WO2017099356A1 - Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same - Google Patents

Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same Download PDF

Info

Publication number
WO2017099356A1
WO2017099356A1 PCT/KR2016/012242 KR2016012242W WO2017099356A1 WO 2017099356 A1 WO2017099356 A1 WO 2017099356A1 KR 2016012242 W KR2016012242 W KR 2016012242W WO 2017099356 A1 WO2017099356 A1 WO 2017099356A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
resin composition
formula
bifunctional
Prior art date
Application number
PCT/KR2016/012242
Other languages
French (fr)
Korean (ko)
Inventor
정주영
김민겸
한승
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2017099356A1 publication Critical patent/WO2017099356A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon

Definitions

  • the present invention relates to a method for producing an epoxy resin, an epoxy resin produced using the same, an epoxy resin composition for sealing a semiconductor device comprising the same, and a molded article molded using the same. More specifically, the present invention relates to a method for producing an epoxy resin having low shrinkage and low elastic properties, an epoxy resin produced by the above production method, an epoxy resin composition and a molded article including the same.
  • An object of the present invention is to provide an epoxy resin having a softening point suitable for a semiconductor packaging process and excellent in low shrinkage and low elastic properties.
  • Another object of the present invention is to provide a method for producing an epoxy resin having the above characteristics.
  • Still another object of the present invention is to provide an epoxy resin composition and a molded article containing the epoxy resin.
  • the present invention comprises the steps of melting a bifunctional monomolecular epoxy compound comprising a polycyclic structure by heating above the melting temperature; And it provides a method for producing an epoxy resin comprising the step of cooling the molten epoxy compound.
  • the polycyclic structure may include one or more selected from the group consisting of fluorene, anthracene, naphthalene and biphenyl.
  • the bifunctional monomolecular epoxy compound including the polycyclic structure may be a compound represented by the following Formula (1).
  • X and Y are each independently hydrogen or an alkyl group having 1 to 10, n is an integer of 1 to 5, m is an integer of 1 to 5.
  • the melting may be performed by heating the bifunctional monomolecular epoxy compound including the polycyclic structure to about 150 ° C to about 250 ° C.
  • the cooling may be cooling the molten epoxy compound to about 20 °C to about 30 °C.
  • the present invention provides an epoxy resin prepared according to the method and having a softening point of about 50 ° C to about 140 ° C.
  • the present invention provides an epoxy resin composition for sealing a semiconductor device comprising the epoxy resin, the curing agent, and the inorganic filler according to the present invention, and a molded article molded using the same.
  • the epoxy resin prepared according to the present invention may have a softening point of about 50 ° C. to about 140 ° C., and thus may be usefully applied to a semiconductor packaging process without being used in combination with other epoxy resins.
  • the epoxy resin prepared according to the present invention has a low shrinkage and low elastic properties after molding, including a polycyclic structure.
  • Example 1 is a view showing a differential scanning calorimeter graph of Example 1.
  • FIG. 3 is a view showing a differential scanning calorimeter graph of Comparative Example 1.
  • the present inventors have studied to develop an epoxy resin having low shrinkage and low elasticity and having a softening point suitable for a semiconductor packaging process. As a result, the bifunctional monomolecular epoxy compound containing a polycyclic structure is melted and then cooled. When manufacturing an epoxy resin by the method, it turned out that the above object can be achieved and completed this invention.
  • Method for producing an epoxy resin according to the present invention comprises the steps of melting the bifunctional mono-molecular epoxy compound containing a polycyclic structure above the melting temperature of the bi-functional monomolecular epoxy compound, and cooling the molten epoxy compound It includes.
  • the polycyclic structure contained in the bifunctional monomolecular epoxy compound is not limited thereto, but may include, for example, one or more selected from the group consisting of fluorene, anthracene, naphthalene, and biphenyl.
  • fluorene anthracene
  • naphthalene naphthalene
  • biphenyl a group consisting of fluorene, anthracene, naphthalene, and biphenyl
  • the bifunctional monomolecular epoxy compound including the polycyclic structure may be a compound represented by the following Formula (1).
  • X and Y are each independently hydrogen or an alkyl group having 1 to 10, n is an integer of 1 to 5, m is an integer of 1 to 5.
  • the compound represented by Chemical Formula 1 may be a compound represented by Chemical Formulas 1-1 to 1-3, but is not limited thereto.
  • epoxy resins including polycyclic structures such as fluorene, anthracene, naphthalene, biphenyl, etc. have the advantage of low shrinkage and elastic modulus, but are mixed in the kneading process because they form a crystalline resin having a high melting point. It is difficult to apply to the resin composition for sealing a semiconductor device because there is such a problem that the particles can be discharged, and the mold inlet during the transfer molding or the appearance defect is generated during transfer molding.
  • an amorphous epoxy resin composition having a polycyclic structure can be prepared.
  • the epoxy resin of the present invention prepared by the above method shows a peak in the temperature range of about 50 °C to about 130 °C in the graph measured by differential scanning calorimetry, and from about 130 °C It has a characteristic that no significant peak appears in the temperature range of about 250 ° C. This is because crystalline epoxy resins including polycyclic structures such as fluorene, anthracene, naphthalene, biphenyl, etc., show peaks only in the temperature range of about 130 ° C to about 250 ° C, or about 50 ° C to about 130 ° C and about 130 ° C.
  • the differential scanning calorimetry is to heat the epoxy resin to 200 °C at a heating rate of 10 °C / min, cooled to 0 °C at a cooling rate of 10 °C / min, and then to 200 °C at a temperature rising rate of 10 °C / min Was performed.
  • the epoxy resin of the present invention has an amorphous structure, and thus has a low softening point and a viscosity deviation, and thus can be applied alone to a semiconductor packaging process.
  • the epoxy resin of the present invention prepared by the above method has a softening point of about 50 °C to about 140 °C, the viscosity deviation at 120 °C is about 5% or less.
  • the viscosity deviation means a value calculated by multiplying 100 by measuring the viscosity of the epoxy resin five times at 120 ° C., then dividing the difference between the maximum value and the minimum value of the measured viscosity by the viscosity average value.
  • the epoxy resin of the present invention since the epoxy resin of the present invention includes a bulky polycyclic structure, it has low shrinkage and low elasticity.
  • the epoxy resin composition for semiconductor element sealing of this invention contains the above-mentioned epoxy resin, hardening
  • the epoxy resin is a manufacturing method of the present invention described above, that is, the step of melting a bifunctional monomolecular epoxy compound containing a polycyclic structure by heating above the melting temperature of the bifunctional monomolecular epoxy compound, and the molten epoxy compound
  • An epoxy resin prepared by a manufacturing method comprising the step of cooling the epoxy resin, wherein the softening point is about 50 ° C to about 140 ° C, and the viscosity variation at 120 ° C is about 5% or less. Specific contents of the epoxy resin are the same as described above.
  • the epoxy resin may be included in about 0.5% to about 20% by weight of the epoxy resin composition for sealing semiconductor devices. Specifically, about 1% to about 12% by weight may be included. More specifically, it may be included in an amount of about 3% by weight to about 15% by weight.
  • the curing agent is a phenol aralkyl type phenol resin, a phenol phenol novolak type phenol resin, a xylok type phenol resin, a cresol novolak type phenol resin, a naphthol type phenol resin, a terpene type phenol resin, a polyfunctional type phenol resin.
  • Phenol resins such as dicyclopentadiene-based phenol resins, and novolak-type phenol resins synthesized from bisphenol A and resol may be used.
  • the curing agent may include one or more of phenol novolak-type phenol resin, xylox phenol resin, phenol aralkyl type phenol resin, and polyfunctional phenol resin.
  • the phenol novolak type phenol resin may be, for example, a phenol novolak type phenol resin represented by the following [Formula 2], and the phenol aralkyl type phenol resin is, for example, represented by the following [Formula 3] It may be a phenol aralkyl type phenol resin having a novolak structure containing a biphenyl derivative in a molecule thereof.
  • the xylol-type phenolic resin may be, for example, a xyloxyl-phenolic resin represented by the following [Formula 4], and the polyfunctional phenolic resin is, for example, represented by the following [Formula 5] It may be a polyfunctional phenol resin containing the repeating unit represented.
  • d is 1 to 7.
  • the average value of g in [Formula 5] is 1 to 7.
  • the phenol novolak-type phenolic resin represented by Chemical Formula 2 has a short crosslinking point spacing, and when reacted with an epoxy resin, the crosslinking density becomes high, thereby increasing the glass transition temperature of the cured product, thereby lowering the coefficient of linear expansion of the cured product.
  • the curvature of a package can be suppressed.
  • the phenol aralkyl type phenol resin represented by Chemical Formula 3 forms a carbon layer (char) by reacting with an epoxy resin to block the transfer of heat and oxygen in the surroundings to achieve flame retardancy.
  • the xylox phenol resin represented by the formula (4) is preferable in view of fluidity and reliability strengthening of the resin composition.
  • the polyfunctional phenol resin containing the repeating unit represented by the formula (5) is preferable in view of enhancing the high temperature bending characteristics of the epoxy resin composition.
  • curing agents may be used alone or in combination, and may also be used as an addition compound made by performing a linear reaction such as a melt master batch with other components such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, and a stress relaxation agent.
  • a linear reaction such as a melt master batch with other components such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, and a stress relaxation agent.
  • the curing agent may be included in about 0.1% to about 13% by weight of the epoxy resin composition. Preferably from about 0.1% to about 10% by weight may be included. More preferably from about 0.1% to about 8% by weight.
  • the mixing ratio of the epoxy resin and the curing agent may be appropriately adjusted according to the required physical properties of the package.
  • the chemical equivalent ratio of the epoxy resin to the curing agent may be about 0.95 to about 3. Specifically, about 1 to about 2. More specifically, it may be about 1 to about 1.75.
  • inorganic filler general inorganic fillers used in semiconductor sealing materials may be used without limitation, and are not particularly limited.
  • fused silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, glass fiber, etc. may be used. Can be. These may be used alone or in combination.
  • molten silica having a low coefficient of linear expansion is used to reduce stress.
  • Fused silica refers to amorphous silica having a specific gravity of 2.3 or less, and also includes amorphous silica made by melting crystalline silica or synthesized from various raw materials.
  • the shape and particle size of the molten silica are not particularly limited, but the spherical molten silica having a spherical molten silica having an average particle diameter of about 5 ⁇ m to about 30 ⁇ m and a spherical molten silica having an average particle diameter of about 0.001 ⁇ m to about 1 ⁇ m It is preferred to include a molten silica mixture comprising about 1% to about 50% by weight to about 40% to about 100% by weight of the total filler. Moreover, according to a use, the maximum particle diameter can be adjusted to any one of about 45 micrometers, about 55 micrometers, and about 75 micrometers, and can be used. In the spherical molten silica, conductive carbon may be included as a foreign material on the silica surface, but it is also important to select a material containing less polar foreign matter.
  • the amount of the inorganic filler used depends on the required physical properties such as formability, low stress, and high temperature strength.
  • the inorganic filler may include about 70% to about 95% by weight, for example about 80% to about 90% by weight of the epoxy resin composition. For example from about 83% to about 87% by weight. Within this range, flame retardancy, fluidity and reliability of the epoxy resin composition can be ensured.
  • the epoxy resin composition may further include one or more of a curing accelerator, a coupling agent, and a colorant, as necessary.
  • a hardening accelerator is a substance which accelerates reaction of an epoxy resin and a hardening
  • a tertiary amine, an organometallic compound, an organophosphorus compound, an imidazole, a boron compound, etc. can be used, for example.
  • Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl ) Phenol and tri-2-ethylhexyl acid salt.
  • organometallic compound examples include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and the like.
  • Organophosphorus compounds include tris-4-methoxyphosphine, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphate And pin-1,4-benzoquinones adducts.
  • the imidazoles include 2-phenyl-4methylimidazole, 2-methylimidazole, # 2-phenylimidazole, # 2-aminoimidazole, 2-methyl-1-vinylimidazole, and 2-ethyl-4.
  • boron compound examples include tetraphenylphosphonium-tetraphenylborate, triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoro Roboranetriethylamine, tetrafluoroboraneamine, and the like.
  • 1, 5- diazabicyclo [4.3.0] non-5-ene (1, 5- diazabicyclo [4.3.0] non-5-ene: DBN)
  • 1, 8- diazabicyclo [5.4. 0] undec-7-ene 1,8-diazabicyclo [5.4.0] undec-7-ene: DBU
  • phenol novolak resin salts and the like.
  • an organophosphorus compound, a boron compound, an amine type, or an imidazole series hardening accelerator can be used individually or in mixture as said hardening accelerator.
  • the curing accelerator may also use an epoxy resin or an adduct made by preliminary reaction with a curing agent.
  • the amount of the curing accelerator may be included in an amount of about 0.01 wt% to about 2 wt% based on the total weight of the epoxy resin composition. Specifically, about 0.02 wt% to about 1.5 wt% may be included. More specifically, about 0.05% to about 1% by weight may be included. In the above range, there is an advantage that the curing of the epoxy resin composition is promoted and the degree of curing is also good.
  • the coupling agent may be a silane coupling agent.
  • the said silane coupling agent may react between an epoxy resin and an inorganic filler, and what is necessary is just to improve the interface strength of an epoxy resin and an inorganic filler, The kind is not specifically limited.
  • Specific examples of the silane coupling agent include epoxysilane, aminosilane, ureidosilane, mercaptosilane, and the like.
  • the coupling agents may be used alone or in combination.
  • the coupling agent may be included in an amount of about 0.01 wt% to about 5 wt% based on the total weight of the epoxy resin composition. Preferably from about 0.05% to about 3% by weight. More preferably about 0.1% to about 2% by weight. In the above range, the strength of the cured epoxy resin composition is improved.
  • the colorant is for laser marking of the semiconductor device encapsulant, and may include, for example, carbon black, titanium nitride, titanium black, or a mixture thereof.
  • the colorant may be included in about 0.05% to about 4% by weight of the epoxy resin composition. Within this range, incomplete marking of the epoxy resin composition can be prevented from occurring, soot can be prevented from occurring due to sooting during marking, and electrical insulation of the resin composition can be prevented from deteriorating.
  • the epoxy resin composition is higher fatty acid in the range that does not impair the object of the present invention.
  • Higher fatty acid metal salts such as ester waxes and carnauba waxes;
  • Stress relieving agents such as modified silicone oil, silicone powder, and silicone resin;
  • Antioxidants such as Tetrakis [methylene-3- (3,5-di-tertbutyl-4-hydroxyphenyl) propionate] methane; And the like may be further added as necessary.
  • the epoxy resin composition is uniformly sufficiently mixed with the above components at a predetermined mixing ratio using a Henschel mixer or Lodige mixer, and then roll-mill or kneader ( kneader), and then cooled and milled to obtain a final powder product.
  • the epoxy resin composition of the present invention as described above can be usefully applied to semiconductor devices, especially thin film type semiconductor devices that require low shrinkage and low elastic properties.
  • a low pressure transfer molding method can be generally used.
  • molding may also be performed by injection molding or casting.
  • the bifunctional monomolecular epoxy compound represented by the following Chemical Formula 1-1 was melted by applying heat in an oven at 200 ° C. for 1 hour, cooled at room temperature, and then ground to prepare an epoxy resin.
  • An epoxy resin was prepared in the same manner as in Example 1 except for using a bifunctional monomolecular epoxy compound represented by Chemical Formula 1-2.
  • An epoxy resin was prepared in the same manner as in Example 1 except for using a bifunctional monomolecular epoxy compound represented by Chemical Formula 1-3.
  • An epoxy resin was prepared in the same manner as in Example 1, except that SE-250 (Shin-a T & C), a commercially available fluorene-based monofunctional epoxy compound, was used.
  • the bifunctional monomolecular epoxy compound represented by Chemical Formula 1-1 was used as an epoxy resin without melting and cooling treatment.
  • the bifunctional monomolecular epoxy compound represented by Chemical Formula 1-2 was used as an epoxy resin without melting and cooling treatment.
  • the bifunctional monomolecular epoxy compound represented by Chemical Formula 1-3 was used as an epoxy resin without melting and cooling treatment.
  • a commercial fluorene-based bifunctional monomolecular epoxy compound SE-250 (Shin-a T & C) was used as the epoxy resin without melting and cooling treatment.
  • the epoxy equivalent, softening point, glass transition temperature, viscosity, and viscosity deviation of the epoxy resins of Examples 1 to 4 and Comparative Examples 1 to 4 were measured according to the following measuring methods. The measurement results are shown in the following [Table 1].
  • Epoxy equivalent Weigh 0.200 g of the epoxy resin to be measured and place it in a 100 mL Erlenmeyer flask, add 15 mL of methylene chloride to dissolve all solids, and 3 drops of crystal violet indicator solution, TBAB ( 5 mL of a tetrabutyl ammonium bromide solution and a magnetic stirring bar were added and stirred. The titration was performed by slowly injecting a perchloric acid solution into a Erlenmeyer flask using a burette or dropping funnel, and the volume of the perchloric acid solution was measured at the time of purple to green color on the solution. Then, the epoxy equivalent of the epoxy resin was calculated according to the following formula.
  • Epoxy equivalent (EEQ) (1000 ⁇ We) / (N ⁇ V)
  • V volume of perchloric acid used for titration
  • Viscosity and Viscosity Deviation After stabilizing the viscometer (CAP-2000 + H) at 120 ° C, 300 mg of the epoxy resin sample was added to the measuring unit and the spindle was lowered. After pressing the Run button to measure the viscosity value, acetone is used to clean the sample and spindle, and then stabilize the temperature. The procedure was repeated five times for one sample to obtain five measurements and to average the measurements. The difference between the maximum and minimum values of the measurements was then divided by the average of the measurements and multiplied by 100 to represent the viscosity deviation.
  • the epoxy resins of Examples 1 to 4 melted and cooled according to the production method of the present invention had a softening point of 88 ° C to 131 ° C, and had a low viscosity deviation of 5% or less.
  • the epoxy resins of Comparative Examples 1 to 4 have a relatively high softening point.
  • Comparative Examples 1 to 3 it had a softening point higher than 120 ° C., so that viscosity measurement at 120 ° C. was impossible, and in Comparative Example 4, high viscosity and viscosity deviation were compared to Example 4 made of the same compound. It can be seen that.

