WO2019132175A1 - Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same - Google Patents
Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same Download PDFInfo
- Publication number
- WO2019132175A1 WO2019132175A1 PCT/KR2018/010759 KR2018010759W WO2019132175A1 WO 2019132175 A1 WO2019132175 A1 WO 2019132175A1 KR 2018010759 W KR2018010759 W KR 2018010759W WO 2019132175 A1 WO2019132175 A1 WO 2019132175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- inorganic filler
- resin composition
- explosion
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5397—Phosphine oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
Definitions
- the present invention relates to an epoxy resin composition for sealing a semiconductor device and a semiconductor device sealed by using the same.
- a method for sealing a semiconductor element with an epoxy resin composition has been widely used for the purpose of protecting the semiconductor element from external environment such as moisture or mechanical impact.
- An object of the present invention is to provide an epoxy resin composition for sealing a semiconductor device which has a high relative dielectric constant and no risk of explosion due to a high relative dielectric constant, and a semiconductor device sealed by using the epoxy resin composition.
- One aspect of the present invention relates to an epoxy resin composition for sealing a semiconductor device.
- the epoxy resin composition for encapsulating semiconductor devices comprises an epoxy resin, a curing agent, an inorganic filler, and an explosion-proofing agent, wherein the inorganic filler is a first inorganic material comprising a barium-titanium- And fillers.
- the barium-titanium-yttrium oxide may have a weight ratio of barium (Ba) and yttrium (Y) of about 0.3: 1 to about 1.5: 1.
- the barium-titanium-yttrium oxide may have a weight ratio of titanium (Ti) to yttrium (Y) of about 0.01: 1 to about 0.5: 1.
- the explosion-proofing agent may include triphenylphosphine oxide.
- the first inorganic filler may further comprise at least one of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ).
- the first inorganic filler may comprise from about 0.1 to about 100 weight percent barium-titanium-yttrium oxide.
- the first inorganic filler may be coated with the explosion-proofing agent in advance before the preparation of the epoxy resin composition.
- the inorganic filler may further comprise a second inorganic filler.
- the first inorganic filler may be from about 0.1 to about 100 weight percent of the inorganic filler.
- the epoxy resin composition may have a ratio of the first inorganic filler to the second inorganic filler of about 0.05: 1 to about 50: 1.
- the epoxy resin composition may include about 0.5 to about 20 weight percent epoxy resin, about 0.1 to about 13 weight percent of a curing agent, about 50 to about 98 weight percent of an inorganic filler, and about 0.1 to about 20 weight percent of an explosion inhibitor.
- the epoxy resin composition comprises about 0.5 to about 15 weight percent of an epoxy resin, about 0.1 to about 10 weight percent of a curing agent, about 50 to about 98 weight percent of a first inorganic filler, about 0.1 to about 40 weight percent of a second inorganic filler, About 0.1% to about 15% by weight.
- the epoxy resin may include at least one of a biphenyl type epoxy resin and a phenol aralkyl type epoxy resin.
- the epoxy resin composition may have a relative dielectric constant of about 20 or more at a temperature of 25 DEG C and a frequency of 1.0 GHz after curing.
- the epoxy resin composition may have a fingerprint recognition rate of about 90% or more and a discharge start time due to high frequency of about 3 seconds or more in a touch-based fingerprint recognition rate evaluation method using capacitance after curing.
- Another aspect of the present invention relates to a semiconductor device.
- the semiconductor element may be sealed using the epoxy resin composition for semiconductor encapsulation.
- the present invention relates to an epoxy resin composition for sealing a semiconductor device having a high relative dielectric constant and a low relative dielectric constant variation with temperature, a high thermal conductivity, a low moisture absorption rate and a high fingerprint recognition rate, .
- 'X to Y' representing the range means 'X or more and Y or less'.
- the 'fingerprint recognition rate evaluation method' is a method in which a total of 120 capacitive FBGA packages are manufactured and five fingerprint recognition tests are performed for each package, ).
- the epoxy resin composition for semiconductor device encapsulation of the present invention comprises an epoxy resin, a curing agent, an inorganic filler and an explosion-proofing agent, wherein the inorganic filler comprises a first inorganic filler comprising barium-titanium-yttrium oxide represented by the following formula do.
- a is 0.1 to 2
- b is 1 to 3.
- the epoxy resin may be an epoxy compound containing two or more epoxy groups in the molecule.
- the epoxy resin include an epoxy resin obtained by epoxidizing a condensate of phenol or alkyl phenol and hydroxybenzaldehyde, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a multifunctional epoxy resin, a naphthol novolak Novolak type epoxy resins such as bisphenol A / bisphenol F / bisphenol AD, glycidyl ether of bisphenol A / bisphenol F / bisphenol AD, bishydroxybiphenyl type epoxy resin, dicyclopentadiene type epoxy resin, etc.
- the epoxy resin may be a phenol aralkyl type epoxy resin, a biphenyl type epoxy resin or a mixture thereof.
- the phenol aralkyl type epoxy resin may be, for example, a phenol aralkyl type epoxy resin having a novolak structure including a biphenyl derivative represented by the following formula (2).
- the biphenyl type epoxy resin may be, for example, a biphenyl type epoxy resin represented by the following formula (3).
- R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently an alkyl group having 1 to 4 carbon atoms, and the average value of c is 0 to 7.
- the epoxy resin may be about 0.5 to about 20% by weight, specifically about 1 to about 15% by weight, more specifically about 3 to about 12% by weight, of the epoxy resin composition for encapsulating semiconductor devices.
- curing agents generally used for sealing semiconductor devices may be used without limitation, for example, a curing agent having two or more reactors may be used.
- the curing agent examples include phenol aralkyl type phenol resin, phenol novolak type phenol resin, xylok type phenol resin, cresol novolak type phenol resin, naphthol type phenol resin, terpene type phenol resin, Phenolic resin, dicyclopentadiene-based phenol resin, novolak-type phenol resin synthesized from bisphenol A and resole, polyhydric phenol compound including tris (hydroxyphenyl) methane, dihydroxybiphenyl, maleic anhydride and phthalic anhydride, , Aromatic amines such as methanophenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone, but are not limited thereto.
- the curing agent may include at least one of a phenol novolak type phenol resin, a phenol aralkyl type phenol resin, and a multifunctional phenol resin.
- the phenol novolak type phenolic resin may be, for example, a phenol novolak type phenolic resin represented by the following formula (4).
- the phenol novolak type phenol resin represented by the above formula (4) has a short crosslinking point interval, and when it reacts with an epoxy resin, the crosslinking density becomes high to increase the glass transition temperature of the cured product, The warping of the package can be suppressed more effectively.
- the phenol aralkyl type phenol resin may be, for example, a phenol aralkyl type phenolic resin having a novolak structure including a biphenyl derivative in a molecule represented by the following formula (5).
- the phenol aralkyl type phenol resin represented by the above formula (5) reacts with an epoxy resin to form a carbon layer (char) to block the transfer of heat and oxygen to the periphery, thereby achieving flame retardancy.
- the multifunctional phenol resin may be, for example, a multifunctional phenol resin containing a repeating unit represented by the following formula (6).
- the average value of g in the above formula (6) is 1 to 7.
- the multifunctional phenol resin containing the repeating unit represented by the above formula (6) may be preferable in terms of reinforcing the high temperature bending property of the epoxy resin composition.
- curing agents may be used alone or in combination. Further, it can be used as an additional compound prepared by subjecting the above curing agent to a linear reaction such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, a stress relieving agent and the like and a melt master batch.
- a linear reaction such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, a stress relieving agent and the like and a melt master batch.
- the curing agent may be included in the epoxy resin composition for encapsulating semiconductor devices in an amount of about 0.1 to about 13 wt%, for example, about 0.1 to about 10 wt%, or about 0.1 to about 8 wt%.
- the mixing ratio of the epoxy resin and the curing agent can be adjusted in accordance with the requirements of mechanical properties and moisture resistance reliability in the package.
- the chemical equivalent ratio of the epoxy resin to the curing agent may be from about 0.95 to about 3, and specifically from about 1 to about 2, more specifically from about 1 to about 1.75.
- the compounding ratio of the epoxy resin and the curing agent is in the above range, excellent strength can be realized after curing the epoxy resin composition.
- the inorganic filler of one embodiment includes a first inorganic filler comprising barium-titanium-yttrium oxide represented by the following formula (1).
- a is 0.1 to 2
- b is 1 to 3.
- a may be 0.5 to 1.5, specifically 0.8 to 1.2, and b may be 1.5 to 2.5, specifically 1.8 to 2.2.
- the barium-titanium-yttrium oxide represented by the above formula (1) has a higher dielectric constant than that of the conventional epoxy resin composition for semiconductor encapsulation, which is advantageous in that the fingerprint recognition rate of a semiconductor device can be increased.
- the barium-titanium-yttrium oxide may comprise about 30 to about 50 wt.%, Specifically about 35 to about 45 wt.% Yttrium (Y).
- the epoxy resin composition not only has a high dielectric constant but also a small change in relative dielectric constant with temperature, so that the semiconductor device using the epoxy resin composition can have high stability and reliability.
- the barium-titanium-yttrium oxide may have a weight ratio of barium (Ba) and yttrium (Y) of about 0.3: 1 to about 1.5: 1, specifically about 0.5: 1 to about 1: 1.
- the barium-titanium-yttrium oxide has a weight ratio of titanium (Ti) to yttrium (Y) of from about 0.01: 1 to about 1.2: 1, from about 0.01: 1 to about 1: 1, Specifically about 0.1: 1 to about 0.4: 1.
- the epoxy resin composition may have an advantage of not only a high dielectric constant but also a small change in relative dielectric constant depending on the temperature.
- the barium-titanium-yttrium oxide may have a particle size of from about 0.1 to about 150 microns, such as from about 0.1 to about 100 microns, from about 0.1 to about 50 microns, from about 0.1 to about 10 microns, And the barium-titanium-yttrium oxide has a specific surface area of about 0.01 to about 15 m 2 / g, specifically about 1 to about 10 m 2 / g, more specifically about 1 to about 5 m 2 / g .
- the barium-titanium-yttrium oxide may also have a density of about 3 to about 9 g / m 3 , specifically about 4 to about 8 g / m 3 , more specifically about 5 to about 7 g / m 3 .
- the epoxy resin composition may have an advantage that the relative dielectric constant is excellent and the variation of the relative dielectric constant with temperature is small.
- the first inorganic filler may be coated with the explosion-proofing agent in advance before the preparation of the epoxy resin composition.
- the first inorganic filler may comprise about 0.1 to about 100 wt.%, Specifically about 30 to about 99 wt.%, More specifically about 40 to about 98 wt.% Of the barium-titanium-yttrium oxide.
- the first inorganic filler may further comprise at least one of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ).
- the first inorganic filler may be a mixture of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), manganese carbonate (MnCO 3 ) and barium-titanium-yttrium oxide.
- the first inorganic filler is present in an amount of from about 10 to about 100 weight percent, specifically from about 20 to about 97 weight percent, more specifically, at least about 40 weight percent, at least about 50 weight percent, at least about 60 weight percent, 70 wt% or more, or about 80 wt% or more, and about 95 wt% or less. In the above range, the balance between the fluidity, the relative dielectric constant and the rate of change of the relative dielectric constant can be excellent.
- the epoxy resin composition according to the present invention may further comprise a second inorganic filler depending on required properties.
- the second inorganic filler is intended to improve the mechanical properties, low stress and heat radiation effect of the epoxy resin composition.
- the second inorganic filler may mean different from the first inorganic filler (barium-titanium-yttrium oxide, zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 )
- the second inorganic filler is selected from the group consisting of silicon (Si) and aluminum (Al) containing nanomaterials, alumina, fused silica, crystalline silica, boron nitride, ferrite, calcium carbonate, magnesium carbonate, magnesia, clay, talc, , Calcium silicate, titanium oxide, antimony oxide, glass fiber, etc. These may be used alone or in combination.
- the silicon (Si) and aluminum (Al) containing nanomaterials may have an average particle size of from about 10 nm to about 500 nm, specifically from about 20 nm to about 450 nm, more specifically from about 20 nm to about 400 nm.
- the heat radiation effect and flexural strength of the epoxy resin composition can be enhanced without lowering the flowability in the above range.
- the alumina may have a thermal conductivity of about 15 W / mK to about 40 W / mK, specifically about 20 W / mK to about 30 W / mK, more specifically about 25 W / mK to about 30 W / mK.
- the epoxy resin composition may be excellent in heat radiation.
- the shape and particle size of alumina are not particularly limited, but spherical alumina having an average particle diameter of about 0.1 ⁇ to about 50 ⁇ , specifically about 0.5 ⁇ to about 30 ⁇ , can be applied. In the above range, the flowability of the epoxy resin composition in the semiconductor encapsulation molding may be advantageous.
- the alumina can be used by mixing alumina having different average particle diameters. About 40 wt.% To about 95 wt.% Of alumina having an average particle size of greater than about 10 microns and less than about 30 microns, about 4 to about 50 microns of alumina having an average particle size of greater than about 4 microns and less than about 10 microns, % And an alumina mixture comprising from about 1% to about 30% by weight of alumina having an average particle size of at least about 0.1 ⁇ ⁇ and at most about 4 ⁇ ⁇ .
- the epoxy resin composition has excellent heat radiation effect and bending strength, and may be advantageous against thermal shock.
- the alumina or alumina mixture may comprise from about 3% to about 70% by weight of the total amount of the first inorganic filler (C-1) and the second inorganic filler (C-2). From about 5 wt.% To about 60 wt.%, From about 7 wt.% To about 40 wt.%, Specifically up to about 30 wt.%, Up to about 20 wt.%. Within the above range, the epoxy resin composition may be excellent in heat resistance, mechanical properties such as bending strength, moldability and the like.
- the amount of the first inorganic filler (C-1) and the second inorganic filler (C-2) used varies depending on required properties such as moldability, low stress and high temperature strength.
- the epoxy resin composition may have a ratio of the first inorganic filler to the second inorganic filler in the range of about 0.05: 1 to about 50: 1, specifically about 0.5: 1 to about 30: 1, , From about 5: 1 to about 20: 1.
- the first inorganic filler may comprise from about 50% to about 98%, such as from about 70% to about 98% or from about 80% to about 95% by weight of the resin composition, 2 Inorganic fillers may be present in the resin composition in an amount of from about 0.1 wt% to about 40 wt%, such as from about 0.5 wt% to about 35 wt%, from about 1 wt% to about 20 wt%, or from about 5 wt% to about 15 wt% .
- the sum of the first inorganic filler and the second inorganic filler is from about 50% to about 98%, such as from about 70% to about 98% or from about 80% to about 95% by weight of the epoxy resin composition .
- the epoxy resin composition according to the present invention comprises an explosion-proofing agent.
