WO2017099217A1 - Electrical module and method for manufacturing same - Google Patents

Electrical module and method for manufacturing same Download PDF

Info

Publication number
WO2017099217A1
WO2017099217A1 PCT/JP2016/086718 JP2016086718W WO2017099217A1 WO 2017099217 A1 WO2017099217 A1 WO 2017099217A1 JP 2016086718 W JP2016086718 W JP 2016086718W WO 2017099217 A1 WO2017099217 A1 WO 2017099217A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
conductive film
transparent conductive
cell
Prior art date
Application number
PCT/JP2016/086718
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 鈴木
俊介 功刀
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017555158A priority Critical patent/JPWO2017099217A1/en
Publication of WO2017099217A1 publication Critical patent/WO2017099217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electric module and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2015-240351 for which it applied to Japan on December 9, 2015, and uses the content here.
  • a sealing material prevents leakage of an electrolytic solution.
  • in-line or long work in progress is made (only the beginning and end of winding are sealed, regardless of method), and a predetermined size (length) according to the order. Therefore, it can be cut and sealed in a direction perpendicular to the line flow direction (see, for example, Patent Document 1).
  • This invention is made
  • a transparent conductive film is formed on the plate surface of the first substrate and a semiconductor layer is formed on the surface of the transparent conductive film, and the transparent electrode is opposed to the plate surface of the second substrate.
  • a second electrode on which a counter conductive film is formed, and a sealing material between the first electrode and the second electrode at an edge of the first substrate and an edge of the second substrate A space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells,
  • An electric module wherein a welded portion in which a plate surface of the first substrate and a plate surface of the second substrate are in direct contact with each other is provided in a frame composed of a stopper and the patterning portion.
  • a first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film; and a plate surface of the second substrate facing the transparent conductive film.
  • a second electrode on which a counter conductive film is formed, and a sealing material between the first electrode and the second electrode at an edge of the first substrate and an edge of the second substrate A space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells.
  • first electrode and the second electrode to form the cell, and in the frame made of the sealing material and the patterning portion, the first substrate and The plate surfaces facing each other of the second substrate are brought into contact with each other and insulated, and the first substrate and the second substrate are welded, and the plate surface of the first substrate and the plate surface of the second substrate are directly connected to each other. And a welding step of forming a welded portion that abuts.
  • FIG. 5 is a cross-sectional view showing a part of the manufacturing process of the electrical module shown as the first embodiment of the method for manufacturing the electrical module of the present invention, in which the first electrode and the second electrode are arranged to face each other.
  • FIG. 5 is a cross-sectional view showing a first electrode, which is a part of the manufacturing process of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention. It is sectional drawing which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention.
  • FIG. 9 is a cross-sectional view of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention as viewed in the direction of arrows X1-X1 shown in FIG.
  • FIG. 9 is a cross-sectional view taken along the line X2-X2 shown in FIG. 8 of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention.
  • the “cell” means a single dye-sensitized solar cell.
  • an “electric module” means a unit having a single cell or a plurality of cells. This embodiment shows an aspect of an electric module obtained by dividing a single cell for convenience in order to simply explain the present invention, but the present invention is not limited to this.
  • the dye-sensitized solar cell 1 ⁇ / b> A includes a first electrode 5 having a transparent conductive film 3 and a semiconductor layer 4 on a first substrate 2, a counter conductive film 7 and a second substrate 6. And a second electrode 9 provided with a catalyst layer 8. And between the 1st electrode 5 and the 2nd electrode 9, it is a frame shape with the sealing material 11 in the edge of the 1st board
  • the first electrode 5 and the second electrode 9 are bonded by the sealing material 11 at the edge of the first substrate 2 and the edge of the second substrate 6, and the first electrode 5 and the second electrode 9 are bonded.
  • the space formed between the two cells is partitioned into a plurality of cells C by patterning locations P, and each cell C is filled with an electrolyte solution 13 and sealed.
  • a welded portion 10 in which the plate surface 2 a of the first substrate 2 and the plate surface 6 a of the second substrate 6 are in direct contact is provided in a frame made up of the sealing material 11 and the patterning portion P.
  • the dye-sensitized solar cell 1 ⁇ / b> A may not include the separator 12.
  • substrate 6 are the members used as the base of the transparent conductive film 3 and the opposing conductive film 7, respectively,
  • transparent thermoplastics such as a polyethylene naphthalate (PEN) and a polyethylene terephthalate (PET)
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • a flat plate member made of resin is cut into a substantially rectangular shape.
  • the first substrate 2 and the second substrate 6 may be formed in a film shape.
  • the transparent conductive film 3 is formed on substantially the entire plate surface 2 a of the first substrate 2.
  • a material of the transparent conductive film 3 for example, indium tin oxide (ITO), zinc oxide or the like is used.
  • the semiconductor layer 4 has a function of receiving and transporting electrons from a sensitizing dye described later.
  • the semiconductor layer 4 is provided on the surface 3a of the transparent conductive film 3 by a semiconductor made of a metal oxide.
  • the metal oxide include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
  • the semiconductor layer 4 carries a sensitizing dye.
  • the sensitizing dye is composed of an organic dye or a metal complex dye.
  • organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene.
  • the metal complex dye for example, a ruthenium complex is preferably used.
  • the first electrode 5 is configured by forming the transparent conductive film 3 on the plate surface 2 a of the first substrate 2 and providing the semiconductor layer 4 on the surface 3 a of the transparent conductive film 3.
  • the counter conductive film 7 is formed on the entire plate surface 6 a of the second substrate 6.
  • a catalyst layer 8 made of carbon paste, platinum or the like is formed on the surface 7 a of the counter conductive film 7.
  • the second electrode 9 is configured by forming the counter conductive film 7 on the plate surface 6 a of the second substrate 6 and forming the catalyst layer 8 on the surface 7 a of the counter conductive film 7.
  • the second electrode 9 is disposed opposite to the first electrode 5 with the opposing conductive film 7 facing the transparent conductive film 3.
  • the sealing material 11 is not particularly limited, and a curable resin, a hot melt resin, or the like is used.
  • This sealing material 11 has a frame on the surface of the transparent conductive film 3 along the entire circumference of the edges R1 to R4 of the first electrode 5 arranged in a strip shape shown in FIG. Arranged.
  • the sealing material 11 is cured or heat pressed to bond the first electrode 5 and the second electrode 9 together.
  • the sealing material 11 may be disposed along the entire circumference of the edge of the second electrode 9, or at a part or all of the edges of both the first electrode 5 and the second electrode 9.
  • the sealing material 11 may be disposed only on a part of the edges R1 to R4 of the first electrode 5.
  • the sealing material 11 is disposed along the edges R1 and R2 of the first electrode 5 or the second electrode 9, and is disposed along the edges R3 and R4. You may make it the structure which is not carried out.
  • a sheet material such as a nonwoven fabric having a large number of holes (not shown) through which the sealing material 11 and the electrolytic solution (electrolyte) 13 pass is used.
  • the separator 12 may not be used in the present invention.
  • Examples of the electrolytic solution 13 include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquid such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide; and a supporting electrolytic solution such as lithium iodide.
  • a solution or the like in which iodine and iodine are mixed is used.
  • the electrolytic solution 13 may contain t-butylpyridine in order to prevent reverse electron transfer reaction.
  • the welded portion 10 is provided in the cell C to directly contact the plate surface 2 a of the first substrate 2 and the plate surface 6 a of the second substrate 6.
  • the shape of the welded portion 10 when viewed in plan is not particularly limited. Examples include a shape, a square, a rectangle, a triangle, and a pentagon or more polygon (see FIG. 6).
  • the welded portion 10 is a portion formed by melting the first substrate 2 and the second substrate 6 by ultrasonic vibration and welding them together.
  • the welded portion 10 is preferably provided at 1 to 10 locations per unit area 26 cm 2 of the cell C, and more preferably at 1 to 5 locations. By providing one to ten welds 10 per unit area 26 cm 2 of the cell C, it is possible to prevent the electrolyte 13 from being biased in the cell C without impairing the power generation efficiency.
  • the area per part of the welded part 10 is preferably 1 mm 2 to 100 mm 2 , and more preferably 1 mm 2 to 25 mm 2 .
  • the area per one part of the welded part 10 is 1 mm 2 to 100 mm 2 , thereby preventing the electrolyte 13 from being biased in the cell C without impairing the power generation efficiency. it can.
  • the cell C is provided with the weld portion 10 where the plate surface 2a of the first substrate 2 and the plate surface 6a of the second substrate 6 are in direct contact. Therefore, it is possible to prevent the electrolyte 13 from being biased in the cell C. Thereby, since a predetermined amount of the electrolytic solution 13 can be present between the first electrode 5 and the second electrode 9, it is possible to prevent the power generation efficiency of the dye-sensitized solar cell 1A from being lowered.
  • the manufacturing method of the dye-sensitized solar cell 1A of the present embodiment includes the following steps.
  • Ultrasonic vibration is applied from either the back surface of the first substrate 2 on which the transparent conductive film 3 and the semiconductor layer 4 are formed or the back surface of the second substrate 6 on which the counter conductive film 7 is formed.
  • the plate surfaces 2a and 6a facing each other of the first substrate 2 and the second substrate 6 positioned at the place where the vibration is applied are brought into contact with each other and insulated, and a plurality of cells C separated from each other are formed by welding. Splitting process.
  • the cell C the back surface of the first substrate 2 on which the transparent conductive film 3 and the semiconductor layer 4 are formed or the second substrate on which the counter conductive film 7 is formed in a frame made of the sealing material 11 and the patterning portion P.
  • the ultrasonic vibration is applied from any one of the back surfaces of the plate 6, and the first and second substrates 2 and 6a located at the position where the ultrasonic vibration is applied are brought into contact with each other.
  • an electric module precursor In the present embodiment, the following is referred to as an electric module precursor.
  • An electrolyte solution (electrolyte) 13 is sealed in a space formed between the first electrode 5 and the second electrode 9.
  • An electrolyte solution (electrolyte) 13 is not sealed in a space formed between the first electrode 5 and the second electrode 9.
  • an electrode plate forming step is provided before the bonding step (II), and (IV) after the dividing step (III) and the welding step (IV).
  • each step will be described.
  • Electrode plate forming step As shown in FIG. 2A, the first electrode in which the transparent conductive film 3 is formed on the plate surface 2 a of the first substrate 2 and the semiconductor layer 4 is formed on the surface 3 a of the transparent conductive film 3. 5 is formed. Further, a second electrode 9 in which the counter conductive film 7 is formed on the plate surface 6 a of the second substrate 6 and the catalyst layer 8 is formed on the surface 7 a of the counter conductive film 7 is formed. Specifically, the first electrode 5 and the second electrode 9 are formed as follows.
  • a substrate made of PET or the like is used as the first substrate 2.
  • the transparent conductive film 3 is formed by sputtering indium tin oxide (ITO) or the like over the entire plate surface 2a of the first substrate 2.
  • the semiconductor layer 4 is formed on the surface 3a of the transparent conductive film 3 so as to be porous by, for example, a low-temperature film forming method that does not require baking, such as an aerosol deposition method or a cold spray method.
  • the conductor layer 4 is formed leaving the edges R1 to R4 to which the sealing material 11 is applied.
  • the semiconductor layer 4 is formed while leaving at least one end edge R1 of the first substrate 2 in order to extract current or arrange a sealing material.
  • the semiconductor layer 4 After forming the semiconductor layer 4, as shown in FIG. 2B, the semiconductor layer 4 is immersed in a sensitizing dye solution in which a sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the semiconductor layer 4.
  • the method of supporting the sensitizing dye on the semiconductor layer 4 is not limited to the above, and a method of continuously charging, dipping and pulling up while moving the semiconductor layer 4 in the sensitizing dye solution is also employed.
  • the first electrode 5 shown in FIG. 2B is obtained.
  • the second electrode 9 forms a counter conductive film 7 by sputtering ITO, zinc oxide, platinum or the like on the plate surface 6a of the second substrate 6 made of polyethylene terephthalate (PET) or the like.
  • the counter conductive film 7 may be formed by a printing method, a spray method, or the like.
  • a carbon paste or the like is formed on the entire surface 7 a of the counter conductive film 7 to form the catalyst layer 8.
  • Arrangement of sealing material and injection hole forming member Specifically, as shown in FIG. 4, a sheet-like sheet formed in a frame shape having a predetermined width dimension on the entire periphery of the edges R1 to R4 of the transparent conductive film 3 along the undivided semiconductor layer 4.
  • the sealing material 11 is disposed to surround the semiconductor layer 4. However, as described above, in the present invention, the sealing material 11 may be disposed only on a part of the edges R1 to R4 of the first electrode 5 (see, for example, the third embodiment). .
  • positioning the sealing material 11 an electrolyte may be apply
  • each injection hole forming member 19 is disposed so as to protrude from the edge R ⁇ b> 2 of the first substrate 2 across the sealing material 11.
  • a releasable resin sheet formed in a strip shape is used as the injection hole forming member 19.
  • the releasable resin sheet for example, polyester, polyethylene terephthalate, polybutylene terephthalate, or the like is used.
  • the predetermined interval is an interval at which adjacent cells C and C are formed in the first electrode 5 (or the second electrode 9).
  • the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 are opposed to each other with the separator 12 interposed.
  • the separator 12 may not be used.
  • Adhesion process In the bonding step, except for the one end edge R1 shown in FIG. 5 of the first electrode 5 and the second electrode 9 that are bonded together, the end edges R2 to R2 on which sealing materials 11 made of a curable resin, a hot-melt resin, or the like are disposed. R4 is pressed in the stacking direction, and the sealing material 11 is cured or heated, and the sealing material 11 is bonded to the first electrode 5 and the second electrode 9. At this time, the sealing material 11 does not adhere to the injection hole forming member 19. This is because the injection hole forming member 19 has a heat resistant temperature higher than the melt curing temperature of the sealing material 11 and is excellent in non-adhesiveness.
  • both surfaces of the injection hole forming member 19 are not bonded to the first electrode 5 and the second electrode 9.
  • an example of a method in which a liquid injection hole is provided in advance and liquid injection is performed after the bonding step has been described, but the present invention is not limited to this.
  • an electrolytic solution may be applied in advance, and press bonding or vacuum bonding may be used.
  • the transparent conductive film 3 and the semiconductor layer 4 formed on the first substrate 2 are diffused by ultrasonic vibration.
  • the opposing conductive film 7 and the catalyst layer 8 facing the transparent conductive film 3 are diffused by ultrasonic vibration.
  • cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions facing each other, and the plate surface 2 a of the first substrate 2 and the second substrate 6.
  • the plate surface 6a contacts.
  • the first substrate 2 and the second substrate 6 are melted by ultrasonic vibration and welded to each other.
  • a plurality of cells C, C... Divided into each other are formed in the frame of the sealing material 11 arranged so as to surround the semiconductor layer 4.
  • ultrasonic vibration can be applied from either the back surface 2 b of the first substrate 2 or the back surface 6 b of the second substrate 6.
  • the ultrasonic vibration is performed at a predetermined output that can be welded while patterning the first electrode 5 and the second electrode 9 simultaneously and reliably.
  • the transparent conductive film 3 and the semiconductor layer 4 formed on the first substrate 2 are destroyed by ultrasonic vibration, and the opposing conductive film 7 and the catalyst layer 8 facing the transparent conductive film 3 are similarly formed. It is destroyed by ultrasonic vibration.
  • FIG. 1 cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions facing each other, and the plate surface 2 a of the first substrate 2 and the second substrate 6.
  • the plate surface 6a contacts.
  • the first substrate 2 and the second substrate 6 are melted by ultrasonic vibration and welded to each other, and as shown in FIG. 6, the sealing material 11 disposed so as to surround the semiconductor layer 4. And in the frame which consists of the patterning location P, the welding part 10 which the plate surface 2a of the 1st board
  • the welding step it is preferable to form the welded portion 10 at 1 to 10 locations per unit area 26 cm 2 of the cell C, and more preferably at 1 to 5 locations. Further, in the welding step, it is preferable to form the welded portion 10 so that the area per location when viewed in plan is 1 mm 2 to 100 mm 2, and the area when viewed in plan is 1 mm 2 to 25 mm 2. It is more preferable to form the welded portion 10 on the surface.
  • (V) ⁇ Electrical connection process>
  • a notch 15 straddling between adjacent cells C and C is formed as shown in FIG. 7A at one end edge R1 which is pressed and cured in the laminating direction or is not bonded by heating.
  • the conductive members 16, 16... Are arranged in the notches 15, 15.
  • the one end R1 is bonded by a hot press to close the one end R1.
  • the first electrode 5 and the second electrode 9 are bonded at the edges R1 to R4 except for the position where the liquid injection hole forming member 19 is disposed.
  • the plate surface 2a of the first substrate 2 and the plate surface 6a of the second substrate 6 are in direct contact with each other. Since it has the welding process which forms the part 10, the bias
  • the patterning is performed using the ultrasonic vibration after the first electrode 5 and the second electrode 9 are bonded together, the patterning and the welding position P coincide with each other. Therefore, the effect that the division between the cells C and C can be performed easily and accurately is obtained.
  • the dye-sensitized solar cell 1A having a plurality of cells C, C... Manufactured by the method for manufacturing the dye-sensitized solar cell 1A of the present embodiment the cells C and C are sealed together. After insulating without using a stopper, it is possible to weld and divide the insulated portions. Therefore, it is possible to reduce the material cost and to suppress the deterioration of the electrolytic solution 13 due to the contact with the sealing material 11.
  • the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 face each other with the separator 12 interposed. This is because in the dividing step, when a portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and in the vicinity thereof is energized, the battery may be short-circuited.
  • patterning is performed using ultrasonic vibration, cracks are generated in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions where the patterning portions P face each other. Further, cracks are also generated in the vicinity of the patterning portion P.
  • the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and the vicinity thereof. Therefore, in the present invention, even if the separator 12 is not used, the first electrode 5 and the second electrode 9 can be reliably insulated at the patterning portion P, so that the battery is not short-circuited.
  • the manufacturing method of the dye-sensitized solar cell 1A according to the present embodiment is a long process in which a plurality of semiconductor layers 4 are formed and wound in a roll from (I) electrode plate forming step to (III) dividing step.
  • the first electrode 5 is a transparent conductive film formed on the entire plate surface 2a at a predetermined position by pulling out the strip-shaped first substrate 2 wound in a roll shape in one direction (arrow L direction). 3 is formed, and the semiconductor layer 4 is intermittently provided in the direction of the arrow L, leaving edges (outer circumferences) R1 to R4 on the surface 3a of the transparent conductive film 3 on the downstream side of the film formation position of the transparent conductive film 3. Establish and produce. Adsorption of the sensitizing dye in the semiconductor layer 4 can be performed by spray coating, for example.
  • the second electrode 9 draws out the strip-shaped second substrate 6 wound in a roll shape in the direction opposite to the one direction (arrow L direction), and forms the opposing conductive film 7 on the entire plate surface 6a at a predetermined position. Further, the catalyst layer 8 is formed on the entire surface 7 a of the counter conductive film 7 on the downstream side of the position where the counter conductive film 7 is formed.
  • the strip-shaped first electrode 5 and the sealing material 11 disposed on the first electrode 5 formed as described above are provided with the separator 12 drawn in a strip shape, and further on the downstream side where the separator 12 is disposed.
  • the second electrode 9 is disposed. Also in the second embodiment, the separator 12 may not be used for the same reason as in the first embodiment.
  • Adhesion process The bonding step is performed in the same manner as in the first embodiment.
  • (IV) The welding process is performed in the same manner as in the first embodiment.
  • (VI) cutting process is performed before or after (V) electrical connection process.
  • the cutting step is performed by cutting the first electrode 5 and the second electrode 9 that are attached to each other for each unit T of the one dye-sensitized solar cell 1A.
  • the (V) electrical connection step, (VII) liquid injection hole forming step, (VIII) liquid injection step, and (IX) liquid injection hole sealing step are performed in the same manner as the method in the first embodiment.
  • the (VII) injection hole forming step may be performed before the (VI) cutting step.
  • the production of the dye-sensitized solar cell 1A is performed not on each of the dye-sensitized solar cells 1A but on the long strip-shaped first substrate 2 and the long strip-shaped second substrate 6. After the work of the process is continuously performed, and then the first electrode 5 and the second electrode 9 are bonded together, the plurality of joined bodies 1a shown in FIG. 8 or the dye-sensitized solar cell shown in FIG. By cutting 1A one by one, an effect that the dye-sensitized solar cell 1A can be efficiently manufactured is obtained.
  • the structure which seals between the 1st electrode 5 and the 2nd electrode 9 for every dye-sensitized solar cell 1A using the sealing material 11 It was.
  • ultrasonic vibration is applied to insulate and seal between the first electrode 5 and the second electrode 9.
  • the dye-sensitized solar cell 1A may be formed.
  • the work of arranging the frame-shaped sealing material 11 so as to surround the semiconductor layer 4 is omitted, and sealing is more easily performed by ultrasonic welding. The effect that it can do is acquired.
  • the injection hole can be eliminated by bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.
  • the position where the liquid injection hole forming member 19 is disposed and the position where the conductive material is disposed are different between the edges R1 and R2. As long as the liquid injection hole forming member 19 and the conductive material can be appropriately disposed, the position where the liquid injection hole forming member 19 is disposed and the position where the conductive material is disposed are adjacent to one of R1 and R2. It may be arranged as follows. In the above embodiment, the position where the conductive material is disposed is either the end edge R1 or the end edge R2. However, the conductive material is disposed on both sides of the end edges R1 and R2, and the cells C and C are connected in parallel. It may be.
  • the dye-sensitized type of the second embodiment is that the bonded first electrode 5 and second electrode 9 are simultaneously insulated, welded and cut by applying ultrasonic vibration to seal and separate the cells from each other. It is different from the manufacturing method of the solar cell 1A.
  • the semiconductor layer 4 is intermittently provided in the direction of the arrow L, leaving the edges (outer circumferences) R1 to R4 on the surface 3a of the transparent conductive film 3. did.
  • the semiconductor layer 4 is formed continuously (so-called solid coating) on the surface 3a of the transparent conductive film 3 leaving the edges R1 and R2.
  • a sheet-like one formed in a frame shape so as to surround the semiconductor layers 4 formed intermittently one by one is arranged on the surface of the first electrode 5, and the second electrode 9 and pasted together.
  • the sealing material 11 is arranged along the edges R1 and R2 of the first electrode 5 or the second electrode 9, that is, both ends in the width direction, in the extending direction, and in a strip shape.
  • the first electrode 5 and the second electrode 9 are bonded and bonded together.
  • the separator 12 may not be used.
  • patterning is performed using ultrasonic vibration.
  • insulation and welding are performed simultaneously by applying ultrasonic vibration in a direction orthogonal (crossing) to the extending direction of the bonded first electrode 5 and second electrode 9.
  • cutting may be performed simultaneously.
  • insulation, welding, and cutting between the first electrode 5 and the second electrode 9 by applying ultrasonic vibration are formed longer than the width of the bonded first electrode 5 and second electrode 9.
  • the horn 20 is used, and ultrasonic vibration is simultaneously applied to the entire portion to be insulated, welded and cut, and simultaneously insulated, welded and cut.
  • the first electrode 5 and the second electrode 9 can be insulated, welded, and cut by ultrasonic vibration without destroying the conductive material. Can be performed simultaneously.
  • the horn 20 when the conductive material is arranged in the L direction, the horn 20 can be configured to straddle the conductive material. Further, if the horn 20 does not straddle the conductive material, the conductive material is destroyed and electrical insulation can be obtained.
  • the horn 20 can be configured not to straddle the conductive material for the same reason as in the third embodiment.
  • the injection hole can be eliminated by performing the bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.
  • the insulating, welding, and cutting steps can be simultaneously performed to reduce the manufacturing process.
  • the transparent conductive film 3 and the semiconductor layer 4 of the first electrode are continuously formed in the extending direction of the first substrate, and the opposing conductive film 7 and the catalyst layer 8 of the second electrode are extended of the second substrate 6.
  • the first electrode 5 and the second electrode 9 can be bonded together in a state where the film is continuously formed in the direction and the film is uniform (not patterned).
  • first electrode 5 and the second electrode 9 are wound in a roll shape and both are extended in one direction so that the above-described steps are continuously performed, so-called Roll-to-Roll production can be easily performed. The effect that the productivity of the solar cell 1B can be improved is obtained.
  • the electrode plate forming step it is not necessary to determine the dimensions of the dye-sensitized solar cell 1B in advance and dispose the sealing material, and form the first electrode 5 and the second electrode 9 to extend them. Insulation, welding, and cutting can be performed simultaneously in the direction intersecting in the extending direction by ultrasonic vibration after bonding in the direction. Therefore, the dimensions of the dye-sensitized solar cell 1B in one direction are not restricted by the design of the first electrode 5 and the second electrode 9 formed in the electrode plate forming step, and the dye increase is performed when ultrasonic vibration is applied. The effect that the dimension of the sensitive solar cell 1B can be arbitrarily set is obtained.
  • the electrolyte is applied or filled on the upper portion of the semiconductor layer 4 of the first electrode 5, and then the first electrode 5 and the second electrode 9 are disposed to face each other. It is also possible to make a module, and then to insulate, weld, and cut this single module simultaneously by ultrasonic vibration to re-divide into a plurality of dye-sensitized solar cells 1B. By taking such a method, automatic productivity is increased and productivity is further improved.
  • insulation, welding, and cutting in the direction crossing the extending direction L of the first electrode 5 and the second electrode 9 are performed by applying ultrasonic vibration to the first substrate 2 and the second electrode 9.
  • the plate surfaces 2a, 6a facing each other with the two substrates 6 are brought into contact with each other and welded, and further cut locally by heating.
  • a thermoplastic resin is provided and the inside of the dye-sensitized solar cell 1B is double-sealed to improve liquid tightness.
  • the portion where the first electrode 5 and the second electrode 9 are bonded together with the sealing material 11 may also be welded by ultrasonic vibration.
  • the patterned process is not performed on the first electrode 5 and the second electrode 9, but the semiconductor layer 4 is divided into a plurality of patterns parallel to the longitudinal extension direction L so that the semiconductor layers 4 are arranged in parallel. It may be formed (see FIG. 12), and may be patterned in a direction orthogonal to the longitudinal extending direction L. A plurality of patterns may be connected in series or in parallel. Even in that case, the effect of the present invention that the alignment of the first electrode 5 and the second electrode 9 in the L direction in the film transport direction is unnecessary is achieved.
  • FIG. 12 shows an embodiment in which three semiconductor layers 4 are arranged in parallel, the present invention is not limited to this, and the semiconductor layer 4 can be divided into a desired number of patterns. By electrically connecting the divided cells, an electric module can be easily and efficiently manufactured.
  • sealing, insulation, and cutting in the direction crossing the extending direction L of the first electrode 5 and the second electrode 9 are performed by applying ultrasonic vibration to the first substrate.
  • the plate surfaces 2a and 6a of the second substrate 6 and the second substrate 6 which are opposed to each other may be contacted, that is, insulated and welded, and then mechanically cut using the tip of the horn.
  • the dye-sensitized solar cells 1A and 1B can also be manufactured by appropriately combining welding and cutting methods.
  • the first electrode 5 and the second electrode 9 are insulated, welded, and cut in units of cell C.
  • the cells C and C are insulated and welded to form a dye-sensitized solar cell. Insulation, welding, and cutting between the first electrode 5 and the second electrode 9 may be performed for each battery 1B.
  • a polyethylene terephthalate film on which an ITO film was formed was used as the transparent conductive substrate.
  • a titanium oxide paste for low-temperature film formation manufactured by Pexel is applied by screen printing and baked at 150 ° C. for 10 minutes in an air atmosphere.
  • the film thickness is 10 ⁇ m and the length is 1 m.
  • a titanium oxide porous film (semiconductor layer) having a width of 50 mm was formed. Then, two were formed at intervals along the width direction, and the 1st electrode was produced.
  • a terephthalate film was bonded to form a cell in which the space between the first electrode and the second electrode was sealed.
  • the sealing material was arranged in a frame shape for each titanium oxide porous film in the first electrode so that the cell was divided for each titanium oxide porous film.
  • the first electrode and the second electrode were disposed so that the titanium oxide porous film in the first electrode and the ITO film in the second electrode face each other.
  • the ITO film was subjected to a predetermined insulating process so as to have a series structure.
  • the solar cell precursor of the comparative example was produced through the above steps.
  • Aron Melt (trade name) which is a hot melt adhesive manufactured by Toa Gosei Co., Ltd. was used.
  • As the series wiring material Sekisui Chemical Co., Ltd. conductive fine particle micropearl (trade name) was used.
  • An electrolytic solution was injected into a cell composed of the first electrode and the second electrode from an injection hole previously formed in the second electrode, and the electrolytic solution was filled in the cell. Thereafter, the injection hole was sealed with an adhesive to obtain a solar cell of a comparative example having a length of 1 m and having two cells. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
  • the electrolytic solution After 24 hours, in the solar cell, the electrolytic solution accumulates vertically downward, and the sealing material is partially peeled between the first electrode and the second electrode, and the electrolytic solution to be present in each cell is It moved into another cell, and the electrolyte was biased in the cell. That is, the sealing material did not sufficiently fulfill the sealing function. As a result, the performance as a battery was remarkably reduced, and an output decrease of more than 10% was observed.
  • Example 1 A solar cell precursor was produced in the same manner as in Comparative Example 1. A horn having a circular contact surface and a diameter of 1 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion of the solar cell precursor cell where no sealing material is provided. Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did. Over two cells, 324 welds having a diameter of 1 mm were formed at equal intervals (18 ⁇ 18) in an area range of 50 mm ⁇ 52 mm.
  • Example 1 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function. Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less. Also, instead of the ultrasonic fusion machine made by U.C.
  • Japan a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 1 mm, or an ultrasonic fusion machine made by Branson with a horn with a diameter of 1 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
  • Example 2 A solar cell precursor was produced in the same manner as in the comparative example.
  • Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did.
  • 324 welds having a diameter of 1 mm were randomly formed in an area range of 50 mm ⁇ 52 mm over two cells.
  • Example 2 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function. Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less. Also, instead of the ultrasonic fusion machine made by U.C.
  • Japan a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 1 mm, or an ultrasonic fusion machine made by Branson with a horn with a diameter of 1 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
  • Example 3 A solar cell precursor was produced in the same manner as in the comparative example.
  • Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did.
  • 100 welds with a diameter of 3 mm were formed at equal intervals (10 ⁇ 10) in an area range of 50 mm ⁇ 52 mm over two cells.
  • Example 3 An electrolytic solution was injected into a solar cell precursor cell having a welded portion in the same manner as in the comparative example, the electrolytic solution was filled into the cell, and the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function. Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less. Moreover, instead of the ultrasonic fusion machine manufactured by U.C.
  • Japan a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 3 mm, or an ultrasonic fusion machine made with Branson with a horn with a diameter of 3 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
  • Example 4 A solar cell precursor was produced in the same manner as in the comparative example.
  • Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (manufactured by U.C. Japan Co., Ltd.), and a welded part in which the polyethylene terephthalate film of the first electrode and the polyethylene terephthalate film of the second electrode are in direct contact with each other is formed. did.
  • Example 4 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
  • Example 5 A solar cell precursor was produced in the same manner as in the comparative example.
  • Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did.
  • Thirty welds having a diameter of 10 mm were formed at equal intervals (6 ⁇ 5) in an area range of 50 mm ⁇ 52 mm over two cells.
  • Example 5 An electrolytic solution was injected into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example, the electrolytic solution was filled into the cell, and the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function. Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less. Further, instead of the ultrasonic fusion machine manufactured by U.C.
  • Japan a hand unit type ultrasonic fusion machine equipped with a horn having a diameter of 10 mm, or an ultrasonic fusion machine produced by Branson having a horn having a diameter of 10 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
  • Example 6 A solar cell precursor was produced in the same manner as in the comparative example.
  • the back surface of the first electrode on which the ITO film is formed and the back surface of the second electrode on which the ITO film is formed at the center in the width direction of the portion where the sealing material is not provided From the horn of an ultrasonic fusion machine (manufactured by U.C. Japan) having a square horn with a contact surface shape of 1 mm on a side, ultrasonic vibration is applied to the polyethylene terephthalate film of the first electrode and A welded portion in direct contact with the polyethylene terephthalate film of the second electrode was formed.
  • Example 6 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
  • Example 7 A solar cell precursor was produced in the same manner as in the comparative example.
  • the back surface of the first electrode on which the ITO film is formed and the back surface of the second electrode on which the ITO film is formed at the center in the width direction of the portion where the sealing material is not provided.
  • ultrasonic vibration is applied by a horn of an ultrasonic fusion machine (manufactured by UC Japan) having a rectangular horn with a contact surface shape of 1 mm ⁇ 2 mm, and a polyethylene terephthalate film and a second electrode of the first electrode
  • the welded part was in direct contact with the polyethylene terephthalate film.
  • Example 7 An electrolytic solution was injected into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example. After filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours. After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
  • Example 8 In the solar cell precursor produced in Example 5, the welded portion having a diameter of 10 mm is located at a position of 40 mm from the lower end of the portion corresponding to the lower side in a state where the porous titanium oxide film is suspended so as to be along the vertical direction. One was added to form.
  • Example 8 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed and filling the cell with the electrolytic solution in the same manner as in the comparative example, the injection hole was sealed with an adhesive. The solar cell was obtained. This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
  • the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function. Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
  • the present invention can be used in the field of electrical modules such as dye-sensitized solar cells.