Abstract

The present invention relates to: a method for preparing an epoxy resin; an epoxy resin prepared by the method; an epoxy resin composition for encapsulating a semiconductor device, containing the same; and a molded product, the method comprising the steps of: melting a difunctional monomolecular epoxy compound containing a polycyclic structure, by heating the same at the melting temperature or higher; and cooling the molten epoxy compound.

Description

에폭시 수지의 제조방법, 에폭시 수지, 이를 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용해 성형된 성형품Manufacturing method of epoxy resin, epoxy resin, epoxy resin composition for sealing semiconductor element comprising the same and molded article molded using the same
본 발명은 에폭시 수지의 제조방법, 이를 이용해 제조된 에폭시 수지, 이를 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용해 성형된 성형품에 관한 것이다. 보다 구체적으로는, 저수축, 저탄성 특성을 갖는 에폭시 수지의 제조방법과 상기 제조방법에 의해 제조된 에폭시 수지, 이를 포함하는 에폭시 수지 조성물 및 성형품에 관한 것이다.The present invention relates to a method for producing an epoxy resin, an epoxy resin produced using the same, an epoxy resin composition for sealing a semiconductor device comprising the same, and a molded article molded using the same. More specifically, the present invention relates to a method for producing an epoxy resin having low shrinkage and low elastic properties, an epoxy resin produced by the above production method, an epoxy resin composition and a molded article including the same.
IC, LSI등의 반도체 소자를 포장하고 반도체장치를 얻는 방법으로는 에폭시(epoxy) 수지 조성물의 트랜스퍼(transfer) 성형이 저비용, 대량 생산에 적합하다는 점에서 널리 사용되고 있다.As a method of packaging semiconductor devices such as IC and LSI and obtaining a semiconductor device, transfer molding of an epoxy resin composition is widely used in view of low cost and high volume production.
종래에는 반도체 패키징 공정의 특성상, 연화점이 50℃~140℃ 수준인 지방족 또는 방향족 에폭시 수지들이 주로 사용되어 왔다. 에폭시 수지의 연화점이 상기 범위를 벗어나는 경우, 성형이 어렵고, 불량이 발생하기 쉽기 때문이다.Conventionally, aliphatic or aromatic epoxy resins having a softening point of 50 ° C. to 140 ° C. have been mainly used due to the characteristics of the semiconductor packaging process. This is because when the softening point of the epoxy resin is out of the above range, molding is difficult and defects are likely to occur.
그러나, 전자 제품의 소형화, 경량화, 고성능화 추세에 따라 반도체 칩이 얇아지고, 고집적화 및/또는 표면 실장화가 증가함에 따라 종래의 에폭시 수지 조성물들로는 해결할 수 없는 문제점이 발생하고 있다. 특히, 반도체 소자의 박형화에 따라 기판과 밀봉층 사이의 열팽창, 열수축으로 인한 패키지의 휨이 발생하기 쉽고, 밀봉층이 고탄성 특성을 가져 밀봉층에 의해 칩이 손상 또는 파손되는 등의 문제점이 발생한다.However, with the trend toward miniaturization, light weight, and high performance of electronic products, as semiconductor chips become thinner, and high integration and / or surface mounting increase, problems that cannot be solved with conventional epoxy resin compositions are occurring. In particular, as the semiconductor device becomes thin, problems such as thermal expansion between the substrate and the sealing layer and warpage of the package due to heat shrinkage are likely to occur, and the sealing layer has high elasticity characteristics, resulting in damage or breakage of the chip by the sealing layer. .
상기와 같은 문제점을 해결하기 위해, 저수축, 저탄성 물성을 갖는 에폭시 수지의 개발이 시도되고 있다. 예를 들면, 에폭시 수지 조성물에 다환 구조의 결정성 에폭시 수지를 적용하여 수축율 및 탄성율을 낮추는 방법이 시도되고 있다. 그러나, 상기와 같은 다환 구조의 결정성 에폭시 수지는 녹는점이 높아 단독으로 사용할 경우, 성형에 적합한 연화점 온도를 구현할 수 없다. 따라서, 다환 구조의 에폭시 수지와 연화점이 낮은 다른 에폭시 수지 조성물을 혼합하여 사용하는 방안이 연구되고 있다. 그러나, 이와 같이 이종의 에폭시 수지 조성물을 혼합하여 사용할 경우, 에폭시 수지들 간의 상용성 문제로 인해 혼합 가능한 중량 비율이 제한되고, 이로 인해 충분한 저수축, 저탄성 효과를 얻을 수 없다는 문제점이 있다. In order to solve the above problems, development of an epoxy resin having low shrinkage and low elastic properties has been attempted. For example, a method of lowering shrinkage and elastic modulus by applying a polycyclic crystalline epoxy resin to an epoxy resin composition has been attempted. However, when the crystalline epoxy resin of the polycyclic structure as described above has a high melting point, when used alone, a softening point temperature suitable for molding cannot be realized. Therefore, a method of mixing and using a polycyclic epoxy resin and another epoxy resin composition having a low softening point has been studied. However, when using a mixture of heterogeneous epoxy resin composition in this way, the weight ratio that can be mixed is limited due to compatibility problems between the epoxy resin, there is a problem that a sufficient low shrinkage, low elasticity effect is not obtained.
따라서, 반도체 패키징 공정에 적합한 연화점을 가지면서, 저수축, 저탄성 특성이 우수한 에폭시 수지의 개발이 요구되고 있다.Therefore, development of an epoxy resin excellent in low shrinkage and low elastic properties while having a softening point suitable for a semiconductor packaging process is required.
본 발명의 목적은 반도체 패키징 공정에 적합한 연화점을 가지면서, 저수축, 저탄성 특성이 우수한 에폭시 수지를 제공하는 것이다.An object of the present invention is to provide an epoxy resin having a softening point suitable for a semiconductor packaging process and excellent in low shrinkage and low elastic properties.
본 발명의 다른 목적은 상기와 같은 특성을 갖는 에폭시 수지의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing an epoxy resin having the above characteristics.
본 발명의 또 다른 목적은 상기 에폭시 수지를 포함하는 에폭시 수지 조성물 및 성형품을 제공하는 것이다.Still another object of the present invention is to provide an epoxy resin composition and a molded article containing the epoxy resin.
일 측면에서, 본 발명은, 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 용융 온도 이상으로 가열하여 용융시키는 단계; 및 상기 용융된 에폭시 화합물을 냉각시키는 단계를 포함하는 에폭시 수지의 제조 방법을 제공한다.In one aspect, the present invention comprises the steps of melting a bifunctional monomolecular epoxy compound comprising a polycyclic structure by heating above the melting temperature; And it provides a method for producing an epoxy resin comprising the step of cooling the molten epoxy compound.
상기 다환 구조는 플루오렌, 안트라센, 나프탈렌 및 바이페닐로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. The polycyclic structure may include one or more selected from the group consisting of fluorene, anthracene, naphthalene and biphenyl.
구체적으로는, 상기 다환 구조를 다환 구조를 포함하는 이관능 단분자 에폭시 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다.Specifically, the bifunctional monomolecular epoxy compound including the polycyclic structure may be a compound represented by the following Formula (1).
[화학식 1][Formula 1]
Figure PCTKR2016012242-appb-I000001
Figure PCTKR2016012242-appb-I000001
상기 화학식 1에서, X 및 Y는 각각 독립적으로 수소 또는 C1~10인 알킬기, n은 1 내지 5인 정수, m은 1 내지 5인 정수이다.In Formula 1, X and Y are each independently hydrogen or an alkyl group having 1 to 10, n is an integer of 1 to 5, m is an integer of 1 to 5.
상기 용융시키는 단계는 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 약 150℃ 내지 약 250℃로 가열하여 수행될 수 있다. The melting may be performed by heating the bifunctional monomolecular epoxy compound including the polycyclic structure to about 150 ° C to about 250 ° C.
상기 냉각시키는 단계는 상기 용융된 에폭시 화합물을 약 20℃ 내지 약 30℃로 냉각시키는 것일 수 있다.The cooling may be cooling the molten epoxy compound to about 20 ℃ to about 30 ℃.
다른 측면에서, 본 발명은 상기 방법에 따라 제조되며, 연화점이 약 50℃ 내지 약 140℃인 에폭시 수지를 제공한다.In another aspect, the present invention provides an epoxy resin prepared according to the method and having a softening point of about 50 ° C to about 140 ° C.
상기 에폭시 수지는 120℃에서의 점도 편차가 약 5% 이하일 수 있다.The epoxy resin may have a viscosity deviation of about 5% or less at 120 ° C.
또 다른 측면에서, 본 발명은 상기 본 발명에 따른 에폭시 수지, 경화제 및 무기 충전제를 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 성형된 성형품을 제공한다. In still another aspect, the present invention provides an epoxy resin composition for sealing a semiconductor device comprising the epoxy resin, the curing agent, and the inorganic filler according to the present invention, and a molded article molded using the same.
본 발명에 따라 제조된 에폭시 수지는 약 50℃ 내지 약 140℃의 연화점을 가져 다른 에폭시 수지와 혼용하여 사용하지 않아도 반도체 패키징 공정에 유용하게 적용될 수 있다.The epoxy resin prepared according to the present invention may have a softening point of about 50 ° C. to about 140 ° C., and thus may be usefully applied to a semiconductor packaging process without being used in combination with other epoxy resins.
또한, 본 발명에 따라 제조된 에폭시 수지는 다환 구조를 포함하여 성형 후 저수축 및 저탄성 특성을 갖는다.In addition, the epoxy resin prepared according to the present invention has a low shrinkage and low elastic properties after molding, including a polycyclic structure.
도 1은 실시예 1의 시차주사열량계 그래프를 보여주는 도면이다.1 is a view showing a differential scanning calorimeter graph of Example 1.
도 2는 실시예 4의 시차주사열량계 그래프를 보여주는 도면이다.2 is a view showing a differential scanning calorimeter graph of Example 4. FIG.
도 3은 비교예 1의 시차주사열량계 그래프를 보여주는 도면이다.3 is a view showing a differential scanning calorimeter graph of Comparative Example 1. FIG.
도 4는 비교예 4의 시차주사열량계 그래프를 보여주는 도면이다.4 is a view showing a differential scanning calorimeter graph of Comparative Example 4.
이하, 본 발명에 대해 보다 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated more concretely.