- the epoxy encapsulated encapsulant contains a high relative dielectric constant filler, there is a potential for the filler to explode.
- the composition since the composition has a high relative dielectric constant and includes an explosion-proofing agent, the possibility of explosion is minimized and safety can be secured when applied to an actual product.
- One embodiment of the explosion-proofing agent may comprise triphenylphosphine oxide.
- triphenylphosphine oxide When triphenylphosphine oxide is contained as an explosion-proofing agent, the explosion-proof effect of the composition is ensured, and the relative permittivity can also be excellent.
- the explosion-proofing agent may be added to the epoxy resin composition in an amount of about 0.1 to about 20 wt%, specifically about 0.1 wt% to about 15 wt%, about 0.3 wt% to about 15 wt%, about 0.4 wt% to about 10 wt% %, More specifically from about 0.4 wt% to about 8 wt%, from about 0.4 wt% to about 7 wt%, or from about 0.4 wt% to about 6 wt%. In the above range, the explosion-proof performance of the composition can be excellent.
- the inorganic filler treated with an explosion-proofing agent can be used. Even if the inorganic filler has a high relative dielectric constant, it is prevented from explosion and the possibility of explosion of the composition is minimized.
- the method for preventing the explosion of the inorganic filler is not particularly limited. For example, it may be carried out by dissolving the explosion-proofing agent in a solvent and then mixing with an inorganic filler to adjust the fraction of the explosion-proofing agent in the inorganic filler.
- the first inorganic filler exhibiting a high relative dielectric constant may be subjected to an explosion-proof treatment.
- the first inorganic filler treated with triphenylphosphine oxide may be used.
- the first inorganic filler includes triphenylphosphine oxide, and the surface thereof may be coated with triphenylphosphine oxide.
- the explosion-proofing agent may be included at from about 0.1% to about 20%, from about 0.3% to about 10%, and from about 0.4% to about 8% .
- the explosion-proof performance of the composition can be excellent. Also, there may be an effect of exhibiting an excellent relative dielectric constant in the above range.
- the degree of explosion-proof performance of the composition according to the present invention can be evaluated by testing the degree of discharge due to high frequency.
- the epoxy resin composition according to the present invention comprises from about 0.5 to about 20 weight percent epoxy resin, from about 0.1 to about 13 weight percent of a curing agent, from about 50 to about 98 weight percent of an inorganic filler, from about 0.1 to about 20 weight percent of an explosion- . ≪ / RTI > From about 0.5 to about 15 weight percent epoxy resin, from about 0.1 to about 10 weight percent curing agent, from about 50 to about 98 weight percent first inorganic filler, from about 0.1 to about 40 weight percent second inorganic filler, 0.1 to about 15% by weight.
- the epoxy resin composition according to the present invention may further include at least one of a curing accelerator, a coupling agent, a release agent, and a colorant.
- the curing accelerator is a substance that promotes the reaction between the epoxy resin and the curing agent.
- a tertiary amine, an organometallic compound, an organic phosphorus compound, an imidazole, and a boron compound can be used.
- Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris ) Phenol and tri-2-ethylhexyl acid salt.
- organometallic compound examples include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and the like.
- Organic phosphorus compounds include tris-4-methoxyphosphine, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphine Pin-1,4-benzoquinone adducts and the like.
- Imidazoles include, but are not limited to, 2-phenyl-4 methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-aminoimidazole, -Methylimidazole, 2-heptadecylimidazole, and the like, but the present invention is not limited thereto.
- boron compound examples include tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoro Triethylamine, tetrafluoroborane amine, and the like.
- 1,5-diazabicyclo [4.3.0] non-5-ene (1,5-diazabicyclo [4.3.0] non-5-ene: DBN), 1,8-diazabicyclo [5.4.
- Diazabicyclo [5.4.0] undec-7-ene: DBU 1,8-diazabicyclo [5.4.
- Diazabicyclo [5.4.0] undec-7-ene: DBU 1,8-diazabicyclo [5.4.
- Diazabicyclo [5.4.0] undec-7-ene: DBU
- organic phosphorus compounds, boron compounds, amine-based or imidazole-based curing accelerators may be used alone or in combination as the curing accelerator.
- the curing accelerator it is also possible to use an adduct made by reacting with an epoxy resin or a curing agent.
- the amount of the curing accelerator used in the present invention may be about 0.01 wt% to about 2 wt% based on the total weight of the epoxy resin composition, specifically about 0.02 wt% to about 1.5 wt%, more specifically about 0.05 wt% 1% by weight. It may be advantageous that the curing of the epoxy resin composition is accelerated within the above-mentioned range and the curing degree is also good.
- the coupling agent is for improving the interface strength by reacting between the epoxy resin and the inorganic filler, and may be, for example, a silane coupling agent.
- the silane coupling agent is not particularly limited as long as it reacts between the epoxy resin and the inorganic filler to improve the interface strength between the epoxy resin and the inorganic filler.
- Specific examples of the silane coupling agent include epoxy silane, aminosilane, ureido silane, mercaptosilane, and the like.
- the coupling agent may be used alone or in combination.
- the coupling agent is used in an amount of about 0.01 wt% to about 5 wt%, preferably about 0.05 wt% to about 3 wt%, more preferably about 0.1 wt% to about 2 wt%, based on the total weight of the epoxy resin composition As shown in FIG.
- the strength of the cured product of the epoxy resin composition in the above range can be improved.
- At least one selected from the group consisting of paraffin wax, ester wax, higher fatty acid, higher fatty acid metal salt, natural fatty acid and natural fatty acid metal salt can be used.
- the release agent may be included in an amount of about 0.1 wt% to about 1 wt% of the epoxy resin composition.
- the coloring agent is for laser marking of a semiconductor element sealing material, and colorants well-known in the art can be used and are not particularly limited.
- the colorant may include one or more of carbon black, titanium black, Nubian black, titanium nitride, dicopper hydroxide phosphate, iron oxide, mica.
- the colorant is used in an amount of about 0.01% to about 5% by weight, preferably about 0.05% to about 3% by weight, more preferably about 0.1% to about 2% by weight based on the total weight of the epoxy resin composition .
- the epoxy resin composition of the present invention may contain a stress-relieving agent such as a modified silicone oil, a silicone powder, and a silicone resin to the extent that the object of the present invention is not impaired; Antioxidants such as Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane; And the like may be further contained as needed.
- a stress-relieving agent such as a modified silicone oil, a silicone powder, and a silicone resin to the extent that the object of the present invention is not impaired
- Antioxidants such as Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane; And the like may be further contained as needed.
- the epoxy resin composition may be prepared by uniformly mixing the above components uniformly at a predetermined mixing ratio using a Hensel mixer or a Lodige mixer and then kneading the mixture in a roll mill or a kneader kneader, and then cooled and pulverized to obtain a final powder product.
- the epoxy resin composition for semiconductor encapsulation according to the present invention formed of the above-described components has a relative dielectric constant of about 20 or more, for example, about 25 to about 50, specifically about 27 to about 40, More specifically from about 29 to about 40. In the above-mentioned range, the epoxy resin is applied to the sealing of the capacitive-type semiconductor device and can exhibit excellent performance.
- the epoxy resin composition for semiconductor encapsulation may have a discharge start time due to high frequency of about 3 seconds or more. For example, about 5 seconds or more, about 10 seconds or more, or about 30 seconds or more. Within this range, the possibility of explosion is minimized and safety can be ensured.
- the epoxy resin composition for semiconductor encapsulation has a fingerprint recognition rate of about 90% or more, for example about 90% to about 100%, specifically about 93% to about 100%, in a touch-based fingerprint recognition evaluation method using capacitance. , More specifically from about 95% to about 100%, from about 96% to about 100%, from about 97% to about 100%, from about 98% to about 99.9%, from about 99.5% to about 99.9%.
- the epoxy resin composition of the present invention as described above is usefully applied to a semiconductor device, particularly, a thin film type semiconductor device which requires low relative dielectric constant and low dielectric constant dependence of temperature dependency.
- a low pressure transfer molding method can be generally used.
- molding can also be performed by injection molding, casting, compression molding or the like.
- (E) Coupling agent Epoxysilane (A-187) manufactured by CHISSO was used.
- triphenylphosphine oxide PP-560 was used.
- triphenylphosphine oxide HOKKO, PP-560
- barium-titanium-yttrium oxide Xiantao Zhongxing, X7R302N, particle size 1.1 ⁇
- Xiantao Zhongxing X7R302N, particle size 1.1 ⁇
- a raw material in which the fraction of triphenylphosphine oxide was controlled to 0.5 to 6.0% was obtained.
- the components of the inorganic fillers (c1) to (c7) used in Examples and Comparative Examples are as follows when the total inorganic filler content is 100% by weight.
- each of the above components was weighed according to the composition shown in Table 2, and then uniformly mixed using a Henschel mixer to prepare a powdery first composition. Thereafter, the mixture was melt-kneaded at 120 DEG C for 30 minutes using a continuous kneader, cooled to 10 to 15 DEG C and pulverized to prepare an epoxy resin composition for semiconductor encapsulation.
- the epoxy resin composition for sealing semiconductor devices prepared above was evaluated for physical properties by the following methods and is shown in Table 3 below.
- the relative dielectric constant was measured by placing a measurement sample between two electrodes (dielectric sensor) using a dielectric constant meter (Dielectric Probe Kit Agilent 85070E) manufactured by Agilant Inc. at a temperature of 25 ° C and a frequency of 1.0 GHz.
- Tg Glass transition temperature
- Moisture absorption rate (%) The resin compositions prepared in the above Examples and Comparative Examples were heated at a mold temperature of 170 ° C to 180 ° C, a clamp pressure of 70 kgf / cm 2 , a feed pressure of 1000 psi, a feed rate of 0.5 to 1 cm / 120 seconds to obtain a disk-shaped cured specimen having a diameter of 50 mm and a thickness of 1.0 mm. The obtained specimens were placed in an oven at 170 ° C to 180 ° C and post cured for 4 hours. The samples were allowed to stand for 168 hours at 85 ° C and 85 RH% relative humidity. The moisture absorption rate was calculated by Equation (2).
- Discharge test The pelletized product of 40 psi and 50 g was inserted into a 5 mm gap in a high frequency preheater, and the degree of discharge due to high frequency was determined by the time (sec) in which the high frequency preheater caused by discharge was stopped during operation. The longer the discharge start time, the better the explosion proof performance. (-) did not start discharging.
- Fingerprint Recognition Rate (%): A total of 20 capacitive FBGA packages were fabricated, and five fingerprint recognition tests were performed for each package, and the success rate of fingerprint recognition among the total 120 times was calculated as the fingerprint recognition rate (%) .
- Example 1 Example 2 Example 3
- Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3
- 51 57 54 52
- 18.3 10.3
- 8.7 Thermal conductivity (W / mK) 1.2 1.3 1.2 1.4 1.9 3.0 3.2 Tg ( ⁇ ⁇ ) 127 129 131 130 132 139 136 Thermal expansion coefficient?
- the epoxy resin compositions for sealing semiconductor devices of Examples 1 to 4 including barium-titanium-yttrium oxide treated with triphenylphosphine oxide had very high relative dielectric constant values, And it is confirmed that the reliability is secured because the recognition rate is very high as 99% or more in the fingerprint recognition evaluation.
- Comparative Examples 1 to 3 which did not contain triphenylphosphine oxide exhibited poor effects in at least one of the properties as compared with the Examples.
- Comparative Example 1 using an inorganic filler containing 90 wt% of biphenyl-titanium-yttrium oxide not treated with triphenylphosphine oxide, the fingerprint recognition rate was very high, but the relative dielectric constant values were lower than those of the examples, The start time was 1sec and the possibility of explosion was high. In Comparative Examples 2 and 3, in which alumina was excessively applied, the relative dielectric constant was low and the fingerprint recognition rate was very low.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
An epoxy resin composition for encapsulating a semiconductor device, of the present invention, comprises an epoxy resin, a curing agent, inorganic filler and an explosion preventer, wherein the inorganic filler comprises a first inorganic filler including barium-titanium-yttrium oxide represented by chemical formula 1.
Description
본 발명은 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자에 관한 것이다.TECHNICAL FIELD The present invention relates to an epoxy resin composition for sealing a semiconductor device and a semiconductor device sealed by using the same.
반도체 소자를 수분이나 기계적 충격 등의 외부 환경으로부터 보호하기 위한 목적으로 에폭시 수지 조성물로 반도체 소자를 밀봉하는 방법이 널리 사용되고 있다.A method for sealing a semiconductor element with an epoxy resin composition has been widely used for the purpose of protecting the semiconductor element from external environment such as moisture or mechanical impact.
반도체 소자의 적용 분야는 다양화되고 있으며, 최근에는 높은 비유전율이 요구되는 반도체 소자에 대한 수요가 급속히 늘고 있다.Application fields of semiconductor devices have been diversified, and in recent years, demand for semiconductor devices requiring a high relative dielectric constant is rapidly increasing.
모바일 기기나 자동차의 보안용 생체인식 칩 중 지문인식용은 저비용, 인식 편의성 등으로 급속히 적용이 확산되고 있으며 특히 정전 용량 방식에 대한 연구가 급속히 진전되고 있다. 정전 용량 방식은 지문의 인식 시 지문 요철의 정전 용량의 차이로 인식을 하는 방식으로 모바일에서부터 자동차 그리고 신용카드 등에 적용이 가속화되고 있다.Among the biometric chips for security of mobile devices and automobiles, fingerprint recognition is rapidly spreading due to low cost and recognition convenience. Particularly, studies on capacitance type are rapidly progressing. The electrostatic capacity type is recognized as the difference in the capacitance of the fingerprint irregularity when recognizing the fingerprint, and the application from mobile to automobile and credit card is accelerated.
반도체 소자의 비유전율을 높이기 위해, 비유전율이 높은 사파이어 글래스를 적용한 기술이 제안되었으나, 사파이어 글래스는 접착공정 등을 통해 조립하는 방식이므로 생산성이 낮고, 비용도 높은 단점이 있었다. In order to increase the relative dielectric constant of a semiconductor device, a technique using sapphire glass having a high dielectric constant has been proposed. However, since the sapphire glass is assembled through a bonding process or the like, productivity is low and cost is high.
반도체 소자의 비유전율을 높이는 다른 방법으로, 반도체 소자 밀봉용 에폭시 수지 조성물에 구상 알루미나를 사용하여 비유전율을 높이는 기술이 제안되었으나, 알루미나의 충진율이 높을수록 흐름성이 낮아져 골드 와이어의 휨이 발생하는 문제점이 있었다.As another method of increasing the relative dielectric constant of a semiconductor device, there has been proposed a technique of increasing the relative dielectric constant by using spherical alumina in an epoxy resin composition for sealing a semiconductor device. However, as the filling rate of alumina is higher, the flowability is lowered, There was a problem.
