一种吡啶并吲哚化合物及其有机发光器件
CN110294755A (zh) * 2019-04-30 2019-10-01 北京诚志永华显示科技有限公司 有机电致发光化合物及其应用
CN110305124A (zh) * 2019-05-24 2019-10-08 浙江华显光电科技有限公司 一种三嗪类化合物及含有该化合物的有机发光器件
CN111825697A (zh) * 2020-07-10 2020-10-27 北京燕化集联光电技术有限公司 一种含咔唑环的化合物及其应用
CN111825671A (zh) * 2020-07-10 2020-10-27 北京燕化集联光电技术有限公司 一种含咔唑环化合物及其应用

Also Published As

Publication number Publication date
KR102508486B1 (ko) 2023-03-08
KR20170068934A (ko) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2018038463A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant
WO2017095100A1 (fr) Composé organique et élément électroluminescent organique le comprenant
WO2016105161A2 (fr) Composé organique et élément électroluminescent organique comprenant ce composé
WO2017099431A1 (fr) Composé organique et dispositif électroluminescent organique le contenant
WO2019009591A1 (fr) Composé organique et dispositif électroluminescent organique l'utilisant
WO2015053524A1 (fr) Composé organique et dispositif électroluminescent organique comprenant un tel composé
WO2018080068A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant
WO2018230782A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant
WO2015060684A2 (fr) Composé organique et dispositif électroluminescent organique comprenant un tel composé
WO2014098447A1 (fr) Composé organique et élément électroluminescent organique le comprenant
WO2017111544A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant
WO2014098455A1 (fr) Nouveau composé organique et élément électroluminescent organique le comprenant
WO2017111543A1 (fr) Composé organique et dispositif électroluminescent organique comprenant ce composé
WO2013100497A1 (fr) Composé organique électroluminescent, et dispositif organique électroluminescent utilisant le composé
WO2020045822A1 (fr) Composé organique et diode électroluminescente organique l'utilisant
WO2015093813A2 (fr) Composé organique et dispositif électroluminescent organique comprenant un tel composé
WO2016111515A1 (fr) Élément électroluminescent organique
WO2018043913A1 (fr) Composé organique et dispositif électroluminescent organique comprenant un tel composé
WO2020009381A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant
WO2018186551A1 (fr) Composé organique et élément électroluminescent organique le comprenant
WO2016104954A2 (fr) Composé organique et dispositif électroluminescent organique comprenant un tel composé
WO2015046982A2 (fr) Composé organique et élément électroluminescent organique le contenant
WO2015099477A2 (fr) Nouveau composé organique et dispositif électroluminescent organique l'utilisant
WO2015099453A1 (fr) Composé organique électroluminescent diode organique électroluminescente l'utilisant
WO2019039723A1 (fr) Composé organique et dispositif électroluminescent organique le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16873296

Country of ref document: EP

Kind code of ref document: A1