본 발명자들은 저수축, 저탄성 특성을 가지며, 반도체 패키징 공정에 적합한 연화점을 갖는 에폭시 수지를 개발하기 위해 연구를 거듭한 결과, 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 용융시킨 후, 냉각시키는 방법으로 에폭시 수지를 제조할 경우, 상기와 같은 목적을 달성할 수 있음을 알아내고, 본 발명을 완성하였다. The present inventors have studied to develop an epoxy resin having low shrinkage and low elasticity and having a softening point suitable for a semiconductor packaging process. As a result, the bifunctional monomolecular epoxy compound containing a polycyclic structure is melted and then cooled. When manufacturing an epoxy resin by the method, it turned out that the above object can be achieved and completed this invention.
먼저, 본 발명에 따른 에폭시 수지의 제조 방법에 대해 설명한다.First, the manufacturing method of the epoxy resin which concerns on this invention is demonstrated.
본 발명에 따른 에폭시 수지의 제조방법은 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 상기 이관능 단분자 에폭시 화합물의 용융 온도 이상으로 가열하여 용융시키는 단계, 및 상기 용융된 에폭시 화합물을 냉각시키는 단계를 포함한다. Method for producing an epoxy resin according to the present invention comprises the steps of melting the bifunctional mono-molecular epoxy compound containing a polycyclic structure above the melting temperature of the bi-functional monomolecular epoxy compound, and cooling the molten epoxy compound It includes.
이때, 상기 이관능 단분자 에폭시 화합물에 포함되는 다환 구조는, 이로써 한정되는 것은 아니나, 예를 들면, 플루오렌, 안트라센, 나프탈렌 및 바이페닐로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 본 발명자들의 연구에 따르면, 상기와 같은 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 용융, 냉각시켜 제조된 에폭시 수지를 사용할 경우, 저수축, 저탄성 특성을 구현할 수 있다.In this case, the polycyclic structure contained in the bifunctional monomolecular epoxy compound is not limited thereto, but may include, for example, one or more selected from the group consisting of fluorene, anthracene, naphthalene, and biphenyl. According to the researches of the present inventors, when using an epoxy resin prepared by melting and cooling the bifunctional monomolecular epoxy compound including the polycyclic structure as described above, low shrinkage, low elastic properties can be realized.
구체적으로는, 상기 다환 구조를 다환 구조를 포함하는 이관능 단분자 에폭시 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다.Specifically, the bifunctional monomolecular epoxy compound including the polycyclic structure may be a compound represented by the following Formula (1).
[화학식 1][Formula 1]
Figure PCTKR2016012242-appb-I000002
Figure PCTKR2016012242-appb-I000002
상기 화학식 1에서, X 및 Y는 각각 독립적으로 수소 또는 C1~10인 알킬기, n은 1 내지 5인 정수, m은 1 내지 5인 정수이다.In Formula 1, X and Y are each independently hydrogen or an alkyl group having 1 to 10, n is an integer of 1 to 5, m is an integer of 1 to 5.
예를 들면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3의 화합물일 수 있으나, 이에 한정되는 것은 아니다. For example, the compound represented by Chemical Formula 1 may be a compound represented by Chemical Formulas 1-1 to 1-3, but is not limited thereto.
[화학식 1-1][Formula 1-1]
Figure PCTKR2016012242-appb-I000003
Figure PCTKR2016012242-appb-I000003
[화학식 1-2][Formula 1-2]
Figure PCTKR2016012242-appb-I000004
Figure PCTKR2016012242-appb-I000004
[화학식 1-3][Formula 1-3]
Figure PCTKR2016012242-appb-I000005
Figure PCTKR2016012242-appb-I000005
본 발명의 제조 방법에 따르면, 상기와 같은 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 상기 화합물의 용융 온도 이상으로 가열하여 용융시킨다. 상기 가열 온도는 사용되는 이관능 단분자 에폭시 화합물의 종류에 따라 달라질 수 있으며, 예를 들면, 약 150℃ 내지 약 250℃ 정도일 수 있으며, 바람직하게는 약 180℃ 내지 약 200℃일 수 있다. 상기와 같이 이관능 단분자 에폭시 화합물을 용융 온도 이상의 가열하면, 화합물들이 용융되면서 분자들의 방향성 및 배열성이 상실되고 균질한(homogenous) 용융 상태가 된다.According to the production method of the present invention, the bifunctional monomolecular epoxy compound including the polycyclic structure as described above is heated to melt above the melting temperature of the compound. The heating temperature may vary depending on the type of bifunctional monomolecular epoxy compound used, for example, about 150 ° C to about 250 ° C, and preferably about 180 ° C to about 200 ° C. When the bifunctional monomolecular epoxy compound is heated above the melting temperature as described above, as the compounds are melted, the orientation and arrangement of the molecules are lost and a homogenous molten state is obtained.
이관능 단분자 에폭시 화합물들이 완전히 용융되면, 상기 용융된 화합물들을 냉각시킨다. 이때, 상기 냉각은 상기 용융된 화합물들을 상온까지 냉각시키는 방법으로 수행될 수 있으며, 예를 들면, 약 20℃ 내지 약 30℃의 온도 범위까지 냉각시킬 수 있다. 상기 과정을 통해 용융된 이관능 단분자 에폭시 화합물들이 무정형의 고체 상태의 에폭시 수지로 변하게 된다.Once the bifunctional monomolecular epoxy compounds are fully melted, the molten compounds are cooled. In this case, the cooling may be performed by cooling the molten compounds to room temperature, for example, cooling to a temperature range of about 20 ℃ to about 30 ℃. Through this process, the molten bifunctional monomolecular epoxy compounds are transformed into an amorphous solid epoxy resin.
일반적으로 플루오렌, 안트라센, 나프탈렌, 바이페닐 등과 같은 다환 구조를 포함하는 대부분의 에폭시 수지는 수축율 및 탄성율이 낮다는 장점이 있으나, 녹는 점이 높은 결정형 수지를 형성하기 때문에 니딩(kneading) 공정 시에 혼합이 잘 이루어지지 않아 입자가 토출될 수 있고, 트랜스퍼 성형 시 금형 입구를 막거나 외관 불량을 발생시키는 등의 문제점이 있어 반도체 소자 밀봉용 수지 조성물에 단독으로 적용하기 어려웠다. 그러나, 본 발명과 같이 다환 구조를 갖는 이관능 에폭시 화합물을 용융시킨 다음 냉각하여 에폭시 수지를 제조할 경우, 다환 구조를 갖는 무정형의 에폭시 수지 조성물을 제조할 수 있다.In general, most epoxy resins including polycyclic structures such as fluorene, anthracene, naphthalene, biphenyl, etc. have the advantage of low shrinkage and elastic modulus, but are mixed in the kneading process because they form a crystalline resin having a high melting point. It is difficult to apply to the resin composition for sealing a semiconductor device because there is such a problem that the particles can be discharged, and the mold inlet during the transfer molding or the appearance defect is generated during transfer molding. However, when the bifunctional epoxy compound having a polycyclic structure is melted and then cooled to prepare an epoxy resin as in the present invention, an amorphous epoxy resin composition having a polycyclic structure can be prepared.
본 발명자들의 연구에 따르면, 상기 방법에 의해 제조된 본 발명의 에폭시 수지는 시차주사열량 분석법을 통해 측정한 그래프에서 약 50℃ 내지 약 130℃ 온도 범위에서 피크(peak)가 나타나며, 약 130℃ 내지 약 250℃ 온도 범위에서는 유의미한 피크(peak)가 나타나지 않는 특성을 갖는다. 이는 종래의 플루오렌, 안트라센, 나프탈렌, 바이페닐 등과 같은 다환 구조를 포함하는 결정성 에폭시 수지들이 약 130℃ 내지 약 250℃ 온도 범위에서만 피크가 나타나거나, 약 50℃ 내지 약 130℃와 약 130℃ 내지 약 250℃에서 모두 피크가 나타나는 것과는 상이한 특성으로, 본 발명에 따라 제조된 에폭시 수지가 무정형의 구조를 가짐을 보여주는 것이다. 이때, 상기 시차주사열량 분석은 에폭시 수지를 승온 속도 10℃/min으로 200℃까지 가열하고, 냉각 속도 10℃/min으로 0℃까지 냉각한 다음, 다시 승온 속도 10℃/min으로 200℃까지 가열하면서 수행되었다.According to the study of the inventors, the epoxy resin of the present invention prepared by the above method shows a peak in the temperature range of about 50 ℃ to about 130 ℃ in the graph measured by differential scanning calorimetry, and from about 130 ℃ It has a characteristic that no significant peak appears in the temperature range of about 250 ° C. This is because crystalline epoxy resins including polycyclic structures such as fluorene, anthracene, naphthalene, biphenyl, etc., show peaks only in the temperature range of about 130 ° C to about 250 ° C, or about 50 ° C to about 130 ° C and about 130 ° C. It is a characteristic different from that at which peaks all appear at from about 250 ° C., showing that the epoxy resin prepared according to the present invention has an amorphous structure. In this case, the differential scanning calorimetry is to heat the epoxy resin to 200 ℃ at a heating rate of 10 ℃ / min, cooled to 0 ℃ at a cooling rate of 10 ℃ / min, and then to 200 ℃ at a temperature rising rate of 10 ℃ / min Was performed.
상기와 같이 본 발명의 에폭시 수지는 무정형 구조를 가지며, 이로 인해 낮은 연화점 및 점도 편차를 갖기 때문에, 반도체 패키징 공정에 단독으로 적용될 수 있다. 구체적으로는, 상기와 같은 방법을 통해 제조된 본 발명의 에폭시 수지는 연화점이 약 50℃ 내지 약 140℃이며, 120℃에서의 점도 편차가 약 5% 이하이다. 본 명세서에서, 상기 점도 편차는 120℃에서 에폭시 수지의 점도를 5회 측정한 후, 측정된 점도의 최대값과 최소값의 차를 점도 평균값으로 나눈 후 100을 곱하여 계산된 값을 의미한다.As described above, the epoxy resin of the present invention has an amorphous structure, and thus has a low softening point and a viscosity deviation, and thus can be applied alone to a semiconductor packaging process. Specifically, the epoxy resin of the present invention prepared by the above method has a softening point of about 50 ℃ to about 140 ℃, the viscosity deviation at 120 ℃ is about 5% or less. In the present specification, the viscosity deviation means a value calculated by multiplying 100 by measuring the viscosity of the epoxy resin five times at 120 ° C., then dividing the difference between the maximum value and the minimum value of the measured viscosity by the viscosity average value.
한편, 본 발명의 에폭시 수지는 벌키(bulky)한 다환 구조를 포함하기 때문에, 저수축, 저탄성 특성을 갖는다.On the other hand, since the epoxy resin of the present invention includes a bulky polycyclic structure, it has low shrinkage and low elasticity.
다음으로, 본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물에 대해 설명한다. 본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 상기한 본 발명의 에폭시 수지, 경화제 및 무기 충전제를 포함한다. Next, the epoxy resin composition for semiconductor element sealing of this invention is demonstrated. The epoxy resin composition for semiconductor element sealing of this invention contains the above-mentioned epoxy resin, hardening | curing agent, and inorganic filler of this invention.
(A) 에폭시 수지(A) epoxy resin