또 다른 방법으로, 반도체 소자 밀봉용 에폭시 수지 조성물에 바륨·티타네이트를 적용하는 기술이 제안되었으나, 이 방법의 경우, 공기와의 마찰로 인한 폭발 가능성 등 안정성 및 신뢰성에 문제가 있었다.As another method, there has been proposed a technique of applying barium · titanate to an epoxy resin composition for sealing a semiconductor device, but this method has problems in terms of stability and reliability, such as explosion possibility due to friction with air.
따라서, 비유전율이 높을 뿐만 아니라 안정성 및 신뢰성이 높은 반도체 소자 밀봉용 에폭시 수지 조성물의 개발이 요구되고 있다.Therefore, development of an epoxy resin composition for sealing a semiconductor device which not only has a high dielectric constant but also has high stability and reliability is required.
본 발명의 목적은 비유전율이 높으면서, 고 비유전율에 따른 폭발 위험이 없는 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하기 위한 것이다.An object of the present invention is to provide an epoxy resin composition for sealing a semiconductor device which has a high relative dielectric constant and no risk of explosion due to a high relative dielectric constant, and a semiconductor device sealed by using the epoxy resin composition.
본 발명의 또 다른 목적은 지문 인식율이 우수한 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하기 위한 것이다.It is still another object of the present invention to provide an epoxy resin composition for semiconductor device encapsulation excellent in fingerprint recognition rate and a semiconductor device sealed using the composition.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 반도체 소자 밀봉용 에폭시 수지 조성물에 관한 것이다.One aspect of the present invention relates to an epoxy resin composition for sealing a semiconductor device.
일 구체예에서, 상기 반도체 소자 밀봉용 에폭시 수지 조성물은 에폭시 수지, 경화제, 무기 충전제 및 폭발 방지제를 포함하고, 상기 무기 충전제는 하기 화학식 1로 표시되는 바륨-티타늄-이트륨 산화물을 포함하는 제1 무기 충전제를 포함한다.In one embodiment, the epoxy resin composition for encapsulating semiconductor devices comprises an epoxy resin, a curing agent, an inorganic filler, and an explosion-proofing agent, wherein the inorganic filler is a first inorganic material comprising a barium-titanium- And fillers.
[화학식 1][Chemical Formula 1]
BaTiaYbO4.5
BaTi a Y b O 4.5
(상기 화학식 1에서, a는 0.1 내지 2, b는 1 내지 3임).(Wherein a is 0.1 to 2 and b is 1 to 3).
상기 바륨-티타늄-이트륨 산화물은 바륨(Ba)과 이트륨(Y)의 중량비가 약 0.3:1 내지 약 1.5:1일 수 있다.The barium-titanium-yttrium oxide may have a weight ratio of barium (Ba) and yttrium (Y) of about 0.3: 1 to about 1.5: 1.
상기 바륨-티타늄-이트륨 산화물은 티타늄(Ti)과 이트륨(Y)의 중량비가 약 0.01:1 내지 약 0.5:1일 수 있다.The barium-titanium-yttrium oxide may have a weight ratio of titanium (Ti) to yttrium (Y) of about 0.01: 1 to about 0.5: 1.
상기 폭발 방지제는 트리페닐 포스파인 옥사이드를 포함할 수 있다. The explosion-proofing agent may include triphenylphosphine oxide.
다른 구체예에서, 상기 제1 무기 충전제는 산화지르코늄(ZrO2), 산화마그네슘(MgO) 및 망간카보네이트(MnCO3) 중 하나 이상을 더 포함할 수 있다.In another embodiment, the first inorganic filler may further comprise at least one of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ).
상기 제1 무기 충전제는 바륨-티타늄-이트륨 산화물을 약 0.1 내지 약 100 중량%로 포함할 수 있다.The first inorganic filler may comprise from about 0.1 to about 100 weight percent barium-titanium-yttrium oxide.
상기 제1 무기 충전제는 에폭시 수지 조성물 제조 전에 미리 상기 폭발 방지제로 코팅될 수 있다.The first inorganic filler may be coated with the explosion-proofing agent in advance before the preparation of the epoxy resin composition.
또 다른 구체예에서, 상기 무기 충전제는 제2 무기 충전제를 더 포함할 수 있다.In yet another embodiment, the inorganic filler may further comprise a second inorganic filler.
상기 제1 무기 충전제는 상기 무기 충전제 중 약 0.1 내지 약 100 중량%일 수 있다.The first inorganic filler may be from about 0.1 to about 100 weight percent of the inorganic filler.
상기 에폭시 수지 조성물은 상기 제1 무기 충전제와 상기 제2 무기충전제의 비율이 약 0.05:1 내지 약 50:1일 수 있다.The epoxy resin composition may have a ratio of the first inorganic filler to the second inorganic filler of about 0.05: 1 to about 50: 1.
상기 에폭시 수지 조성물은 에폭시 수지 약 0.5 내지 약 20 중량%, 경화제 약 0.1 내지 약 13 중량%, 무기 충전제 약 50 내지 약 98 중량%, 폭발 방지제 약 0.1 내지 약 20 중량%를 포함할 수 있다.The epoxy resin composition may include about 0.5 to about 20 weight percent epoxy resin, about 0.1 to about 13 weight percent of a curing agent, about 50 to about 98 weight percent of an inorganic filler, and about 0.1 to about 20 weight percent of an explosion inhibitor.
상기 에폭시 수지 조성물은 에폭시 수지 약 0.5 내지 약 15중량%, 경화제 약 0.1 내지 약 10중량%, 제1 무기 충전제 약 50 내지 약 98 중량%, 제2 무기 충전제 약 0.1 내지 약 40중량%, 폭발방지제 약 0.1 내지 약 15중량%를 포함할 수 있다.The epoxy resin composition comprises about 0.5 to about 15 weight percent of an epoxy resin, about 0.1 to about 10 weight percent of a curing agent, about 50 to about 98 weight percent of a first inorganic filler, about 0.1 to about 40 weight percent of a second inorganic filler, About 0.1% to about 15% by weight.
상기 에폭시 수지는 바이페닐형 에폭시 수지 및 페놀아랄킬형 에폭시 수지 중 하나 이상을 포함할 수 있다.The epoxy resin may include at least one of a biphenyl type epoxy resin and a phenol aralkyl type epoxy resin.
상기 에폭시 수지 조성물은 경화 후, 온도 25℃, 주파수 1.0 GHz에서 비유전율이 약 20 이상일 수 있다. The epoxy resin composition may have a relative dielectric constant of about 20 or more at a temperature of 25 DEG C and a frequency of 1.0 GHz after curing.
상기 에폭시 수지 조성물은 경화 후, 정전용량을 이용한 터치식 지문인식율 평가 방법에서 지문 인식율이 약 90% 이상이고, 고주파로 인한 방전 개시 시간이 약 3초 이상일 수 있다.The epoxy resin composition may have a fingerprint recognition rate of about 90% or more and a discharge start time due to high frequency of about 3 seconds or more in a touch-based fingerprint recognition rate evaluation method using capacitance after curing.
본 발명의 다른 관점은 반도체 소자에 관한 것이다.Another aspect of the present invention relates to a semiconductor device.
구체예에서, 상기 반도체 소자는 상기 반도체 밀봉용 에폭시 수지 조성물을 사용하여 밀봉된 것일 수 있다.In an embodiment, the semiconductor element may be sealed using the epoxy resin composition for semiconductor encapsulation.
본 발명은 비유전율이 높으면서, 온도에 따른 비유전율 변화가 낮을 뿐만 아니라, 열전도도가 높고, 흡습율이 낮으며, 지문 인식율이 우수한 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하는 효과를 갖는다.The present invention relates to an epoxy resin composition for sealing a semiconductor device having a high relative dielectric constant and a low relative dielectric constant variation with temperature, a high thermal conductivity, a low moisture absorption rate and a high fingerprint recognition rate, .
이하, 본 발명에 대해 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. In the following description of the present invention, detailed description of known related arts will be omitted when it is determined that the gist of the present invention may be unnecessarily obscured by the present invention.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.In the case where the word 'includes', 'having', 'done', etc. are used in this specification, other parts can be added unless '~ only' is used. Unless the context clearly dictates otherwise, including the plural unless the context clearly dictates otherwise.
또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.Also, in interpreting the constituent elements, even if there is no separate description, it is interpreted as including the error range.
또한, 본 명세서에 있어서, 범위를 나타내는 'X 내지 Y'는 'X 이상 Y 이하'를 의미한다. In the present specification, 'X to Y' representing the range means 'X or more and Y or less'.
또한, 본 명세서에서, '지문인식율 평가 방법'은 정전용량방식의 FBGA 패키지를 총 120개 제작하고, 각 패키지 당 5회의 지문인식 테스트를 하여, 총 100회 중 지문인식 성공 회수를 지문인식율(%)로 산출하였다. In this specification, the 'fingerprint recognition rate evaluation method' is a method in which a total of 120 capacitive FBGA packages are manufactured and five fingerprint recognition tests are performed for each package, ).
본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 에폭시 수지, 경화제, 무기 충전제 및 폭발 방지제를 포함하고, 상기 무기 충전제는 하기 화학식 1로 표시되는 바륨-티타늄-이트륨 산화물을 포함하는 제1 무기 충전제를 포함한다.The epoxy resin composition for semiconductor device encapsulation of the present invention comprises an epoxy resin, a curing agent, an inorganic filler and an explosion-proofing agent, wherein the inorganic filler comprises a first inorganic filler comprising barium-titanium-yttrium oxide represented by the following formula do.
[화학식 1][Chemical Formula 1]
BaTiaYbO4.5
BaTi a Y b O 4.5
상기 화학식 1에서, a는 0.1 내지 2, b는 1 내지 3이다.In the above formula (1), a is 0.1 to 2, and b is 1 to 3.
이하, 본 발명의 에폭시 수지 조성물의 각 성분에 대하여 구체적으로 설명한다.Hereinafter, each component of the epoxy resin composition of the present invention will be described in detail.
(A) 에폭시 수지(A) an epoxy resin
반도체 소자 밀봉용으로 일반적으로 사용되는 에폭시 수지라면 특별히 제한되지 않는다. 구체예에서 에폭시 수지는 분자 중에 2개 이상의 에폭시기를 함유하는 에폭시 화합물을 사용할 수 있다. 예를 들면, 에폭시 수지로는 페놀 또는 알킬 페놀류와 히드록시벤즈알데히드와의 축합물을 에폭시화함으로써 얻어지는 에폭시 수지, 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 다관능형 에폭시 수지, 나프톨노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 글리시딜에테르, 비스히드록시비페닐계 에폭시 수지, 디시클로펜타디엔계 에폭시 수지 등을 들 수 있다. 보다 구체적으로는, 상기 에폭시 수지는 페놀아랄킬형 에폭시 수지, 바이페닐형 에폭시 수지 또는 이들의 혼합물이 사용될 수 있다.And is not particularly limited as long as it is an epoxy resin generally used for sealing semiconductor devices. In an embodiment, the epoxy resin may be an epoxy compound containing two or more epoxy groups in the molecule. Examples of the epoxy resin include an epoxy resin obtained by epoxidizing a condensate of phenol or alkyl phenol and hydroxybenzaldehyde, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a multifunctional epoxy resin, a naphthol novolak Novolak type epoxy resins such as bisphenol A / bisphenol F / bisphenol AD, glycidyl ether of bisphenol A / bisphenol F / bisphenol AD, bishydroxybiphenyl type epoxy resin, dicyclopentadiene type epoxy resin, etc. . More specifically, the epoxy resin may be a phenol aralkyl type epoxy resin, a biphenyl type epoxy resin or a mixture thereof.
상기 페놀아랄킬형 에폭시 수지는, 예를 들면, 하기 화학식 2로 표시되는 바이페닐(biphenyl) 유도체를 포함하는 노볼락 구조의 페놀아랄킬형 에폭시 수지일 수 있다. The phenol aralkyl type epoxy resin may be, for example, a phenol aralkyl type epoxy resin having a novolak structure including a biphenyl derivative represented by the following formula (2).
[화학식 2](2)
상기 화학식 2에서, b의 평균값은 1 내지 7이다.In Formula 2, the average value of b is 1 to 7.
상기 바이페닐형 에폭시 수지는, 예를 들면, 하기 화학식 3으로 표시되는 바이페닐형 에폭시 수지일 수 있다.The biphenyl type epoxy resin may be, for example, a biphenyl type epoxy resin represented by the following formula (3).
[화학식 3](3)
상기 화학식 3에서, R8, R9, R10, R11, R12, R13, R14 및 R15는 각각 독립적으로 탄소수 1~4의 알킬기이며, c의 평균값은 0 내지 7이다.In formula (3), R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently an alkyl group having 1 to 4 carbon atoms, and the average value of c is 0 to 7.
상기 에폭시 수지는 반도체 소자 밀봉용 에폭시 수지 조성물 중 약 0.5 내지 약 20 중량%, 구체적으로 약 1 내지 약 15 중량%, 더욱 구체적으로 약 3 내지 약 12 중량%일 수 있다.The epoxy resin may be about 0.5 to about 20% by weight, specifically about 1 to about 15% by weight, more specifically about 3 to about 12% by weight, of the epoxy resin composition for encapsulating semiconductor devices.
(B) 경화제(B) Curing agent
상기 경화제로는 반도체 소자 밀봉용으로 일반적으로 사용되는 경화제들이 제한 없이 사용될 수 있으며, 예를 들어 2개 이상의 반응기를 가진 경화제가 사용될 수 있다.As the curing agent, curing agents generally used for sealing semiconductor devices may be used without limitation, for example, a curing agent having two or more reactors may be used.
구체적으로는, 상기 경화제로는, 페놀아랄킬형 페놀 수지, 페놀노볼락형 페놀 수지, 자일록(xylok)형 페놀 수지, 크레졸 노볼락형 페놀 수지, 나프톨형 페놀 수지, 테르펜형 페놀 수지, 다관능형 페놀 수지, 디시클로펜타디엔계 페놀 수지, 비스페놀 A와 레졸로부터 합성된 노볼락형 페놀 수지, 트리스(하이드록시페닐)메탄, 디하이드록시바이페닐을 포함하는 다가 페놀 화합물, 무수 말레인산 및 무수 프탈산을 포함하는 산무수물, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐설폰 등의 방향족 아민 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. Specific examples of the curing agent include phenol aralkyl type phenol resin, phenol novolak type phenol resin, xylok type phenol resin, cresol novolak type phenol resin, naphthol type phenol resin, terpene type phenol resin, Phenolic resin, dicyclopentadiene-based phenol resin, novolak-type phenol resin synthesized from bisphenol A and resole, polyhydric phenol compound including tris (hydroxyphenyl) methane, dihydroxybiphenyl, maleic anhydride and phthalic anhydride, , Aromatic amines such as methanophenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone, but are not limited thereto.