Abstract

This electrical module of the present invention is an electrical module equipped with a first electrode in which a transparent conductive film is formed on the plate surface of a first substrate and a semiconductor layer is formed on the surface of the transparent conductive film, and a second electrode in which an opposing conductive film is formed on the plate surface of a second substrate so as to oppose the transparent conductive film, a sealing member being used to bond the first electrode and the second electrode together at the first substrate edge and the second substrate edge, the space formed between the first electrode and the second electrode being subdivided into a plurality of cells according to patterning locations, and an electrolyte being sealed in the cells. A welding portion where the plate surface of the first substrate and the plate surface of the second substrate are directly abutting is provided inside a frame comprising the sealing member and patterning locations.

Description

電気モジュールおよびその製造方法Electric module and manufacturing method thereof
本発明は、電気モジュールおよびその製造方法に関する。
本願は、2015年12月9日に、日本に出願された特願2015-240351号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electric module and a manufacturing method thereof.
This application claims priority based on Japanese Patent Application No. 2015-240351 for which it applied to Japan on December 9, 2015, and uses the content here.
Roll to Rollにより、電気モジュールの一例である色素増感型太陽電池を製造する際、電解液を封入する必要がある。色素増感型太陽電池では、一般に、封止材で電解液の液漏れを防いでいる。
Roll to Rollでは、インラインで、あるいは、長尺の仕掛品を作っておき(巻き初めと巻き終わりのみが封止されている、方法は問わない)、注文に応じて所定のサイズ(長さ)の製品とするために、ラインの流れ方向と垂直な方向に切断して、封止することができる(例えば、特許文献1参照)。
When manufacturing a dye-sensitized solar cell which is an example of an electric module by Roll to Roll, it is necessary to enclose an electrolytic solution. In a dye-sensitized solar cell, generally, a sealing material prevents leakage of an electrolytic solution.
In Roll to Roll, in-line or long work in progress is made (only the beginning and end of winding are sealed, regardless of method), and a predetermined size (length) according to the order. Therefore, it can be cut and sealed in a direction perpendicular to the line flow direction (see, for example, Patent Document 1).
国際公開第2014/030736号International Publication No. 2014/0303076
色素増感型太陽電池の製造において、モジュール全体に対して、1つのセルの面積が大きい場合、電解液の量が多くなるため、セル内において電解液の偏りが生じる。電解液が偏ると、封止材に余分な圧力がかかり、封止材が決壊しやすくなるという課題があった。 In the manufacture of a dye-sensitized solar cell, when the area of one cell is large with respect to the entire module, the amount of the electrolytic solution is increased, and thus the electrolyte is biased in the cell. When the electrolyte is biased, there is a problem that excessive pressure is applied to the sealing material and the sealing material is easily broken.
本発明は、上記事情に鑑みてなされたものであって、セル内における電解液の偏りを防止した電気モジュールおよびその製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, Comprising: It aims at providing the electric module which prevented the bias | inclination of the electrolyte solution in a cell, and its manufacturing method.
[1]第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、前記第1電極と前記第2電極の間が、前記第一基板の端縁と前記第二基板の端縁とにおいて封止材により接着され、前記第1電極と前記第2電極との間に形成された空間がパターニング箇所により複数のセルに区画され、前記セルに電解質が封止されてなる電気モジュールであって、前記封止材および前記パターニング箇所からなる枠内に、前記第一基板の板面と前記第二基板の板面とが直接当接する溶着部が設けられたことを特徴とする電気モジュール。 [1] A transparent conductive film is formed on the plate surface of the first substrate and a semiconductor layer is formed on the surface of the transparent conductive film, and the transparent electrode is opposed to the plate surface of the second substrate. A second electrode on which a counter conductive film is formed, and a sealing material between the first electrode and the second electrode at an edge of the first substrate and an edge of the second substrate A space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells, An electric module, wherein a welded portion in which a plate surface of the first substrate and a plate surface of the second substrate are in direct contact with each other is provided in a frame composed of a stopper and the patterning portion.
[2]前記溶着部は、前記セルの単位面積26cm当たり1箇所~10箇所設けられたことを特徴とする[1]に記載の電気モジュール。 [2] The electrical module according to [1], wherein the weld portion is provided at 1 to 10 locations per unit area of 26 cm 2 of the cell.
[3]前記溶着部を平面視したとき、前記溶着部の1個所当たりの面積が1mm~100mmであることを特徴とする[1]または[2]に記載の電気モジュール。 [3] The electric module according to [1] or [2], wherein when the welded portion is viewed in plan, the area of each welded portion is 1 mm 2 to 100 mm 2 .
[4]第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、前記第1電極と前記第2電極の間が、前記第一基板の端縁と前記第二基板の端縁とにおいて封止材により接着され、前記第1電極と前記第2電極との間に形成された空間がパターニング箇所により複数のセルに区画され、前記セルに電解質が封止されてなる電気モジュールの製造方法であって、前記透明導電膜と前記対向導電膜とを対向させて、前記第1電極と前記第2電極とを貼り合せる貼り合わせ工程と、前記透明導電膜が成膜された前記第一基板の裏面または前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記第一基板および前記第二基板の互いに対向する板面を当接させて絶縁するとともに、これら第一基板と第二基板とを溶着することにより、前記第1電極と前記第2電極とを分割して、前記セルを形成する分割工程と、前記封止材および前記パターニング箇所からなる枠内に、前記第一基板および前記第二基板の互いに対向する板面を当接させて絶縁するとともに、これら第一基板と第二基板とを溶着し、前記第一基板の板面と前記第二基板の板面とが直接当接する溶着部を形成する溶着工程と、を有することを特徴とする電気モジュールの製造方法。 [4] A first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film; and a plate surface of the second substrate facing the transparent conductive film. A second electrode on which a counter conductive film is formed, and a sealing material between the first electrode and the second electrode at an edge of the first substrate and an edge of the second substrate A space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells. A bonding step of bonding the first electrode and the second electrode with the transparent conductive film and the counter conductive film facing each other, and a back surface of the first substrate on which the transparent conductive film is formed or From one of the back surfaces of the second substrate on which the counter conductive film is formed, Wave vibration is applied, and the first substrate and the second substrate that are located at the location where the ultrasonic vibration is applied are brought into contact with each other to insulate the first substrate and the second substrate. And dividing the first electrode and the second electrode to form the cell, and in the frame made of the sealing material and the patterning portion, the first substrate and The plate surfaces facing each other of the second substrate are brought into contact with each other and insulated, and the first substrate and the second substrate are welded, and the plate surface of the first substrate and the plate surface of the second substrate are directly connected to each other. And a welding step of forming a welded portion that abuts.
[5]前記溶着工程において、前記透明導電膜が成膜された前記第一基板の裏面または前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記溶着部を形成することを特徴とする[4]に記載の電気モジュールの製造方法。 [5] In the welding step, ultrasonic vibration is applied from either the back surface of the first substrate on which the transparent conductive film is formed or the back surface of the second substrate on which the counter conductive film is formed. The method for manufacturing an electric module according to [4], wherein the welded portion located at a location to which the ultrasonic vibration is applied is formed.
[6]前記溶着工程において、前記溶着部を、前記セルの単位面積26cm当たり1箇所~10箇所形成することを特徴とする[4]または[5]に記載の電気モジュールの製造方法。 [6] The method for manufacturing an electric module according to [4] or [5], wherein, in the welding step, the welding portion is formed at 1 to 10 locations per unit area of 26 cm 2 of the cell.
[7]前記溶着工程において、平面視したとき1個所当たりの面積が1mm~100mmとなるように前記溶着部を形成することを特徴とする[4]~[6]のいずれかに記載の電気モジュールの製造方法。 [7] In the welding process, according to any one of the area per one place when the plan view, and forming the weld portion so as to 1mm 2 ~ 100mm 2 [4] ~ [6] Method of manufacturing the electrical module.
 本発明によれば、セル内における電解液の偏りを防止した電気モジュールおよびその製造方法を提供することができる。 According to the present invention, it is possible to provide an electric module and a method for manufacturing the same that prevent the uneven electrolyte in the cell.
本発明の電気モジュールの製造方法によって得られる電気モジュールの一実施形態を模式的に示した断面図である。It is sectional drawing which showed typically one Embodiment of the electrical module obtained by the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部であって、第1電極と第2電極とを対向配置させた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a part of the manufacturing process of the electrical module shown as the first embodiment of the method for manufacturing the electrical module of the present invention, in which the first electrode and the second electrode are arranged to face each other. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部であって、第1電極を示した断面図である。FIG. 5 is a cross-sectional view showing a first electrode, which is a part of the manufacturing process of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した断面図であるIt is sectional drawing which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した第1電極の底面図である。It is a bottom view of the 1st electrode which showed a part of manufacturing process of an electric module shown as a 1st embodiment of a manufacturing method of an electric module of the present invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electrical module shown as 1st Embodiment of the manufacturing method of the electrical module of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールを図8に示すX1-X1において矢視した断面図である。FIG. 9 is a cross-sectional view of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention as viewed in the direction of arrows X1-X1 shown in FIG. 本発明の電気モジュールの製造方法の第1の実施形態として示した電気モジュールを図8に示すX2-X2線において矢視した断面図である。FIG. 9 is a cross-sectional view taken along the line X2-X2 shown in FIG. 8 of the electric module shown as the first embodiment of the method for manufacturing the electric module of the present invention. 本発明の電気モジュールの製造方法の第2の実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as 2nd Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第3の実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as 3rd Embodiment of the manufacturing method of the electrical module of this invention. 本発明の電気モジュールの製造方法の第3の変形実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as 3rd modification embodiment of the manufacturing method of the electrical module of this invention.
以下、図面を参照して、本発明の電気モジュールおよびその製造方法の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of an electric module and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
[電気モジュール]
本発明の電気モジュールの一実施形態について説明する。
 なお、本明細書において、「セル」とは、単一の色素増感型太陽電池を意味する。また、本明細書および請求の範囲において、「電気モジュール」とは、単一のセルまたは複数のセルを備えたユニットを意味する。本実施形態は、本発明を簡易に説明するために、便宜上単一のセルを分割して得られる電気モジュールの態様を示しているが、本発明はこれに限定されるものではない。
[Electric module]
An embodiment of the electric module of the present invention will be described.
In the present specification, the “cell” means a single dye-sensitized solar cell. In the present specification and claims, an “electric module” means a unit having a single cell or a plurality of cells. This embodiment shows an aspect of an electric module obtained by dividing a single cell for convenience in order to simply explain the present invention, but the present invention is not limited to this.
図1に示すように、色素増感型太陽電池1Aは、第一基板2上に透明導電膜3および半導体層4を備えた第1電極5と、第二基板6上に対向導電膜7および触媒層8を備えた第2電極9とを備えている。そして、第1電極5と第2電極9との間が、セパレータ12を介装させた状態で、第一基板2の端縁と第二基板6の端縁とにおいて封止材11により枠状に封止されているとともに、封止材11により囲繞された空間が第一基板2と第二基板6との溶着により複数のセルCに分割されている。言い換えれば、第1電極5と第2電極9の間が、第一基板2の端縁と第二基板6の端縁とにおいて封止材11により接着され、第1電極5と第2電極9との間に形成された空間がパターニング箇所Pにより複数のセルCに区画され、各セルC内に電解液13が充填され、封止されている。また、セルCにおいて、封止材11およびパターニング箇所Pからなる枠内に、第一基板2の板面2aと第二基板6の板面6aとが直接当接する溶着部10が設けられている。
なお、本発明においては、色素増感型太陽電池1Aは、セパレータ12を備えていなくてもよい。
As shown in FIG. 1, the dye-sensitized solar cell 1 </ b> A includes a first electrode 5 having a transparent conductive film 3 and a semiconductor layer 4 on a first substrate 2, a counter conductive film 7 and a second substrate 6. And a second electrode 9 provided with a catalyst layer 8. And between the 1st electrode 5 and the 2nd electrode 9, it is a frame shape with the sealing material 11 in the edge of the 1st board | substrate 2 and the edge of the 2nd board | substrate 6 in the state which interposed the separator 12. The space surrounded by the sealing material 11 is divided into a plurality of cells C by welding the first substrate 2 and the second substrate 6. In other words, the first electrode 5 and the second electrode 9 are bonded by the sealing material 11 at the edge of the first substrate 2 and the edge of the second substrate 6, and the first electrode 5 and the second electrode 9 are bonded. The space formed between the two cells is partitioned into a plurality of cells C by patterning locations P, and each cell C is filled with an electrolyte solution 13 and sealed. Further, in the cell C, a welded portion 10 in which the plate surface 2 a of the first substrate 2 and the plate surface 6 a of the second substrate 6 are in direct contact is provided in a frame made up of the sealing material 11 and the patterning portion P. .
In the present invention, the dye-sensitized solar cell 1 </ b> A may not include the separator 12.
第一基板2および第二基板6は、それぞれ透明導電膜3および対向導電膜7の基台となる部材であり、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の透明の熱可塑性樹脂による平板状部材を略矩形に切断したものである。第一基板2および第二基板6は、フィルム状に形成されたものであってもよい。 The 1st board | substrate 2 and the 2nd board | substrate 6 are the members used as the base of the transparent conductive film 3 and the opposing conductive film 7, respectively, For example, transparent thermoplastics, such as a polyethylene naphthalate (PEN) and a polyethylene terephthalate (PET) A flat plate member made of resin is cut into a substantially rectangular shape. The first substrate 2 and the second substrate 6 may be formed in a film shape.
透明導電膜3は、第一基板2の板面2aの略全体に成膜されている。
透明導電膜3の材料としては、例えば、酸化インジウムスズ(ITO)、酸化亜鉛等が用いられる。
The transparent conductive film 3 is formed on substantially the entire plate surface 2 a of the first substrate 2.
As a material of the transparent conductive film 3, for example, indium tin oxide (ITO), zinc oxide or the like is used.
半導体層4は、後述する増感色素から電子を受け取り輸送する機能を有する。半導体層4は、金属酸化物からなる半導体により透明導電膜3の表面3aに設けられている。金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等が挙げられる。 The semiconductor layer 4 has a function of receiving and transporting electrons from a sensitizing dye described later. The semiconductor layer 4 is provided on the surface 3a of the transparent conductive film 3 by a semiconductor made of a metal oxide. Examples of the metal oxide include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
半導体層4は、増感色素を担持している。増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等の各種有機色素が挙げられる。金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
このように、第一基板2の板面2aに透明導電膜3を成膜し、透明導電膜3の表面3aに半導体層4を設けて第1電極5が構成されている。
The semiconductor layer 4 carries a sensitizing dye. The sensitizing dye is composed of an organic dye or a metal complex dye. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. As the metal complex dye, for example, a ruthenium complex is preferably used.
Thus, the first electrode 5 is configured by forming the transparent conductive film 3 on the plate surface 2 a of the first substrate 2 and providing the semiconductor layer 4 on the surface 3 a of the transparent conductive film 3.
対向導電膜7は、第二基板6の板面6a全体に成膜されている。
対向導電膜7の材料としては、例えば、酸化インジウムスズ(ITO)、酸化亜鉛等が用いられる。対向導電膜7の表面7aには、カーボンペースト、プラチナ等からなる触媒層8が成膜されている。
このように、第二基板6の板面6aに対向導電膜7を成膜し、対向導電膜7の表面7aに触媒層8を成膜させて第2電極9が構成されている。
この第2電極9は、対向導電膜7を透明導電膜3に対向させて、第1電極5と対向配置されている。
The counter conductive film 7 is formed on the entire plate surface 6 a of the second substrate 6.
As the material of the counter conductive film 7, for example, indium tin oxide (ITO), zinc oxide, or the like is used. A catalyst layer 8 made of carbon paste, platinum or the like is formed on the surface 7 a of the counter conductive film 7.
In this way, the second electrode 9 is configured by forming the counter conductive film 7 on the plate surface 6 a of the second substrate 6 and forming the catalyst layer 8 on the surface 7 a of the counter conductive film 7.
The second electrode 9 is disposed opposite to the first electrode 5 with the opposing conductive film 7 facing the transparent conductive film 3.
封止材11としては、特に限定されず、硬化性樹脂やホットメルト樹脂等が用いられる。
この封止材11は、後述するセルCが形成されていない図4に示す帯状に配置された第1電極5の端縁R1~R4の全周に沿って、透明導電膜3の表面に枠状に配される。封止材11は、硬化または加熱プレスされて第1電極5と第2電極9との間を接着している。封止材11は、第2電極9の端縁の全周に沿って、または第1電極5と第2電極9との双方の端縁の一部または全周に配されてもよい。封止材11は、第1電極5の端縁R1~R4の一部にのみ配されていてもよい。例えば、後述する第3の実施形態のように、封止材11は、第1電極5または第2電極9の端縁R1,R2に沿って配され、端縁R3,R4に沿っては配されない構成にしてもよい。
The sealing material 11 is not particularly limited, and a curable resin, a hot melt resin, or the like is used.