상기 에폭시 수지는 상술한 본 발명의 제조 방법, 즉, 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 상기 이관능 단분자 에폭시 화합물의 용융 온도 이상으로 가열하여 용융시키는 단계, 및 상기 용융된 에폭시 화합물을 냉각시키는 단계를 포함하는 제조방법에 의해 제조된 에폭시 수지로, 연화점이 약 50℃ 내지 약 140℃이며, 120℃에서의 점도 편차가 약 5% 이하인 에폭시 수지이다. 에폭시 수지의 구체적인 내용은 상술한 바와 동일하다. The epoxy resin is a manufacturing method of the present invention described above, that is, the step of melting a bifunctional monomolecular epoxy compound containing a polycyclic structure by heating above the melting temperature of the bifunctional monomolecular epoxy compound, and the molten epoxy compound An epoxy resin prepared by a manufacturing method comprising the step of cooling the epoxy resin, wherein the softening point is about 50 ° C to about 140 ° C, and the viscosity variation at 120 ° C is about 5% or less. Specific contents of the epoxy resin are the same as described above.
상기 에폭시 수지는 반도체 소자 밀봉용 에폭시 수지 조성물 중 약 0.5 중량% 내지 약 20 중량% 포함될 수 있다. 구체적으로 약 1 중량% 내지 약 12 중량% 포함될 수 있다. 더욱 구체적으로 약 3 중량% 내지 약 15 중량%의 함량으로 포함될 수 있다. The epoxy resin may be included in about 0.5% to about 20% by weight of the epoxy resin composition for sealing semiconductor devices. Specifically, about 1% to about 12% by weight may be included. More specifically, it may be included in an amount of about 3% by weight to about 15% by weight.
(B) 경화제(B) curing agent
상기 경화제로는, 반도체 소자 밀봉용으로 일반적으로 사용되는 경화제들이 제한없이 사용될 수 있다. 바람직하게는, 상기 경화제로 페놀아랄킬형 페놀수지, 페놀노볼락형 페놀수지, 자일록(xylok)형 페놀수지, 크레졸 노볼락형 페놀수지, 나프톨형 페놀수지, 테르펜형 페놀수지, 다관능형 페놀수지, 디시클로펜타디엔계 페놀수지, 비스페놀 A와 레졸로부터 합성된 노볼락형 페놀수지 등과 같은 페놀 수지가 사용될 수 있다.As the curing agent, curing agents generally used for sealing semiconductor devices may be used without limitation. Preferably, the curing agent is a phenol aralkyl type phenol resin, a phenol phenol novolak type phenol resin, a xylok type phenol resin, a cresol novolak type phenol resin, a naphthol type phenol resin, a terpene type phenol resin, a polyfunctional type phenol resin. Phenol resins such as dicyclopentadiene-based phenol resins, and novolak-type phenol resins synthesized from bisphenol A and resol may be used.
구체적으로는, 상기 경화제는 페놀노볼락형 페놀수지, 자일록형 페놀수지, 페놀아랄킬형 페놀수지 및 다관능형 페놀수지 중 하나 이상을 포함할 수 있다.Specifically, the curing agent may include one or more of phenol novolak-type phenol resin, xylox phenol resin, phenol aralkyl type phenol resin, and polyfunctional phenol resin.
상기 페놀노볼락형 페놀수지는, 예를 들면, 하기 [화학식 2]로 표시되는 페놀노볼락형 패놀수지일 수 있으며, 상기 페놀아랄킬형 페놀수지는 예를 들면, 하기 [화학식 3]으로 표시되는 분자 중에 바이페닐 유도체를 포함하는 노볼락 구조의 페놀아랄킬형 페놀수지일 수 있다. 또한, 상기 자일록형 페놀수지는, 예를 들면, 하기 [화학식 4]로 표시되는 자일록(xylok)형 페놀수지일 수 있으며, 상기 다관능형 페놀수지는, 예를 들면, 하기 [화학식 5]로 표시되는 반복 단위를 포함하는 다관능형 페놀수지일 수 있다.The phenol novolak type phenol resin may be, for example, a phenol novolak type phenol resin represented by the following [Formula 2], and the phenol aralkyl type phenol resin is, for example, represented by the following [Formula 3] It may be a phenol aralkyl type phenol resin having a novolak structure containing a biphenyl derivative in a molecule thereof. In addition, the xylol-type phenolic resin may be, for example, a xyloxyl-phenolic resin represented by the following [Formula 4], and the polyfunctional phenolic resin is, for example, represented by the following [Formula 5] It may be a polyfunctional phenol resin containing the repeating unit represented.
[화학식 2][Formula 2]
Figure PCTKR2016012242-appb-I000006
Figure PCTKR2016012242-appb-I000006
상기 [화학식 2]에서 d는 1 내지 7이다.In Formula 2, d is 1 to 7.
[화학식 3][Formula 3]
Figure PCTKR2016012242-appb-I000007
Figure PCTKR2016012242-appb-I000007
상기 [화학식 3]에서, e의 평균치는 1 내지 7이다.In [Formula 3], the average value of e is 1 to 7.
[화학식 4][Formula 4]
Figure PCTKR2016012242-appb-I000008
Figure PCTKR2016012242-appb-I000008
상기 [화학식 4]에서, f의 평균치는 0 내지 7이다.In [Formula 4], the average value of f is 0 to 7.
[화학식 5][Formula 5]
Figure PCTKR2016012242-appb-I000009
Figure PCTKR2016012242-appb-I000009
상기 [화학식 5]에서 g의 평균치는 1 내지 7이다.The average value of g in [Formula 5] is 1 to 7.
상기 화학식 2로 표시되는 페놀노볼락형 페놀수지는 가교점 간격이 짧아, 에폭시 수지와 반응할 경우 가교밀도가 높아져 그 경화물의 유리전이온도를 높일 수 있고, 이에 따라 경화물 선팽창계수를 낮추어 반도체 소자 패키지의 휨을 억제할 수 있다. 상기 화학식 3으로 표시되는 페놀아랄킬형 페놀수지는 에폭시 수지와 반응하여 탄소층(char)을 형성하여 주변의 열 및 산소의 전달을 차단함으로써 난연성을 달성하게 된다. 상기 화학식 4로 표시되는 자일록형 페놀수지는 수지 조성물의 유동성 및 신뢰성 강화 측면에서 바람직하다. 상기 화학식 5로 표시되는 반복단위를 포함하는 다관능형 페놀수지는 에폭시 수지 조성물의 고온 휨 특성 강화 측면에서 바람직하다.The phenol novolak-type phenolic resin represented by Chemical Formula 2 has a short crosslinking point spacing, and when reacted with an epoxy resin, the crosslinking density becomes high, thereby increasing the glass transition temperature of the cured product, thereby lowering the coefficient of linear expansion of the cured product. The curvature of a package can be suppressed. The phenol aralkyl type phenol resin represented by Chemical Formula 3 forms a carbon layer (char) by reacting with an epoxy resin to block the transfer of heat and oxygen in the surroundings to achieve flame retardancy. The xylox phenol resin represented by the formula (4) is preferable in view of fluidity and reliability strengthening of the resin composition. The polyfunctional phenol resin containing the repeating unit represented by the formula (5) is preferable in view of enhancing the high temperature bending characteristics of the epoxy resin composition.
이들 경화제는 단독 혹은 병용하여 사용될 수 있으며, 경화제에 에폭시 수지, 경화 촉진제, 이형제, 커플링제, 및 응력완화제 등의 기타 성분과 멜트 마스터 배치와 같은 선반응을 시켜 만든 부가 화합물로도 사용할 수 있다.These curing agents may be used alone or in combination, and may also be used as an addition compound made by performing a linear reaction such as a melt master batch with other components such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, and a stress relaxation agent.
상기 경화제는 에폭시 수지 조성물 중 약 0.1 중량% 내지 약 13 중량% 포함될 수 있다. 바람직하게는 약 0.1 중량% 내지 약 10 중량% 포함될 수 있다. 더욱 바람직하게는 약 0.1 중량% 내지 약 8 중량%으로 포함될 수 있다.The curing agent may be included in about 0.1% to about 13% by weight of the epoxy resin composition. Preferably from about 0.1% to about 10% by weight may be included. More preferably from about 0.1% to about 8% by weight.
상기 에폭시 수지와 경화제와의 배합비는 패키지에서의 요구되는 물성에 따라 적절하게 조절될 수 있다. 예를 들면, 경화제에 대한 에폭시 수지의 화학 당량비가 약 0.95 내지 약 3일 수 있다. 구체적으로 약 1 내지 약 2일 수 있다. 더욱 구체적으로 약 1 내지 약 1.75일 수 있다.The mixing ratio of the epoxy resin and the curing agent may be appropriately adjusted according to the required physical properties of the package. For example, the chemical equivalent ratio of the epoxy resin to the curing agent may be about 0.95 to about 3. Specifically, about 1 to about 2. More specifically, it may be about 1 to about 1.75.
(C) 무기 충전제 (C) inorganic filler
상기 무기 충전제로는 반도체 밀봉재에 사용되는 일반적인 무기 충전제들이 제한없이 사용될 수 있으며, 특별히 한정되지 않는다. 예를 들면, 상기 무기 충전제로는 용융실리카, 결정성실리카, 탄산칼슘, 탄산마그네슘, 알루미나, 마그네시아, 클레이(clay), 탈크(talc), 규산칼슘, 산화티탄, 산화안티몬, 유리섬유 등이 사용될 수 있다. 이들은 단독 또는 혼합하여 사용될 수 있다.As the inorganic filler, general inorganic fillers used in semiconductor sealing materials may be used without limitation, and are not particularly limited. For example, as the inorganic filler, fused silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, glass fiber, etc. may be used. Can be. These may be used alone or in combination.
바람직하게는 저응력화를 위해서 선팽창계수가 낮은 용융실리카를 사용한다. 용융실리카는 진비중이 2.3 이하인 비결정성 실리카를 의미하는 것으로 결정성 실리카를 용융하여 만들거나 다양한 원료로부터 합성한 비결정성 실리카도 포함된다. 용융실리카의 형상 및 입경은 특별히 한정되지는 않지만, 평균 입경 약 5㎛ 내지 약 30㎛의 구상용융실리카를 약 50 중량% 내지 약 99 중량%, 평균입경 약 0.001㎛ 내지 약 1㎛의 구상 용융실리카를 약 1 중량% 내지 약 50 중량% 포함하는 용융실리카 혼합물을 전체 충전제에 대하여 약 40 중량% 내지 약 100 중량%가 되도록 포함하는 것이 좋다. 또한, 용도에 맞춰 그 최대 입경을 약 45㎛, 약 55㎛, 및 약 75㎛ 중 어느 하나로 조정해서 사용할 수가 있다. 상기 구상 용융실리카에는 도전성의 카본이 실리카 표면에 이물질로서 포함되는 경우가 있으나 극성 이물질의 혼입이 적은 물질을 선택하는 것도 중요하다.Preferably, molten silica having a low coefficient of linear expansion is used to reduce stress. Fused silica refers to amorphous silica having a specific gravity of 2.3 or less, and also includes amorphous silica made by melting crystalline silica or synthesized from various raw materials. The shape and particle size of the molten silica are not particularly limited, but the spherical molten silica having a spherical molten silica having an average particle diameter of about 5 μm to about 30 μm and a spherical molten silica having an average particle diameter of about 0.001 μm to about 1 μm It is preferred to include a molten silica mixture comprising about 1% to about 50% by weight to about 40% to about 100% by weight of the total filler. Moreover, according to a use, the maximum particle diameter can be adjusted to any one of about 45 micrometers, about 55 micrometers, and about 75 micrometers, and can be used. In the spherical molten silica, conductive carbon may be included as a foreign material on the silica surface, but it is also important to select a material containing less polar foreign matter.