예를 들어, 상기 경화제는 페놀노볼락형 페놀 수지, 페놀아랄킬형 페놀 수지 및 다관능형 페놀 수지 중 하나 이상을 포함할 수 있다. For example, the curing agent may include at least one of a phenol novolak type phenol resin, a phenol aralkyl type phenol resin, and a multifunctional phenol resin.
상기 페놀노볼락형 페놀 수지는, 예를 들면, 하기 화학식 4로 표시되는 페놀노볼락형 페놀 수지일 수 있다.The phenol novolak type phenolic resin may be, for example, a phenol novolak type phenolic resin represented by the following formula (4).
[화학식 4][Chemical Formula 4]
상기 화학식 4에서 d의 평균값은 1 내지 7이다.In formula (4), the average value of d is 1 to 7.
상기 화학식 4로 표시되는 페놀노볼락형 페놀 수지는 가교점 간격이 짧아, 에폭시 수지와 반응할 경우 가교 밀도가 높아져 그 경화물의 유리전이온도를 높일 수 있고, 이에 따라 경화물의 선팽창 계수를 낮추어 반도체 소자 패키지의 휨을 더욱 효과적으로 억제할 수 있다. The phenol novolak type phenol resin represented by the above formula (4) has a short crosslinking point interval, and when it reacts with an epoxy resin, the crosslinking density becomes high to increase the glass transition temperature of the cured product, The warping of the package can be suppressed more effectively.
상기 페놀아랄킬형 페놀 수지는 예를 들면, 하기 화학식 5로 표시되는 분자 중에 바이페닐 유도체를 포함하는 노볼락 구조의 페놀아랄킬형 페놀 수지일 수 있다. The phenol aralkyl type phenol resin may be, for example, a phenol aralkyl type phenolic resin having a novolak structure including a biphenyl derivative in a molecule represented by the following formula (5).
[화학식 5][Chemical Formula 5]
상기 화학식 5에서, e의 평균값은 1 내지 7이다.In Formula 5, the average value of e is 1 to 7.
상기 화학식 5로 표시되는 페놀아랄킬형 페놀 수지는 에폭시 수지와 반응하여 탄소층(char)을 형성하여 주변의 열 및 산소의 전달을 차단함으로써 난연성을 달성할 수 있다. The phenol aralkyl type phenol resin represented by the above formula (5) reacts with an epoxy resin to form a carbon layer (char) to block the transfer of heat and oxygen to the periphery, thereby achieving flame retardancy.
상기 다관능형 페놀 수지는, 예를 들면, 하기 화학식 6으로 표시되는 반복 단위를 포함하는 다관능형 페놀 수지일 수 있다.The multifunctional phenol resin may be, for example, a multifunctional phenol resin containing a repeating unit represented by the following formula (6).
[화학식 6][Chemical Formula 6]
상기 화학식 6에서 g의 평균값은 1 내지 7이다.The average value of g in the above formula (6) is 1 to 7.
상기 화학식 6으로 표시되는 반복 단위를 포함하는 다관능형 페놀 수지는 에폭시 수지 조성물의 고온 휨 특성 강화 측면에서 바람직할 수 있다.The multifunctional phenol resin containing the repeating unit represented by the above formula (6) may be preferable in terms of reinforcing the high temperature bending property of the epoxy resin composition.
이들 경화제는 단독 혹은 병용하여 사용될 수 있다. 또한, 상기 경화제에 에폭시 수지, 경화 촉진제, 이형제, 커플링제, 및 응력 완화제 등의 기타 성분과 멜트 마스터 배치와 같은 선반응을 시켜 만든 부가 화합물로도 사용할 수 있다.These curing agents may be used alone or in combination. Further, it can be used as an additional compound prepared by subjecting the above curing agent to a linear reaction such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, a stress relieving agent and the like and a melt master batch.
상기 경화제는 반도체 소자 밀봉용 에폭시 수지 조성물 중 약 0.1 내지 약 13 중량%, 예를 들면 약 0.1 내지 약 10 중량% 또는 약 0.1 내지 약 8 중량%로 포함될 수 있다. The curing agent may be included in the epoxy resin composition for encapsulating semiconductor devices in an amount of about 0.1 to about 13 wt%, for example, about 0.1 to about 10 wt%, or about 0.1 to about 8 wt%.
상기 에폭시 수지와 경화제와의 배합비는 패키지에서의 기계적 성질 및 내습 신뢰성의 요구에 따라 조절될 수 있다. 예를 들면, 경화제에 대한 에폭시 수지의 화학 당량비가 약 0.95 내지 약 3 정도일 수 있으며, 구체적으로 약 1 내지 약 2 정도, 더욱 구체적으로 약 1 내지 약 1.75 정도일 수 있다. 에폭시 수지와 경화제의 배합비가 상기의 범위를 만족할 경우, 에폭시 수지 조성물 경화 후에 우수한 강도를 구현할 수 있다.The mixing ratio of the epoxy resin and the curing agent can be adjusted in accordance with the requirements of mechanical properties and moisture resistance reliability in the package. For example, the chemical equivalent ratio of the epoxy resin to the curing agent may be from about 0.95 to about 3, and specifically from about 1 to about 2, more specifically from about 1 to about 1.75. When the compounding ratio of the epoxy resin and the curing agent is in the above range, excellent strength can be realized after curing the epoxy resin composition.
(C) 무기 충전제(C) Inorganic filler
본 발명에 있어서, 일 구체예의 무기 충전제는 하기 화학식 1로 표시되는 바륨-티타늄-이트륨 산화물을 포함하는 제1 무기 충전제를 포함한다.In the present invention, the inorganic filler of one embodiment includes a first inorganic filler comprising barium-titanium-yttrium oxide represented by the following formula (1).
[화학식 1][Chemical Formula 1]
BaTiaYbO4.5
BaTi a Y b O 4.5
상기 화학식 1에서, a는 0.1 내지 2, b는 1 내지 3이다.In the above formula (1), a is 0.1 to 2, and b is 1 to 3.
구체예에서 상기 화학식 1에서, a는 0.5 내지 1.5, 구체적으로 0.8 내지 1.2, b는 1.5 내지 2.5, 구체적으로 1.8 내지 2.2일 수 있다.In Formula 1, a may be 0.5 to 1.5, specifically 0.8 to 1.2, and b may be 1.5 to 2.5, specifically 1.8 to 2.2.
상기 화학식 1로 표시되는 바륨-티타늄-이트륨 산화물은 종래의 반도체 밀봉용 에폭시 수지 조성물에 비해 비유전율이 높아 반도체 소자의 지문 인식률을 높일 수 있는 장점이 있다.The barium-titanium-yttrium oxide represented by the above formula (1) has a higher dielectric constant than that of the conventional epoxy resin composition for semiconductor encapsulation, which is advantageous in that the fingerprint recognition rate of a semiconductor device can be increased.
상기 바륨-티타늄-이트륨 산화물은 이트륨(Y)을 약 30 내지 약 50 중량%, 구체적으로 약 35 내지 약 45 중량%로 포함할 수 있다. 상기의 범위에서, 에폭시 수지 조성물은 비유전율이 높을 뿐만 아니라, 온도에 따른 비유전율의 변화가 작아서, 상기 에폭시 수지 조성물을 적용한 반도체 소자는 안정성 및 신뢰성이 높을 수 있다.The barium-titanium-yttrium oxide may comprise about 30 to about 50 wt.%, Specifically about 35 to about 45 wt.% Yttrium (Y). In the above range, the epoxy resin composition not only has a high dielectric constant but also a small change in relative dielectric constant with temperature, so that the semiconductor device using the epoxy resin composition can have high stability and reliability.
상기 바륨-티타늄-이트륨 산화물은 바륨(Ba)과 이트륨(Y)의 중량비가 약 0.3:1 내지 약 1.5:1, 구체적으로 약 0.5:1 내지 약 1:1일 수 있다. 상기 바륨-티타늄-이트륨 산화물은 티타늄(Ti)과 이트륨(Y)의 중량비가 약 0.01:1 내지 약 1.2:1, 약 0.01:1 내지 약 1:1, 약 0.01:1 내지 약 0.5:1, 구체적으로 약 0.1:1 내지 약 0.4:1일 수 있다. 상기의 범위에서, 에폭시 수지 조성물은 비유전율이 높을 뿐만 아니라, 온도에 따른 비유전율의 변화가 작은 장점이 있을 수 있다.The barium-titanium-yttrium oxide may have a weight ratio of barium (Ba) and yttrium (Y) of about 0.3: 1 to about 1.5: 1, specifically about 0.5: 1 to about 1: 1. Wherein the barium-titanium-yttrium oxide has a weight ratio of titanium (Ti) to yttrium (Y) of from about 0.01: 1 to about 1.2: 1, from about 0.01: 1 to about 1: 1, Specifically about 0.1: 1 to about 0.4: 1. In the above range, the epoxy resin composition may have an advantage of not only a high dielectric constant but also a small change in relative dielectric constant depending on the temperature.
상기 바륨-티타늄-이트륨 산화물은 입경이 약 0.1 내지 약 150㎛, 예를 들면 약 0.1 내지 약 100㎛, 약 0.1 내지 약 50㎛, 약 0.1 내지 약 10㎛일 수 있고, 더욱 구체적으로 약 0.1 내지 약 5㎛일 수 있고, 상기 바륨-티타늄-이트륨 산화물은 비표면적이 약 0.01 내지 약 15m2/g, 구체적으로 약 1 내지 약 10m2/g, 더욱 구체적으로 약 1 내지 약 5m2/g일 수 있다. 또한, 상기 바륨-티타늄-이트륨 산화물은 밀도가 약 3 내지 약 9g/m3, 구체적으로 약 4 내지 약 8g/m3, 더욱 구체적으로 약 5 내지 약 7g/m3일 수 있다. 상기의 범위에서, 에폭시 수지 조성물은 비유전율이 우수하고, 온도에 따른 비유전율의 변화가 작은 장점이 있을 수 있다.The barium-titanium-yttrium oxide may have a particle size of from about 0.1 to about 150 microns, such as from about 0.1 to about 100 microns, from about 0.1 to about 50 microns, from about 0.1 to about 10 microns, And the barium-titanium-yttrium oxide has a specific surface area of about 0.01 to about 15 m 2 / g, specifically about 1 to about 10 m 2 / g, more specifically about 1 to about 5 m 2 / g . The barium-titanium-yttrium oxide may also have a density of about 3 to about 9 g / m 3 , specifically about 4 to about 8 g / m 3 , more specifically about 5 to about 7 g / m 3 . In the above-mentioned range, the epoxy resin composition may have an advantage that the relative dielectric constant is excellent and the variation of the relative dielectric constant with temperature is small.
상기 제1 무기 충전제는 에폭시 수지 조성물 제조 전에 미리 상기 폭발 방지제로 코팅될 수 있다.The first inorganic filler may be coated with the explosion-proofing agent in advance before the preparation of the epoxy resin composition.
상기 제1 무기 충전제는 상기 바륨-티타늄-이트륨 산화물을 약 0.1 내지 약 100 중량%, 구체적으로 약 30 내지 약 99 중량%, 더욱 구체적으로 약 40 내지 약 98 중량%로 포함할 수 있다.The first inorganic filler may comprise about 0.1 to about 100 wt.%, Specifically about 30 to about 99 wt.%, More specifically about 40 to about 98 wt.% Of the barium-titanium-yttrium oxide.
다른 구체예에서, 상기 제1 무기 충전제는 산화지르코늄(ZrO2), 산화마그네슘(MgO), 및 망간카보네이트(MnCO3)중 하나 이상을 더 포함할 수 있다.In another embodiment, the first inorganic filler may further comprise at least one of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ).
이 경우, 상기 제1 무기 충전제는 상기 산화지르코늄(ZrO2), 산화마그네슘(MgO), 망간카보네이트(MnCO3) 및 바륨-티타늄-이트륨 산화물의 혼합물일 수 있다.In this case, the first inorganic filler may be a mixture of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), manganese carbonate (MnCO 3 ) and barium-titanium-yttrium oxide.
상기 제1 무기 충전제는 무기 충전제 총량 중 약 10 내지 약 100 중량%, 구체적으로 약 20 내지 약 97 중량%, 더욱 구체적으로 약 40 중량% 이상, 약 50 중량% 이상, 약 60 중량% 이상, 약 70 중량% 이상 또는 약 80 중량% 이상이고, 약 95 중량%이하일 수 있다. 상기의 범위에서, 유동성, 비유전율 및 비유전율 변화율의 밸런스가 우수할 수 있다.The first inorganic filler is present in an amount of from about 10 to about 100 weight percent, specifically from about 20 to about 97 weight percent, more specifically, at least about 40 weight percent, at least about 50 weight percent, at least about 60 weight percent, 70 wt% or more, or about 80 wt% or more, and about 95 wt% or less. In the above range, the balance between the fluidity, the relative dielectric constant and the rate of change of the relative dielectric constant can be excellent.
본 발명에 따른 에폭시 수지 조성물은 요구 물성에 따라 제2 무기 충전제를 더 포함할 수도 있다. 상기 제2 무기 충전제는 에폭시 수지 조성물의 기계적 물성, 저응력화 및 방열 효과를 향상시키기 위한 것이다. The epoxy resin composition according to the present invention may further comprise a second inorganic filler depending on required properties. The second inorganic filler is intended to improve the mechanical properties, low stress and heat radiation effect of the epoxy resin composition.
상기 제2 무기 충전제는 제1 무기 충전제(바륨-티타늄-이트륨 산화물, 산화지르코늄(ZrO2), 산화마그네슘(MgO), 및 망간카보네이트(MnCO3)와 다른 것을 의미할 수 있다. 예를 들면, 상기 제2 무기 충전제는 실리콘(Si) 및 알루미늄(Al) 함유 나노 물질, 알루미나, 용융 실리카, 결정성 실리카, 질화붕소, 페라이트, 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이(clay), 탈크(talc), 규산칼슘, 산화티탄, 산화안티몬, 유리 섬유 등이 사용될 수 있다. 이들은 단독 또는 혼합하여 사용될 수 있다. The second inorganic filler may mean different from the first inorganic filler (barium-titanium-yttrium oxide, zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ) Wherein the second inorganic filler is selected from the group consisting of silicon (Si) and aluminum (Al) containing nanomaterials, alumina, fused silica, crystalline silica, boron nitride, ferrite, calcium carbonate, magnesium carbonate, magnesia, clay, talc, , Calcium silicate, titanium oxide, antimony oxide, glass fiber, etc. These may be used alone or in combination.