This sealing material 11 has a frame on the surface of the transparent conductive film 3 along the entire circumference of the edges R1 to R4 of the first electrode 5 arranged in a strip shape shown in FIG. Arranged. The sealing material 11 is cured or heat pressed to bond the first electrode 5 and the second electrode 9 together. The sealing material 11 may be disposed along the entire circumference of the edge of the second electrode 9, or at a part or all of the edges of both the first electrode 5 and the second electrode 9. The sealing material 11 may be disposed only on a part of the edges R1 to R4 of the first electrode 5. For example, as in a third embodiment to be described later, the sealing material 11 is disposed along the edges R1 and R2 of the first electrode 5 or the second electrode 9, and is disposed along the edges R3 and R4. You may make it the structure which is not carried out.
図1に示すセパレータ12としては、封止材11および電解液(電解質)13を通過させる多数の孔(不図示)を有する不織布等のシート材が用いられる。
ただし、後述するように、本発明においては、セパレータ12を用いなくてもよい。
As the separator 12 shown in FIG. 1, a sheet material such as a nonwoven fabric having a large number of holes (not shown) through which the sealing material 11 and the electrolytic solution (electrolyte) 13 pass is used.
However, as will be described later, the separator 12 may not be used in the present invention.
電解液13としては、例えば、アセトニトリル、プロピオニトリル等の非水系溶剤;ヨウ化ジメチルプロピルイミダゾリウムまたはヨウ化ブチルメチルイミダゾリウム等のイオン液体等の液体成分に、ヨウ化リチウム等の支持電解液とヨウ素とが混合された溶液等が用いられている。電解液13は、逆電子移動反応を防止するため、t-ブチルピリジンを含むものでもよい。 Examples of the electrolytic solution 13 include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquid such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide; and a supporting electrolytic solution such as lithium iodide. A solution or the like in which iodine and iodine are mixed is used. The electrolytic solution 13 may contain t-butylpyridine in order to prevent reverse electron transfer reaction.
溶着部10は、セルCにおいて、第一基板2の板面2aと第二基板6の板面6aとを直接当接するために設けられる。溶着部10を平面視したとき(第一基板2の板面2aまたは第二基板6の板面6aの法線方向から見たとき)の形状としては、特に限定されないが、例えば、円形、楕円形、正方形、矩形、三角形、五角以上の多角形等が挙げられる(図6参照)。
溶着部10は、後述するように、第一基板2と第二基板6とを、超音波振動により溶融して互いに溶着してなる部位である。
The welded portion 10 is provided in the cell C to directly contact the plate surface 2 a of the first substrate 2 and the plate surface 6 a of the second substrate 6. The shape of the welded portion 10 when viewed in plan (when viewed from the normal direction of the plate surface 2a of the first substrate 2 or the plate surface 6a of the second substrate 6) is not particularly limited. Examples include a shape, a square, a rectangle, a triangle, and a pentagon or more polygon (see FIG. 6).
As will be described later, the welded portion 10 is a portion formed by melting the first substrate 2 and the second substrate 6 by ultrasonic vibration and welding them together.
溶着部10は、セルCの単位面積26cm当たり1箇所~10箇所設けられていることが好ましく、1箇所~5箇所設けられていることがより好ましい。
溶着部10が、セルCの単位面積26cm当たり1箇所~10箇所設けられていることにより、発電効率を損なうことなく、セルC内において電解液13の偏りを防止することができる。
The welded portion 10 is preferably provided at 1 to 10 locations per unit area 26 cm 2 of the cell C, and more preferably at 1 to 5 locations.
By providing one to ten welds 10 per unit area 26 cm 2 of the cell C, it is possible to prevent the electrolyte 13 from being biased in the cell C without impairing the power generation efficiency.
また、溶着部10を平面視したとき、溶着部10の1個所当たりの面積は1mm~100mmであることが好ましく、1mm~25mmであることがより好ましい。
溶着部10を平面視したとき、溶着部10の1個所当たりの面積が1mm~100mmであることにより、発電効率を損なうことなく、セルC内において電解液13の偏りを防止することができる。
Further, when the welded part 10 is viewed in plan, the area per part of the welded part 10 is preferably 1 mm 2 to 100 mm 2 , and more preferably 1 mm 2 to 25 mm 2 .
When the welded part 10 is viewed in plan, the area per one part of the welded part 10 is 1 mm 2 to 100 mm 2 , thereby preventing the electrolyte 13 from being biased in the cell C without impairing the power generation efficiency. it can.
 本実施形態の色素増感型太陽電池1Aによれば、セルCに、第一基板2の板面2aと第二基板6の板面6aとが直接当接する溶着部10が設けられている。そのため、セルC内における電解液13の偏りを防止することができる。これにより、第1電極5と第2電極9間に所定量の電解液13を存在させることができるため、色素増感型太陽電池1Aの発電効率が低下することを防止できる。 According to the dye-sensitized solar cell 1A of the present embodiment, the cell C is provided with the weld portion 10 where the plate surface 2a of the first substrate 2 and the plate surface 6a of the second substrate 6 are in direct contact. Therefore, it is possible to prevent the electrolyte 13 from being biased in the cell C. Thereby, since a predetermined amount of the electrolytic solution 13 can be present between the first electrode 5 and the second electrode 9, it is possible to prevent the power generation efficiency of the dye-sensitized solar cell 1A from being lowered.
[色素増感型太陽電池の製造方法]
(第1の実施形態)
次に、色素増感型太陽電池1Aの製造方法の第1の実施形態について、図2A~図9Bを用いて説明する。
 本実施形態の色素増感型太陽電池1Aの製造方法は、次の工程を備える。透明導電膜3と対向導電膜7とを対向させて、第1電極5と第2電極9とを貼り合せる貼り合わせ工程。透明導電膜3および半導体層4が成膜された第一基板2の裏面または対向導電膜7が成膜された第二基板6の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する第一基板2および第二基板6の互いに対向する板面2a,6aを当接させて絶縁するとともに、溶着することにより互いに分割された複数のセルCを形成する分割工程。セルCにおいて、封止材11およびパターニング箇所Pからなる枠内に、透明導電膜3および半導体層4が成膜された第一基板2の裏面または対向導電膜7が成膜された第二基板6の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する第一基板2および第二基板6の互いに対向する板面2a,6aを当接させて絶縁するとともに、溶着し、第一基板2の板面2aと第二基板6の板面6aとが直接当接する溶着部10を形成する溶着工程。
[Method for producing dye-sensitized solar cell]
(First embodiment)
Next, a first embodiment of a method for manufacturing the dye-sensitized solar cell 1A will be described with reference to FIGS. 2A to 9B.
The manufacturing method of the dye-sensitized solar cell 1A of the present embodiment includes the following steps. A bonding step of bonding the first electrode 5 and the second electrode 9 with the transparent conductive film 3 and the counter conductive film 7 facing each other. Ultrasonic vibration is applied from either the back surface of the first substrate 2 on which the transparent conductive film 3 and the semiconductor layer 4 are formed or the back surface of the second substrate 6 on which the counter conductive film 7 is formed. The plate surfaces 2a and 6a facing each other of the first substrate 2 and the second substrate 6 positioned at the place where the vibration is applied are brought into contact with each other and insulated, and a plurality of cells C separated from each other are formed by welding. Splitting process. In the cell C, the back surface of the first substrate 2 on which the transparent conductive film 3 and the semiconductor layer 4 are formed or the second substrate on which the counter conductive film 7 is formed in a frame made of the sealing material 11 and the patterning portion P. The ultrasonic vibration is applied from any one of the back surfaces of the plate 6, and the first and second substrates 2 and 6a located at the position where the ultrasonic vibration is applied are brought into contact with each other. A welding step of forming a welded portion 10 that is insulated and welded so that the plate surface 2a of the first substrate 2 and the plate surface 6a of the second substrate 6 directly contact each other.
本実施形態では、次のものを電気モジュール前駆体と言う。第1電極5と第2電極9との間に形成された空間に電解液(電解質)13が封止されたもの。第1電極5と第2電極9との間に形成された空間に電解液(電解質)13が封止されていないもの。
本実施形態の製造方法の一例においては、貼り合わせ工程(II)の前に、(I)電極板形成工程を備え、さらに、分割工程(III)と溶着工程(IV)の後に、(IV)電気的接続工程、(V)注液孔形成工程、(VI)注液工程および(VII)注液孔封止工程を備えている。
以下、各工程について説明する。
In the present embodiment, the following is referred to as an electric module precursor. An electrolyte solution (electrolyte) 13 is sealed in a space formed between the first electrode 5 and the second electrode 9. An electrolyte solution (electrolyte) 13 is not sealed in a space formed between the first electrode 5 and the second electrode 9.
In an example of the manufacturing method of the present embodiment, (I) an electrode plate forming step is provided before the bonding step (II), and (IV) after the dividing step (III) and the welding step (IV). An electrical connection step, (V) a liquid injection hole forming step, (VI) a liquid injection step, and (VII) a liquid injection hole sealing step.
Hereinafter, each step will be described.
(I)<電極板形成工程>
電極板形成工程においては、図2Aに示すように、第一基板2の板面2aに透明導電膜3が成膜され、透明導電膜3の表面3aに半導体層4が形成された第1電極5を形成する。また、第二基板6の板面6aに対向導電膜7が形成され、さらに対向導電膜7の表面7aに触媒層8が成膜された第2電極9を形成する。
具体的には、第1電極5および第2電極9は以下のようにして形成される。
(I) <Electrode plate forming step>
In the electrode plate forming step, as shown in FIG. 2A, the first electrode in which the transparent conductive film 3 is formed on the plate surface 2 a of the first substrate 2 and the semiconductor layer 4 is formed on the surface 3 a of the transparent conductive film 3. 5 is formed. Further, a second electrode 9 in which the counter conductive film 7 is formed on the plate surface 6 a of the second substrate 6 and the catalyst layer 8 is formed on the surface 7 a of the counter conductive film 7 is formed.
Specifically, the first electrode 5 and the second electrode 9 are formed as follows.
図2Aに示すように、第一基板2として、PET等からなる基板を用いる。
第一基板2の板面2aの全体に酸化インジウムスズ(ITO)等をスパッタリングして、透明導電膜3を成膜する。
半導体層4は、例えば、エアロゾルデポジション法、コールドスプレー法等の焼成を要しない低温成膜法により、多孔質となるように透明導電膜3の表面3aに形成する。この際、図4に示すように、封止材11を塗布する端縁R1~R4を残して導体層4を形成する。あるいは、電流の取り出し、または封止材を配するために、第一基板2の少なくとも一端縁R1を残して半導体層4を形成する。
As shown in FIG. 2A, a substrate made of PET or the like is used as the first substrate 2.
The transparent conductive film 3 is formed by sputtering indium tin oxide (ITO) or the like over the entire plate surface 2a of the first substrate 2.
The semiconductor layer 4 is formed on the surface 3a of the transparent conductive film 3 so as to be porous by, for example, a low-temperature film forming method that does not require baking, such as an aerosol deposition method or a cold spray method. At this time, as shown in FIG. 4, the conductor layer 4 is formed leaving the edges R1 to R4 to which the sealing material 11 is applied. Alternatively, the semiconductor layer 4 is formed while leaving at least one end edge R1 of the first substrate 2 in order to extract current or arrange a sealing material.
半導体層4を形成した後、図2Bに示すように、増感色素を溶剤に溶かした増感色素溶液に半導体層4を浸漬させ、該半導体層4に増感色素を担持させる。半導体層4に増感色素を担持させる方法は、上記に限定されず、増感色素溶液中に半導体層4を移動させながら連続的に投入・浸漬・引き上げを行う方法等も採用される。
以上により、図2Bに示す第1電極5が得られる。
After forming the semiconductor layer 4, as shown in FIG. 2B, the semiconductor layer 4 is immersed in a sensitizing dye solution in which a sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the semiconductor layer 4. The method of supporting the sensitizing dye on the semiconductor layer 4 is not limited to the above, and a method of continuously charging, dipping and pulling up while moving the semiconductor layer 4 in the sensitizing dye solution is also employed.
Thus, the first electrode 5 shown in FIG. 2B is obtained.
第2電極9は、図2Aに示すように、ポリエチレンテレフタレート(PET)等よりなる第二基板6の板面6aに、ITO、酸化亜鉛またはプラチナ等をスパッタリングして対向導電膜7を成膜する。対向導電膜7は、印刷法やスプレー法等にて形成されたものであってもよい。対向導電膜7の表面7aの全体に、カーボンペースト等を成膜して触媒層8を形成する。 As shown in FIG. 2A, the second electrode 9 forms a counter conductive film 7 by sputtering ITO, zinc oxide, platinum or the like on the plate surface 6a of the second substrate 6 made of polyethylene terephthalate (PET) or the like. . The counter conductive film 7 may be formed by a printing method, a spray method, or the like. A carbon paste or the like is formed on the entire surface 7 a of the counter conductive film 7 to form the catalyst layer 8.
(II)<貼り合わせ工程>
図3に示すように、貼り合わせ工程は、第1電極5と第2電極9とを対向配置させて貼り合せ、必要に応じてそれぞれの端縁R1~R4(図4参照)を封止材11により封止し、第1電極5と、第2電極9とを備える電気モジュール前駆体を形成する工程である。
(II) <Lamination process>
As shown in FIG. 3, in the bonding step, the first electrode 5 and the second electrode 9 are bonded so as to face each other, and the respective edges R1 to R4 (see FIG. 4) are sealed as necessary. 11 is a step of forming an electrical module precursor that is sealed with 11 and includes the first electrode 5 and the second electrode 9.
「封止材および注液孔形成用部材の配置」
具体的には、図4に示すように、未分割の半導体層4に沿う透明導電膜3の端縁R1~R4の全周に、所定の幅寸法を有する枠形状に形成されたシート状の封止材11を配して半導体層4を囲繞する。ただし、上述したように、本発明においては、封止材11が、第1電極5の端縁R1~R4の一部にのみ配されていてもよい(例えば、第3の実施形態を参照)。
なお、封止材11を配した後、半導体層4、または、対向導電膜7上に、電解質を塗布し、その後、後述する基板の貼り合わせを行ってもよい。この電解質は、液状、ゲル状、固体状のいずれの状態であってもよい。
"Arrangement of sealing material and injection hole forming member"
Specifically, as shown in FIG. 4, a sheet-like sheet formed in a frame shape having a predetermined width dimension on the entire periphery of the edges R1 to R4 of the transparent conductive film 3 along the undivided semiconductor layer 4. The sealing material 11 is disposed to surround the semiconductor layer 4. However, as described above, in the present invention, the sealing material 11 may be disposed only on a part of the edges R1 to R4 of the first electrode 5 (see, for example, the third embodiment). .
In addition, after arrange | positioning the sealing material 11, an electrolyte may be apply | coated on the semiconductor layer 4 or the opposing electrically conductive film 7, and the board | substrate mentioned later may be bonded after that. This electrolyte may be in a liquid, gel, or solid state.
その後、注液孔形成用部材19を、第1電極5の一端縁R1に対向する端縁R2に所定の間隔をおいて複数配置する。この際、各注液孔形成用部材19は、封止材11に跨って、第一基板2の端縁R2から突出するように配置する。
注液孔形成用部材19としては、短冊状に形成した離型性樹脂シートを用いる。
離型性樹脂シートとしては、例えば、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が用いられる。
所定の間隔とは、第1電極5(ないし第2電極9)において隣接するセルC,Cが形成される間隔である。
Thereafter, a plurality of liquid injection hole forming members 19 are arranged at a predetermined interval on the edge R2 facing the one edge R1 of the first electrode 5. At this time, each injection hole forming member 19 is disposed so as to protrude from the edge R <b> 2 of the first substrate 2 across the sealing material 11.
As the injection hole forming member 19, a releasable resin sheet formed in a strip shape is used.
As the releasable resin sheet, for example, polyester, polyethylene terephthalate, polybutylene terephthalate, or the like is used.
The predetermined interval is an interval at which adjacent cells C and C are formed in the first electrode 5 (or the second electrode 9).
「基板の貼り合せ」
次に、図3に示すように、セパレータ12を介在させた状態で透明導電膜3と対向導電膜7とを対向させるように、第2電極9を第1電極5に当接させる。後述するように、セパレータ12を用いなくてもよい。
"Lamination of substrates"
Next, as shown in FIG. 3, the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 are opposed to each other with the separator 12 interposed. As will be described later, the separator 12 may not be used.
「接着工程」
接着工程では、貼り合わされた第1電極5および第2電極9の図5に示す一端縁R1を除いて、硬化性樹脂やホットメルト樹脂等からなる封止材11が配置された端縁R2~R4を積層方向にプレスし、封止材11を硬化させるか、加熱し、封止材11を第1電極5および第2電極9に接着させる。この際、封止材11は、注液孔形成用部材19とは接着しない。なぜならば、注液孔形成用部材19は、耐熱温度が封止材11の溶融硬化温度よりも高く、かつ、非接着性に優れているからである。したがって、注液孔形成用部材19の両表面は、第1電極5とも第2電極9とも接着されていない状態となる。
本実施形態では、注液孔をあらかじめ設け、接着工程後に注液する方法の例を説明したが、本発明はこれに限定されない。例えば、前もって電解液を塗布し、プレス張り合わせや真空張り合わせを用いてもよい。
"Adhesion process"
In the bonding step, except for the one end edge R1 shown in FIG. 5 of the first electrode 5 and the second electrode 9 that are bonded together, the end edges R2 to R2 on which sealing materials 11 made of a curable resin, a hot-melt resin, or the like are disposed. R4 is pressed in the stacking direction, and the sealing material 11 is cured or heated, and the sealing material 11 is bonded to the first electrode 5 and the second electrode 9. At this time, the sealing material 11 does not adhere to the injection hole forming member 19. This is because the injection hole forming member 19 has a heat resistant temperature higher than the melt curing temperature of the sealing material 11 and is excellent in non-adhesiveness. Therefore, both surfaces of the injection hole forming member 19 are not bonded to the first electrode 5 and the second electrode 9.
In the present embodiment, an example of a method in which a liquid injection hole is provided in advance and liquid injection is performed after the bonding step has been described, but the present invention is not limited to this. For example, an electrolytic solution may be applied in advance, and press bonding or vacuum bonding may be used.
(III)<分割工程>
分割工程では、図6に示すように、第1電極5と第2電極9とにより形成される空間を複数のセルC,C・・・に区画する境界上、すなわち所望のパターニング箇所P,P・・・をたどるように、透明導電膜3が成膜された第一基板2の裏面2b(図3参照)または対向導電膜7が成膜された第二基板6の裏面6b(図3参照)のいずれか一方から超音波振動を付与する。
(III) <Division process>
In the dividing step, as shown in FIG. 6, on the boundary that partitions the space formed by the first electrode 5 and the second electrode 9 into a plurality of cells C, C... .., So that the back surface 2b of the first substrate 2 on which the transparent conductive film 3 is formed (see FIG. 3) or the back surface 6b of the second substrate 6 on which the counter conductive film 7 is formed (see FIG. 3). ) To apply ultrasonic vibration.
そうすると、第一基板2に成膜された透明導電膜3および半導体層4が、超音波振動により拡散する。それとともに、透明導電膜3に対向する対向導電膜7および触媒層8が、超音波振動により拡散する。その結果、図1に示すように、互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7および触媒層8においてクラックが生じ、第一基板2の板面2aと第二基板6の板面6aとが当接する。そして、さらに、これら第一基板2と第二基板6とは、超音波振動により溶融して互いに溶着する。その結果、図6に示すように半導体層4を囲繞するように配置された封止材11の枠内に互いに分割された複数のセルC,C・・・を形成する。 Then, the transparent conductive film 3 and the semiconductor layer 4 formed on the first substrate 2 are diffused by ultrasonic vibration. At the same time, the opposing conductive film 7 and the catalyst layer 8 facing the transparent conductive film 3 are diffused by ultrasonic vibration. As a result, as shown in FIG. 1, cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions facing each other, and the plate surface 2 a of the first substrate 2 and the second substrate 6. The plate surface 6a contacts. Further, the first substrate 2 and the second substrate 6 are melted by ultrasonic vibration and welded to each other. As a result, as shown in FIG. 6, a plurality of cells C, C... Divided into each other are formed in the frame of the sealing material 11 arranged so as to surround the semiconductor layer 4.