무기 충전제의 사용량은 성형성, 저응력성, 및 고온강도 등의 요구 물성에 따라 다르다. 구체예에서는 상기 무기 충전제는 에폭시 수지 조성물 중 약 70 중량% 내지 약 95 중량%, 예를 들면 약 80 중량% 내지 약 90 중량% 포함될 수 있다. 예를 들면 약 83 중량% 내지 약 87 중량% 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 난연성, 유동성 및 신뢰성을 확보할 수 있다.The amount of the inorganic filler used depends on the required physical properties such as formability, low stress, and high temperature strength. In embodiments, the inorganic filler may include about 70% to about 95% by weight, for example about 80% to about 90% by weight of the epoxy resin composition. For example from about 83% to about 87% by weight. Within this range, flame retardancy, fluidity and reliability of the epoxy resin composition can be ensured.
(D) 기타 성분(D) other components
상기 에폭시 수지 조성물은, 상기한 성분들 이외에, 필요에 따라, 경화촉진제, 커플링제 및 착색제 중 하나 이상을 더 포함할 수 있다.In addition to the above components, the epoxy resin composition may further include one or more of a curing accelerator, a coupling agent, and a colorant, as necessary.
경화 촉진제는 에폭시 수지와 경화제의 반응을 촉진하는 물질이다. 상기 경화 촉진제로는, 예를 들면, 3급 아민, 유기금속화합물, 유기인화합물, 이미다졸, 및 붕소화합물 등이 사용 가능하다. 3급 아민에는 벤질디메틸아민, 트리에탄올아민, 트리에틸렌디아민, 디에틸아미노에탄올, 트리(디메틸아미노메틸)페놀, 2-2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디아미노메틸)페놀과 트리-2-에틸헥실산염 등이 있다. A hardening accelerator is a substance which accelerates reaction of an epoxy resin and a hardening | curing agent. As said hardening accelerator, a tertiary amine, an organometallic compound, an organophosphorus compound, an imidazole, a boron compound, etc. can be used, for example. Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl ) Phenol and tri-2-ethylhexyl acid salt.
상기 유기 금속화합물의 구체적인 예로는, 크로뮴아세틸아세토네이트, 징크아세틸아세토네이트, 니켈아세틸아세토네이트 등이 있다. 유기인화합물에는 트리스-4-메톡시포스핀, 테트라부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드, 페닐포스핀, 디페닐포스핀, 트리페닐포스핀, 트리페닐포스핀트리페닐보란, 트리페닐포스핀-1,4-벤조퀴논 부가물 등이 있다. 이미다졸류에는 2-페닐-4메틸이미다졸, 2-메틸이미다졸, 2-페닐이미다졸, 2-아미노이미다졸, 2-메틸-1-비닐이미다졸, 2-에틸-4-메틸이미다졸, 2-헵타데실이미다졸 등을 들 수 있으나, 이에 한정되는 것은 아니다. 상기 붕소화합물의 구체적인 예로는, 테트라페닐포스포늄-테트라페닐보레이트, 트리페닐포스핀 테트라페닐보레이트, 테트라페닐보론염, 트리플루오로보란-n-헥실아민, 트리플루오로보란모노에틸아민, 테트라플루오로보란트리에틸아민, 테트라플루오로보란아민 등이 있다. 이외에도 1,5-디아자바이시클로[4.3.0]논-5-엔(1,5-diazabicyclo[4.3.0]non-5-ene:DBN), 1,8-디아자바이시클로[5.4.0]운덱-7-엔(1,8-diazabicyclo[5.4.0]undec-7-ene: DBU) 및 페놀노볼락 수지염 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the organometallic compound include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and the like. Organophosphorus compounds include tris-4-methoxyphosphine, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphate And pin-1,4-benzoquinones adducts. The imidazoles include 2-phenyl-4methylimidazole, 2-methylimidazole, # 2-phenylimidazole, # 2-aminoimidazole, 2-methyl-1-vinylimidazole, and 2-ethyl-4. -Methylimidazole, 2-heptadecylimidazole, and the like, but are not limited thereto. Specific examples of the boron compound include tetraphenylphosphonium-tetraphenylborate, triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoro Roboranetriethylamine, tetrafluoroboraneamine, and the like. In addition, 1, 5- diazabicyclo [4.3.0] non-5-ene (1, 5- diazabicyclo [4.3.0] non-5-ene: DBN), 1, 8- diazabicyclo [5.4. 0] undec-7-ene (1,8-diazabicyclo [5.4.0] undec-7-ene: DBU) and phenol novolak resin salts, and the like.
보다 구체적으로는, 상기 경화 촉진제로 유기인화합물, 붕소화합물, 아민계, 또는 이미다졸계 경화 촉진제를 단독 혹은 혼합하여 사용할 수 있다. 상기 경화 촉진제는 에폭시 수지 또는 경화제와 선반응하여 만든 부가물을 사용하는 것도 가능하다.More specifically, an organophosphorus compound, a boron compound, an amine type, or an imidazole series hardening accelerator can be used individually or in mixture as said hardening accelerator. The curing accelerator may also use an epoxy resin or an adduct made by preliminary reaction with a curing agent.
본 발명에서 경화 촉진제의 사용량은 에폭시 수지 조성물 총 중량에 대하여 약 0.01 중량% 내지 약 2 중량% 포함될 수 있다. 구체적으로 약 0.02 중량% 내지 약 1.5 중량% 포함될 수 있다. 더욱 구체적으로 약 0.05 중량% 내지 약 1 중량% 포함될 수 있다. 상기의 범위에서 에폭시 수지 조성물의 경화를 촉진하고 또한, 경화도도 좋은 장점이 있다.In the present invention, the amount of the curing accelerator may be included in an amount of about 0.01 wt% to about 2 wt% based on the total weight of the epoxy resin composition. Specifically, about 0.02 wt% to about 1.5 wt% may be included. More specifically, about 0.05% to about 1% by weight may be included. In the above range, there is an advantage that the curing of the epoxy resin composition is promoted and the degree of curing is also good.
상기 커플링제는 실란 커플링제일 수 있다. 상기 실란 커플링제는 에폭시 수지와 무기 충전제 사이에서 반응하여, 에폭시 수지와 무기 충전제의 계면 강도를 향상시키는 것이면 되고, 그 종류가 특별히 한정되지 않는다. 상기 실란 커플링제의 구체적인 예로는 에폭시실란, 아미노실란, 우레이도실란, 머캅토실란 등을 들 수 있다. 상기 커플링제는 단독으로 사용할 수 있으며 병용해서 사용할 수도 있다.The coupling agent may be a silane coupling agent. The said silane coupling agent may react between an epoxy resin and an inorganic filler, and what is necessary is just to improve the interface strength of an epoxy resin and an inorganic filler, The kind is not specifically limited. Specific examples of the silane coupling agent include epoxysilane, aminosilane, ureidosilane, mercaptosilane, and the like. The coupling agents may be used alone or in combination.
상기 커플링제는 에폭시 수지 조성물 총 중량에 대해 약 0.01 중량% 내지 약 5 중량% 포함될 수 있다. 바람직하게는 약 0.05 중량% 내지 약 3 중량% 포함될 수 있다. 더욱 바람직하게는 약 0.1 중량% 내지 약 2 중량% 포함될 수 있다. 상기 범위에서 에폭시 수지 조성물 경화물의 강도가 향상된다.The coupling agent may be included in an amount of about 0.01 wt% to about 5 wt% based on the total weight of the epoxy resin composition. Preferably from about 0.05% to about 3% by weight. More preferably about 0.1% to about 2% by weight. In the above range, the strength of the cured epoxy resin composition is improved.
상기 착색제는 반도체 소자 밀봉재의 레이저 마킹을 위한 것으로, 예를 들면, 카본 블랙, 티탄질화물(titanium nitride), 티탄블랙(titan black) 또는 이들의 혼합물을 포함할 수 있다. The colorant is for laser marking of the semiconductor device encapsulant, and may include, for example, carbon black, titanium nitride, titanium black, or a mixture thereof.
상기 착색제는 에폭시 수지 조성물 중 약 0.05 중량% 내지 약 4 중량% 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 불완전 마킹이 일어나는 것을 방지하고, 마킹시 그을음이 발생하여 마킹성이 저하되는 것을 막을 수 있으며, 수지 조성물의 전기 절연성이 나빠지는 것을 막을 수 있다.The colorant may be included in about 0.05% to about 4% by weight of the epoxy resin composition. Within this range, incomplete marking of the epoxy resin composition can be prevented from occurring, soot can be prevented from occurring due to sooting during marking, and electrical insulation of the resin composition can be prevented from deteriorating.
이외에도, 상기 에폭시 수지 조성물은 본 발명의 목적을 해하지 않는 범위에서 고급 지방산; 고급 지방산 금속염; 및 에스테르계 왁스, 카르나우바 왁스 등의 이형제; 변성 실리콘 오일, 실리콘 파우더, 및 실리콘 레진 등의 응력완화제; Tetrakis[methylene-3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate]methane 등의 산화방지제; 등을 필요에 따라 추가로 함유할 수 있다.In addition, the epoxy resin composition is higher fatty acid in the range that does not impair the object of the present invention; Higher fatty acid metal salts; And release agents such as ester waxes and carnauba waxes; Stress relieving agents such as modified silicone oil, silicone powder, and silicone resin; Antioxidants such as Tetrakis [methylene-3- (3,5-di-tertbutyl-4-hydroxyphenyl) propionate] methane; And the like may be further added as necessary.
한편, 상기 에폭시 수지 조성물은 상기와 같은 성분들을 헨셀 믹서(Hensel mixer)나 뢰디게 믹서(Lodige mixer)를 이용하여 소정의 배합비로 균일하게 충분히 혼합한 뒤, 롤밀(roll-mill)이나 니이더(kneader)로 용융 혼련한 후, 냉각, 분쇄 과정을 거쳐 최종 분말 제품을 얻는 방법으로 제조될 수 있다.On the other hand, the epoxy resin composition is uniformly sufficiently mixed with the above components at a predetermined mixing ratio using a Henschel mixer or Lodige mixer, and then roll-mill or kneader ( kneader), and then cooled and milled to obtain a final powder product.
상기와 같은 본 발명의 에폭시 수지 조성물은 반도체 소자, 특히 저수축 및 저탄성 특성이 요구되는 박막형 반도체 소자에 유용하게 적용될 수 있다. 본 발명에서 얻어진 에폭시 수지 조성물을 사용하여 반도체 소자를 밀봉하는 방법으로써는 저압 트랜스퍼 성형법이 일반적으로 사용될 수 있다. 그러나, 인젝션(injection) 성형법이나 캐스팅(casting) 등의 방법으로도 성형이 가능하다.The epoxy resin composition of the present invention as described above can be usefully applied to semiconductor devices, especially thin film type semiconductor devices that require low shrinkage and low elastic properties. As a method of sealing a semiconductor element using the epoxy resin composition obtained in the present invention, a low pressure transfer molding method can be generally used. However, molding may also be performed by injection molding or casting.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
실시예Example
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다. Hereinafter, the present invention will be described in detail through specific examples.
실시예Example 1 One
하기 화학식 1-1로 표시되는 이관능 단분자 에폭시 화합물을 200℃ 온도의 오븐에서 1시간 동안 열을 가하여 용융시킨 후 상온에서 냉각시킨 다음, 분쇄하여 에폭시 수지를 제조하였다.The bifunctional monomolecular epoxy compound represented by the following Chemical Formula 1-1 was melted by applying heat in an oven at 200 ° C. for 1 hour, cooled at room temperature, and then ground to prepare an epoxy resin.
[화학식 1-1][Formula 1-1]
Figure PCTKR2016012242-appb-I000010
Figure PCTKR2016012242-appb-I000010
실시예Example 2 2
하기 화학식 1-2로 표시되는 이관능 단분자 에폭시 화합물을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 에폭시 수지를 제조하였다.An epoxy resin was prepared in the same manner as in Example 1 except for using a bifunctional monomolecular epoxy compound represented by Chemical Formula 1-2.