상기 실리콘(Si) 및 알루미늄(Al) 함유 나노 물질은 평균입경이 약 10 nm 내지 약 500 nm, 구체적으로 약 20 nm 내지 약 450 nm, 더욱 구체적으로 약 20 nm 내지 약 400 nm가 될 수 있다. 상기의 범위에서 흐름성의 저하 없이 에폭시 수지 조성물의 방열 효과 및 굴곡 강도를 높일 수 있다.The silicon (Si) and aluminum (Al) containing nanomaterials may have an average particle size of from about 10 nm to about 500 nm, specifically from about 20 nm to about 450 nm, more specifically from about 20 nm to about 400 nm. The heat radiation effect and flexural strength of the epoxy resin composition can be enhanced without lowering the flowability in the above range.
상기 알루미나는 약 15W/mK 내지 약 40W/mK, 구체적으로 약 20W/mK 내지 약 30W/mK, 더욱 구체적으로 약 25W/mK 내지 약 30W/mK의 열전도도를 가질 수 있다. 상기 범위에서 에폭시 수지 조성물은 방열성이 우수할 수 있다.The alumina may have a thermal conductivity of about 15 W / mK to about 40 W / mK, specifically about 20 W / mK to about 30 W / mK, more specifically about 25 W / mK to about 30 W / mK. In the above range, the epoxy resin composition may be excellent in heat radiation.
알루미나의 형상 및 입경은 특별히 한정되지 않지만, 평균 입경이 약 0.1㎛ 내지 약 50㎛, 구체적으로 약 0.5㎛ 내지 약 30㎛인 구상 알루미나를 적용할 수 있다. 상기 범위에서 반도체 밀봉 성형에 있어서 에폭시 수지 조성물의 흐름성이 우수한 장점이 있을 수 있다.The shape and particle size of alumina are not particularly limited, but spherical alumina having an average particle diameter of about 0.1 탆 to about 50 탆, specifically about 0.5 탆 to about 30 탆, can be applied. In the above range, the flowability of the epoxy resin composition in the semiconductor encapsulation molding may be advantageous.
상기 알루미나는 다른 평균 입경을 갖는 알루미나를 혼합하여 사용할 수 있다. 구체적으로 총 알루미나 함량 중, 평균 입경 약 10㎛ 초과, 약 30㎛ 이하의 알루미나 약 40 중량% 내지 약 95 중량%, 평균입경 약 4㎛ 초과, 약 10㎛ 이하의 알루미나 약 4 중량% 내지 약 50 중량% 및 평균입경 약 0.1㎛ 이상, 약 4㎛ 이하의 알루미나 약 1 중량% 내지 약 30 중량%를 포함한 알루미나 혼합물을 사용할 수 있다. 상기의 범위에서 에폭시 수지 조성물은 방열효과 및 굴곡강도가 우수하며 열충격에 강한 장점이 있을 수 있다.The alumina can be used by mixing alumina having different average particle diameters. About 40 wt.% To about 95 wt.% Of alumina having an average particle size of greater than about 10 microns and less than about 30 microns, about 4 to about 50 microns of alumina having an average particle size of greater than about 4 microns and less than about 10 microns, % And an alumina mixture comprising from about 1% to about 30% by weight of alumina having an average particle size of at least about 0.1 占 퐉 and at most about 4 占 퐉. In the above range, the epoxy resin composition has excellent heat radiation effect and bending strength, and may be advantageous against thermal shock.
상기 알루미나 혹은 알루미나 혼합물은 제1 무기 충전제(C-1) 및 제2 무기 충전제(C-2) 총량 중 약 3 중량% 내지 약 70 중량%로 포함할 수 있다. 예를 들면, 약 5 중량% 내지 약 60 중량%, 약 7 중량% 내지 약 40 중량%, 구체적으로 약 30 중량% 이하, 약 20중량% 이하로 포함할 수 있다. 상기의 범위에서 에폭시 수지 조성물의 방열효과, 굴곡강도 등의 기계적 물성, 성형성 등이 우수할 수 있다.The alumina or alumina mixture may comprise from about 3% to about 70% by weight of the total amount of the first inorganic filler (C-1) and the second inorganic filler (C-2). From about 5 wt.% To about 60 wt.%, From about 7 wt.% To about 40 wt.%, Specifically up to about 30 wt.%, Up to about 20 wt.%. Within the above range, the epoxy resin composition may be excellent in heat resistance, mechanical properties such as bending strength, moldability and the like.
제1 무기 충전제(C-1) 및 제2 무기 충전제(C-2)의 사용량은 성형성, 저응력성, 및 고온 강도 등의 요구 물성에 따라 다르다. 예를 들면, 상기 에폭시 수지 조성물은 상기 제1 무기 충전제와 상기 제2 무기충전제의 함량 비율이 약 0.05:1 내지 약 50:1, 구체적으로, 약 0.5:1 내지 약 30:1, 더욱 구체적으로, 약 5:1 내지 약 20:1일 수 있다. The amount of the first inorganic filler (C-1) and the second inorganic filler (C-2) used varies depending on required properties such as moldability, low stress and high temperature strength. For example, the epoxy resin composition may have a ratio of the first inorganic filler to the second inorganic filler in the range of about 0.05: 1 to about 50: 1, specifically about 0.5: 1 to about 30: 1, , From about 5: 1 to about 20: 1.
구체예에서, 제1 무기 충전제는 수지 조성물 중 약 50 중량% 내지 약 98 중량%, 예를 들면 약 70 중량% 내지 약 98 중량% 또는 약 80 중량% 내지 약 95 중량%로 포함될 수 있고, 제2 무기 충전제는 수지 조성물 중 약 0.1 중량% 내지 약 40 중량%, 예를 들면 약 0.5 중량% 내지 약 35 중량%, 약 1 중량% 내지 약 20 중량% 또는 약 5 중량% 내지 약 15 중량%로 포함될 수 있다.In embodiments, the first inorganic filler may comprise from about 50% to about 98%, such as from about 70% to about 98% or from about 80% to about 95% by weight of the resin composition, 2 Inorganic fillers may be present in the resin composition in an amount of from about 0.1 wt% to about 40 wt%, such as from about 0.5 wt% to about 35 wt%, from about 1 wt% to about 20 wt%, or from about 5 wt% to about 15 wt% .
상기 제1 무기 충전제 및 제2 무기 충전제의 총합은 에폭시 수지 조성물 중 약 50 중량% 내지 약 98 중량%, 예를 들면 약 70 중량% 내지 약 98 중량% 또는 약 80 중량% 내지 약 95 중량%로 포함될 수 있다.The sum of the first inorganic filler and the second inorganic filler is from about 50% to about 98%, such as from about 70% to about 98% or from about 80% to about 95% by weight of the epoxy resin composition .
폭발 방지제Explosion inhibitor
본 발명에 따른 에폭시 수지 조성물은 폭발 방지제를 포함한다. The epoxy resin composition according to the present invention comprises an explosion-proofing agent.
에폭시 밀봉형 봉지재가 고 비유전율 필러를 포함하는 경우, 해당 필러의 폭발 가능성이 있을 수 있다. 본 발명에서는 고 비유전율을 가지는 조성물임에 폭발 방지제를 포함함으로써, 폭발 가능성이 극소화되어 실제 제품에 적용 시 안전성이 확보될 수 있다. If the epoxy encapsulated encapsulant contains a high relative dielectric constant filler, there is a potential for the filler to explode. In the present invention, since the composition has a high relative dielectric constant and includes an explosion-proofing agent, the possibility of explosion is minimized and safety can be secured when applied to an actual product.
일 구체예의 폭발 방지제는 트리페닐 포스파인 옥사이드를 포함할 수 있다. One embodiment of the explosion-proofing agent may comprise triphenylphosphine oxide.
폭발 방지제로 트리페닐 포스파인 옥사이드를 포함할 경우, 조성물의 방폭 효과가 확보됨과 동시에 비 유전율 또한 우수할 수 있다.When triphenylphosphine oxide is contained as an explosion-proofing agent, the explosion-proof effect of the composition is ensured, and the relative permittivity can also be excellent.
상기 에폭시 수지 조성물에 폭발 방지제는 에폭시 수지 조성물 중 약 0.1 ~ 약 20 중량%, 구체적으로 약 0.1 중량% ~ 약 15 중량%, 약 0.3 중량% ~ 약 15 중량%, 약 0.4 중량% ~ 약 10 중량%, 더욱 구체적으로 약 0.4 중량% ~ 약 8 중량%, 약 0.4 중량% ~ 약 7 중량%, 또는 약 0.4 중량% ~ 약 6 중량%로 포함될 수 있다. 상기 범위에서 조성물의 방폭 성능이 우수할 수 있다. The explosion-proofing agent may be added to the epoxy resin composition in an amount of about 0.1 to about 20 wt%, specifically about 0.1 wt% to about 15 wt%, about 0.3 wt% to about 15 wt%, about 0.4 wt% to about 10 wt% %, More specifically from about 0.4 wt% to about 8 wt%, from about 0.4 wt% to about 7 wt%, or from about 0.4 wt% to about 6 wt%. In the above range, the explosion-proof performance of the composition can be excellent.
일 구체예에서, 상기 무기 충전제를 폭발 방지제로 처리한 것을 사용할 수 있다. 무기 충전제가 고 비유전율을 가짐에도 폭발 방지 처리되어 조성물의 폭발 가능성이 극소화되어 실제 제품화 적용 시 안전성이 확보될 수 있다. In one embodiment, the inorganic filler treated with an explosion-proofing agent can be used. Even if the inorganic filler has a high relative dielectric constant, it is prevented from explosion and the possibility of explosion of the composition is minimized.
무기 충전제의 폭발 방지 처리 방법은 특별히 제한되지 않으나, 예를 들면, 용매에 폭발 방지제를 녹인 후 무기 충전제와 섞어 무기 충전제 중 폭발 방지제의 분율을 조절하는 방법으로 행할 수 있다.The method for preventing the explosion of the inorganic filler is not particularly limited. For example, it may be carried out by dissolving the explosion-proofing agent in a solvent and then mixing with an inorganic filler to adjust the fraction of the explosion-proofing agent in the inorganic filler.
구체예에서, 고 비유전율을 나타내는 제1 무기 충전제를 폭발 방치 처리하여 사용할 수 있다. 바람직하게는, 상기 제1 무기 충전제를 트리페닐 포스파인 옥사이드로 처리한 것을 사용할 수 있다. 상기 처리에 의해 제1 무기 충전제는 트리페닐 포스파인 옥사이드를 포함하며, 표면에 트리페닐 포스파인 옥사이드가 코팅된 형태일 수 있다.In a specific example, the first inorganic filler exhibiting a high relative dielectric constant may be subjected to an explosion-proof treatment. Preferably, the first inorganic filler treated with triphenylphosphine oxide may be used. By the above treatment, the first inorganic filler includes triphenylphosphine oxide, and the surface thereof may be coated with triphenylphosphine oxide.
제 1 무기 충전제와 폭발 방지제의 총합 100 중량%에서, 폭발 방지제는 약 0.1 중량% 내지 약 20 중량%, 약 0.3 중량% 내지 약 10 중량%, 약 0.4 중량% 내지 약 8 중량%로 포함될 수 있다. 상기 범위에서 조성물의 방폭 성능이 우수할 수 있다. 또한 상기 범위에서 우수한 비유전율을 나타내는 효과가 있을 수 있다.At 100% by weight of the total of the first inorganic filler and the explosion-proofing agent, the explosion-proofing agent may be included at from about 0.1% to about 20%, from about 0.3% to about 10%, and from about 0.4% to about 8% . In the above range, the explosion-proof performance of the composition can be excellent. Also, there may be an effect of exhibiting an excellent relative dielectric constant in the above range.
본 발명에 따른 조성물의 방폭 성능 정도는 고주파로 인한 방전의 정도를 테스트함으로써 평가할 수 있다. The degree of explosion-proof performance of the composition according to the present invention can be evaluated by testing the degree of discharge due to high frequency.
구체예에서, 본 발명에 따른 에폭시 수지 조성물은 에폭시 수지 약 0.5 내지 약 20 중량%, 경화제 약 0.1 내지 약 13 중량%, 무기 충전제 약 50 내지 약 98 중량%, 폭발 방지제 약 0.1 내지 약 20 중량%를 포함할 수 있다. 예를 들면, 에폭시 수지 약 0.5 내지 약 15 중량%, 경화제 약 0.1 내지 약 10 중량%, 제1 무기 충전제 약 50 내지 약 98 중량%, 제2 무기 충전제 약 0.1 내지 약 40 중량%, 폭발방지제 약 0.1 내지 약 15 중량%를 포함할 수 있다.In an embodiment, the epoxy resin composition according to the present invention comprises from about 0.5 to about 20 weight percent epoxy resin, from about 0.1 to about 13 weight percent of a curing agent, from about 50 to about 98 weight percent of an inorganic filler, from about 0.1 to about 20 weight percent of an explosion- . ≪ / RTI > From about 0.5 to about 15 weight percent epoxy resin, from about 0.1 to about 10 weight percent curing agent, from about 50 to about 98 weight percent first inorganic filler, from about 0.1 to about 40 weight percent second inorganic filler, 0.1 to about 15% by weight.
한편, 상기 성분들 이외에 본 발명에 따른 에폭시 수지 조성물은 경화촉진제, 커플링제, 이형제 및 착색제 중 하나 이상을 더 포함할 수 있다.In addition to the above components, the epoxy resin composition according to the present invention may further include at least one of a curing accelerator, a coupling agent, a release agent, and a colorant.
경화 촉진제Hardening accelerator
경화 촉진제는 에폭시 수지와 경화제의 반응을 촉진하는 물질이다. 상기 경화 촉진제로는, 예를 들면, 3급 아민, 유기금속화합물, 유기인화합물, 이미다졸, 및 붕소화합물 등이 사용 가능하다. 3급 아민에는 벤질디메틸아민, 트리에탄올아민, 트리에틸렌디아민, 디에틸아미노에탄올, 트리(디메틸아미노메틸)페놀, 2-2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디아미노메틸)페놀과 트리-2-에틸헥실산염 등이 있다. The curing accelerator is a substance that promotes the reaction between the epoxy resin and the curing agent. As the curing accelerator, for example, a tertiary amine, an organometallic compound, an organic phosphorus compound, an imidazole, and a boron compound can be used. Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris ) Phenol and tri-2-ethylhexyl acid salt.