 なお、本実施形態では、第一基板2の裏面2bから超音波振動を付与する場合を例示したが、本発明はこれに限定されない。本発明にあっては、第一基板2の裏面2bまたは第二基板6の裏面6bのいずれか一方から超音波振動を付与することができる。 In this embodiment, the case where ultrasonic vibration is applied from the back surface 2b of the first substrate 2 is exemplified, but the present invention is not limited to this. In the present invention, ultrasonic vibration can be applied from either the back surface 2 b of the first substrate 2 or the back surface 6 b of the second substrate 6.
なお、超音波振動は、第1電極5と第2電極9をそれぞれ同時かつ確実にパターニングするとともに、溶着できる所定の出力で行う。 The ultrasonic vibration is performed at a predetermined output that can be welded while patterning the first electrode 5 and the second electrode 9 simultaneously and reliably.
(IV)<溶着工程>
溶着工程では、図6に示すように、セルCにおける、パターニング箇所P,Pおよび封止材11が設けられていない部分において、透明導電膜3が成膜された第一基板2の裏面2b(図3参照)または対向導電膜7が成膜された第二基板6の裏面6b(図3参照)のいずれか一方から超音波振動を付与する。
(IV) <Welding process>
In the welding step, as shown in FIG. 6, the back surface 2b of the first substrate 2 on which the transparent conductive film 3 is formed in the portion where the patterning portions P and P and the sealing material 11 are not provided in the cell C (see FIG. 6). The ultrasonic vibration is applied from either one of the back surface 6b (see FIG. 3) of the second substrate 6 on which the counter conductive film 7 is formed (see FIG. 3).
そうすると、第一基板2に成膜された透明導電膜3および半導体層4が、超音波振動により破壊されるとともに、透明導電膜3に対向する対向導電膜7および触媒層8が、同様にして超音波振動により破壊される。その結果、図1に示すように、互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7および触媒層8においてクラックが生じ、第一基板2の板面2aと第二基板6の板面6aとが当接する。そして、さらに、これら第一基板2と第二基板6とは、超音波振動により溶融して互いに溶着し、図6に示すように、半導体層4を囲繞するように配置された封止材11およびパターニング箇所Pからなる枠内に、第一基板2の板面2aと第二基板6の板面6aとが直接当接した溶着部10を形成する。 Then, the transparent conductive film 3 and the semiconductor layer 4 formed on the first substrate 2 are destroyed by ultrasonic vibration, and the opposing conductive film 7 and the catalyst layer 8 facing the transparent conductive film 3 are similarly formed. It is destroyed by ultrasonic vibration. As a result, as shown in FIG. 1, cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions facing each other, and the plate surface 2 a of the first substrate 2 and the second substrate 6. The plate surface 6a contacts. Further, the first substrate 2 and the second substrate 6 are melted by ultrasonic vibration and welded to each other, and as shown in FIG. 6, the sealing material 11 disposed so as to surround the semiconductor layer 4. And in the frame which consists of the patterning location P, the welding part 10 which the plate surface 2a of the 1st board | substrate 2 and the plate surface 6a of the 2nd board | substrate 6 contact | abutted directly is formed.
溶着工程において、溶着部10を、セルCの単位面積26cm当たり1箇所~10箇所形成することが好ましく、1箇所~5箇所形成することがより好ましい。
また、溶着工程において、平面視したとき1個所当たりの面積が1mm~100mmとなるように溶着部10を形成することが好ましく、平面視したときの面積が1mm~25mmとなるように溶着部10を形成することがより好ましい。
In the welding step, it is preferable to form the welded portion 10 at 1 to 10 locations per unit area 26 cm 2 of the cell C, and more preferably at 1 to 5 locations.
Further, in the welding step, it is preferable to form the welded portion 10 so that the area per location when viewed in plan is 1 mm 2 to 100 mm 2, and the area when viewed in plan is 1 mm 2 to 25 mm 2. It is more preferable to form the welded portion 10 on the surface.
(V)<電気的接続工程>
電気的接続工程では、積層方向にプレスし、硬化させるか、加熱し接着しなかった一端縁R1において、図7Aに示すように隣接するセルC,C間に跨る切欠15を形成し、図7Bに示すようにこの切欠15,15・・・に導通部材16,16・・・を配して複数のセルC,C間を直列接続させる。その後、一端縁R1を加熱プレスにより接着してこの一側端R1を閉口する。
以上により、注液孔形成用部材19が配された位置を除いて第1電極5と第2電極9とが端縁R1~R4において接着される。
(V) <Electrical connection process>
In the electrical connection step, a notch 15 straddling between adjacent cells C and C is formed as shown in FIG. 7A at one end edge R1 which is pressed and cured in the laminating direction or is not bonded by heating. As shown in FIG. 5, the conductive members 16, 16... Are arranged in the notches 15, 15. Thereafter, the one end R1 is bonded by a hot press to close the one end R1.
As described above, the first electrode 5 and the second electrode 9 are bonded at the edges R1 to R4 except for the position where the liquid injection hole forming member 19 is disposed.
(VI)<注液孔形成工程>
注液孔形成工程では、図8に示すように、第一基板2の端縁から突出させた注液孔形成用部材19,19を引き抜き、セルCを開口させて電解液を注入可能な注液孔17,17・・・を形成する。
以上の工程により、第1電極5と第2電極9との間にセルC,C・・・が形成された接合体1aが得られる。
(VI) <Injection hole forming step>
In the liquid injection hole forming step, as shown in FIG. 8, the liquid injection hole forming members 19, 19 protruding from the edge of the first substrate 2 are pulled out, the cell C is opened, and an electrolyte can be injected. Liquid holes 17, 17... Are formed.
Through the above steps, a joined body 1a in which cells C, C... Are formed between the first electrode 5 and the second electrode 9 is obtained.
(VII)<注液工程>
注液工程では、前述した工程で得られた第1電極5と第2電極9との接合体1aを減圧雰囲気下に置き、電解液13を保持した容器(不図示)に注液孔17,17を浸漬させて真空引きにより電解液13をセルC内に注入する。
(VII) <Liquid injection process>
In the liquid injection process, the joined body 1a of the first electrode 5 and the second electrode 9 obtained in the above-described process is placed in a reduced pressure atmosphere, and the liquid injection holes 17, 17 is immersed and the electrolytic solution 13 is injected into the cell C by evacuation.
(VIII)<注液孔封止工程>
その後、注液孔封止工程では、電解液13の注入後に注液孔17,17・・・を接着剤等で閉口してセルCを封止し、複数のセルC,C・・・が直列接続された図9A,図9Bに示す色素増感型太陽電池1Aを得る。
(VIII) <Injection hole sealing step>
Thereafter, in the injection hole sealing step, after injection of the electrolytic solution 13, the injection holes 17, 17... Are closed with an adhesive or the like to seal the cell C, and a plurality of cells C, C. A dye-sensitized solar cell 1A shown in FIGS. 9A and 9B connected in series is obtained.
以上のように、本実施形態の色素増感型太陽電池1Aの製造方法によれば、セルCにおいて、第一基板2の板面2aと第二基板6の板面6aとが直接当接する溶着部10を形成する溶着工程を有するため、溶着工程において形成した溶着部10により、セルC内における電解液13の偏りを防止することができる。これにより、第1電極5と第2電極9間に所定量の電解液13を存在させることができるため、色素増感型太陽電池1Aの発電効率が低下することを防止できる。 As described above, according to the method for manufacturing the dye-sensitized solar cell 1A of the present embodiment, in the cell C, the plate surface 2a of the first substrate 2 and the plate surface 6a of the second substrate 6 are in direct contact with each other. Since it has the welding process which forms the part 10, the bias | inclination of the electrolyte solution 13 in the cell C can be prevented by the welding part 10 formed in the welding process. Thereby, since a predetermined amount of the electrolytic solution 13 can be present between the first electrode 5 and the second electrode 9, it is possible to prevent the power generation efficiency of the dye-sensitized solar cell 1A from being lowered.
第1電極5と第2電極9とを貼り合わせた後に、超音波振動を用いてパターニングを行うため、パターニングおよび溶着位置Pが一致する。したがって、セルC,C間の区画を容易かつ的確に行うことができるという効果が得られる。
本実施形態の色素増感型太陽電池1Aの製造方法により製作された複数のセルC,C・・・を有する色素増感型太陽電池1Aによれば、セルC,C同士の間を、封止材を用いずに絶縁した上で絶縁された箇所を溶着して分割することができる。そのため、材料コストを削減できるとともに、電解液13が封止材11に触れることにより劣化することを抑制することができるという効果が得られる。
Since the patterning is performed using the ultrasonic vibration after the first electrode 5 and the second electrode 9 are bonded together, the patterning and the welding position P coincide with each other. Therefore, the effect that the division between the cells C and C can be performed easily and accurately is obtained.
According to the dye-sensitized solar cell 1A having a plurality of cells C, C... Manufactured by the method for manufacturing the dye-sensitized solar cell 1A of the present embodiment, the cells C and C are sealed together. After insulating without using a stopper, it is possible to weld and divide the insulated portions. Therefore, it is possible to reduce the material cost and to suppress the deterioration of the electrolytic solution 13 due to the contact with the sealing material 11.
本実施形態においては、セパレータ12を介在させた状態で透明導電膜3と対向導電膜7とを対向させるように、第2電極9を第1電極5に当接させている。これは、分割工程において、パターニング箇所Pおよびその近傍に第1電極5と第2電極9とが接触する部分が生じると、当該接触部分において通電し、電池がショートすることがあるためである。
しかしながら、本発明においては、超音波振動を用いてパターニングを行うため、パターニング箇所Pの互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7および触媒層8にクラックが生じる。また、パターニング箇所Pの近傍にもクラックが生じる。そのため、パターニング箇所Pおよびその近傍において、第1電極5と第2電極9とが接触する部分が生じない。したがって、本発明においては、セパレータ12を用いない場合であっても、パターニング箇所Pにおいて確実に第1電極5および第2電極9の絶縁を行うことができるため、電池がショートすることがない。
In the present embodiment, the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 face each other with the separator 12 interposed. This is because in the dividing step, when a portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and in the vicinity thereof is energized, the battery may be short-circuited.
However, in the present invention, since patterning is performed using ultrasonic vibration, cracks are generated in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions where the patterning portions P face each other. Further, cracks are also generated in the vicinity of the patterning portion P. Therefore, there is no portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and the vicinity thereof. Therefore, in the present invention, even if the separator 12 is not used, the first electrode 5 and the second electrode 9 can be reliably insulated at the patterning portion P, so that the battery is not short-circuited.
(第2の実施形態)
次に、色素増感型太陽電池1Aの製造方法の第2の実施形態について、図10を用いて説明する。
本実施形態では、上述した第1の実施形態と同様の構成および工程については同一の符号を用いてその構成および工程の説明を省略し、第1の実施形態と異なる構成および工程についてのみ説明する。
本実施形態の色素増感型太陽電池1Aの製造方法は、(I)電極板形成工程から(III)分割工程までを、複数の半導体層4が形成されロール状に巻回された長尺な帯状の第1電極5と同様にロール状に巻回された長尺な帯状の第2電極9とを用いて各工程の作業を連続的に行い、色素増感型太陽電池1Aを製造する点で第1の実施形態の色素増感型太陽電池1Aの製造方法と異なっている。
(Second Embodiment)
Next, 2nd Embodiment of the manufacturing method of 1 A of dye-sensitized solar cells is described using FIG.
In the present embodiment, the same configurations and processes as those in the first embodiment described above are denoted by the same reference numerals, and descriptions of the configurations and processes are omitted, and only configurations and processes different from those in the first embodiment will be described. .
The manufacturing method of the dye-sensitized solar cell 1A according to the present embodiment is a long process in which a plurality of semiconductor layers 4 are formed and wound in a roll from (I) electrode plate forming step to (III) dividing step. The point which manufactures the dye-sensitized solar cell 1A by continuously performing the work of each process using the long strip-shaped second electrode 9 wound in a roll shape like the strip-shaped first electrode 5. This is different from the method for manufacturing the dye-sensitized solar cell 1A of the first embodiment.
(I)電極板形成工程
第1電極5は、ロール状に巻回された帯状の第一基板2を一方向(矢印L方向)に引き出し、所定の位置で板面2aの全体に透明導電膜3を成膜し、さらに透明導電膜3の成膜位置より下流側で透明導電膜3の表面3aに、端縁(外周)R1~R4を残して半導体層4を矢印L方向に間歇的に設けて製作する。半導体層4における増感色素の吸着は、例えば、スプレー塗布により行うことができる。
第2電極9は、ロール状に巻回された帯状の第二基板6を一方向(矢印L方向)と反対方向に引き出し、所定の位置で板面6aの全体に対向導電膜7を成膜し、さらに対向導電膜7の成膜位置よりも下流側で対向導電膜7の表面7aの全体に触媒層8を成膜することにより製作する。
(I) Electrode plate formation step The first electrode 5 is a transparent conductive film formed on the entire plate surface 2a at a predetermined position by pulling out the strip-shaped first substrate 2 wound in a roll shape in one direction (arrow L direction). 3 is formed, and the semiconductor layer 4 is intermittently provided in the direction of the arrow L, leaving edges (outer circumferences) R1 to R4 on the surface 3a of the transparent conductive film 3 on the downstream side of the film formation position of the transparent conductive film 3. Establish and produce. Adsorption of the sensitizing dye in the semiconductor layer 4 can be performed by spray coating, for example.
The second electrode 9 draws out the strip-shaped second substrate 6 wound in a roll shape in the direction opposite to the one direction (arrow L direction), and forms the opposing conductive film 7 on the entire plate surface 6a at a predetermined position. Further, the catalyst layer 8 is formed on the entire surface 7 a of the counter conductive film 7 on the downstream side of the position where the counter conductive film 7 is formed.
(II)<封止工程>
「封止材および注液孔形成用部材の配置」
封止材11の配置には、第一基板2上に所定の間隔をおいて間歇的に形成された半導体層4を1つずつ囲繞するように枠状に形成されたシート状のものを用いる。この枠状の封止材11で区画された領域が色素増感型太陽電池1Aの1単位Tとなる。
注液孔形成用部材19は、帯状の第一基板2の一端縁に沿って延在する封止材11上に前記第1の実施形態で示したとおりに配置する。
(II) <Sealing process>
"Arrangement of sealing material and injection hole forming member"
For the arrangement of the sealing material 11, a sheet-like material formed in a frame shape so as to surround the semiconductor layers 4 intermittently formed at predetermined intervals on the first substrate 2 is used. . A region partitioned by the frame-shaped sealing material 11 is one unit T of the dye-sensitized solar cell 1A.
The liquid injection hole forming member 19 is disposed on the sealing material 11 extending along one end edge of the belt-like first substrate 2 as shown in the first embodiment.
「基板の貼り合せ」
上記のようにして形成された帯状の第1電極5および第1電極5に配された封止材11に、帯状に引き出したセパレータ12を配し、セパレータ12を配した下流側で、さらに帯状の第2電極9を配する。第2の実施態様においても、第1の実施態様と同様の理由により、セパレータ12は用いなくてもよい。
"Lamination of substrates"
The strip-shaped first electrode 5 and the sealing material 11 disposed on the first electrode 5 formed as described above are provided with the separator 12 drawn in a strip shape, and further on the downstream side where the separator 12 is disposed. The second electrode 9 is disposed. Also in the second embodiment, the separator 12 may not be used for the same reason as in the first embodiment.
「接着工程」
接着工程を、第1の実施形態と同様に行う。
"Adhesion process"
The bonding step is performed in the same manner as in the first embodiment.
(III)<分割工程>
分割工程では、封止材11の枠内を第1電極5および第2電極9の延在方向に分割するように矢印L方向に直交する方向に超音波振動を付与し、第1電極5と第2電極9との間に複数のセルC,C・・・を形成する。(III)分割工程は、上記第1の実施形態と同様にして行う。
(III) <Division process>
In the dividing step, ultrasonic vibration is applied in a direction orthogonal to the arrow L direction so as to divide the inside of the frame of the sealing material 11 in the extending direction of the first electrode 5 and the second electrode 9, A plurality of cells C, C... Are formed between the second electrode 9. (III) The dividing step is performed in the same manner as in the first embodiment.
(IV)<溶着工程>
溶着工程では、セルCにおける、パターニング箇所P,Pおよび封止材11が設けられていない部分において、透明導電膜3が成膜された第一基板2の裏面2bまたは対向導電膜7が成膜された第二基板6の裏面6bのいずれか一方から超音波振動を付与し、導体層4を囲繞するように配置された封止材11およびパターニング箇所Pからなる枠内に、第一基板2の板面2aと第二基板6の板面6aとが直接当接した溶着部10を形成する。
(IV) <Welding process>
In the welding step, the back surface 2b of the first substrate 2 on which the transparent conductive film 3 is formed or the counter conductive film 7 is formed in a portion of the cell C where the patterning portions P and P and the sealing material 11 are not provided. Ultrasonic vibration is applied from one of the back surfaces 6 b of the second substrate 6, and the first substrate 2 is placed in a frame made up of the sealing material 11 and the patterning portion P disposed so as to surround the conductor layer 4. The welding surface 10 in which the plate surface 2a and the plate surface 6a of the second substrate 6 are in direct contact is formed.
(IV)溶着工程は、上記第1の実施形態と同様にして行う。
その後、(V)電気的接続工程の前または後に(VI)切断工程を行う。
切断工程は、一の色素増感型太陽電池1Aの単位T毎に互いに貼着された第1電極5と第2電極9とを切断して行う。
(V)電気的接続工程、(VII)注液孔形成工程、(VIII)注液工程および(IX)注液孔封止工程は、第1の実施形態での方法と同様に行う。(VII)注液孔形成工程は、(VI)切断工程の前に行われてもよい。
(IV) The welding process is performed in the same manner as in the first embodiment.
Then, (VI) cutting process is performed before or after (V) electrical connection process.
The cutting step is performed by cutting the first electrode 5 and the second electrode 9 that are attached to each other for each unit T of the one dye-sensitized solar cell 1A.
The (V) electrical connection step, (VII) liquid injection hole forming step, (VIII) liquid injection step, and (IX) liquid injection hole sealing step are performed in the same manner as the method in the first embodiment. The (VII) injection hole forming step may be performed before the (VI) cutting step.
以上のようにして色素増感型太陽電池1Aの製造を、1つの色素増感型太陽電池1A毎ではなく、長尺な帯状の第一基板2および長尺な帯状の第二基板6において各工程の作業を連続的に行い、その後、帯状の第1電極5と第2電極9とを貼り合わせた上で、図8に示す複数の接合体1aまたは図10に示す色素増感型太陽電池1Aを1つずつに切断することにより、効率的に色素増感型太陽電池1Aを製作することができるという効果が得られる。 As described above, the production of the dye-sensitized solar cell 1A is performed not on each of the dye-sensitized solar cells 1A but on the long strip-shaped first substrate 2 and the long strip-shaped second substrate 6. After the work of the process is continuously performed, and then the first electrode 5 and the second electrode 9 are bonded together, the plurality of joined bodies 1a shown in FIG. 8 or the dye-sensitized solar cell shown in FIG. By cutting 1A one by one, an effect that the dye-sensitized solar cell 1A can be efficiently manufactured is obtained.