[화학식 1-2][Formula 1-2]
Figure PCTKR2016012242-appb-I000011
Figure PCTKR2016012242-appb-I000011
실시예Example 3 3
하기 화학식 1-3으로 표시되는 이관능 단분자 에폭시 화합물을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 에폭시 수지를 제조하였다.An epoxy resin was prepared in the same manner as in Example 1 except for using a bifunctional monomolecular epoxy compound represented by Chemical Formula 1-3.
[화학식 1-3][Formula 1-3]
Figure PCTKR2016012242-appb-I000012
Figure PCTKR2016012242-appb-I000012
실시예Example 4 4
시판되는 플루오렌계 이관능 단분자 에폭시 화합물인 SE-250(Shin-a T&C)를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 에폭시 수지를 제조하였다.An epoxy resin was prepared in the same manner as in Example 1, except that SE-250 (Shin-a T & C), a commercially available fluorene-based monofunctional epoxy compound, was used.
비교예Comparative example 1 One
상기 화학식 1-1로 표시되는 이관능 단분자 에폭시 화합물을 용융 및 냉각 처리 없이 에폭시 수지로 사용하였다.The bifunctional monomolecular epoxy compound represented by Chemical Formula 1-1 was used as an epoxy resin without melting and cooling treatment.
비교예Comparative example 2 2
상기 화학식 1-2로 표시되는 이관능 단분자 에폭시 화합물을 용융 및 냉각 처리 없이 에폭시 수지로 사용하였다.The bifunctional monomolecular epoxy compound represented by Chemical Formula 1-2 was used as an epoxy resin without melting and cooling treatment.
비교예Comparative example 3 3
상기 화학식 1-3으로 표시되는 이관능 단분자 에폭시 화합물을 용융 및 냉각 처리 없이 에폭시 수지로 사용하였다.The bifunctional monomolecular epoxy compound represented by Chemical Formula 1-3 was used as an epoxy resin without melting and cooling treatment.
비교예Comparative example 4 4
시판되는 플루오렌계 이관능 단분자 에폭시 화합물인 SE-250(Shin-a T&C)를 용융 및 냉각 처리 없이 에폭시 수지로 사용하였다.A commercial fluorene-based bifunctional monomolecular epoxy compound SE-250 (Shin-a T & C) was used as the epoxy resin without melting and cooling treatment.
상기 실시예 1 ~ 4 및 비교예 1 ~ 4의 에폭시 수지의 에폭시 당량, 연화점, 유리전이온도, 점도 및 점도 편차를 하기 측정방법에 따라 측정하였다. 측정 결과는 하기 [표 1]에 나타내었다. The epoxy equivalent, softening point, glass transition temperature, viscosity, and viscosity deviation of the epoxy resins of Examples 1 to 4 and Comparative Examples 1 to 4 were measured according to the following measuring methods. The measurement results are shown in the following [Table 1].
또한, 실시예 1 및 4와 비교예 1 및 4의 에폭시 수지의 시차주사열량법에 따라 측정한 그래프를 도 1 및 도 2에 도시하였다. In addition, the graphs measured according to the differential scanning calorimetry of the epoxy resins of Examples 1 and 4 and Comparative Examples 1 and 4 are shown in FIGS. 1 and 2.
물성측정방법Property Measurement Method
(1) 에폭시 당량: 측정하고자 하는 에폭시 수지의 무게를 0.200g 가량 측정하여 100mL 삼각 플라스크에 넣은 후, 메틸렌 클로라이드(Methylene chloride) 15 mL를 넣어서 고체를 모두 녹이고, Crystal violet indicator solution 3방울, TBAB(Tetrabutyl ammonium bromide) 용액 5mL와 마그네틱 교반 막대(Magnetic stirring bar)를 넣고 교반하였다. 과염소산(Perchloric acid) 용액을 뷰렛이나 dropping funnel을 이용해 삼각 플라스크에 서서히 주입하면서 적정을 수행하고, 용액 상에서 보라색에서 녹색으로 변하는 시점의 과염소산(Perchloric acid) 용액 부피를 측정하였다. 그런 다음, 하기 식에 따라 에폭시 수지의 에폭시 당량을 계산하였다.(1) Epoxy equivalent: Weigh 0.200 g of the epoxy resin to be measured and place it in a 100 mL Erlenmeyer flask, add 15 mL of methylene chloride to dissolve all solids, and 3 drops of crystal violet indicator solution, TBAB ( 5 mL of a tetrabutyl ammonium bromide solution and a magnetic stirring bar were added and stirred. The titration was performed by slowly injecting a perchloric acid solution into a Erlenmeyer flask using a burette or dropping funnel, and the volume of the perchloric acid solution was measured at the time of purple to green color on the solution. Then, the epoxy equivalent of the epoxy resin was calculated according to the following formula.
에폭시 당량(EEQ) = (1000 × We) / (N × V)Epoxy equivalent (EEQ) = (1000 × We) / (N × V)
We = 측정한 에폭시 수지의 무게We = weight of measured epoxy resin
N = 사용된 과염소산 용액의 농도N = concentration of perchloric acid solution used
V = 적정에 사용한 과염소산의 부피V = volume of perchloric acid used for titration
(2) 연화점: 에폭시 수지 샘플을 가이드에 담은 후 샘플 키트와 연결시킨다. FP-90 Central Processor와 FP-83HT 장비를 start 온도로 맞춘 후 측정 part와 샘플 키트를 결합시키고 Run을 눌러 측정을 진행하였다. 하나의 샘플에 때하여 2회 측정을 실시하고, 측정된 값의 평균값을 연화점으로 기재하였다. (2) Softening point: The epoxy resin sample is placed in the guide and then connected with the sample kit. After setting the FP-90 Central Processor and FP-83HT to the start temperature, the measurement part was combined with the sample kit and the run was pressed to proceed with the measurement. Two measurements were made for one sample, and the average value of the measured values was described as the softening point.
(3) 유리전이온도(Tg) 및 시차주사열량분석: DSC(Discovery, TA Instrument) 장비를 사용하여 6mm Al 팬에 10mg의 에폭시 수지 샘플을 넣은 후 DSC cell에 Reference pan과 sample pan을 위치시키고 측정하였다. 질소 가스 조건하에서 40도에서 안정화가 이루어진 후 승온 속도 10℃/min으로 200℃까지 온도를 올려 1차 가열을 실시한 후 같은 속도로 0℃까지 냉각시켰다. 이후 다시 에폭시 수지 샘플을 승온 속도 10℃/min으로 200℃까지 온도를 가열하였다.(3) Glass Transition Temperature (Tg) and Differential Scanning Calorimetry: Using a DSC (Discovery, TA Instrument) equipment, put a 10mg epoxy resin sample in a 6mm Al pan, place a reference pan and sample pan in the DSC cell and measure it. It was. After stabilization at 40 ° C. under nitrogen gas, the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, followed by primary heating, and then cooled to 0 ° C. at the same rate. Thereafter, the epoxy resin sample was heated to 200 ° C. at a temperature increase rate of 10 ° C./min.
(4) 점도 및 점도 편차: 점도계(CAP-2000+ H) 장비를 120 ℃조건으로 맞추어 안정화가 된 이후에 300 mg의 에폭시 수지 샘플을 측정부에 올린 후 스핀들(spindle)을 하강시킨다. 이후 Run 버튼을 눌러 점도값을 측정한 후 아세톤을 이용하여 샘플 및 spindle을 세정한 후 다시 온도를 안정화시킨다. 하나의 샘플에 대해 상기 과정을 5회 반복하여 5개의 측정치를 얻고, 상기 측정치들의 평균값을 구하였다. 그런 다음, 측정치의 최대값과 최소값의 차를 측정치들의 평균값으로 나눈 다음 100을 곱한 값을 점도 편차로 나타내었다. (4) Viscosity and Viscosity Deviation: After stabilizing the viscometer (CAP-2000 + H) at 120 ° C, 300 mg of the epoxy resin sample was added to the measuring unit and the spindle was lowered. After pressing the Run button to measure the viscosity value, acetone is used to clean the sample and spindle, and then stabilize the temperature. The procedure was repeated five times for one sample to obtain five measurements and to average the measurements. The difference between the maximum and minimum values of the measurements was then divided by the average of the measurements and multiplied by 100 to represent the viscosity deviation.
Figure PCTKR2016012242-appb-T000001
Figure PCTKR2016012242-appb-T000001
상기 [표 1]에 나타난 바와 같이, 본 발명의 제조방법에 따라 용융 및 냉각 처리된 실시예 1 ~ 4의 에폭시 수지는 88℃~131℃의 연화점을 가지며, 점도 편차가 5% 이하로 낮았다. 이에 비해, 비교예 1 ~ 4의 에폭시 수지는 상대적으로 높은 연화점을 가짐을 확인할 수 있다. 또한, 비교예 1 ~ 3의 경우, 120℃보다 높은 연화점을 가지고 있어, 120℃에서의 점도 측정이 불가능하였으며, 비교예 4의 경우, 동일 화합물로 이루어진 실시예 4에 비해 높은 점도 및 점도 편차를 가짐을 알 수 있다. As shown in Table 1, the epoxy resins of Examples 1 to 4 melted and cooled according to the production method of the present invention had a softening point of 88 ° C to 131 ° C, and had a low viscosity deviation of 5% or less. On the other hand, it can be confirmed that the epoxy resins of Comparative Examples 1 to 4 have a relatively high softening point. In addition, in Comparative Examples 1 to 3, it had a softening point higher than 120 ° C., so that viscosity measurement at 120 ° C. was impossible, and in Comparative Example 4, high viscosity and viscosity deviation were compared to Example 4 made of the same compound. It can be seen that.
한편, 상기 [표 1]을 통해, 실시예 1 ~ 4는 각각 비교예 1 ~ 4와 동일한 에폭시 당량을 가짐을 알 수 있다. 이는 본 발명의 제조방법에 의해 에폭시 화합물의 조성이 바뀌지 않았음을 의미한다.On the other hand, through Table 1, it can be seen that Examples 1 to 4 have the same epoxy equivalent as Comparative Examples 1 to 4, respectively. This means that the composition of the epoxy compound was not changed by the production method of the present invention.
또한, 도 1 및 도 2를 통해 본 발명의 제조방법에 따라 제조된 에폭시 수지의 경우, 시차주사열량법에 의해 측정된 그래프에서 50℃ 내지 130℃ 온도 범위에서 피크(peak)를 가지며, 130℃ 내지 250℃ 온도 범위에서는 피크(peak)를 갖지 않음을 확인할 수 있다. 이에 비해 도 3 및 도 4에 도시된 바와 같이, 비교에 1의 에폭시 수지는 130℃ 내지 250℃ 온도 범위에서만 피크가 나타나고, 비교예 4의 에폭시 수지는 50℃ ~ 75℃의 온도 범위와 130℃ ~ 175℃ 온도범위에서 각각 피크가 나타났다. 이는 용융 및 냉각 처리를 통해 에폭시 수지의 물성 변화가 발생하였음을 보여준다.In addition, in the case of the epoxy resin prepared according to the manufacturing method of the present invention through FIGS. 1 and 2, in the graph measured by the differential scanning calorimetry has a peak in the temperature range of 50 ℃ to 130 ℃, 130 ℃ It can be seen that the temperature does not have a peak in the range of 250 ° C. 3 and 4, in comparison, the epoxy resin of 1 shows a peak only in the temperature range of 130 ° C to 250 ° C, and the epoxy resin of Comparative Example 4 has a temperature range of 50 ° C to 75 ° C and 130 ° C. The peaks appeared in the temperature range of 175 캜. This shows that the change in the physical properties of the epoxy resin through the melting and cooling treatment.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains has the technical spirit of the present invention. However, it will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (9)