상기 유기 금속화합물의 구체적인 예로는, 크로뮴아세틸아세토네이트, 징크아세틸아세토네이트, 니켈아세틸아세토네이트 등이 있다. 유기인화합물에는 트리스-4-메톡시포스핀, 테트라부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드, 페닐포스핀, 디페닐포스핀, 트리페닐포스핀, 트리페닐포스핀트리페닐보란, 트리페닐포스핀-1,4-벤조퀴논 부가물 등이 있다. 이미다졸류에는 2-페닐-4메틸이미다졸, 2-메틸이미다졸, 2-페닐이미다졸, 2-아미노이미다졸, 2-메틸-1-비닐이미다졸, 2-에틸-4-메틸이미다졸, 2-헵타데실이미다졸 등을 들 수 있으나, 이에 한정되는 것은 아니다. 상기 붕소화합물의 구체적인 예로는, 테트라페닐포스포늄-테트라페닐보레이트, 트리페닐포스핀 테트라페닐보레이트, 테트라페닐보론염, 트리플루오로보란-n-헥실아민, 트리플루오로보란모노에틸아민, 테트라플루오로보란트리에틸아민, 테트라플루오로보란아민 등이 있다. 이외에도 1,5-디아자바이시클로[4.3.0]논-5-엔(1,5-diazabicyclo[4.3.0]non-5-ene:DBN), 1,8-디아자바이시클로[5.4.0]운덱-7-엔(1,8-diazabicyclo[5.4.0]undec-7-ene: DBU) 및 페놀노볼락 수지염 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the organometallic compound include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and the like. Organic phosphorus compounds include tris-4-methoxyphosphine, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphine Pin-1,4-benzoquinone adducts and the like. Imidazoles include, but are not limited to, 2-phenyl-4 methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-aminoimidazole, -Methylimidazole, 2-heptadecylimidazole, and the like, but the present invention is not limited thereto. Specific examples of the boron compound include tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoro Triethylamine, tetrafluoroborane amine, and the like. In addition, 1,5-diazabicyclo [4.3.0] non-5-ene (1,5-diazabicyclo [4.3.0] non-5-ene: DBN), 1,8-diazabicyclo [5.4. Diazabicyclo [5.4.0] undec-7-ene: DBU) and phenol novolac resin salt. However, the present invention is not limited thereto.
보다 구체적으로는, 상기 경화 촉진제로 유기인화합물, 붕소화합물, 아민계, 또는 이미다졸계 경화 촉진제를 단독 혹은 혼합하여 사용할 수 있다. 상기 경화 촉진제는 에폭시 수지 또는 경화제와 선반응하여 만든 부가물을 사용하는 것도 가능하다.More specifically, organic phosphorus compounds, boron compounds, amine-based or imidazole-based curing accelerators may be used alone or in combination as the curing accelerator. As the curing accelerator, it is also possible to use an adduct made by reacting with an epoxy resin or a curing agent.
본 발명에서 경화 촉진제의 사용량은 에폭시 수지 조성물 총 중량에 대하여 약 0.01 중량% 내지 약 2 중량% 정도일 수 있으며, 구체적으로 약 0.02 중량% 내지 약 1.5 중량% 정도, 더욱 구체적으로 약 0.05 중량% 내지 약 1 중량% 정도일 수 있다. 상기의 범위에서 에폭시 수지 조성물의 경화를 촉진하고 또한, 경화도도 좋은 장점이 있을 수 있다.The amount of the curing accelerator used in the present invention may be about 0.01 wt% to about 2 wt% based on the total weight of the epoxy resin composition, specifically about 0.02 wt% to about 1.5 wt%, more specifically about 0.05 wt% 1% by weight. It may be advantageous that the curing of the epoxy resin composition is accelerated within the above-mentioned range and the curing degree is also good.
커플링제Coupling agent
상기 커플링제는 에폭시 수지와 무기 충전제 사이에서 반응하여 계면 강도를 향상시키기 위한 것으로, 예를 들면, 실란 커플링제일 수 있다. 상기 실란 커플링제는 에폭시 수지와 무기 충전제 사이에서 반응하여, 에폭시 수지와 무기 충전제의 계면 강도를 향상시키는 것이면 되고, 그 종류가 특별히 한정되지 않는다. 상기 실란 커플링제의 구체적인 예로는 에폭시실란, 아미노실란, 우레이도실란, 머캅토실란 등을 들 수 있다. 상기 커플링제는 단독으로 사용할 수 있으며 병용해서 사용할 수도 있다.The coupling agent is for improving the interface strength by reacting between the epoxy resin and the inorganic filler, and may be, for example, a silane coupling agent. The silane coupling agent is not particularly limited as long as it reacts between the epoxy resin and the inorganic filler to improve the interface strength between the epoxy resin and the inorganic filler. Specific examples of the silane coupling agent include epoxy silane, aminosilane, ureido silane, mercaptosilane, and the like. The coupling agent may be used alone or in combination.
상기 커플링제는 에폭시 수지 조성물 총 중량에 대해 약 0.01 중량% 내지 약 5 중량% 정도, 바람직하게는 약 0.05 중량% 내지 약 3 중량% 정도, 더욱 바람직하게는 약 0.1 중량% 내지 약 2 중량% 정도의 함량으로 포함될 수 있다. 상기 범위에서 에폭시 수지 조성물 경화물의 강도가 향상될 수 있다.The coupling agent is used in an amount of about 0.01 wt% to about 5 wt%, preferably about 0.05 wt% to about 3 wt%, more preferably about 0.1 wt% to about 2 wt%, based on the total weight of the epoxy resin composition As shown in FIG. The strength of the cured product of the epoxy resin composition in the above range can be improved.
이형제Release agent
상기 이형제로는 파라핀계 왁스, 에스테르계 왁스, 고급 지방산, 고급 지방산 금속염, 천연 지방산 및 천연 지방산 금속염으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. As the release agent, at least one selected from the group consisting of paraffin wax, ester wax, higher fatty acid, higher fatty acid metal salt, natural fatty acid and natural fatty acid metal salt can be used.
상기 이형제는 에폭시 수지 조성물 중 약 0.1 중량% 내지 약 1 중량%로 포함될 수 있다.The release agent may be included in an amount of about 0.1 wt% to about 1 wt% of the epoxy resin composition.
착색제coloring agent
상기 착색제는 반도체 소자 밀봉재의 레이저 마킹을 위한 것으로, 당해 기술 분야에 잘 알려져 있는 착색제들이 사용될 수 있으며, 특별히 제한되지 않는다. 예를 들면, 상기 착색제는 카본 블랙, 티탄 블랙, 블랙 염료(Nubian black), 티탄 질화물, 인산수산화구리(dicopper hydroxide phosphate), 철산화물, 운모 중 하나 이상을 포함할 수 있다. The coloring agent is for laser marking of a semiconductor element sealing material, and colorants well-known in the art can be used and are not particularly limited. For example, the colorant may include one or more of carbon black, titanium black, Nubian black, titanium nitride, dicopper hydroxide phosphate, iron oxide, mica.
상기 착색제는 에폭시 수지 조성물 총 중량에 대해 약 0.01 중량% 내지 약 5 중량% 정도, 바람직하게는 약 0.05 중량% 내지 약 3 중량% 정도, 더욱 바람직하게는 약 0.1 중량% 내지 약 2 중량% 정도의 함량으로 포함될 수 있다. The colorant is used in an amount of about 0.01% to about 5% by weight, preferably about 0.05% to about 3% by weight, more preferably about 0.1% to about 2% by weight based on the total weight of the epoxy resin composition .
이외에도, 본 발명의 에폭시 수지 조성물은 본 발명의 목적을 해하지 않는 범위에서 변성 실리콘 오일, 실리콘 파우더, 및 실리콘 레진 등의 응력 완화제; Tetrakis[methylene-3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate]methane 등의 산화 방지제; 등을 필요에 따라 추가로 함유할 수 있다.In addition, the epoxy resin composition of the present invention may contain a stress-relieving agent such as a modified silicone oil, a silicone powder, and a silicone resin to the extent that the object of the present invention is not impaired; Antioxidants such as Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane; And the like may be further contained as needed.
한편, 상기 에폭시 수지 조성물은 상기와 같은 성분들을 헨셀 믹서(Hensel mixer)나 뢰디게 믹서(Lodige mixer)를 이용하여 소정의 배합비로 균일하게 충분히 혼합한 뒤, 롤밀(roll-mill)이나 니이더(kneader)로 용융 혼련한 후, 냉각, 분쇄 과정을 거쳐 최종 분말 제품을 얻는 방법으로 제조될 수 있다.The epoxy resin composition may be prepared by uniformly mixing the above components uniformly at a predetermined mixing ratio using a Hensel mixer or a Lodige mixer and then kneading the mixture in a roll mill or a kneader kneader, and then cooled and pulverized to obtain a final powder product.
상기 성분으로 형성된 본 발명에 따른 반도체 밀봉용 에폭시 수지 조성물은 경화 후, 온도 25℃, 주파수 1.0GHz에서 비유전율이 약 20 이상, 예를 들어 약 25 내지 약 50, 구체적으로 약 27 내지 약 40, 더욱 구체적으로 약 29 내지 약 40일 수 있다. 상기의 범위에서, 에폭시 수지는 정전용량식 반도체 소자의 밀봉에 적용되어, 우수한 성능을 나타낼 수 있다.The epoxy resin composition for semiconductor encapsulation according to the present invention formed of the above-described components has a relative dielectric constant of about 20 or more, for example, about 25 to about 50, specifically about 27 to about 40, More specifically from about 29 to about 40. In the above-mentioned range, the epoxy resin is applied to the sealing of the capacitive-type semiconductor device and can exhibit excellent performance.
또한, 상기 반도체 밀봉용 에폭시 수지 조성물은 고주파로 인한 방전 개시 시간이 약 3초 이상일 수 있다. 예를 들면, 약 5초 이상, 약 10초 이상, 약 30초 이상 일 수 있다. 상기 범위에서, 폭발 가능성이 극소화되어 안전성이 확보될 수 있다. In addition, the epoxy resin composition for semiconductor encapsulation may have a discharge start time due to high frequency of about 3 seconds or more. For example, about 5 seconds or more, about 10 seconds or more, or about 30 seconds or more. Within this range, the possibility of explosion is minimized and safety can be ensured.
또한, 상기 반도체 밀봉용 에폭시 수지 조성물은 정전용량을 이용한 터치식 지문인식 평가 방법에서, 지문 인식율이 약 90% 이상, 예를 들어 약 90% 내지 약 100%, 구체적으로 약 93% 내지 약 100%, 더욱 구체적으로 약 95% 내지 약 100%, 약 96% 내지 약 100%, 약 97% 내지 약 100%, 약 98% 내지 약 99.9%, 약 99.5% 내지 약 99.9%일 수 있다.The epoxy resin composition for semiconductor encapsulation has a fingerprint recognition rate of about 90% or more, for example about 90% to about 100%, specifically about 93% to about 100%, in a touch-based fingerprint recognition evaluation method using capacitance. , More specifically from about 95% to about 100%, from about 96% to about 100%, from about 97% to about 100%, from about 98% to about 99.9%, from about 99.5% to about 99.9%.
상기와 같은 본 발명의 에폭시 수지 조성물은 반도체 소자, 특히 높은 비유전율 및 온도에 따른 비유전율 변화가 적은 특성이 요구되는 박막형 반도체 소자에 유용하게 적용될 수 있다. 본 발명에서 얻어진 에폭시 수지 조성물을 사용하여 반도체 소자를 밀봉하는 방법으로써는 저압 트랜스퍼 성형법이 일반적으로 사용될 수 있다. 그러나, 인젝션(injection) 성형법이나 캐스팅(casting), 압축 성형 등의 방법으로도 성형이 가능하다. The epoxy resin composition of the present invention as described above is usefully applied to a semiconductor device, particularly, a thin film type semiconductor device which requires low relative dielectric constant and low dielectric constant dependence of temperature dependency. As a method of sealing a semiconductor element using the epoxy resin composition obtained in the present invention, a low pressure transfer molding method can be generally used. However, molding can also be performed by injection molding, casting, compression molding or the like.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.
실시예Example
하기 실시예에서 사용된 각 성분들의 사양은 하기와 같다.The specifications of each component used in the following examples are as follows.
(A) 에폭시 수지(A) an epoxy resin
(a1) 바이페닐형 에폭시 수지: Japan Epoxy Resin에서 제조된 YX-4000H 제품(에폭시 당량 196)을 사용하였다.(a1) Biphenyl type epoxy resin: YX-4000H product (epoxy equivalent 196) manufactured by Japan Epoxy Resin was used.
(a2) 페놀아랄킬형 에폭시 수지: Nippon Kayaku에서 제조된 NC-3000 제품(에폭시 당량 270)을 사용하였다.(a2) phenol aralkyl type epoxy resin: NC-3000 product (epoxy equivalent weight 270) manufactured by Nippon Kayaku was used.
(B) 경화제(B) Curing agent
(b1) 다관능형 페놀 수지: Meiwa Chem.에서 제조된 MEH-7500-3S 제품(수산기 당량 95)을 사용하였다.(b1) Multifunctional phenol resin: MEH-7500-3S (hydroxyl equivalent of 95) manufactured by Meiwa Chem. was used.
(b2) 페놀아랄킬형 페놀 수지: Meiwa에서 제조된 MEH-7851-SS 제품(수산기 당량 203)을 사용하였다.(b2) Phenol aralkyl phenolic resin: MEH-7851-SS product (hydroxyl equivalent 203) prepared in Meiwa was used.
(b3) 페놀노볼락형 페놀수지: Meiwa에서 제조된 H-4 제품(수산기 당량 106)을 사용하였다.(b3) Phenol novolac phenolic resin: An H-4 product (hydroxyl equivalent of 106) prepared in Meiwa was used.
(C) 무기 충전제(C) Inorganic filler
(C-1) 제1 무기 충전제(C-1) a first inorganic filler
Xiantao Zhongxing Electronic에서 제조된 X7R302N 제품(바륨-티타늄-이트륨 산화물(입경 1.1㎛))을 사용하였다. An X7R302N product (barium-titanium-yttrium oxide (particle diameter 1.1 mu m) manufactured by Xiantao Zhongxing Electronic) was used.
(C-2) 제2 무기 충전제(C-2) Second inorganic filler
평균입경이 7.6㎛인 알루미나: DENKA DENKI에서 제조된 DAB-05MS를 사용하였다.DAB-05MS manufactured by alumina: DENKA DENKI having an average particle diameter of 7.6 mu m was used.
(D) 경화촉진제: 시코쿠 케미칼에서 제조된 2-페닐-4-메틸 이미다졸(2P4MHZ)을 사용하였다.(D) Curing accelerator: 2-phenyl-4-methylimidazole (2P4MHZ) manufactured by Shikoku Chemicals was used.
(E) 커플링제: CHISSO에서 제조된 에폭시 실란(A-187)을 사용하였다.(E) Coupling agent: Epoxysilane (A-187) manufactured by CHISSO was used.
(F) 착색제 (F) Colorant
(f1) 카본블랙: Mitsubishi Chemical에서 제조된 MA-600B 제품을 사용하였다.(f1) Carbon black: MA-600B manufactured by Mitsubishi Chemical was used.