 帯状の第1電極5と第2電極9とを貼り合せて封止する工程および複数のセルC,C・・・を形成する工程においても、これら第1電極5と第2電極9との位置決めを考慮することなく簡便に封止し、またはセルC,C間を極めて簡便に絶縁および溶着することができる。そのため、色素増感型太陽電池1Aの連続的な製造においても非常に効率的となるという効果が得られる。 Positioning of the first electrode 5 and the second electrode 9 also in the step of bonding and sealing the band-shaped first electrode 5 and the second electrode 9 and the step of forming a plurality of cells C, C. Can be easily sealed without considering the above, or the cells C and C can be insulated and welded very simply. Therefore, the effect that it becomes very efficient also in continuous manufacture of 1 A of dye-sensitized solar cells is acquired.
上記第1の実施形態および第2の実施形態においては、色素増感型太陽電池1A毎の第1電極5と第2電極9との間の封止を、封止材11を用いて行う構成とした。上記第1の実施形態および第2の実施形態においては、封止材11による封止に代えて、超音波振動を付与して第1電極5と第2電極9との間を絶縁および封止して色素増感型太陽電池1Aを形成してもよい。
この場合、色素増感型太陽電池1Aの製作おいて、枠状の封止材11を、半導体層4を囲繞するように配置するという作業を省いて、超音波溶着によって、より簡便に封止することができるという効果が得られる。また、電解液を塗布した後に貼り合わせを行うことにより、注入孔を無くすことができる。その場合、注入孔を考慮せず任意の場所で溶着処理が可能となる。
In the said 1st Embodiment and 2nd Embodiment, the structure which seals between the 1st electrode 5 and the 2nd electrode 9 for every dye-sensitized solar cell 1A using the sealing material 11 It was. In the first embodiment and the second embodiment, instead of sealing with the sealing material 11, ultrasonic vibration is applied to insulate and seal between the first electrode 5 and the second electrode 9. Thus, the dye-sensitized solar cell 1A may be formed.
In this case, in the production of the dye-sensitized solar cell 1A, the work of arranging the frame-shaped sealing material 11 so as to surround the semiconductor layer 4 is omitted, and sealing is more easily performed by ultrasonic welding. The effect that it can do is acquired. Further, the injection hole can be eliminated by bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.
上記実施形態においては、注液孔形成用部材19を配する位置と導通材を配する位置とを端縁R1,R2とで異ならせている。注液孔形成用部材19と導通材とを適切に配置することができる限り、注液孔形成用部材19を配する位置と導通材を配する位置はR1,R2のいずれか一方に隣り合うように配置されていてもよい。
上記実施形態では、導通材を配する位置を端縁R1か端縁R2のいずれかとしたが、端縁R1,R2の両側に導通材を配してセルC,C間を並列接続させたものであってもよい。
In the above-described embodiment, the position where the liquid injection hole forming member 19 is disposed and the position where the conductive material is disposed are different between the edges R1 and R2. As long as the liquid injection hole forming member 19 and the conductive material can be appropriately disposed, the position where the liquid injection hole forming member 19 is disposed and the position where the conductive material is disposed are adjacent to one of R1 and R2. It may be arranged as follows.
In the above embodiment, the position where the conductive material is disposed is either the end edge R1 or the end edge R2. However, the conductive material is disposed on both sides of the end edges R1 and R2, and the cells C and C are connected in parallel. It may be.
(第3の実施形態)
次に、色素増感型太陽電池1Aの製造方法の第3の実施形態について、図11を用いて説明する。
本実施形態では、上述した第2の実施形態と同様の構成および工程については同一の符号を用いてその構成および工程の説明を省略し、第2の実施形態と異なる構成および工程についてのみ説明する。
本実施形態の色素増感型太陽電池1Bの製造方法では、(I)電極板形成工程から(III)溶着工程までを、半導体層4が一方向に連続して形成された長尺な帯状の第1電極5と長尺な帯状の第2電極9とを用いて各工程の作業を連続的に行う。貼り合わされた第1電極5および第2電極9を絶縁、溶着および切断工程を超音波振動の付与によって同時に行い、各セルを互いに封止および分離させる点で第2の実施形態の色素増感型太陽電池1Aの製造方法と異なっている。
(Third embodiment)
Next, a third embodiment of the method for manufacturing the dye-sensitized solar cell 1A will be described with reference to FIG.
In the present embodiment, the same configurations and processes as those of the second embodiment described above are denoted by the same reference numerals, and descriptions of the configurations and processes are omitted, and only configurations and processes different from those of the second embodiment are described. .
In the manufacturing method of the dye-sensitized solar cell 1B of the present embodiment, the long band-like shape in which the semiconductor layer 4 is continuously formed in one direction from (I) the electrode plate forming step to (III) the welding step. Using the first electrode 5 and the long strip-shaped second electrode 9, the operations of each process are continuously performed. The dye-sensitized type of the second embodiment is that the bonded first electrode 5 and second electrode 9 are simultaneously insulated, welded and cut by applying ultrasonic vibration to seal and separate the cells from each other. It is different from the manufacturing method of the solar cell 1A.
(I)電極板形成工程
上記した第2の実施形態では、透明導電膜3の表面3aに、端縁(外周)R1~R4を残して半導体層4を矢印L方向に間歇的に設けて製作した。本実施形態では、端縁R1,R2を残して半導体層4を透明導電膜3の表面3aに連続して(いわゆるべた塗りで)形成する。
(I) Electrode Plate Formation Process In the second embodiment described above, the semiconductor layer 4 is intermittently provided in the direction of the arrow L, leaving the edges (outer circumferences) R1 to R4 on the surface 3a of the transparent conductive film 3. did. In the present embodiment, the semiconductor layer 4 is formed continuously (so-called solid coating) on the surface 3a of the transparent conductive film 3 leaving the edges R1 and R2.
(II)<貼り合わせ工程>
上記した第2の実施形態では、間歇的に形成された半導体層4を1つずつ囲繞するように枠状に形成されたシート状のものを第1電極5の表面に配し、第2電極9と貼り合わせた。本実施形態では、封止材11を第1電極5または第2電極9の端縁R1,R2に沿って、すなわち幅方向両端であって、これらの延在する方向に帯状に配し、第1電極5と第2電極9とを貼り合わせ接着する。本実施態様においても、セパレータ12は用いなくてもよい。上記第1の実施形態において説明したように、本発明においては、超音波振動を用いてパターニングを行う。そのため、パターニング箇所Pの互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7および触媒層8にクラックが生じる。また、パターニング箇所Pの近傍にもクラックが生じる。ゆえに、パターニング箇所Pおよびその近傍において、第1電極5と第2電極9とが接触する部分が生じない。したがって、本発明においては、セパレータ12を用いない場合であっても、パターニング箇所Pにおいて確実に第1電極5および第2電極9の絶縁を行うことができるため、電池がショートすることがない。
(II) <Lamination process>
In the second embodiment described above, a sheet-like one formed in a frame shape so as to surround the semiconductor layers 4 formed intermittently one by one is arranged on the surface of the first electrode 5, and the second electrode 9 and pasted together. In this embodiment, the sealing material 11 is arranged along the edges R1 and R2 of the first electrode 5 or the second electrode 9, that is, both ends in the width direction, in the extending direction, and in a strip shape. The first electrode 5 and the second electrode 9 are bonded and bonded together. Also in this embodiment, the separator 12 may not be used. As described in the first embodiment, in the present invention, patterning is performed using ultrasonic vibration. Therefore, cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions where the patterning portions P are opposed to each other. Further, cracks are also generated in the vicinity of the patterning portion P. Therefore, a portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and the vicinity thereof is not generated. Therefore, in the present invention, even if the separator 12 is not used, the first electrode 5 and the second electrode 9 can be reliably insulated at the patterning portion P, so that the battery is not short-circuited.
そして、貼り合わされた第1電極5および第2電極9の延在方向に直交(交叉)する方向に亘る絶縁、溶着を超音波振動の付与により同時に行う。
絶縁、溶着に加えて切断も同時に行ってもよい。以下では、絶縁、溶着に加えて切断も同時に行う場合について説明する。
この際、超音波振動の付与による第1電極5と第2電極9との絶縁、溶着および切断には、貼り合わされた第1電極5と第2電極9の幅寸法よりも長尺に形成されたホーン20が用いられ、絶縁、溶着および切断される箇所の全体に同時に超音波振動が付与され、同時に絶縁、溶着および切断される。
L方向に導通材が配されている場合、ホーン20が導通材を跨ぐ構成とすれば、導通材を破壊することなく第1電極5および第2電極9の絶縁、溶着および切断を超音波振動の付与により同時に行うことができる。なお、第1または第2の実施形態においても、L方向に導通材が配されている場合、ホーン20が導通材を跨ぐ構成とすることができる。また、ホーン20が導通材を跨がない構成とすれば、導通材が破壊され、電気的絶縁を取ることができる。なお、第1または第2の実施形態においても、第3の実施形態と同様の理由により、ホーン20が導通材を跨がない構成とすることができる。
本実施形態によれば、電解液を塗布した後に貼り合わせを行うことにより、注入孔を無くすことができる。その場合、注入孔を考慮せず任意の場所で溶着処理が可能となる。
Then, insulation and welding are performed simultaneously by applying ultrasonic vibration in a direction orthogonal (crossing) to the extending direction of the bonded first electrode 5 and second electrode 9.
In addition to insulation and welding, cutting may be performed simultaneously. In the following, a case where cutting is performed at the same time in addition to insulation and welding will be described.
At this time, insulation, welding, and cutting between the first electrode 5 and the second electrode 9 by applying ultrasonic vibration are formed longer than the width of the bonded first electrode 5 and second electrode 9. The horn 20 is used, and ultrasonic vibration is simultaneously applied to the entire portion to be insulated, welded and cut, and simultaneously insulated, welded and cut.
When the conductive material is arranged in the L direction, if the horn 20 is configured to straddle the conductive material, the first electrode 5 and the second electrode 9 can be insulated, welded, and cut by ultrasonic vibration without destroying the conductive material. Can be performed simultaneously. In the first or second embodiment, when the conductive material is arranged in the L direction, the horn 20 can be configured to straddle the conductive material. Further, if the horn 20 does not straddle the conductive material, the conductive material is destroyed and electrical insulation can be obtained. In the first or second embodiment, the horn 20 can be configured not to straddle the conductive material for the same reason as in the third embodiment.
According to this embodiment, the injection hole can be eliminated by performing the bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.
以上のように、電極板形成工程および第1電極および第2電極の絶縁、溶着および切断工程を上記のように行うことにより、絶縁、溶着および切断工程を同時に行って製造工程を削減することができるという効果が得られる。
第1電極の透明導電膜3および半導体層4を第一基板の延在する方向に連続して成膜し、第2電極の対向導電膜7および触媒層8を第二基板6の延在する方向に連続して成膜し、膜が一様な状態(パターニングされていない状態)で第1電極5と第2電極9とを貼り合せることができる。そのため、第1電極5および第2電極9の延在方向の位置合わせを考慮する必要がなく、任意の位置においてセルまたは電気モジュールを分離することが可能となる。したがって、第1電極5と第2電極9との貼り合わせを容易に行うことができ、かつ、色素増感型太陽電池1Bの製造時間を大幅に圧縮することができるという効果が得られる。
As described above, by performing the electrode plate forming step and the insulating, welding, and cutting steps of the first electrode and the second electrode as described above, the insulating, welding, and cutting steps can be simultaneously performed to reduce the manufacturing process. The effect that it can be obtained.
The transparent conductive film 3 and the semiconductor layer 4 of the first electrode are continuously formed in the extending direction of the first substrate, and the opposing conductive film 7 and the catalyst layer 8 of the second electrode are extended of the second substrate 6. The first electrode 5 and the second electrode 9 can be bonded together in a state where the film is continuously formed in the direction and the film is uniform (not patterned). Therefore, it is not necessary to consider the alignment in the extending direction of the first electrode 5 and the second electrode 9, and the cell or the electric module can be separated at an arbitrary position. Therefore, it is possible to easily bond the first electrode 5 and the second electrode 9 and to greatly reduce the manufacturing time of the dye-sensitized solar cell 1B.
第1電極5および第2電極9をロール状に巻回し両者を一方向に延在させて上記諸工程を連続的に行う、いわゆるRoll to Roll生産を行うことが容易となるため、色素増感型太陽電池1Bの生産性を向上させることができるという効果が得られる。 Since the first electrode 5 and the second electrode 9 are wound in a roll shape and both are extended in one direction so that the above-described steps are continuously performed, so-called Roll-to-Roll production can be easily performed. The effect that the productivity of the solar cell 1B can be improved is obtained.
さらに、電極板形成工程において、色素増感型太陽電池1Bの寸法を予め決定して封止材を配しておく必要がなく、第1電極5および第2電極9を形成しこれらを延在方向に貼り合せた後で超音波振動によって延在方向に交叉する方向に亘って同時に絶縁、溶着および切断することができる。したがって、電極板形成工程で形成された第1電極5および第2電極9の設計によって色素増感型太陽電池1Bの一方向における寸法が拘束されることがなく、超音波振動の付与時に色素増感型太陽電池1Bの寸法を任意に設定することができるという効果が得られる。 Further, in the electrode plate forming step, it is not necessary to determine the dimensions of the dye-sensitized solar cell 1B in advance and dispose the sealing material, and form the first electrode 5 and the second electrode 9 to extend them. Insulation, welding, and cutting can be performed simultaneously in the direction intersecting in the extending direction by ultrasonic vibration after bonding in the direction. Therefore, the dimensions of the dye-sensitized solar cell 1B in one direction are not restricted by the design of the first electrode 5 and the second electrode 9 formed in the electrode plate forming step, and the dye increase is performed when ultrasonic vibration is applied. The effect that the dimension of the sensitive solar cell 1B can be arbitrarily set is obtained.
本実施形態の製造方法によれば、電解質を第1電極5の半導体層4の上部等に塗工あるいは充填させ、続いて、第1電極5と第2電極9とを対向配置させて一のモジュールとし、その後、この一のモジュールに対し超音波振動により同時に絶縁、溶着および切断して複数の色素増感型太陽電池1Bに再分化することも可能である。このような手法を取ることで、自動生産性が高まり、生産性がさらに改善される。 According to the manufacturing method of the present embodiment, the electrolyte is applied or filled on the upper portion of the semiconductor layer 4 of the first electrode 5, and then the first electrode 5 and the second electrode 9 are disposed to face each other. It is also possible to make a module, and then to insulate, weld, and cut this single module simultaneously by ultrasonic vibration to re-divide into a plurality of dye-sensitized solar cells 1B. By taking such a method, automatic productivity is increased and productivity is further improved.
本実施形態において、第1電極5および第2電極9の延在方向Lに交叉する方向(すなわち幅方向)の絶縁、溶着および切断は、超音波振動を付与することにより第一基板2と第二基板6との互いに対向する板面2a,6aを当接させて溶着し、さらに局所的に加熱することによって切断したが、その後、さらに切断箇所を含む色素増感型太陽電池1Bの周に熱可塑性樹脂を配し、色素増感型太陽電池1Bの内部を二重に封止して液密性を向上させるとなおよい。 In the present embodiment, insulation, welding, and cutting in the direction crossing the extending direction L of the first electrode 5 and the second electrode 9 (that is, the width direction) are performed by applying ultrasonic vibration to the first substrate 2 and the second electrode 9. The plate surfaces 2a, 6a facing each other with the two substrates 6 are brought into contact with each other and welded, and further cut locally by heating. Thereafter, around the periphery of the dye-sensitized solar cell 1B including the cut portion. More preferably, a thermoplastic resin is provided and the inside of the dye-sensitized solar cell 1B is double-sealed to improve liquid tightness.
本実施形態において、封止材11をもって第1電極5と第2電極9とを貼り合わせた箇所についても超音波振動によって溶着してもよい。
本実施形態において、第1電極5および第2電極9にパターニングされた処理が施されていないが、半導体層4が複数並列となるように、長手延在方向Lに並行な複数のパターンに分割されていてもよく(図12参照)、長手延在方向Lと直交方向にパターニングされていてもよい。また、複数のパターン同士が直列もしくは並列に接続されていてもよい。その場合においても、L方向に第1電極5および第2電極9のフィルム搬送方向に関する位置合わせが不要という本発明の効果を奏する。図12においては、半導体層4が3つ並列となる実施形態を示したが、本発明はこれに限定されず、半導体層4を所望数のパターンに分割することが可能である。分割後のセルを電気的に接続することにより、簡易かつ効率的に電気モジュールを製造することができる。
In the present embodiment, the portion where the first electrode 5 and the second electrode 9 are bonded together with the sealing material 11 may also be welded by ultrasonic vibration.
In the present embodiment, the patterned process is not performed on the first electrode 5 and the second electrode 9, but the semiconductor layer 4 is divided into a plurality of patterns parallel to the longitudinal extension direction L so that the semiconductor layers 4 are arranged in parallel. It may be formed (see FIG. 12), and may be patterned in a direction orthogonal to the longitudinal extending direction L. A plurality of patterns may be connected in series or in parallel. Even in that case, the effect of the present invention that the alignment of the first electrode 5 and the second electrode 9 in the L direction in the film transport direction is unnecessary is achieved. Although FIG. 12 shows an embodiment in which three semiconductor layers 4 are arranged in parallel, the present invention is not limited to this, and the semiconductor layer 4 can be divided into a desired number of patterns. By electrically connecting the divided cells, an electric module can be easily and efficiently manufactured.
さらに、本実施形態において、第1電極5および第2電極9の延在方向Lに交叉する方向(すなわち幅方向)の封止、絶縁および切断は、超音波振動を付与することにより第一基板2と第二基板6との互いに対向する板面2a,6aを当接すなわち絶縁させて溶着した上で、ホーンの先端を用いて機械的に切断してもよい。 Further, in the present embodiment, sealing, insulation, and cutting in the direction crossing the extending direction L of the first electrode 5 and the second electrode 9 (that is, the width direction) are performed by applying ultrasonic vibration to the first substrate. The plate surfaces 2a and 6a of the second substrate 6 and the second substrate 6 which are opposed to each other may be contacted, that is, insulated and welded, and then mechanically cut using the tip of the horn.
第1または第2の実施形態で示された超音波振動の付与による第1電極5と第2電極9との溶着方法と第3の実施形態による第1電極5と第2電極9との絶縁、溶着および切断方法とを適宜組み合わせて色素増感型太陽電池1A,1Bを製造することもできる。例えば、第3の実施形態では、セルC単位で第1電極5と第2電極9との絶縁、溶着および切断を行ったが、セルC,C間を絶縁および溶着し、色素増感型太陽電池1B毎に第1電極5と第2電極9との絶縁、溶着および切断を行うようにしてもよい。 The method of welding the first electrode 5 and the second electrode 9 by applying ultrasonic vibration shown in the first or second embodiment and the insulation between the first electrode 5 and the second electrode 9 according to the third embodiment The dye-sensitized solar cells 1A and 1B can also be manufactured by appropriately combining welding and cutting methods. For example, in the third embodiment, the first electrode 5 and the second electrode 9 are insulated, welded, and cut in units of cell C. However, the cells C and C are insulated and welded to form a dye-sensitized solar cell. Insulation, welding, and cutting between the first electrode 5 and the second electrode 9 may be performed for each battery 1B.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[比較例]