  1. 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 용융 온도 이상으로 가열하여 용융시키는 단계; 및Heating and melting the bifunctional monomolecular epoxy compound including the polycyclic structure above the melting temperature; And
    상기 용융된 에폭시 화합물을 냉각시키는 단계를 포함하는 에폭시 수지의 제조 방법.Method for producing an epoxy resin comprising the step of cooling the molten epoxy compound.
  2. 제1항에 있어서,The method of claim 1,
    상기 다환 구조는 플루오렌, 안트라센, 나프탈렌 및 바이페닐로 이루어진 군으로부터 선택된 1종 이상을 포함하는 에폭시 수지의 제조 방법.The polycyclic structure is a method for producing an epoxy resin comprising at least one selected from the group consisting of fluorene, anthracene, naphthalene and biphenyl.
  3. 제1항에 있어서,The method of claim 1,
    상기 다환 구조를 다환 구조를 포함하는 이관능 단분자 에폭시 화합물은 하기 화학식 1로 표시되는 화합물인 에폭시 수지의 제조 방법.The bifunctional monomolecular epoxy compound containing the polycyclic structure in the polycyclic structure is a compound represented by the following general formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2016012242-appb-I000013
    Figure PCTKR2016012242-appb-I000013
    상기 화학식 1에서, X 및 Y는 각각 독립적으로 수소 또는 C1~10인 알킬기, n은 1 내지 5인 정수, m은 1 내지 5인 정수임.In Formula 1, X and Y are each independently hydrogen or an alkyl group having 1 to 10, n is an integer of 1 to 5, m is an integer of 1 to 5.
  4. 제1항에 있어서,The method of claim 1,
    상기 용융시키는 단계는 다환 구조를 포함하는 이관능 단분자 에폭시 화합물을 약 150℃ 내지 약 250℃로 가열하여 수행되는 것인 에폭시 수지의 제조 방법.The melting step is a method of producing an epoxy resin is carried out by heating the bifunctional monomolecular epoxy compound comprising a polycyclic structure to about 150 ℃ to about 250 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 냉각시키는 단계는 상기 용융된 에폭시 화합물을 약 20℃ 내지 약 30℃로 냉각시키는 것인 에폭시 수지의 제조 방법.Wherein the cooling step cools the molten epoxy compound to about 20 ° C to about 30 ° C.
  6. 제1항 내지 제5항중 어느 한 항의 에폭시 수지의 제조 방법에 따라 제조된 에폭시 수지이며, It is an epoxy resin manufactured by the manufacturing method of the epoxy resin in any one of Claims 1-5,
    연화점이 약 50℃ 내지 약 140℃인 에폭시 수지.Epoxy resin having a softening point of about 50 ° C to about 140 ° C.
  7. 제6항에 있어서,The method of claim 6,
    상기 에폭시 수지는 120℃에서의 점도 편차가 약 5% 이하인 에폭시 수지.The epoxy resin is an epoxy resin having a viscosity deviation of about 5% or less at 120 ℃.
  8. 제6항의 에폭시 수지, 경화제 및 무기 충전제를 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.The epoxy resin composition for semiconductor element sealing containing the epoxy resin of Claim 6, a hardening | curing agent, and an inorganic filler.
  9. 제8항의 반도체 소자 밀봉용 에폭시 수지 조성물을 이용하여 성형된 성형품.A molded article molded using the epoxy resin composition for sealing a semiconductor element of claim 8.
PCT/KR2016/012242 2015-12-09 2016-10-28 Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same WO2017099356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0175451 2015-12-09
KR1020150175451A KR101882564B1 (en) 2015-12-09 2015-12-09 Method for producing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device comprising the same and moled article using the same

Publications (1)

Publication Number Publication Date
WO2017099356A1 true WO2017099356A1 (en) 2017-06-15

Family

ID=59013365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012242 WO2017099356A1 (en) 2015-12-09 2016-10-28 Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same

Country Status (2)

Country Link
KR (1) KR101882564B1 (en)
WO (1) WO2017099356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651762A (en) * 2018-12-20 2019-04-19 江苏华海诚科新材料股份有限公司 High-pressure-resistant epoxy resin composition and preparation method thereof
CN114276651A (en) * 2021-12-24 2022-04-05 江苏华海诚科新材料股份有限公司 Epoxy resin composition suitable for low-voltage packaging and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077791A (en) * 1998-03-13 1999-10-25 고사이 아끼오 Epoxy resin composition and resin-encapsulated semiconductor device
KR20000057287A (en) * 1996-11-29 2000-09-15 이사오 우치가사키 Cyclopentylene compounds and intermediates thereof, epoxy resin composition, molding material, and resin-sealed electronic device
KR20030057107A (en) * 2001-12-28 2003-07-04 제일모직주식회사 Epoxy resin composition for encapsulation of semiconductor devices
KR20130135733A (en) * 2012-06-01 2013-12-11 한국생산기술연구원 Composition and cured product comprising epoxy compound having alkoxysilyl group and inorganic particle, use thereof and preparing method of epoxy compound having alkoxysilyl group
KR20140082525A (en) * 2012-12-24 2014-07-02 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591392B2 (en) * 1991-11-26 1997-03-19 信越化学工業株式会社 Thermosetting resin composition and semiconductor device
KR100896794B1 (en) * 2007-12-26 2009-05-11 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
KR101526001B1 (en) * 2011-12-26 2015-06-04 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device, and semiconductor apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057287A (en) * 1996-11-29 2000-09-15 이사오 우치가사키 Cyclopentylene compounds and intermediates thereof, epoxy resin composition, molding material, and resin-sealed electronic device
KR19990077791A (en) * 1998-03-13 1999-10-25 고사이 아끼오 Epoxy resin composition and resin-encapsulated semiconductor device
KR20030057107A (en) * 2001-12-28 2003-07-04 제일모직주식회사 Epoxy resin composition for encapsulation of semiconductor devices
KR20130135733A (en) * 2012-06-01 2013-12-11 한국생산기술연구원 Composition and cured product comprising epoxy compound having alkoxysilyl group and inorganic particle, use thereof and preparing method of epoxy compound having alkoxysilyl group
KR20140082525A (en) * 2012-12-24 2014-07-02 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651762A (en) * 2018-12-20 2019-04-19 江苏华海诚科新材料股份有限公司 High-pressure-resistant epoxy resin composition and preparation method thereof
CN109651762B (en) * 2018-12-20 2022-05-13 江苏华海诚科新材料股份有限公司 High-pressure-resistant epoxy resin composition and preparation method thereof
CN114276651A (en) * 2021-12-24 2022-04-05 江苏华海诚科新材料股份有限公司 Epoxy resin composition suitable for low-voltage packaging and preparation method thereof
CN114276651B (en) * 2021-12-24 2023-06-23 江苏华海诚科新材料股份有限公司 Epoxy resin composition suitable for low-pressure encapsulation and preparation method thereof

Also Published As

Publication number Publication date
KR20170068717A (en) 2017-06-20
KR101882564B1 (en) 2018-07-27

Similar Documents

Publication Publication Date Title
KR101362887B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR20130071264A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same
WO2016175385A1 (en) Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed by using same
WO2017099356A1 (en) Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same
WO2017222151A1 (en) Epoxy resin composition for sealing solid state semiconductor device, encapsulating material comprising same, and semiconductor package
WO2016167449A1 (en) Phosphonium-based compound, epoxy resin composition containing same, semiconductor device manufactured using same
WO2017142251A1 (en) Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed by using same
KR101908179B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR20120130655A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR101861917B1 (en) Epoxy compound, epoxy resin composition for encapsulating semiconductor device comprising the same, and semiconductor device encapsulated by using thereof
WO2016085115A1 (en) Phosphonium-based compound, epoxy resin composition containing same, and semiconductor device manufactured using same
KR100882533B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
WO2015053453A1 (en) Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using same
WO2019132175A1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same
KR101437141B1 (en) Epoxy resin composition for encapsulating semiconductor
KR20110078819A (en) Epoxy resin composition for encapsulating semiconductor element and semiconductor element package using the same
WO2017090890A1 (en) Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same
WO2017052243A1 (en) Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same
KR101845134B1 (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
WO2015108248A1 (en) Curing catalyst for epoxy resin composition, epoxy resin composition comprising same, and apparatus manufactured by using same
WO2015108245A1 (en) Pyridinium-based compound, epoxy resin composition comprising same, and apparatus manufactured using same
WO2019117452A1 (en) Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same
WO2017217638A1 (en) Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using same
WO2021071158A1 (en) Epoxy resin composition
KR102018361B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873222

Country of ref document: EP

Kind code of ref document: A1