(f2) 블랙 염료: Orient Chemical에서 제조된 Nubian Black TH-807 제품(pH 7.0)을 사용하였다.(f2) Black dye: Nubian Black TH-807 manufactured by Orient Chemical (pH 7.0) was used.
(G) 이형제: 카르나우바 왁스를 사용하였다.(G) Release agent: Carnauba wax was used.
(H) 폭발 방지제(H) Explosion inhibitor
HOKKO Chemical에서 제조된 M.P. 88도 트리페닐 포스파인 옥사이드 PP-560을 사용하였다. 0.0 > MP < / RTI > 88 degrees triphenylphosphine oxide PP-560 was used.
제조예 : 트리페닐 옥사이드로 처리된 바륨-티타늄-이트륨산화물의 제조 Preparation Example: Preparation of barium-titanium-yttrium oxide treated with triphenyl oxide
아세톤에 트리페닐 포스파인 옥사이드(HOKKO사, PP-560)를 녹인 후 무기 충전제인 바륨-티타늄-이트륨 산화물(Xiantao Zhongxing사, X7R302N, 입경 1.1㎛)과 섞은 후 후드믹서에 넣고 3,000~5,000RPM으로 5분간 섞었다. 트리페닐 포스파인 옥사이드의 분율이 0.5~6.0%로 조절된 상태의 원재료를 얻었다.After dissolving triphenylphosphine oxide (HOKKO, PP-560) in acetone, it was mixed with barium-titanium-yttrium oxide (Xiantao Zhongxing, X7R302N, particle size 1.1 탆) which is an inorganic filler and then put in a hood mixer and the mixture was stirred at 3,000 ~ 5,000 RPM And mixed for 5 minutes. A raw material in which the fraction of triphenylphosphine oxide was controlled to 0.5 to 6.0% was obtained.
실시예 및 비교예에 사용된 무기 충전제 (c1) ~ (c7)의 성분은 총 무기 충전제 함량을 100 중량% 기준으로 할 때 하기와 같다. The components of the inorganic fillers (c1) to (c7) used in Examples and Comparative Examples are as follows when the total inorganic filler content is 100% by weight.
(c1) 0.5wt%의 트리페닐 포스파인 옥사이드로 처리된 바륨-티타늄-이트륨 산화물(중심입경 1.13㎛) 90 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 10 중량%(c1) 90 wt% of barium-titanium-yttrium oxide (center particle diameter 1.13 mu m) treated with 0.5 wt% triphenylphosphine oxide and 10 wt% of alumina DAB-05MS having an average particle diameter of 7.6 mu m
(c2) 1.5wt%의 트리페닐 포스파인 옥사이드로 처리된 바륨-티타늄-이트륨 산화물(중심입경 1.17㎛) 90 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 10 중량%(c2) 90 wt% of barium-titanium-yttrium oxide (center particle diameter 1.17 mu m) treated with 1.5 wt% triphenylphosphine oxide and 10 wt% of alumina DAB-05MS having an average particle diameter of 7.6 mu m
(c3) 3.0wt%의 트리페닐 포스파인 옥사이드로 처리된 바륨-티타늄-이트륨 산화물(중심입경 1.23㎛) 90 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 10 중량%(c3) 90 wt% of barium-titanium-yttrium oxide (center particle diameter: 1.23 mu m) treated with 3.0 wt% triphenylphosphine oxide and 10 wt% of alumina DAB-05MS having an average particle diameter of 7.6 mu m
(c4) 6.0wt%의 트리페닐 포스파인 옥사이드로 처리된 바륨-티타늄-이트륨 산화물(중심입경 7㎛) 90 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 10 중량%(c4) 90 wt% of barium-titanium-yttrium oxide (center particle size 7 탆) treated with 6.0 wt% triphenylphosphine oxide and 10 wt% of alumina DAB-05MS having an average particle size of 7.6 탆
(c5) 바륨-티타늄-이트륨 산화물(입경1.1㎛)(X7R302N) 90 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 10 중량%(c5) 90% by weight of barium-titanium-yttrium oxide (particle size 1.1 탆) (X7R302N) and 10% by weight of alumina DAB-05MS having an average particle size of 7.6 탆
(c6) 바륨-티타늄-이트륨 산화물(입경1.1㎛)(X7R302N) 5 중량%와 평균입경이 7.6㎛인 알루미나 DAB-05MS 95 중량%(c6) 5% by weight of barium-titanium-yttrium oxide (particle size 1.1 탆) (X7R302N) and 95% by weight of alumina DAB-05MS having an average particle diameter of 7.6 탆
(c7) 평균입경이 7.6㎛인 알루미나 DAB-05MS 100 중량%(c7) 100% by weight of alumina DAB-05MS having an average particle diameter of 7.6 [
실시예 1 내지 7 및 비교예 1 내지 4Examples 1 to 7 and Comparative Examples 1 to 4
상기 각 성분들을 하기 표 2의 조성에 따라 각 성분들을 평량한 후 헨셀 믹서를 이용하여 균일하게 혼합하여 분말 상태의 1차 조성물을 제조하였다. 이후 연속 니이더를 이용하여 120℃에서 30분간 용융 혼련 후, 10~15℃로 냉각하고 분쇄하여 반도체 밀봉용 에폭시 수지 조성물을 제조하였다.Each of the above components was weighed according to the composition shown in Table 2, and then uniformly mixed using a Henschel mixer to prepare a powdery first composition. Thereafter, the mixture was melt-kneaded at 120 DEG C for 30 minutes using a continuous kneader, cooled to 10 to 15 DEG C and pulverized to prepare an epoxy resin composition for semiconductor encapsulation.
(단위:중량%)(Unit: wt%) | 실시예 1Example 1 | 실시예 2Example 2 | 실시예 3Example 3 | 실시예 4Example 4 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | |
(A)(A) | (a1)(a1) | 2.472.47 | 2.472.47 | 2.472.47 | 2.472.47 | 2.472.47 | 2.472.47 | 2.472.47 |
(a2)(a2) | 2.542.54 | 2.542.54 | 2.542.54 | 2.542.54 | 2.542.54 | 2.542.54 | 2.542.54 | |
(B)(B) | (b1)(b1) | 0.860.86 | 0.860.86 | 0.860.86 | 0.860.86 | 0.860.86 | 0.860.86 | 0.860.86 |
(b2)(b2) | 1.251.25 | 1.251.25 | 1.251.25 | 1.251.25 | 1.251.25 | 1.251.25 | 1.251.25 | |
(b3)(b3) | 1.411.41 | 1.411.41 | 1.411.41 | 1.411.41 | 1.411.41 | 1.411.41 | 1.411.41 | |
(C)(C) | (c1)(c1) | 90.090.0 | -- | -- | -- | -- | -- | -- |
(c2)(c2) | -- | 90.090.0 | -- | -- | -- | -- | -- | |
(c3)(c3) | -- | -- | 90.090.0 | -- | -- | -- | -- | |
(c4)(c4) | -- | -- | -- | 90.090.0 | -- | -- | -- | |
(c5)(c5) | -- | -- | -- | -- | 90.090.0 | -- | -- | |
(c6)(c6) | -- | -- | -- | -- | -- | 90.090.0 | -- | |
(C7)(C7) | -- | -- | -- | -- | -- | -- | 90.090.0 | |
(D)(D) | 0.070.07 | 0.070.07 | 0.070.07 | 0.070.07 | 0.070.07 | 0.070.07 | 0.070.07 | |
(E)(E) | 0.400.40 | 0.400.40 | 0.400.40 | 0.400.40 | 0.400.40 | 0.400.40 | 0.400.40 | |
(F)(F) | (f1)(f1) | 0.200.20 | 0.200.20 | 0.200.20 | 0.200.20 | 0.200.20 | 0.200.20 | 0.200.20 |
(f2)(f2) | 0.100.10 | 0.100.10 | 0.100.10 | 0.100.10 | 0.100.10 | 0.100.10 | 0.100.10 | |
(G)(G) | 0.700.70 | 0.700.70 | 0.700.70 | 0.700.70 | 0.700.70 | 0.700.70 | 0.700.70 | |
합계Sum | 100100 | 100100 | 100100 | 100100 | 100100 | 100100 | 100100 | |
(H)(H) | 0.50.5 | 1.51.5 | 3.03.0 | 6.06.0 | 00 | 00 | 00 |
(상기 표 1에서, (H)의 함량은 총 무기 충전제 함량을 100 중량%를 기준으로 한 중량%를 의미한다.) (In Table 1, the content of (H) means the% by weight based on 100% by weight of the total inorganic filler content.)
상기 제조된 반도체 소자 밀봉용 에폭시 수지 조성물에 대하여 하기의 방법으로 물성 평가를 하여 하기 표 3에 나타내었다.The epoxy resin composition for sealing semiconductor devices prepared above was evaluated for physical properties by the following methods and is shown in Table 3 below.
물성 평가방법Property evaluation method
(1) 스파이럴 플로우(inch): 저압 트랜스퍼 성형기를 사용하여, EMMI-1-66에 준한 스파이럴 플로우 측정용 금형에 금형온도 175℃, 70kgf/cm2, 주입 압력 9MPa, 및 경화 시간 90초의 조건으로 에폭시 수지 조성물을 주입하고, 유동 길이를 측정하였다. 측정값이 높을수록 유동성이 우수한 것이다.(1) Spiral flow (inch): A mold for spiral flow measurement according to EMMI-1-66 was molded using a low pressure transfer molding machine under the conditions of a mold temperature of 175 캜, 70 kgf / cm 2 , an injection pressure of 9 MPa and a curing time of 90 seconds The epoxy resin composition was injected and the flow length was measured. The higher the measured value, the better the fluidity.
(2) 비유전율: 온도 25℃, 주파수 1.0GHz에서 Agilant사의 유전율 측정기(Dielectric Probe Kit Agilent 85070E)를 이용하여 측정 시료를 두 개의 전극(유전센서) 사이에 올려 놓고 비유전율을 측정하였다.(2) Specific dielectric constant: The relative dielectric constant was measured by placing a measurement sample between two electrodes (dielectric sensor) using a dielectric constant meter (Dielectric Probe Kit Agilent 85070E) manufactured by Agilant Inc. at a temperature of 25 ° C and a frequency of 1.0 GHz.
(3) 열전도도(W/mK): ASTM D5470에 따라 평가용 시편을 사용하여 25℃에서 측정하였다.(3) Thermal conductivity (W / mK): measured at 25 캜 using test specimens according to ASTM D5470.
(4) 유리전이온도(Tg): TMA(Thermomechanical Analyser)로 평가하였다.(4) Glass transition temperature (Tg): Evaluated by TMA (Thermomechanical Analyzer).
(5) 열팽창계수(α1): ASTM D696에 의해 평가하였다.(5) Coefficient of thermal expansion (? 1): Evaluated according to ASTM D696.
(6) 굴곡강도 및 굴곡탄성율: ASTM D-790에 준하여 표준시편을 만든 후 175℃에서 4시간 경화시킨 시편으로 UTM을 이용하여 측정하였다.(6) Flexural Strength and Flexural Modulus: Standard specimens were prepared in accordance with ASTM D-790, and then cured at 175 ° C for 4 hours using UTM.
(7) 흡습율(%): 상기 실시예와 비교예에서 제조된 수지 조성물을 금형 온도 170℃~180℃, 클램프 압력 70kgf/cm2, 이송 압력 1000psi, 이송 속도 0.5~1cm/s, 경화 시간 120초의 조건으로 성형하여 직경 50mm, 두께 1.0mm의 디스크 형태의 경화 시편을 얻었다. 얻은 시편을 170℃~180℃의 오븐에 넣어 4시간 동안 후경화(PMC: post molding cure)시킨 직후 85℃, 85RH% 상대 습도 조건 하에서 168시간 동안 방치시킨 후 흡습에 의한 무게 변화를 측정하여 다음 식 2에 의하여 흡습율을 계산하였다.(7) Moisture absorption rate (%): The resin compositions prepared in the above Examples and Comparative Examples were heated at a mold temperature of 170 ° C to 180 ° C, a clamp pressure of 70 kgf / cm 2 , a feed pressure of 1000 psi, a feed rate of 0.5 to 1 cm / 120 seconds to obtain a disk-shaped cured specimen having a diameter of 50 mm and a thickness of 1.0 mm. The obtained specimens were placed in an oven at 170 ° C to 180 ° C and post cured for 4 hours. The samples were allowed to stand for 168 hours at 85 ° C and 85 RH% relative humidity. The moisture absorption rate was calculated by Equation (2).
[식 2][Formula 2]
흡습율(%) = (흡습 후 시편의 무게 - 흡습 전 시편의 무게)/(흡습 전 시편의 무게)Х100(%) = (Weight of sample after moisture absorption - weight of sample before moisture absorption) / (weight of sample before moisture absorption) Х100
(8) 방전시험: 고주파 예열기에 40파이 50g의 펠렛화된 제조물을 5mm 간극으로 넣고 10A로 가동 시 방전으로 인한 고주파 예열기가 멈추는 시간(sec)으로 고주파로 인한 방전의 정도를 파악하였다. 방전 개시 시간이 길수록 방폭 성능이 우수하다. (-)는 방전이 개시되지 않았다.(8) Discharge test: The pelletized product of 40 psi and 50 g was inserted into a 5 mm gap in a high frequency preheater, and the degree of discharge due to high frequency was determined by the time (sec) in which the high frequency preheater caused by discharge was stopped during operation. The longer the discharge start time, the better the explosion proof performance. (-) did not start discharging.
(9) 지문인식율(%): 정전용량방식의 FBGA 패키지를 총 20개 제작하고, 각 패키지 당 5회의 지문인식 테스트를 하여, 총 120회 중 지문인식 성공 회수를 지문인식율(%)로 산출하였다. (9) Fingerprint Recognition Rate (%): A total of 20 capacitive FBGA packages were fabricated, and five fingerprint recognition tests were performed for each package, and the success rate of fingerprint recognition among the total 120 times was calculated as the fingerprint recognition rate (%) .