透明導電基材として、ITO膜が形成されたポリエチレンテレフタレートフィルムを用いた。このフィルムのITO膜が形成された面上に、スクリーン印刷法によってペクセル社製の低温成膜用酸化チタンペーストを塗布し、大気雰囲気下150℃で10分間焼成し、膜厚10μm、長さ1m、幅50mmの酸化チタン多孔質膜(半導体層)を形成した。その後、幅方向に沿って間隔を置いて2つ形成し、第1電極を作製した。
この第1電極における酸化チタン多孔質膜側の端縁に、封止材を枠状に配置し、この封止材を介して、第2電極としての触媒としてPtを有するITO膜を形成したポリエチレンテレフタレートフィルムを貼り合わせ、第1電極と第2電極の間の空間を封止したセルを形成した。封止材は、第1電極における酸化チタン多孔質膜毎に枠状に配置して、酸化チタン多孔質膜毎にセルが分割されるようにした。また、第1電極における酸化チタン多孔質膜と第2電極におけるITO膜とが対向するように、第1電極と第2電極を配置した。直列構造となるようにITO膜には所定の絶縁加工を施した。
以上の工程により、比較例の太陽電池前駆体を作製した。
封止材としては、東亜合成社製のホットメルト接着材であるアロンメルト(商品名)を用いた。直列配線材としては、積水化学工業社製の導電性微粒子ミクロパール(商品名)を用いた。
第1電極と第2電極からなるセル内に、第2電極に予め空けておいた注入孔から電解液を注入し、セル内に電解液を充填した。その後、注入孔を接着剤で封止して、2つのセルを有する長さ1mの比較例の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まるとともに、封止材が第1電極と第2電極の間で部分的に剥離し、それぞれのセル内に存在するべき電解液が、他のセル内に移行し、セル内において電解液の偏りが生じていた。すなわち、封止材が封止機能を十分に果たしていなかった。
これにより電池としての性能も著しく低下し、10%より大きい出力低下が見られた。
[Comparative example]
As the transparent conductive substrate, a polyethylene terephthalate film on which an ITO film was formed was used. On the surface of the film on which the ITO film is formed, a titanium oxide paste for low-temperature film formation manufactured by Pexel is applied by screen printing and baked at 150 ° C. for 10 minutes in an air atmosphere. The film thickness is 10 μm and the length is 1 m. A titanium oxide porous film (semiconductor layer) having a width of 50 mm was formed. Then, two were formed at intervals along the width direction, and the 1st electrode was produced.
A polyethylene in which an encapsulating material is disposed in a frame shape on the end of the first electrode on the titanium oxide porous membrane side, and an ITO film having Pt as a catalyst as the second electrode is formed through the encapsulating material. A terephthalate film was bonded to form a cell in which the space between the first electrode and the second electrode was sealed. The sealing material was arranged in a frame shape for each titanium oxide porous film in the first electrode so that the cell was divided for each titanium oxide porous film. In addition, the first electrode and the second electrode were disposed so that the titanium oxide porous film in the first electrode and the ITO film in the second electrode face each other. The ITO film was subjected to a predetermined insulating process so as to have a series structure.
The solar cell precursor of the comparative example was produced through the above steps.
As the sealing material, Aron Melt (trade name) which is a hot melt adhesive manufactured by Toa Gosei Co., Ltd. was used. As the series wiring material, Sekisui Chemical Co., Ltd. conductive fine particle micropearl (trade name) was used.
An electrolytic solution was injected into a cell composed of the first electrode and the second electrode from an injection hole previously formed in the second electrode, and the electrolytic solution was filled in the cell. Thereafter, the injection hole was sealed with an adhesive to obtain a solar cell of a comparative example having a length of 1 m and having two cells.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, in the solar cell, the electrolytic solution accumulates vertically downward, and the sealing material is partially peeled between the first electrode and the second electrode, and the electrolytic solution to be present in each cell is It moved into another cell, and the electrolyte was biased in the cell. That is, the sealing material did not sufficiently fulfill the sealing function.
As a result, the performance as a battery was remarkably reduced, and an output decrease of more than 10% was observed.
[実施例1]
 比較例1と同様にして、太陽電池前駆体を作製した。
 太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面から、接触面の形状が円形、直径1mmのホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、直径1mmの溶着部を等間隔(18個×18個)に324個形成した。
 溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例1の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
 また、ユーシージャパン社製の超音波融着機の代わりに、直径1mmのホーンを備えたハンドユニット型の超音波融着機、または、直径1mmのホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
[Example 1]
A solar cell precursor was produced in the same manner as in Comparative Example 1.
A horn having a circular contact surface and a diameter of 1 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion of the solar cell precursor cell where no sealing material is provided. Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did. Over two cells, 324 welds having a diameter of 1 mm were formed at equal intervals (18 × 18) in an area range of 50 mm × 52 mm.
Example 1 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
Also, instead of the ultrasonic fusion machine made by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 1 mm, or an ultrasonic fusion machine made by Branson with a horn with a diameter of 1 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
[実施例2]
 比較例と同様にして、太陽電池前駆体を作製した。
 太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面から、接触面の形状が円形、直径1mmのホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、直径1mmの溶着部をランダムに324個形成した。
 溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例2の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
 また、ユーシージャパン社製の超音波融着機の代わりに、直径1mmのホーンを備えたハンドユニット型の超音波融着機、または、直径1mmのホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
[Example 2]
A solar cell precursor was produced in the same manner as in the comparative example.
A horn having a circular contact surface and a diameter of 1 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion of the solar cell precursor cell where no sealing material is provided. Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did. 324 welds having a diameter of 1 mm were randomly formed in an area range of 50 mm × 52 mm over two cells.
Example 2 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
Also, instead of the ultrasonic fusion machine made by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 1 mm, or an ultrasonic fusion machine made by Branson with a horn with a diameter of 1 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
[実施例3]
 比較例と同様にして、太陽電池前駆体を作製した。
 太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面から、接触面の形状が円形、直径3mmのホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、直径3mmの溶着部を等間隔(10個×10個)に100個形成した。
 溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例3の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
 また、ユーシージャパン社製の超音波融着機の代わりに、直径3mmのホーンを備えたハンドユニット型の超音波融着機、または、直径3mmのホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
[Example 3]
A solar cell precursor was produced in the same manner as in the comparative example.
A horn having a circular contact surface and a diameter of 3 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion of the solar cell precursor cell where no sealing material is provided. Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did. 100 welds with a diameter of 3 mm were formed at equal intervals (10 × 10) in an area range of 50 mm × 52 mm over two cells.
Example 3 An electrolytic solution was injected into a solar cell precursor cell having a welded portion in the same manner as in the comparative example, the electrolytic solution was filled into the cell, and the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
Moreover, instead of the ultrasonic fusion machine manufactured by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 3 mm, or an ultrasonic fusion machine made with Branson with a horn with a diameter of 3 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
[実施例4]
 比較例と同様にして、太陽電池前駆体を作製した。
 太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面から、接触面の形状が円形、直径5mmのホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、直径5mmの溶着部を等間隔(8個×8個)に64個形成した。
 溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例4の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
また、ユーシージャパン社製の超音波融着機の代わりに、直径5mmのホーンを備えたハンドユニット型の超音波融着機、または、直径5mmのホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
[Example 4]
A solar cell precursor was produced in the same manner as in the comparative example.
A horn having a circular contact surface and a diameter of 5 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion where the sealing material is not provided in the solar cell precursor cell Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (manufactured by U.C. Japan Co., Ltd.), and a welded part in which the polyethylene terephthalate film of the first electrode and the polyethylene terephthalate film of the second electrode are in direct contact with each other is formed. did. 64 welds with a diameter of 5 mm were formed at equal intervals (8 × 8) in an area range of 50 mm × 52 mm over two cells.
Example 4 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
Further, instead of the ultrasonic fusion machine manufactured by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a horn with a diameter of 5 mm, or an ultrasonic fusion machine made with Branson with a horn with a diameter of 5 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
[実施例5]
 比較例と同様にして、太陽電池前駆体を作製した。
太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面から、接触面の形状が円形、直径10mmのホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、直径10mmの溶着部を等間隔(6個×5個)に30個形成した。
溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例5の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
また、ユーシージャパン社製の超音波融着機の代わりに、直径10mmのホーンを備えたハンドユニット型の超音波融着機、または、直径10mmのホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
[Example 5]
A solar cell precursor was produced in the same manner as in the comparative example.
A horn having a circular contact surface and a diameter of 10 mm from the back surface of the first electrode on which an ITO film is formed at the center in the width direction of the portion where the sealing material is not provided in the solar cell precursor cell Ultrasonic vibration is applied by a horn of an ultrasonic fusing machine (USC Japan Co., Ltd.) with did. Thirty welds having a diameter of 10 mm were formed at equal intervals (6 × 5) in an area range of 50 mm × 52 mm over two cells.
Example 5 An electrolytic solution was injected into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example, the electrolytic solution was filled into the cell, and the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
Further, instead of the ultrasonic fusion machine manufactured by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a horn having a diameter of 10 mm, or an ultrasonic fusion machine produced by Branson having a horn having a diameter of 10 mm. Even when the machine was used, there was no bias of the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
「実施例6」
 比較例と同様にして、太陽電池前駆体を作製した。
太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面とITO膜が成膜された第2電極の裏面から、接触面の形状が一辺の長さが1mmの正方形のホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、一辺の長さが1mmの正方形の溶着部を等間隔(18個×18個)に324個形成した。
溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例6の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
また、ユーシージャパン社製の超音波融着機の代わりに、一辺の長さが1mmの正方形のホーンを備えたハンドユニット型の超音波融着機、または、一辺の長さが1mmの正方形のホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
"Example 6"
A solar cell precursor was produced in the same manner as in the comparative example.
In the solar cell precursor cell, the back surface of the first electrode on which the ITO film is formed and the back surface of the second electrode on which the ITO film is formed at the center in the width direction of the portion where the sealing material is not provided From the horn of an ultrasonic fusion machine (manufactured by U.C. Japan) having a square horn with a contact surface shape of 1 mm on a side, ultrasonic vibration is applied to the polyethylene terephthalate film of the first electrode and A welded portion in direct contact with the polyethylene terephthalate film of the second electrode was formed. Over two cells, 324 square welds each having a side length of 1 mm were formed at equal intervals (18 × 18) in an area range of 50 mm × 52 mm.
Example 6 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example and filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
In addition, instead of the ultrasonic fusion machine manufactured by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a square horn with a side length of 1 mm, or a square with a side length of 1 mm. Even when a Branson ultrasonic fusion machine equipped with a horn was used, there was no bias in the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
「実施例7」
 比較例と同様にして、太陽電池前駆体を作製した。
太陽電池前駆体のセルにおける、封止材が設けられていない部分の幅方向の中央部に、ITO膜が成膜された第1電極の裏面とITO膜が成膜された第2電極の裏面から、接触面の形状が1mm×2mmの長方形のホーンを備えた超音波融着機(ユーシージャパン社製)のホーンにより、超音波振動を付与し、第1電極のポリエチレンテレフタレートフィルムと第2電極のポリエチレンテレフタレートフィルムとが直接当接した溶着部を形成した。2つのセルにわたり、50mm×52mmの面積範囲に、1mm×2mmの長方形の溶着部を等間隔(10個×10個)に100個形成した。
溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例7の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
また、ユーシージャパン社製の超音波融着機の代わりに、1mm×2mmの長方形のホーンを備えたハンドユニット型の超音波融着機、または、1mm×2mmの長方形のホーンを備えたブランソン社製の超音波融着機を用いても、セル内において電解液の偏りがなく、封止材が封止機能を十分に果たしていた。
"Example 7"
A solar cell precursor was produced in the same manner as in the comparative example.
In the solar cell precursor cell, the back surface of the first electrode on which the ITO film is formed and the back surface of the second electrode on which the ITO film is formed at the center in the width direction of the portion where the sealing material is not provided Then, ultrasonic vibration is applied by a horn of an ultrasonic fusion machine (manufactured by UC Japan) having a rectangular horn with a contact surface shape of 1 mm × 2 mm, and a polyethylene terephthalate film and a second electrode of the first electrode The welded part was in direct contact with the polyethylene terephthalate film. 100 rectangular welds of 1 mm × 2 mm were formed at equal intervals (10 × 10) in an area range of 50 mm × 52 mm over two cells.
Example 7 An electrolytic solution was injected into the solar cell precursor cell in which the welded portion was formed in the same manner as in the comparative example. After filling the cell with the electrolytic solution, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
In addition, instead of the ultrasonic fusion machine manufactured by U.C. Japan, a hand unit type ultrasonic fusion machine equipped with a 1 mm × 2 mm rectangular horn, or a Branson company equipped with a 1 mm × 2 mm rectangular horn Even when a manufactured ultrasonic fusion machine was used, there was no bias in the electrolyte in the cell, and the sealing material sufficiently performed the sealing function.
「実施例8」
 実施例5で作製した太陽電池前駆体において、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げた状態で下方に相当する部分の下端から、40mmの位置に直径10mmの溶着部を1つ追加して形成した。
溶着部を形成した太陽電池前駆体のセル内に、比較例と同様にして電解液を注入し、セル内に電解液を充填した後、注入孔を接着剤で封止して、実施例8の太陽電池を得た。
この太陽電池を、酸化チタン多孔質膜の長さが鉛直方向に沿うように吊下げて、24時間放置した。
24時間後、太陽電池内において、電解液が鉛直下方に溜まることなく、セル内において電解液の偏りがなかった。すなわち、封止材が封止機能を十分に果たしていた。
また、電池としての性能の低下は少なく、出力低下は10%以下であった。
"Example 8"
In the solar cell precursor produced in Example 5, the welded portion having a diameter of 10 mm is located at a position of 40 mm from the lower end of the portion corresponding to the lower side in a state where the porous titanium oxide film is suspended so as to be along the vertical direction. One was added to form.
Example 8 After injecting an electrolytic solution into the solar cell precursor cell in which the welded portion was formed and filling the cell with the electrolytic solution in the same manner as in the comparative example, the injection hole was sealed with an adhesive. The solar cell was obtained.
This solar cell was suspended so that the length of the porous titanium oxide film was along the vertical direction and left for 24 hours.
After 24 hours, the electrolyte did not accumulate vertically downward in the solar cell, and there was no bias of the electrolyte in the cell. That is, the sealing material sufficiently fulfilled the sealing function.
Moreover, there was little fall of the performance as a battery, and the output fall was 10% or less.
本発明は、色素増感型太陽電池等の電気モジュールの分野で利用可能である。 The present invention can be used in the field of electrical modules such as dye-sensitized solar cells.
1A 色素増感型太陽電池
2 第一基板
3 透明導電膜
4 半導体層
5 第1電極
6 第二基板
7 対向導電膜
8 触媒層
9 第2電極
10 溶着部
11 封止材
12 セパレータ
13 電解液
15 切欠
16 導通部材
17 注液孔
19 注液孔形成用部材
20 ホーン
1A Dye-sensitized solar cell 2 First substrate 3 Transparent conductive film 4 Semiconductor layer 5 First electrode 6 Second substrate 7 Opposing conductive film 8 Catalyst layer 9 Second electrode 10 Welding portion 11 Sealing material 12 Separator 13 Electrolytic solution 15 Notch 16 Conducting member 17 Injection hole 19 Injection hole forming member 20 Horn

Claims (7)

  1. 第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、前記第1電極と前記第2電極の間が、前記第一基板の端縁と前記第二基板の端縁とにおいて封止材により接着され、前記第1電極と前記第2電極との間に形成された空間がパターニング箇所により複数のセルに区画され、前記セルに電解質が封止されてなる電気モジュールであって、
    前記封止材および前記パターニング箇所からなる枠内に、前記第一基板の板面と前記第二基板の板面とが直接当接する溶着部が設けられたことを特徴とする電気モジュール。
    A first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film, and a plate surface of the second substrate opposed to the transparent conductive film. A second electrode on which a conductive film is formed, and the first electrode and the second electrode are bonded by an encapsulant between an edge of the first substrate and an edge of the second substrate. An electric module in which a space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells,
    An electric module, wherein a welded portion in which a plate surface of the first substrate and a plate surface of the second substrate directly contact each other is provided in a frame formed of the sealing material and the patterning portion.
  2. 前記溶着部は、前記セルの単位面積26cm当たり1箇所~10箇所設けられたことを特徴とする請求項1に記載の電気モジュール。 The electrical module according to claim 1, wherein the welded portion is provided at 1 to 10 locations per unit area of 26 cm 2 of the cell.
  3. 前記溶着部を平面視したとき、前記溶着部の1個所当たりの面積が1mm~100mmであることを特徴とする請求項1または2に記載の電気モジュール。 3. The electric module according to claim 1, wherein when the welded part is viewed in plan, an area per one part of the welded part is 1 mm 2 to 100 mm 2 .
  4. 第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、前記第1電極と前記第2電極の間が、前記第一基板の端縁と前記第二基板の端縁とにおいて封止材により接着され、前記第1電極と前記第2電極との間に形成された空間がパターニング箇所により複数のセルに区画され、前記セルに電解質が封止されてなる電気モジュールの製造方法であって、
    前記透明導電膜と前記対向導電膜とを対向させて、前記第1電極と前記第2電極とを貼り合せる貼り合わせ工程と、
    前記透明導電膜が成膜された前記第一基板の裏面または前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記第一基板および前記第二基板の互いに対向する板面を当接させて絶縁するとともに、これら第一基板と第二基板とを溶着することにより、前記第1電極と前記第2電極とを分割して、前記セルを形成する分割工程と、
    前記封止材および前記パターニング箇所からなる枠内に、前記第一基板および前記第二基板の互いに対向する板面を当接させて絶縁するとともに、これら第一基板と第二基板とを溶着し、前記第一基板の板面と前記第二基板の板面とが直接当接する溶着部を形成する溶着工程と、を有することを特徴とする電気モジュールの製造方法。
    A first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film, and a plate surface of the second substrate opposed to the transparent conductive film. A second electrode on which a conductive film is formed, and the first electrode and the second electrode are bonded by an encapsulant between an edge of the first substrate and an edge of the second substrate. A method of manufacturing an electric module in which a space formed between the first electrode and the second electrode is partitioned into a plurality of cells by patterning locations, and an electrolyte is sealed in the cells,
    A bonding step of bonding the first electrode and the second electrode with the transparent conductive film and the counter conductive film facing each other;
    Ultrasonic vibration is applied from either the back surface of the first substrate on which the transparent conductive film is formed or the back surface of the second substrate on which the counter conductive film is formed, and this ultrasonic vibration is applied. Insulating the first substrate and the second substrate facing each other in contact with each other by in contact with each other, and by welding the first substrate and the second substrate, the first electrode and the second substrate A dividing step of dividing the second electrode to form the cell;
    In the frame composed of the sealing material and the patterning portion, the opposing surfaces of the first substrate and the second substrate are brought into contact with each other and insulated, and the first substrate and the second substrate are welded together. And a welding step of forming a welded portion in which the plate surface of the first substrate and the plate surface of the second substrate are in direct contact with each other.
  5. 前記溶着工程において、前記透明導電膜が成膜された前記第一基板の裏面または前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記溶着部を形成することを特徴とする請求項4に記載の電気モジュールの製造方法。 In the welding step, ultrasonic vibration is applied from either the back surface of the first substrate on which the transparent conductive film is formed or the back surface of the second substrate on which the counter conductive film is formed. The method for manufacturing an electric module according to claim 4, wherein the welded portion located at a location to which sonic vibration is applied is formed.
  6. 前記溶着工程において、前記溶着部を、前記セルの単位面積26cm当たり1箇所~10箇所形成することを特徴とする請求項4または5に記載の電気モジュールの製造方法。 6. The method of manufacturing an electric module according to claim 4, wherein in the welding step, the welding portion is formed at 1 to 10 locations per unit area of 26 cm 2 of the cell.
  7. 前記溶着工程において、平面視したとき1個所当たりの面積が1mm~100mmとなるように前記溶着部を形成することを特徴とする請求項4~6のいずれか1項に記載の電気モジュールの製造方法。 In the welding step, the electrical module according to any one of claims 4-6 in which the area per point when viewed in plan and forming the welded portion so that 1 mm 2 ~ 100 mm 2 Manufacturing method.
PCT/JP2016/086718 2015-12-09 2016-12-09 Electrical module and method for manufacturing same WO2017099217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017555158A JPWO2017099217A1 (en) 2015-12-09 2016-12-09 Electric module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240351 2015-12-09
JP2015240351 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099217A1 true WO2017099217A1 (en) 2017-06-15

Family

ID=59013550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086718 WO2017099217A1 (en) 2015-12-09 2016-12-09 Electrical module and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2017099217A1 (en)
TW (1) TW201725740A (en)
WO (1) WO2017099217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163271A1 (en) * 2018-02-23 2019-08-29 積水化学工業株式会社 Structure body, photoelectric conversion element production method and photoelectric conversion element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP2007059324A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Forming method of dye-sensitized semiconductor electrode and photoelectric cell module
JP2008192856A (en) * 2007-02-05 2008-08-21 Sony Chemical & Information Device Corp Manufacturing method of electrochemical cell
JP2010277786A (en) * 2009-05-27 2010-12-09 Kyocera Corp Photoelectric conversion device
JP2012113946A (en) * 2010-11-24 2012-06-14 Sony Corp Sealed structure and manufacturing method thereof
WO2014030736A1 (en) * 2012-08-24 2014-02-27 積水化学工業株式会社 Method for producing electric module and electric module
WO2015025921A1 (en) * 2013-08-22 2015-02-26 積水化学工業株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2015099687A (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Film base material type dye-sensitized solar cell, and installation structure for solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP2007059324A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Forming method of dye-sensitized semiconductor electrode and photoelectric cell module
JP2008192856A (en) * 2007-02-05 2008-08-21 Sony Chemical & Information Device Corp Manufacturing method of electrochemical cell
JP2010277786A (en) * 2009-05-27 2010-12-09 Kyocera Corp Photoelectric conversion device
JP2012113946A (en) * 2010-11-24 2012-06-14 Sony Corp Sealed structure and manufacturing method thereof
WO2014030736A1 (en) * 2012-08-24 2014-02-27 積水化学工業株式会社 Method for producing electric module and electric module
WO2015025921A1 (en) * 2013-08-22 2015-02-26 積水化学工業株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2015099687A (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Film base material type dye-sensitized solar cell, and installation structure for solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163271A1 (en) * 2018-02-23 2019-08-29 積水化学工業株式会社 Structure body, photoelectric conversion element production method and photoelectric conversion element
CN111801756A (en) * 2018-02-23 2020-10-20 积水化学工业株式会社 Structure, method for manufacturing photoelectric conversion element, and photoelectric conversion element

Also Published As

Publication number Publication date
TW201725740A (en) 2017-07-16
JPWO2017099217A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5702897B2 (en) Electric module manufacturing method and electric module
JP5759634B2 (en) Electrical module
TWI665694B (en) Method for producing solar cell
JP6286110B2 (en) Electric module manufacturing method and electric module manufacturing apparatus
KR102276767B1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
WO2017099217A1 (en) Electrical module and method for manufacturing same
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP2018037606A (en) Electric module and method for manufacturing the same
TW201444106A (en) Electric device and method of manufacturing the same
WO2015122532A1 (en) Electric module and manufacturing method for electric module
WO2015083738A1 (en) Conductive member with sealing function, electric module, and manufacturing method for electric module
JP5688344B2 (en) Electric module and method of manufacturing electric module
JP5846984B2 (en) Electric module and method of manufacturing electric module
WO2020050239A1 (en) Solar cell module and solar cell module with protective layer
WO2019163271A1 (en) Structure body, photoelectric conversion element production method and photoelectric conversion element
JP2020038876A (en) Electric module
WO2019146684A1 (en) Electric module and method for manufacturing electric module
JP2013201078A (en) Electric module and manufacturing method of the same
JP2020038877A (en) Electric module and method for manufacturing electric module
JP2013073856A (en) Manufacturing method of electric module and electric module
JP2014063575A (en) Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module
JP2013214373A (en) Electric module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017555158

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16873110

Country of ref document: EP

Kind code of ref document: A1