실시예 1Example 1 | 실시예 2Example 2 | 실시예 3Example 3 | 실시예 4Example 4 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | ||
스파이럴 플로우 (inch)Spiral flow (inch) | 4545 | 4747 | 5050 | 5151 | 5757 | 5454 | 5252 | |
비 유전율Relative permittivity | 37.337.3 | 35.635.6 | 32.432.4 | 29.529.5 | 18.318.3 | 10.310.3 | 8.78.7 | |
열전도도 (W/mK)Thermal conductivity (W / mK) | 1.21.2 | 1.31.3 | 1.21.2 | 1.41.4 | 1.91.9 | 3.03.0 | 3.23.2 | |
Tg (℃)Tg (占 폚) | 127127 | 129129 | 131131 | 130130 | 132132 | 139139 | 136136 | |
열팽창계수 α1 (㎛/m, ℃)Thermal expansion coefficient? 1 (占 퐉 / m, 占 폚) | 99 | 99 | 99 | 1010 | 1010 | 1111 | 1111 | |
굴곡강도 (kgf/mm2)Flexural Strength (kgf / mm 2 ) | 1.21.2 | 1.31.3 | 1.11.1 | 1.21.2 | 1.31.3 | 1.61.6 | 1.71.7 | |
굴곡탄성율 (kgf/mm2)Flexural modulus (kgf / mm 2 ) | 3636 | 3333 | 3232 | 3030 | 4444 | 6262 | 6565 | |
흡습율(%)Moisture absorption rate (%) | 0.210.21 | 0.220.22 | 0.240.24 | 0.260.26 | 0.180.18 | 0.230.23 | 0.250.25 | |
방전시험Discharge test | 방전 개시시간 (5회 평균, sec)Discharge start time (5 times average, sec) | 66 | 1313 | 3232 | -- | 1One | 253253 | -- |
지문인식평가Fingerprint recognition evaluation | 인식율 (%)(최대 5회 실시)Recognition rate (%) (up to 5 times) | 99.799.7 | 99.699.6 | 99.399.3 | 99.199.1 | 99.499.4 | 87.487.4 | 83.883.8 |
시험 패키지 수Number of test packages | 120120 | 120120 | 120120 | 120120 | 120120 | 120120 | 120120 |
상기 표 2에 나타난 바와 같이, 바륨-티타늄-이트륨 산화물에 트리페닐 포스파인 옥사이드로 처리된 것을 포함하는 실시예 1 내지 4의 반도체 소자 밀봉용 에폭시 수지 조성물은 비유전율 수치가 매우 높고, 방전 개시 시간이 길어 방폭 기능이 우수하며, 지문인식 평가에서 인식율이 99% 이상으로 매우 높아 신뢰성이 확보됨을 확인할 수 있었다. 그러나, 트리페닐 포스파인 옥사이드를 포함하지 않는 비교예 1 내지 3은 실시예에 비해 하나 이상의 물성에서 열악한 효과를 나타내었다. 트리페닐 포스파인 옥사이드 처리되지 않은 바륨-티타늄-이트륨 산화물이 90중량% 포함된 무기 충전제를 사용한 비교예 1은 지문 인식율은 매우 높았으나, 비 유전율 수치가 실시예에 비해 낮은 수치를 나타내었고, 방전 개시 시간이 1sec로 폭발 가능성이 높았다. 알루미나를 과량 적용한 비교예 2, 3은 비 유전율이 낮고 지문 인식율이 매우 낮아 실제 제품 적용에 문제가 있음을 확인할 수 있었다. As shown in Table 2, the epoxy resin compositions for sealing semiconductor devices of Examples 1 to 4 including barium-titanium-yttrium oxide treated with triphenylphosphine oxide had very high relative dielectric constant values, And it is confirmed that the reliability is secured because the recognition rate is very high as 99% or more in the fingerprint recognition evaluation. However, Comparative Examples 1 to 3 which did not contain triphenylphosphine oxide exhibited poor effects in at least one of the properties as compared with the Examples. In Comparative Example 1 using an inorganic filler containing 90 wt% of biphenyl-titanium-yttrium oxide not treated with triphenylphosphine oxide, the fingerprint recognition rate was very high, but the relative dielectric constant values were lower than those of the examples, The start time was 1sec and the possibility of explosion was high. In Comparative Examples 2 and 3, in which alumina was excessively applied, the relative dielectric constant was low and the fingerprint recognition rate was very low.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be understood that the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the embodiments described above are in all respects illustrative and not restrictive.
Claims (13)
- 에폭시 수지, 경화제, 무기 충전제 및 폭발 방지제를 포함하고,An epoxy resin, a curing agent, an inorganic filler and an explosion-proofing agent,상기 무기 충전제는 하기 화학식 1로 표시되는 바륨-티타늄-이트륨 산화물을 포함하는 제1 무기 충전제를 포함하는 반도체 밀봉용 에폭시 수지 조성물:Wherein the inorganic filler comprises a first inorganic filler comprising barium-titanium-yttrium oxide represented by the following formula (1): < EMI ID =[화학식 1][Chemical Formula 1]BaTiaYbO4.5 BaTi a Y b O 4.5상기 화학식 1에서, a는 0.1 내지 2, b는 1 내지 3이다.In the above formula (1), a is 0.1 to 2, and b is 1 to 3.
- 제1항에 있어서,The method according to claim 1,상기 폭발 방지제는 트리페닐 포스파인 옥사이드를 포함하는 반도체 밀봉용 에폭시 수지 조성물.Wherein the explosion-proofing agent comprises triphenylphosphine oxide.
- 제1항에 있어서,The method according to claim 1,상기 에폭시 수지 약 0.5 중량% 내지 약 20 중량%, 경화제 약 0.1 중량% 내지 약 13 중량%, 무기 충전제 약 50 중량% 내지 약 98 중량%, 폭발 방지제 약 0.1 중량% 내지 약 20 중량%를 포함하는 반도체 밀봉용 에폭시 수지 조성물.From about 0.5% to about 20% by weight of the epoxy resin, from about 0.1% to about 13% by weight of a curing agent, from about 50% to about 98% by weight of an inorganic filler, and from about 0.1% (EN) Epoxy resin composition for semiconductor encapsulation.
- 제1항에 있어서,The method according to claim 1,상기 제1 무기 충전제는 에폭시 수지 조성물 제조 전에 미리 상기 폭발 방지제로 코팅되는 것을 특징으로 하는 반도체 밀봉용 에폭시 수지 조성물.Wherein the first inorganic filler is coated with the explosion-proofing agent in advance before the epoxy resin composition is prepared.
- 제1항에 있어서,The method according to claim 1,상기 바륨-티타늄-이트륨 산화물은 바륨(Ba)과 이트륨(Y)의 중량비가 약 0.3:1 내지 약 1.5:1인 반도체 밀봉용 에폭시 수지 조성물.Wherein the barium-titanium-yttrium oxide has a weight ratio of barium (Ba) and yttrium (Y) of about 0.3: 1 to about 1.5: 1.
- 제1항에 있어서,The method according to claim 1,상기 제1 무기 충전제는 산화지르코늄(ZrO2), 산화마그네슘(MgO) 및 망간카보네이트(MnCO3) 중 하나 이상을 더 포함하는 반도체 밀봉용 에폭시 수지 조성물.Wherein the first inorganic filler further comprises at least one of zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and manganese carbonate (MnCO 3 ).
- 제1항에 있어서,The method according to claim 1,상기 무기 충전제는 제2 무기 충전제를 더 포함하는 반도체 밀봉용 에폭시 수지 조성물.Wherein the inorganic filler further comprises a second inorganic filler.
- 제7항에 있어서,8. The method of claim 7,상기 에폭시 수지 조성물은 상기 제1 무기 충전제와 상기 제2 무기충전제의 비율이 약 0.05:1 내지 약 50:1인 반도체 밀봉용 에폭시 수지 조성물.Wherein the epoxy resin composition has a ratio of the first inorganic filler to the second inorganic filler of about 0.05: 1 to about 50: 1.
- 제7항에 있어서,8. The method of claim 7,상기 에폭시 수지 약 0.5 중량% 내지 약 15 중량%, 경화제 약 0.1 중량% 내지 약 10 중량%, 제1 무기 충전제 약 50 중량% 내지 약 98 중량%, 제2 무기 충전제 약 0.1 중량% 내지 약 40 중량%, 폭발방지제 약 0.1 중량% 내지 약 15 중량%를 포함하는 반도체 밀봉용 에폭시 수지 조성물.About 0.1 wt% to about 10 wt% of a hardener, about 50 wt% to about 98 wt% of a first inorganic filler, about 0.1 wt% to about 40 wt% of a second inorganic filler, about 0.5 wt% to about 15 wt% %, An explosion-proofing agent in an amount of about 0.1 wt% to about 15 wt%.
- 제1항에 있어서, 상기 에폭시 수지는 바이페닐형 에폭시 수지 및 페놀아랄킬형 에폭시 수지 중 하나 이상을 포함하는 반도체 밀봉용 에폭시 수지 조성물.The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin comprises at least one of a biphenyl type epoxy resin and a phenol aralkyl type epoxy resin.
- 제1항에 있어서,The method according to claim 1,상기 에폭시 수지 조성물은 경화 후, 온도 25℃, 주파수 1.0 GHz에서 비유전율이 약 20 이상인 반도체 밀봉용 에폭시 수지 조성물.Wherein the epoxy resin composition has a dielectric constant of about 20 or more at a temperature of 25 캜 and a frequency of 1.0 GHz after curing.
- 제1항에 있어서,The method according to claim 1,상기 에폭시 수지 조성물은 정전용량을 이용한 터치식 지문인식율 평가 방법에서 지문 인식율이 약 90% 이상이고, 고주파로 인한 방전 개시 시간이 약 3초 이상인 반도체 밀봉용 에폭시 수지 조성물.Wherein the epoxy resin composition has a fingerprint recognition rate of about 90% or more and a discharge start time due to high frequency of about 3 seconds or more in a touch-based fingerprint recognition rate evaluation method using capacitance.
- 제1항 내지 제12항 중 어느 한 항의 반도체 밀봉용 에폭시 수지 조성물을 사용하여 밀봉된 반도체 소자.A semiconductor device encapsulated with the epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880084028.4A CN111527145B (en) | 2017-12-29 | 2018-09-13 | Epoxy resin composition for encapsulating semiconductor device, and semiconductor device encapsulated using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0184881 | 2017-12-29 | ||
KR1020170184881A KR102146995B1 (en) | 2017-12-29 | 2017-12-29 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019132175A1 true WO2019132175A1 (en) | 2019-07-04 |
Family
ID=67067793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/010759 WO2019132175A1 (en) | 2017-12-29 | 2018-09-13 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102146995B1 (en) |
CN (1) | CN111527145B (en) |
WO (1) | WO2019132175A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115466486B (en) * | 2022-07-05 | 2023-07-28 | 上海道宜半导体材料有限公司 | Epoxy resin composition and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990021907A (en) * | 1995-05-24 | 1999-03-25 | 디어터 크리스트, 베르너 뵈켈 | Halogen Free Flame Retardant Epoxy Resin Molding Material |
KR20010076181A (en) * | 2000-01-17 | 2001-08-11 | 엔다 나오또 | Flame-retardant resin composition, and prepregs and laminates using such composition |
KR20100058028A (en) * | 2008-11-24 | 2010-06-03 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same |
WO2017061580A1 (en) * | 2015-10-07 | 2017-04-13 | 日立化成株式会社 | Underfilling resin composition, electronic component device, and method for manufacturing electronic component device |
KR20170135088A (en) * | 2016-05-30 | 2017-12-08 | 삼성에스디아이 주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8178160B2 (en) * | 2006-01-20 | 2012-05-15 | Ppg Industries Ohio, Inc. | Decorative and durable coating having a homogeneous hue, methods for their preparation, and articles coated therewith |
CN102558769B (en) * | 2010-12-31 | 2015-11-25 | 第一毛织株式会社 | For the composition epoxy resin of encapsulated semiconductor device and the semiconducter device that encapsulated by this composition epoxy resin |
KR101437141B1 (en) * | 2010-12-31 | 2014-09-02 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor |
KR20120125756A (en) * | 2011-05-09 | 2012-11-19 | 동아베스텍 주식회사 | A cable gland structure |
-
2017
- 2017-12-29 KR KR1020170184881A patent/KR102146995B1/en active IP Right Grant
-
2018
- 2018-09-13 CN CN201880084028.4A patent/CN111527145B/en active Active
- 2018-09-13 WO PCT/KR2018/010759 patent/WO2019132175A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990021907A (en) * | 1995-05-24 | 1999-03-25 | 디어터 크리스트, 베르너 뵈켈 | Halogen Free Flame Retardant Epoxy Resin Molding Material |
KR20010076181A (en) * | 2000-01-17 | 2001-08-11 | 엔다 나오또 | Flame-retardant resin composition, and prepregs and laminates using such composition |
KR20100058028A (en) * | 2008-11-24 | 2010-06-03 | 제일모직주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same |
WO2017061580A1 (en) * | 2015-10-07 | 2017-04-13 | 日立化成株式会社 | Underfilling resin composition, electronic component device, and method for manufacturing electronic component device |
KR20170135088A (en) * | 2016-05-30 | 2017-12-08 | 삼성에스디아이 주식회사 | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same |
Also Published As
Publication number | Publication date |
---|---|
KR102146995B1 (en) | 2020-08-21 |
KR20190081983A (en) | 2019-07-09 |
CN111527145B (en) | 2023-11-17 |
CN111527145A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101480178B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same | |
WO2016175385A1 (en) | Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed by using same | |
WO2024151049A1 (en) | Resin composition for encapsulating electronic device, and electronic device manufactured using same | |
WO2017222151A1 (en) | Epoxy resin composition for sealing solid state semiconductor device, encapsulating material comprising same, and semiconductor package | |
WO2016167449A1 (en) | Phosphonium-based compound, epoxy resin composition containing same, semiconductor device manufactured using same | |
WO2017142251A1 (en) | Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed by using same | |
WO2019132175A1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same | |
WO2018117373A1 (en) | Film-type semiconductor sealing member, semiconductor package manufactured using same, and method for manufacturing same | |
WO2016085115A1 (en) | Phosphonium-based compound, epoxy resin composition containing same, and semiconductor device manufactured using same | |
KR20190081986A (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same | |
WO2022239955A1 (en) | Flame-retardant curing agent composition for epoxy, and flame-retardant curing agent for epoxy, comprising same | |
KR100882533B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same | |
KR101861917B1 (en) | Epoxy compound, epoxy resin composition for encapsulating semiconductor device comprising the same, and semiconductor device encapsulated by using thereof | |
KR101908179B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same | |
WO2017057844A1 (en) | Semiconductor package and manufacturing method thereof | |
WO2017099356A1 (en) | Method for preparing epoxy resin, epoxy resin, epoxy resin composition for encapsulating semiconductor device, containing same, and molded product molded using same | |
WO2021071158A1 (en) | Epoxy resin composition | |
WO2018117374A1 (en) | Film-type semiconductor sealing member, semiconductor package manufactured using same, and method for manufacturing same | |
WO2017131390A1 (en) | Epoxy resin composition for sealing semiconductor device and semiconductor device sealed by using same | |
WO2017052243A1 (en) | Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same | |
WO2024151075A1 (en) | Resin composition for sealing electronic device and electronic device manufactured using same | |
KR100896794B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same | |
KR100917662B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same | |
KR101669341B1 (en) | Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same | |
WO2022071661A1 (en) | Curable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18895208 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |